
AN INTERIOR PROXIMAL ALGORITHM AND THE
EXPONENTIAL MULTIPLIER METHOD FOR

SEMIDEFINITE PROGRAMMING∗

MOSHE DOLJANSKY† AND MARC TEBOULLE†

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 1–13

Abstract. We introduce an interior proximal algorithm for semidefinite optimization problems
and establish its convergence properties. We also study the corresponding dual algorithm leading to
an exponential multiplier method for semidefinite programs. Potential applications and extensions
are also discussed.

Key words. semidefinite optimization, proximal-like methods, exponential penalty, augmented
Lagrangian/multiplier methods

AMS subject classifications. 90C25, 90C30

PII. S1052623496309405

1. Introduction. Semidefinite programming (SDP) has recently attracted the
attention of many researchers with a focus on the development of interior point meth-
ods similar to those used in linear programming. Semidefinite programs arise naturally
in a wide range of applications in engineering, optimal control, statistics, and combi-
natorial optimization. We refer the reader to the recent survey articles of Alizadeh [1]
and Vandenberghe and Boyd [21] and references therein.

Semidefinite programs are in fact a special class of convex programs with either
real symmetric matrices as decision variables and cone constraints and/or decision
variables in the n-dimensional Euclidean space Rn with convex nonsmooth linear
matrix inequality constraints. Thus they can in principle be solved via general con-
vex programming methods. One such method is the proximal point algorithm (see,
e.g., [15], [18]) for minimizing a closed proper convex function over Rn. Recently,
several generalizations of the proximal algorithm have been considered, where the
usual quadratic proximal term is replaced by nonquadratic distance-like functions;
see, for example, [2], [9], [12], [19] and references therein. One key feature of these
nonquadratic proximal methods is that they can handle simple bounds (such as non-
negativity constraints) in such a way that they automatically generate iterates which
stay in the interior of the feasible set and therefore eliminate the combinatorial nature
of the problem. One of the main applications of these proximal methods is to the dual
of smooth convex programs, leading to twice continuously differentiable nonquadratic
augmented Lagrangians (in contrast with the usual once differentiable quadratic La-
grangian) and thus allowing the use of Newton’s method; see, e.g., [6], [16]. Several
recent implementations of these methods have been reported with good numerical
results, particularly for large scale problems; see, e.g., [4], [5], [7].

It is thus natural to consider the possibility of developing similar proximal-type
algorithms and their corresponding dual augmented Lagrangian methods (also called
multiplier methods) for solving SDP. The motivation of this paper is to explore such

∗Received by the editors September 16, 1996; accepted for publication (in revised form) October
8, 1997; published electronically October 30, 1998.

http://www.siam.org/journals/siopt/9-1/30940.html
†School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel (teboulle@

math.tau.ac.il). The second author was partially supported by grant 9636-1-96 of the Israeli Ministry
of Science.

1

2 MOSHE DOLJANSKY AND MARC TEBOULLE

a possibility. We introduce an interior proximal-type algorithm for convex optimiza-
tion problems over the cone of positive semidefinite matrices, outline the main tools
needed to develop such a proximal method for SDP, state a basic algorithm and its
corresponding dual multipliers method, and establish convergence properties of the
proposed methods.

The next section gives some preliminary results on positive semidefinite matri-
ces and corresponding matrix functions needed in the paper. Section 3 introduces a
distance-like functional measuring closeness between two positive semidefinite matri-
ces and summarizes some of its basic properties. The basic algorithm and its con-
vergence analysis is studied in section 4. In section 5, we consider a dual application
of the algorithm, leading to a multiplier method for solving SDP which is shown to
possess properties similar to the exponential multiplier method used in convex pro-
gramming; see, e.g., [6], [20]. Our last section briefly discusses further results and
potential extensions within the proximal framework for solving SDP.

2. Convex minimization over the cone of positive semidefinite matrices.
In this paper, we study convex optimization problems of the form

(P) inf{f(X) : X � 0}.
Here f : Sn → (−∞,+∞] is a closed proper function on the space Sn of n × n real
symmetric matrices. For A ∈ Sn, the notation A � 0 (A � 0) means that the matrix
A is positive semidefinite (positive definite). We will also use the notation S+

n , S
++
n to

denote the space of positive semidefinite and positive definite matrices, respectively.
The inner product on Sn is defined as 〈A,B〉 := tr(AB) =

∑
i,j Ai,jBi,j , where tr

stands for the trace operator.
Every matrix X ∈ Sn can be written in the form

X = V TΛV,

where Λ = diag (λ1(X), . . . , λn(X)), {λi(X)}mi=1 being the eigenvalues of X, and V
is the corresponding orthonormal matrix of the eigenvectors of X. Hence, for any
analytic scalar valued function g, we can define a function of a matrix X ∈ Sn by the
matrix

g(X) := V T g(Λ)V(2.1)

whenever the scalar functions g(λi(X)) are well defined; see, e.g., [11, Section 6.2].
The trace function plays an important role in this paper. From (2.1) we have

tr g(X) = tr V T g(Λ)V = tr V TV g(Λ) = tr g(Λ) =
n∑
i=1

g(λi(X)).

All the necessary material on continuity and differentiability of matrix functions and
properties of traces of matrix functions used in this paper can be found in Chapter 6
of Horn and Johnson [11].

Standard convex analysis results on Rn have their counterparts on the space Sn.
Following Rockafellar [17] we denote the domain of f by domf := {X ∈ Sn : f(X) <
∞}. For a closed proper convex function f on Sn, the subdifferential of f at M ∈ Sn
is the convex set

∂f(M) = {B ∈ Sn : f(A) ≥ f(M) + tr (A−M)B ∀A ∈ Sn}.(2.2)

PROXIMAL AND MULTIPLIER METHODS FOR SDP 3

We say that B ∈ Sn is normal to a convex set C ⊂ Sn at M if

tr (AB) ≤ tr (MB) ∀A ∈ C.
We conclude this preliminary section by recalling a special case of a fundamental and
useful result on the trace of the product of two matrices from von Neumann (see,
e.g., Marshall and Olkin [14, page 514]). Let λ(A) = (λ1(A), . . . , λn(A))T denote
the vector of eigenvalues of an n × n matrix A. We assume that the eigenvalues are
ordered, e.g., λ(A1) ≥ λ(A2) ≥ · · · ≥ λn(A).

Lemma 2.1. For any A,B ∈ Sn, tr (AB) ≤ λ(A)Tλ(B).

3. An interior proximal minimization algorithm. To solve the minimiza-
tion problem,

(P) inf {f(X) : X � 0},
we suggest the following basic algorithm.

Interior Proximal Method (IPM). Starting with X0 ∈ S++
n , generate the

sequence {Xk} satisfying

Xk = arg min
X∈S+

n

{f(X) + µ−1
k H(X,Xk−1)},(3.1)

where µk > 0 and H : Sn × Sn → (−∞,∞] is defined by

H(X,Y) =

{
tr (X logX −X log Y + Y −X) ∀X,Y ∈ S+

n × S++
n ,

+∞ otherwise.
(3.2)

Here we adopt the convention that 0 log 0 ≡ 0, the zero matrix, and we recall that
for any B ∈ S++

n , logB = A is equivalent to B = eA, where e denotes the exponential
function (see [11]).

The above algorithm is a proximal-type algorithm [18], except that here, instead of
using the classical quadratic term ||X−Xk||2 = tr(X−Xk)2, we use the nonquadratic
functional H, which will guarantee that the generated sequence of matrices {Xk} will
be positive definite, thus leading to an “interior” proximal method (see section 4,
Lemma 4.1).

The functional H can be seen as a natural extension of the so-called Kullback–
Leibler relative entropy used to measure the “distance” between two matrices in
S+
n (see Lemma 3.1 below), and the proposed algorithm extends recent entropy-like

proximal algorithms developed for standard convex programs (see, e.g., [12], [20])
to semidefinite programs. It should be noted that many other distance-like functions
could also be considered natural candidates in the algorithm (3.1). This will be briefly
discussed in the last section. Our present work is limited to using the functional H.
This avoids technical difficulties, makes the presentation more transparent, and re-
veals the potential usefulness of proximal-type algorithms for solving semidefinite
programs.

It turns out that most of the important properties (but unfortunately not all—see
Remark 4.1) which hold for the relative entropy defined on R+

n by

d(a, b) :=

n∑
i=1

ai log ai − ai log bi + bi − ai(3.3)

also hold for the functional H defined in (3.2). The next two results collect the prop-
erties of H relevant to the analysis of the algorithm (3.1).

4 MOSHE DOLJANSKY AND MARC TEBOULLE

Lemma 3.1. Let H be defined by (3.2). Then the following hold.
(i) H is a continuous function on S+

n ×S++
n and X → H(X,Y) is strictly convex

for any Y ∈ S++
n .

(ii) H(X,Y) ≥ 0 ∀X,Y ∈ S+
n × S++

n and H(X,Y) = 0 if and only if X = Y .
(iii) H(X,Y) ≥ d(λ(X), λ(Y)) ∀X,Y ∈ S+

n × S++
n .

(iv) The level sets of H(·, Y) and H(X, ·) are bounded ∀Y ∈ S++
n , ∀X ∈ S+

n ,
respectively.

Proof.
(i) The continuity of H over S+

n × S++
n follows from the fact that X logX and

log Y are continuous over S+
n and S++

n , respectively. The strict convexity of
X → H(X,Y) ∀Y ∈ S++

n follows from the strict convexity of trX logX on
S+
n ; see [11].

(ii) Using the gradient inequality for the strictly convex function ψ(X) = trX logX
we have

trX logX − trY log Y ≥ tr(X − Y)(log Y + I).

Here we use the fact that for any X ∈ S++
n ,5ψ(X) = logX + I, which can

be verified by direct computation (see also [11, Sections 6.5–6.6]), where 5
denotes the gradient with respect to X. The latter inequality can be rewritten
as

tr(X logX −X log Y + Y −X) ≥ 0 ∀X,Y ∈ S+
n × S++

n ,

proving the first part of (ii). The second part follows from the strict convexity
of ψ, i.e., strict inequality above holds when X 6= Y .

(iii) Invoking Lemma 2.1 and using the fact that λi(log Y) = log λi(Y) (cf. (2.1))
we have

tr(X log Y) ≤
n∑
i=1

λi(X) log λi(Y) ∀X,Y ∈ S+
n × S++

n ,

and hence

H(X,Y) = tr(X logX −X log Y + Y −X)
≥ tr(X logX + Y −X)−∑n

i=1 λi(X) log λi(Y)
=

∑n
i=1 λi(X) log λi(X) + λi(Y)− λi(X)− λi(X) log λi(Y)

= d(λ(X), λ(Y)).

(iv) Let us show that L := {X ∈ S+
n : H(X,Y) ≤ ν} are bounded for any fixed

Y ∈ S++
n and ν ≥ 0. Using (iii) we have

L ⊆ {X ∈ S+
n : d(λ(X), λ(Y)) ≤ ν},

and since d(·, b) has bounded level sets (see, e.g., [12]), the latter set is
bounded and hence L is bounded. The proof that H(X, ·) has bounded level
sets for every fixed X ∈ S+

n is similar and thus omitted.
Lemma 3.2. Let {Xk} ∈ S+

n , {Y k} ∈ S++
n be bounded sequences of matrices

satisfying H(Xk, Y k)→ 0. Then the following hold.
(i) λ(Xk)− λ(Y k)→ 0.
(ii) tr(Xk − Y k)→ 0.

PROXIMAL AND MULTIPLIER METHODS FOR SDP 5

Proof.
(i) From Lemma 3.1(iii) we have

H(Xk, Y k) ≥ d(λ(Xk), λ(Y k)) ≥ 0,

and hence, since H(Xk, Y k)→ 0, it follows that d(λ(Xk), λ(Y k))→ 0. More-
over, since d(λ(Xk), λ(Y k)) =

∑n
i=1 ϕ(λi(X

k), λi(Y
k)) (recall that ϕ(s, t) =

s log s − s log t + t − s with ϕ(·, ·) ≥ 0), it follows that ϕ(λi(X
k), λi(Y

k)) →
0 ∀i = 1, . . . , n. Since {λi(Xk)}, {λi(Y k)} are bounded for every i = 1, 2, . . . , n
(which follows from the boundedness of {Xk}, {Y k}), invoking Lemma A.1
given in the Appendix with ak := λi(X

k), bk := λi(Y
k) gives the desired

result.
(ii) Since trXk =

∑
λi(X

k) the result follows immediately from (i).
We conclude this section by noting two useful relations for the functional H, which
can be easily verified by direct substitution using the definition of H given in (3.2)
and recalling that H ≥ 0 (Lemma 3.1(ii)).

Lemma 3.3. For all A,B ∈ S++
n and C ∈ S+

n we have
(i) H(C,A)−H(C,B) = tr(C logB − C logA+A−B);
(ii) tr(C − B)(logB − logA) = H(C,A) − H(C,B) − H(B,A) ≤ H(C,A) −

H(C,B).

4. Convergence analysis of IPM. The analysis of IPM for solving SDP is
similar to the analysis developed for convex minimization problems by Güler [10] and
Lemaire [13] for quadratic proximal methods and its extension derived in Chen and
Teboulle [8] for nonquadratic proximal methods. We derive a global convergence rate
estimate for IPM in terms of function values.

We make the following assumptions for problem (P):
A0. inf{f(X) : X � 0} = f∗ > −∞,
A1. dom f ∩ S++

n 6= ∅.
We denote the set of minimizers of f by X∗ = {X : f(X) = f∗}. Our first result
shows that algorithm (3.1) is well defined, i.e., it generates a sequence {Xk} ∈ S++

n .
Lemma 4.1. For any Y ∈ S++

n and µ > 0 we have the following.
(i) Under A0, the function X → f(X) + µ−1H(X,Y) has bounded level sets.

(ii) If, in addition, A1 holds, then there exists a unique X(Y) ∈ S++
n satisfying

X(Y) = argmin{f(X) + µ−1H(X,Y)},(4.1)

the minimum being attained at X(Y) ∈ S++
n satisfying

µ−1(log Y − logX(Y)) ∈ ∂f(X(Y)),(4.2)

where ∂f is the subdifferential of f (see (2.2)).
Proof. Fix Y ∈ S++

n and µ > 0. By Lemma 3.1(iv) the level sets L := {X ∈
S+
n : H(X,Y) ≤ ν} are bounded, from which it follows that, under A0, X →
FY (X) := f(X) + µ−1H(X,Y) has bounded level sets, and hence X(Y) exists. The
uniqueness is implied by the strict convexity of FY (X). Under assumption A1, writing
the optimality condition for (4.1), we have, using the gradient formula ∇XH(X,Y) =
logX − log Y,X ∈ S++

n ,

0 ∈ ∂f(X(Y)) + µ−1(logX(Y)− log Y) + ∂δ(X(Y)|S+
n),(4.3)

where δ(M |S+
n) = 0 if M � 0 and +∞ otherwise. Note that for any sequence

Xk ∈ S++
n with Xk → X ∈ S+

n , we have || logXk|| → ∞; then H(·, Y) is essentially

6 MOSHE DOLJANSKY AND MARC TEBOULLE

smooth (see Rockafellar [17, Section 26]), and we thus have ∂XH(X,Y) = ∅ for any
singular positive semidefinite matrix X. Thus from (4.3) we must have X(Y) � 0.
Since ∂δ(M |S+

n) = {N ∈ Sn : N � 0, trNM = 0} (see Rockafellar [17, page 226]),
then using the fact that for any real n× n matrices A,B,

A � 0, B � 0, tr(AB) = 0 ⇒ A = 0,

we obtain ∂δ(X(Y)|S+
n) = {0}, the zero matrix, and the proof is completed.

The next result provides the key properties of IPM from which our convergence
result will follow.

Lemma 4.2. Let {Xk} be the sequence generated by algorithm (3.1), and let σm :=∑m
k=1 µk. Then we have the following.

(i) f(Xk) is nonincreasing.
(ii) µk(f(Xk)− f(X)) ≤ H(X,Xk−1)−H(X,Xk) ∀X � 0.
(iii) σm(f(Xm)− f(X)) ≤ H(X,X0)−H(X,Xm) ∀X � 0.

Moreover, if X∗ 6= ∅, then
(iv) H(X,Xk) is nonincreasing ∀X ∈ X∗;
(v) H(Xk, Xk−1)→ 0 and tr(Xk −Xk−1)→ 0.
Proof.
(i) Using the definition of Xk it follows that

f(Xk) + µ−1
k H(Xk, Xk−1) ≤ f(Xk−1) + µ−1

k H(Xk−1, Xk−1),

and since H(Xk, Xk−1) ≥ 0, H(Xk−1, Xk−1) = 0, we get f(Xk) ≤ f(Xk−1).
(ii) Using (4.2) in (2.2) we have

µk(f(Xk)− f(X)) ≤ tr(X −Xk)(logXk − logXk−1)

= H(X,Xk−1)−H(X,Xk)−H(Xk, Xk−1)

≤ H(X,Xk−1)−H(X,Xk),

where the equality and last inequality above follow from Lemma 3.3(ii).
(iii) Summing in (ii) over k = 1, . . . ,m, we get

m∑
k=1

µkf(Xk)− σmf(X) ≤ H(X,X0)−H(X,Xm).(4.4)

On the other hand, since by (i) f(Xk−1)− f(Xk) ≥ 0, multiplying the latter
by σk−1 and using σk = µk + σk−1 (with σ0 ≡ 0) we get

∑m
k=1 µ

kf(Xk) ≥
σmf(Xm), which combined with (4.4) implies the desired result.

(iv) Since ∀X ∈ X∗, f(Xk)− f(X) ≥ 0, the result follows from (ii).
(v) From (iv) we have that H(X,Xk) is nonincreasing ∀X ∈ X∗. Since, on

the other hand, H(X,Xk) ≥ 0 ∀k, we have that H(X,Xk) is converg-
ing, and therefore H(X,Xk−1) − H(X,Xk) → 0. On the other hand, we
have from (ii) and (iv) that H(Xk, Xk−1) ≤ H(X,Xk−1)−H(X,Xk). Since
H(Xk, Xk−1) ≥ 0, the result follows. The second part of (v) then follows
immediately from Lemma 3.2(ii).

We can now state the main convergence result for IPM.
Theorem 4.1. Let {Xk} be generated by algorithm (3.1) and suppose that A0

and A1 are satisfied. Then
(i) f(Xm)− f(X) ≤ σ−1

m H(X,X0) ∀X ∈ S+
n ;

(ii) if σm →∞, then limk→∞ f(Xm) = f∗;

PROXIMAL AND MULTIPLIER METHODS FOR SDP 7

(iii) moreover, if the optimal set X∗ is nonempty, the sequence {Xk} is bounded
and every one of its limit points is a solution of problem (P).

Proof.
(i) This proof follows immediately from Lemma 4.2(iii) (since H(X,Xk) ≥ 0).
(ii) Passing to the limit in (i), since σm → ∞, we get lim supm→∞ f(Xm) ≤

f(X) ∀X ∈ S+
n . This, combined with the fact that f(Xm) ≥ f∗, proves the

desired result.
(iii) Let X∗ 6= ∅. The boundedness of the sequence {Xk} follows from the fact

that H(X, ·) has bounded level sets for every X (Lemma 3.1(iv)) and from
Lemma 4.2(iv). If Y ∈ S+

n is a limit point of {Xk}, and {Xkj} converges to
Y , then we have f(Y) ≤ lim inf f(Xkj) by the lower semicontinuity of f . On
the other hand, since we also have f(Xkj) → f∗, the result follows.

Remark 4.1. The global rate of convergence estimate established in Theorem 4.1(i)
is similar to the one obtained for proximal-type methods in standard convex minimiza-
tion problems. Global convergence of the sequence {Xk} itself to an optimal solution
of (P) can be obtained under the assumption that the sequence {Xk} ∈ S++

n has a
limit point X∞ ∈ S++

n . This assumption is rather stringent and we do not know at
the moment if it can be removed. The difficulty came from the fact that the basic
property

Rn++ 3 {ak} → a ∈ Rn+ ⇒ d(a, ak)→ 0,

which is used in the global convergence proof of the corresponding entropic proximal
method in Rn+, does not hold in general in the space S+

n for the functional H, as
shown in the following example.1

Example 4.1. Here we shall bring a sequence {Y k}∞k=1 ⊂ S++
2 , which converges

to Y ∈ S+
2 and with H(Y, Y k) → ∞. Let

Y k = k−1

(
k − 1 + e−k

2

(1− e−k2

)
√
k − 1

(1− e−k2

)
√
k − 1 (k − 1)e−k

2

+ 1

)
,

Y =

(
1 0
0 0

)
.

The eigenvalues of Y k are 1, e−k
2

(and therefore Y k ∈ S++
2), and the correspond-

ing eigenvectors are (
√
k−1(k − 1), k−1/2), (−k−1/2,

√
k−1(k − 1)). It is obvious that

Y k → Y . Now, we compute H(Y, Y k). We have

Y log Y =

(
0 0
0 0

)
,

log Y k =

(−k k
√
k − 1

k
√
k − 1 −k(k − 1)

)
,

Y log Y k =

(−k k
√
k − 1

0 0

)
.

1We thank a referee for pointing out to us the recent work which also gives a similar example,
[3, Example 7.29].

8 MOSHE DOLJANSKY AND MARC TEBOULLE

Substituting the above quantities in the definition of H (cf. (3.2)) we get

H(Y, Y k) = tr(Y log Y − Y log Y k + Y k − Y)

= k + tr(Y k − Y).

Since Y k → Y , we have tr(Y k − Y) → 0, and therefore H(Y, Y k) → ∞.

5. The exponential multiplier method for SDP. The entropic proximal
algorithm introduced in this paper provides the basis for developing multiplier-type
methods for solving semidefinite programs, much in the same way that it has been
done for standard convex programs. Here we give a dual application of algorithm (3.1)
leading to an exponential method of multipliers for solving semidefinite programs of
the form

(SDP) min{cTx : A(x) � 0 , x ∈ Rm},
where c ∈ Rm , A(x) = A0 +

∑m
i=1 xiAi , {Ai}mi=0 ∈ Sn.

We make the following assumptions regarding problem (SDP):
S1. The optimal set for (SDP) is nonempty and bounded.
S2. Slater’s condition holds, i.e., ∃x̂ ∈ Rm : A(x̂) � 0.

The Lagrangian associated with (SDP) is

L(x, U) =

{
cTx − trUA(x) if U � 0,
−∞ otherwise,

and the dual problem corresponding to (SDP) is given by

(DSDP) max
U�0

inf
x∈Rm

L(x, U),(5.1)

which can be explicitly written as

(DSDP)

 max −tr UA0,
s.t. tr UAi = ci, i = 1, . . . ,m,

U � 0.
(5.2)

By standard convex analysis arguments (see Rockafellar [17]), under assumption S2
there is no duality gap between (SDP) and (DSDP) and, moreover, the set of optimal
solutions of (DSDP) is nonempty and compact.

To solve (SDP) we propose the following multiplier-type algorithm.
Exponential Multiplier Method. Let U0 � 0 , µk ≥ µ > 0 ,∀k. Generate

the sequence {xk} ∈ Rm, {Uk} ∈ S++
n by

xk+1 = arg min
x∈Rm

{cTx + µ−1
k tr e−µkA(x) + log Uk},(5.3)

Uk+1 = e−µkA(xk+1) + log Uk .(5.4)

The above algorithm can be seen as a natural extension of the exponential multiplier
method used in convex programs (see, e.g., [20]) to the SDP case. We prove below
that algorithm (5.3)–(5.4) shares similar properties.

First, we have to show that the sequence generated by (5.3) is well defined. For
that purpose, it is enough to prove that F (x) is coercive, i.e., that lim‖x‖→+∞ F (x) =
+∞, where for any fixed µ > 0 , c ∈ Rm , B ∈ Sn we define

F (x) := cTx+ µ−1tre−µA(x)+B .

PROXIMAL AND MULTIPLIER METHODS FOR SDP 9

Lemma 5.1. Under assumption S1, the minimum set of F is a nonempty and
bounded set.

Proof. We prove the result by contradiction. Suppose that F is not coercive, i.e.,
some level set of F is not bounded, then ∃{xk} ⊂ Rm such that

‖ xk ‖→ ∞, lim
k→∞

xk/ ‖ xk ‖= d 6= 0

with F (xk) ≤ δ for some δ ∈ R. Since treV > 0∀V ∈ Sn, then F (xk) ≤ δ implies that

cTxk < δ,(5.5)

tre−µA(xk)+B =
m∑
i=1

eλi(−µA(xk)+B) ≤ µ(δ − cTxk),(5.6)

where λi(·) denotes the eigenvalues of −µA(xk) + B. From (5.5) we obtain cT d ≤ 0,
while from (5.6) we get

eλi(−µA(xk)+B) ≤ µ(δ − cTxk) ∀i = 1, . . . ,m.

Since λi(·) is homogeneous, then taking the log on both sides, dividing by ‖ xk ‖, and
passing to the limit, we obtain λi(A(d)−A0) ≥ 0 ∀i = 1, . . . ,m, namely,

A(d)−A0 � 0,(5.7)

which is precisely the recession cone of {x : A(x) � 0}. Since we showed earlier that
cT d ≤ 0, we obtain a contradiction to the boundedness of the optimal set of (SDP)
assumed in S1.

Next, we show that the sequence {Uk} generated above is nothing but the se-
quence produced by algorithm (3.1) when applied to the dual problem (DSDP).

Lemma 5.2. The sequence {Uk} generated by the multiplier method (5.3)–(5.4) is
obtained via the iteration

Uk+1 = arg max
U�0
{h(U)− µ−1

k H(U,Uk)},(5.8)

where h(U) := infx∈Rn L(x, U) is the dual objective of (SDP).

Proof. First we show that

−A(xk+1) ∈ ∂h(Uk+1).

Indeed, the optimality condition for (5.3) yields

0 =
∂

∂xi
(cTx + µ−1

k tr e−µkA(x) + log Uk) |x=xk+1

= ci − trAie
−µkA(xk+1) + log Uk

= ci − trAiU
k+1 ∀i = 1, . . . ,m,

where in the last equality we use (5.4). Therefore, for each i = 1, . . . ,m we have

trAiU
k+1 = ci,

10 MOSHE DOLJANSKY AND MARC TEBOULLE

showing that xk+1 is also minimizing the Lagrangian L(x, Uk+1), and hence that
h(Uk+1) = L(xk+1, Uk+1). Now we have

h(U) = inf
x
{cTx− trUA(x)}

≤ cTxk+1 − trUA(xk+1)

= cTxk+1 − trUk+1A(xk+1)− tr(U − Uk+1)A(xk+1)

= h(Uk+1)− tr(U − Uk+1)A(xk+1),

and hence, recalling that h(U) is concave, −A(xk+1) ∈ ∂h(Uk+1). Using (5.4) we also
have

logUk+1 − logUk = −µkA(xk+1),

which combined with the above inclusion gives

µ−1
k (logUk − logUk+1) ∈ ∂h(Uk+1),

and which by Lemma 4.1 is precisely the optimality condition for (5.8).
We can then prove the following convergence result.
Theorem 5.1. Let {xk}, {Uk} be generated by (5.3)–(5.4) and assume that S1

and S2 hold. Then we have the following.
(a) The dual sequence Uk ∈ S++

n is bounded, and all of its limit points are optimal
dual solutions.

(b) trUkA(xk) → 0 as k → +∞.

(c) Let xk =
∑k
l=1 ηlx

l with ηl := µl/νk > 0 and νk :=
∑k
l=1 µl. Then

lim infk→∞ λmin(A(xk)) � 0.
(d) Denote by h∗ the optimal value of the dual problem (DSDP). Then cTxk → h∗

(and thus cTxk → h∗).
(e) {xk} is bounded.
(f) Every limit point of {xk} is an optimal solution x∗ of (SDP).
(g) limk→∞ cTxk = limk→∞ h(Uk) = cTx∗.
Proof. (a) From Lemma 5.1 we have that {Uk} is the sequence generated by

the proximal-like algorithm (3.1) applied to (DSDP). Since by S2 the set of optimal
solutions of (DSDP) is nonempty and compact, invoking Theorem 4.1(iii) proves the
statement.

(b) Equation (5.4) implies that −µkA(xk+1) = logUk+1 − logUk. On the other
hand, we have

H(Uk+1, Uk) = tr(Uk+1(logUk+1 − logUk) + Uk − Uk+1)

= −µktrUk+1A(xk+1) + tr(Uk − Uk+1).

But from Lemma 4.2(v) we have H(Uk+1, Uk)→ 0, tr(Uk − Uk+1)→ 0. Therefore

µktrUk+1A(xk+1)→ 0.

Since µk ≥ µ > 0, we get trUk+1A(xk+1)→ 0.

(c) Since A(x) is affine we have, with xk =
∑k
l=1 ηlx

l, ηl = µl/νk, and νk :=∑k
l=1 µl,

A(xk) =
k∑
l=1

ηlA(xl) =
k∑
l=1

(logU l−1 − logU l)/νk(5.9)

= (logU0 − logUk)/νk.

PROXIMAL AND MULTIPLIER METHODS FOR SDP 11

The second equality in (5.9) is from (5.4). Since λmin(X) is a super additive function,
we have λmin(A(xk)) ≥ λmin(logU0)/νk + λmin(− logUk)/νk. Since νk → ∞ (recall
that µk ≥ µ > 0), the first term tends to zero, and thus it remains to prove that
lim inf λmin(− logUk)/νk ≥ 0. Note that

lim inf λmin(− logUk)/νk = − lim sup ν−1
k λmax(logUk)

= − lim sup ν−1
k log(λmax(Uk)).(5.10)

Since {Uk} ⊂ S++
n is bounded, λmax(Uk) ≤ λ for some λ > 0, and thus

log(λmax(Uk)) ≤ log λ. Therefore

− lim sup ν−1
k log(λmax(Uk)) ≥ − lim sup ν−1

k log λ.

Since νk →∞, we get the desired result from (5.10).
(d) From (ii) we have trUkA(xk)→ 0. On the other hand, since {Uk} is feasible

for (DSDP), trUkA(xk) = cTxk + trUkA0 = cTxk −h(Uk). From Theorem 4.1(ii), we
know that h(Uk)→ h∗, and the result follows.

(e) Denote yk := xk. Suppose by contradiction that yk is unbounded. Since the
optimal set of (SDP) is bounded, denote by x its element with the maximal norm.
Define αk = 1− 3 ‖ x ‖ /(‖ yk − x ‖). Since ‖ yk ‖→ ∞, ∃k0 s.t. 0 < αk < 1 ∀k ≥ k0.
Let zk = αkx+ (1−αk)yk. By the triangle inequality, 2 ‖ x ‖≤‖ zk ‖≤ 4 ‖ x ‖, which
means that zk is bounded. If we can prove that a limit point of {zk} is an optimal
solution to (SDP), we are done, since this will be a contradiction to the maximality
of the norm of x. Let zk → z. Since A(zk) = αkA(x) + (1 − αk)A(yk), αk → 1, and
lim inf λmin(A(yk)) � 0, we get that A(z) � 0, and therefore z is a feasible point for
(SDP), and thus cT z ≥ cTx. On the other hand, since cT yk → h∗ ≤ cTx (by weak
duality), we get cT zk = αkc

Tx+ (1−αk)cT yk ≤ cTx. Therefore, cTx = cT z, and z is
in the optimal set of (SDP).

(f) Let x be a limit point of {xk}. Since lim inf λmin(A(xk)) � 0, we have that x
is a feasible point of (SDP), and therefore

cTx ≥ cTx∗.(5.11)

On the other hand, we know from (iv) that cTxk → h∗, and therefore

cTx = h∗ ≤ cTx∗.(5.12)

Combining (5.11) and (5.12), we have

cTx = h∗ = cTx∗.(5.13)

(g) The fact that lim cTxk = limh(Uk) is due to (d), and the last equality is given
in (5.13).

Note that the above convergence properties are very similar to the ones derived
for standard convex programs [20], except that here global convergence of the dual
sequence to an optimal dual solution is not guaranteed. However, one still has conver-
gence in function values, and by applying Theorem 4.1, one has the global convergence
rate estimate

tr(Uk − U∗)A0 ≤
(
k−1∑
p=1

µp

)−1

H(U∗, U0),

where U∗ is an optimal solution of (DSDP).

12 MOSHE DOLJANSKY AND MARC TEBOULLE

6. Conclusions and extensions. The motivation of this paper was to explore
the possibility of developing proximal and multiplier methods for solving SDPs, along
the lines of proximal-like methods used for standard convex programs. The conver-
gence properties established for the IPM and the related dual exponential multiplier
method demonstrate that, theoretically, algorithms of these types appear viable, and
we hope that the present work will contribute to future developments and implemen-
tations of augmented Lagrangian methods for solving SDPs.

In the present study, we restricted our analysis to the special but important
distance-like functional H. This allowed us to avoid some technical difficulties and
make the presentation more transparent. Moreover, even for more general distances,
it should be recalled that this functional plays a key role in the convergence analysis.

Several other distance-like functions could be used by mimicking the general class
of nonquadratic proximal maps developed in [19] in the space Rn+ to the space S+

n ,
and many of our results, and our analysis, can be extended with these distance-
like functionals to develop a general approach for multiplier/penalty methods for
semidefinite programs. As an illustration of another interesting possible choice for the
functional H that could be used in IPM, and for which it can be shown that our
convergence results applied, consider the functional

H1(X,Y) = trXY −1 − log detXY −1 − n ∀X � 0, Y � 0,(6.1)

where detA denotes the determinant of n × n matrix A. It can be shown that the
corresponding multiplier method used to solve (SDP) obtained by applying IPM with
H1 on the dual of (SDP) leads to a logarithmic-barrier-type method of the following
form.

Log-barrier multiplier method. Let U0 � 0, µk ≥ µ > 0∀k. Generate the sequence
{xk} ∈ Rm, {Uk} ∈ S++

n by

xk+1 = arg min
x∈Rm

{cTx − µ−1
k log det(I + µkU

kA(x))},(6.2)

Uk+1 = (I + µkU
kA(xk+1))−1Uk = ((Uk)−1 + µkA(xk+1))−1.(6.3)

Appendix.
Lemma A.1. Let {ak}, {bk} be bounded sequences in R++, and let ϕ(s, t) =

s log s − s log t + t − s, s ≥ 0, t > 0. Suppose that ϕ(ak, bk) → 0. Then ck :=
ak − bk → 0.

Proof. {ck} is bounded (because {ak}, {bk} are such). Argue by contradiction;
suppose {ck} has a subsequence converging to c 6= 0. Without loss of generality, assume
ck → c. Let akj be a subsequence of ak converging to a. Let bkjl be a subsequence of
bkj converging to b. Denote n := kjl . We have c ← cn = an − bn → a − b. There are
four possibilities for the values of a and b: (1) a = b = 0. (2) a 6= 0, b 6= 0. (3) a = 0,
b 6= 0. (4) a 6= 0, b = 0. Let us split our discussion into the four possible cases.

(i) a = b = 0. This is impossible, because c = a− b 6= 0.
(ii) a 6= 0, b 6= 0. ϕ is continuous on R+×R++, and therefore ϕ(an, bn)→ ϕ(a, b).

We know that ϕ(a, b) = 0 if and only if a = b. Thus we get c = a− b = 0 in
contradiction to the assumption that c 6= 0.

(iii) a = 0, b 6= 0. This is the same argument as in (ii).
(iv) a 6= 0, b = 0. Writing down the explicit expression for ϕ(an, bn), we get

ϕ(an, bn)→∞, a contradiction to the assumption ϕ(an, bn)→ 0.
Therefore every limit of a subsequence of {ck} must be 0. This, together with the fact
that {ck} is bounded, gives ck → 0.

PROXIMAL AND MULTIPLIER METHODS FOR SDP 13

REFERENCES

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[2] A. Auslender and M. Haddou, An interior-proximal method for convex linearly constrained
problems and its extension to variational inequalities, Math. Programming, 71 (1995),
pp. 77–100.

[3] H. H. Bauschke and J. M. Borwein, Legendre functions and the method of random Bregman
projections, J. Convex Anal., 4 (1997), pp. 27–67.

[4] A. Ben-Tal, I. Yuzefovich, and M. Zibulevsky, Penalty/Barrier Multiplier Methods for
Minimax and Constrained Smooth Convex Programs, Research report 9-92, Optimization
Laboratory, Technion, Israel, 1992.

[5] A. Ben-Tal and M. Zibulevsky, Penalty/barrier multiplier methods for convex programming
problems, SIAM J. Optim., 7 (1997), pp. 347–366.

[6] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press,
New York, 1982.

[7] M. G. Breitfeld and D. F. Shanno, Computational Experience with Modified Log-barrier
Methods for Nonlinear Programming, Rutcor research report 17-93, Rutgers University,
New Brunswick, NJ, 1993.

[8] G. Chen and M. Teboulle, Convergence analysis of a proximal-like minimization algorithm
using Bregman functions, SIAM J. Optim., 3 (1993), pp. 538–543.

[9] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications
to convex programming, Math. Oper. Res., 18 (1993), pp. 202–226.

[10] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM
J. Control Optim., 29 (1991), pp. 403–419.

[11] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New
York, 1991.

[12] A. Iusem and M. Teboulle, Convergence rate analysis of nonquadratic proximal methods for
convex and linear programming, Math. Oper. Res., 20 (1995), pp. 657–677.

[13] B. Lemaire, About the convergence of the proximal method, in Advances in Optimization,
Lecture Notes in Econom. and Math. Systems 382, D. Pallaschke, ed., Springer-Verlag,
Berlin, 1992, pp. 39–51.

[14] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications,
Academic Press, New York, 1979.

[15] B. Martinet, Perturbation des méthodes d’optimisation. Applications, RAIRO Anal. Numér.,
12 (1978), pp. 153–171.

[16] R. A. Polyak, Modified barrier functions (theory and methods), Math. Programming, 54
(1992), pp. 177–222.

[17] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[18] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control

Optim., 14 (1976), pp. 877–898.
[19] M. Teboulle, Entropic proximal mappings with application to nonlinear programming, Math.

Oper. Res., 17 (1992), pp. 670–690.
[20] P. Tseng and D. Bertsekas, On the convergence of the exponential multiplier method for

convex programming, Math. Programming, 60 (1993), pp. 1–19.
[21] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.

ON THE ACCURATE IDENTIFICATION OF
ACTIVE CONSTRAINTS∗

FRANCISCO FACCHINEI† , ANDREAS FISCHER‡ , AND CHRISTIAN KANZOW§

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 14–32

Abstract. We consider nonlinear programs with inequality constraints, and we focus on the
problem of identifying those constraints which will be active at an isolated local solution. The cor-
rect identification of active constraints is important from both a theoretical and a practical point of
view. Such an identification removes the combinatorial aspect of the problem and locally reduces the
inequality constrained minimization problem to an equality constrained problem which can be more
easily dealt with. We present a new technique which identifies active constraints in a neighborhood
of a solution and which requires neither complementary slackness nor uniqueness of the multipli-
ers. We also present extensions to variational inequalities and numerical examples illustrating the
identification technique.

Key words. constrained optimization, variational inequalities, active constraints, degeneracy,
identification of active constraints

AMS subject classifications. 90C30, 65K05, 90C33, 90C31

PII. S1052623496305882

1. Introduction. In this paper we consider the problem of identifying the con-
straints which are active at an isolated stationary point of the nonlinear program

(P) min f(x) s.t. g(x) ≥ 0,

where it is assumed that the functions f : Rn → R and g : Rn → Rm are at least con-
tinuously differentiable. More specifically, we are interested in the following question:
given an (x, λ) ∈ Rn+m belonging to a sufficiently small neighborhood of a Karush–
Kuhn–Tucker (KKT) point (x̄, λ̄) of problem (P), is it possible to estimate correctly,
on the basis of the problem data in x, the set of indices

I0 := {i| gi(x̄) = 0}

of the active constraints? The correct identification of active constraints is impor-
tant from both a theoretical and a practical point of view. Such an identification,
by removing the difficult combinatorial aspect of the problem, locally reduces the in-
equality constrained minimization problem to an equality constrained problem which
is much easier to deal with. In particular, the study of the local convergence rate of
most algorithms for problem (P) implicitly or explicitly depends on the fact that I0
is eventually identified.

∗Received by the editors June 28, 1996; accepted for publication (in revised form) September 17,
1997; published electronically October 30, 1998. This work was partially supported by NATO grant
CRG 960137.

http://www.siam.org/journals/siopt/9-1/30588.html
†Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza,” Via Buonarroti

12, I-00185 Roma, Italy (soler@dis.uniroma1.it).
‡University of Dortmund, Department of Mathematics, D-44221 Dortmund, Germany (fischer@

mathematik.uni-dortmund.de).
§Institute of Applied Mathematics, University of Hamburg, Bundesstrasse 55, D-20146 Hamburg,

Germany (kanzow@math.uni-hamburg.de).

14

IDENTIFICATION OF ACTIVE CONSTRAINTS 15

Theoretically, the identification of the active constraints is not difficult if strict
complementarity holds at the solution; see the discussion in the next section. How-
ever, as far as we are aware, to date no technique can successfully identify all active
constraints if the strict complementary slackness assumption is violated, except in the
case of linear (complementarity) problems (see [7, 8, 18]). In this paper we present a
new technique which, under mild assumptions, correctly identifies active constraints
in a neighborhood of a KKT point. This technique appears to improve on existing
techniques. In particular, it enjoys the following properties:

(i) It is simple and independent of the algorithm used to generate the point
(x, λ).

(ii) It does not require strict complementary slackness.
(iii) It does not require uniqueness of the multipliers.
(iv) It is able to handle problems with nonlinear constraints.
(v) It does not rely on any convexity assumption.
(vi) In the case of unique multipliers it also permits the correct identification of

strongly active constraints.
(vii) The identification technique can also be applied to the Karush–Kuhn–Tucker

system arising from variational inequalities.

Strategies for identifying active constraints are part of the optimization folklore [1,
12, 14]; however, they almost invariably lack some of the good characteristics listed
above. In the last 10 years special attention has been devoted to this problem in the
field of interior point methods for linear (complementarity) problems [7, 8, 18], where
satisfactory results have been reached. Recent works on the nonlinear case include
[6, 9, 25], where the case of box constraints is considered, and [10, 37, 38], where
the general nonlinear case is studied. Related material can also be found in [2, 3, 4],
which deal with the problem of establishing whether a sequence {xk} converging to a
solution x̄, in some way, eventually identifies the set I0.

We remark that, in order to identify the active set, we suppose that we are given a
pair (x, λ) of primal and dual variables. If we think of algorithmic applications of the
results in this paper, we stress that most algorithms will produce a sequence of primal
and dual variables. Even in the rare cases in which this does not occur, it is usually
possible, under reasonable assumptions, to generate a continuous dual estimate by
using a multiplier function; see, e.g., [10] and the references therein.

This paper is organized as follows. In the next section we introduce the identifi-
cation technique and prove its main properties. The identification technique critically
depends on the definition of what we call an identification function. Therefore, the
more technical section 3 is devoted to the definition of identification functions under
different sets of assumptions. In section 4 we give some numerical examples and in
section 5 we make some final comments.

We conclude this section by providing a list of the notation employed. Throughout
the paper, ‖ ·‖ indicates the Euclidean vector norm. The symbol Bε denotes the open
Euclidean ball with radius ε > 0 and center at the origin; the dimension of the
space will be clear from the context. The Euclidean distance of a point y from a
nonempty set S is abbreviated by dist[y, S]. We write x+ for the vector max{0, x},
where the maximum is taken componentwise. We set I := {1, . . . ,m} and make use
of the notation xJ for J ⊆ I in order to represent the |J |-dimensional vector with
components xi, i ∈ J. Finally, the transposed Jacobian of the vector-valued mapping
g at a point x will be denoted by ∇g(x), i.e., the ith column of this matrix is the
gradient ∇gi(x).

16 F. FACCHINEI, A. FISCHER, AND C. KANZOW

2. Identifying active constraints. Following the usual terminology in con-
strained optimization, we call a vector x̄ ∈ Rn a stationary point of (P) if there exists
a vector λ̄ ∈ Rm such that (x̄, λ̄) solves the Karush–Kuhn–Tucker system

∇f(x)−∇g(x)λ = 0,
λ ≥ 0,

g(x) ≥ 0,
λTg(x) = 0.

(2.1)

The pair (x̄, λ̄) is called a KKT point of problem (P). In the following, x̄ will always
denote a fixed, isolated stationary point, so that there is a neighborhood of x̄ which
does not contain any further stationary point of (P). Moreover, we shall indicate by
Λ the set of all Lagrange multipliers λ̄ associated with x̄ and indicate by K the set of
all KKT points associated with x̄, that is,

Λ := {λ̄ | (x̄, λ̄) solves (2.1)}, K := {(x̄, λ̄) | λ̄ ∈ Λ}.
The set Λ is closed and convex and therefore, so is the set K. Gauvin [13] showed
that Λ is bounded (and hence compact) if and only if the Mangasarian–Fromovitz
constraint qualification (MFCQ) is satisfied, i.e., if and only if∑

i∈I0
ui∇gi(x̄) = 0, ui ≥ 0 ∀i ∈ I0 =⇒ ui = 0 ∀i ∈ I0.

On the other hand, Kyparisis [24] showed that Λ reduces to a singleton if and only
if the strict Mangasarian–Fromovitz constraint qualification (SMFCQ) holds, i.e., if
and only if∑

i∈I0
ui∇gi(x̄) = 0, ui ≥ 0 ∀i ∈ I0 \ I+ =⇒ ui = 0 ∀i ∈ I0,

where I+ denotes the index set

I+ := {i ∈ I0 | ∃λ̄ ∈ Λ : λ̄i > 0}.
In particular, the linear independence constraint qualification (LICQ), i.e., the linear
independence of the gradients of the active constraints, implies that Λ is a singleton.

Our basic aim is to construct a rule which is able to assign to every point (x, λ)
an estimate A(x, λ) ⊆ I so that A(x, λ) = I0 holds if (x, λ) lies in a suitably small
neighborhood of a point (x̄, λ̄) ∈ K.

Usually, estimates of this kind are obtained by comparing the value of gi(x) to
the value of λi. For example, it can easily be shown that the set

I⊕(x, λ) := {i ∈ I| gi(x) ≤ λi}
coincides with the set I0 for all (x, λ) in a sufficiently small neighborhood of a KKT
point (x̄, λ̄) which satisfies the strict complementarity condition. If this condition is
violated, then only the inclusion

I⊕(x, λ) ⊆ I0(2.2)

holds. Furthermore, if Λ is a singleton, then we also have, in a sufficiently small
neighborhood of (x̄, λ̄),

I+ ⊆ I⊕(x, λ) ⊆ I0.(2.3)

IDENTIFICATION OF ACTIVE CONSTRAINTS 17

This relation was exploited to construct locally superlinearly convergent QP-free op-
timization algorithms when the unique multiplier λ̄ does not satisfy the strict com-
plementarity condition; see, e.g., [10, 22, 36].

We refer the reader to [1, 10] and the references therein for a more complete
discussion of these kinds of results. An analysis of results established in the literature
shows that this conclusion holds in general: if strict complementarity is satisfied, it
is usually possible to identify correctly the active constraint set, otherwise a relation
such as (2.3) is the best result that has been established in the general nonlinear case.

To overcome this situation we propose to compare gi(x) to a quantity which goes
to 0 at a known rate if (x, λ) converges to a point in the KKT set K. To this end, we
introduce the notion of an identification function.

Definition 2.1. A function ρ : Rn×Rm → R+ is called an identification function
for K if

(a) ρ is continuous on K,
(b) (x̄, λ̄) ∈ K implies ρ(x̄, λ̄) = 0,
(c) if (x̄, λ̄) belongs to K, then

lim
(x,λ)→(x̄,λ̄)

(x,λ)6∈K

ρ(x, λ)

dist [(x, λ),K]
= +∞.(2.4)

In the next section we shall give examples of how to build, under appropriate
assumptions, identification functions. Basically, Definition 2.1 says that a function is
an identification function if it goes to 0 when approaching the set K at a “slower”
rate than the distance from the set K. We note that dist [(x, λ),K] > 0 whenever
(x, λ) 6∈ K since K is a closed set; hence the denominator in (2.4) is always nonzero.

Using Definition 2.1 it is easy to prove that the index set

A(x, λ) := {i ∈ I | gi(x) ≤ ρ(x, λ)}(2.5)

correctly identifies all active constraints if (x, λ) is sufficiently close to the KKT set K.
Theorem 2.2. Let ρ be an identification function for K. Then, for any λ̄ ∈ Λ,

an ε = ε(λ̄) > 0 exists such that

A(x, λ) = I0 ∀(x, λ) ∈ {(x̄, λ̄)}+Bε.(2.6)

Proof. Since g is continuously differentiable, g is locally Lipschitz continuous.
Hence there exists a constant c > 0 such that, for all x sufficiently close to x̄,

gi(x) ≤ gi(x̄) + c‖x− x̄‖ (i ∈ I).(2.7)

Suppose now that gi(x̄) = 0. Then, using (2.4) and (2.7), we obviously have, for
(x, λ) 6∈ K in a sufficiently small neighborhood of (x̄, λ̄),

gi(x) ≤ c‖x− x̄‖ ≤ cdist [(x, λ),K] ≤ ρ(x, λ),

so that, by (2.5), i ∈ A(x, λ).
If, instead, (x, λ) ∈ K, then we have x = x̄ by the local uniqueness of x̄. From

the definition of an identification function, we also have ρ(x, λ) = 0, so that

gi(x) = gi(x̄) = 0 ≤ ρ(x, λ),

and, also in this case, i ∈ A(x, λ).

18 F. FACCHINEI, A. FISCHER, AND C. KANZOW

On the other hand, if gi(x̄) > 0, it follows, by continuity, that i 6∈ A(x, λ) if (x, λ)
is sufficiently close to (x̄, λ̄). Therefore, for any λ̄ ∈ Λ, we can find ε = ε(λ̄) > 0 such
that (2.6) is satisfied.

From the previous theorem it is obvious that there exists an open set containing
K, where the identification of the active constraints is correct. Using the MFCQ
condition we can obtain a somewhat stronger result.

Theorem 2.3. Let ρ be an identification function for K. If the MFCQ condition
holds, then there is an ε > 0 such that

A(x, λ) = I0 ∀(x, λ) ∈ K +Bε.

Proof. By the previous theorem, for every (x̄, λ̄) ∈ K, there exists a neighborhood
Ω(ε(λ̄)) = {(x̄, λ̄)} + Bε(λ̄) such that A(x, λ) = I0 for every (x, λ) ∈ Ω(ε(λ̄)). The

collection of open sets Ω(ε(λ̄)), λ̄ ∈ Λ obviously forms an open cover of K. Since the
set K is compact in view of the MFCQ condition, we can extract from the infinite cover
Ω(ε(λ̄)), with λ̄ such that (x̄, λ̄) ∈ K, a finite subcover Ω(ε(λ̄j)), with j = 1, . . . , s.
Then it is easy to see that the theorem holds with ε := minj=1,...,s{ε(λ̄j)}.

If the SMFCQ holds, it is even possible to identify the set of strongly active
constraints at x̄, i.e., the set of constraints whose multipliers are positive. To this
end, let A+(x, λ) be defined by

A+(x, λ) := {i ∈ A(x, λ) |λi ≥ ρ(x, λ)}.
The following theorem holds.

Theorem 2.4. Let ρ be an identification function for K. If the SMFCQ holds at
x̄, then there is an ε > 0 such that

A+(x, λ) = I+ ∀(x, λ) ∈ K +Bε.

Proof. We first recall that the SMFCQ implies that Λ reduces to a singleton,
i.e., Λ = {λ̄}. Theorem 2.2 shows that A+(x, λ) ⊆ I0 for all (x, λ) in a certain
neighborhood of (x̄, λ̄). Now, consider an index i ∈ I+. By continuity, this implies
i ∈ A+(x, λ) in a sufficiently small neighborhood of (x̄, λ̄). On the other hand, let
i ∈ I \ I+. Then, λ̄i = 0 and, for all (x, λ) in a sufficiently small neighborhood of
(x̄, λ̄), we have

λi ≤ |λi − λ̄i| ≤ ‖(x, λ)− (x̄, λ̄)‖ = dist [(x, λ),K] ≤ ρ(x, λ)/2 < ρ(x, λ).

This means i 6∈ A+(x, λ). Thus, A+(x, λ) = I+ for all (x, λ) sufficiently close to
K = (x̄, λ̄).

Until now we have made reference to the Karush–Kuhn–Tucker system (2.1) which
expresses first order necessary optimality conditions for the minimization problem (P).
We showed how the active constraints associated with an isolated stationary point x̄
can be identified. However, the fact that the Karush–Kuhn–Tucker system (2.1)
derives from an optimization problem plays no role in the theory developed. What we
actually proved is the following: given a solution (x̄, λ̄) of a system with the structure
of system (2.1) and with an isolated x-part, we can identify, in a suitable neighborhood
of this solution, those inequalities which hold as equalities at the solution (x̄, λ̄).
Therefore, if we consider the KKT system

F (x)−∇g(x)λ = 0,
λ ≥ 0,

g(x) ≥ 0,
λTg(x) = 0,

(2.8)

IDENTIFICATION OF ACTIVE CONSTRAINTS 19

where F : Rn → Rn is any continuous function, the theory of this section goes through
without any change. This is an important observation, since it allows us to extend the
theory developed so far to the identification of active constraints for the variational
inequality problem:

find x̄ ∈ X such that F (x̄)T (x− x̄) ≥ 0 ∀x ∈ X,
where X := {x ∈ Rn| g(x) ≥ 0}, F : Rn → Rn is continuous and g : Rn → Rm
is continuously differentiable. It is well known that, under a standard regularity as-
sumption [16], a necessary condition for x̄ ∈ Rn to be a solution of the variational
inequality problem is that λ̄ ∈ Rm exists such that (x̄, λ̄) solves system (2.8). There-
fore, if we have a sequence {(xk, λk)} converging to a solution of system (2.8) which
has an isolated primal part, we can apply the techniques described in this section in
order to identify which of the constraints gi(x) ≥ 0 will be active at x̄.

3. Defining identification functions. From the previous section we see that
the crucial point in the identification of active constraints is the definition of an
identification function. In this section we show how it is possible to define such a
function for problem (P).

We consider three cases. In the first, we assume that the functions f and g are
analytic. In the second, we require that the functions be LC1 and that the MFCQ,
as well as a second order sufficiency condition for optimality, be satisfied. Finally, in
the third case, the functions are required to be C2 and the KKT point is assumed to
satisfy a regularity condition related to (but weaker than) Robinson’s strong regularity
[34] and which we call quasi-regularity.

Extensions of these results to the KKT system (2.8) are possible. We shall point
out the relevant changes in corresponding remarks.

The cases considered here do not cover all the situations in which an identification
function can be defined and computed, but they certainly show that the definition and
computation of an identification function is possible in most of the cases of interest.

3.1. The analytic case. Let f and each gi (i ∈ I) be analytic around a point
x. We recall that this means that f and each gi (i ∈ I) possess derivatives of all
orders and that they agree with their Taylor expansions around x. We say that f and
each gi (i ∈ I) are analytic on an open set X ⊆ Rn if they are analytic around each
x ∈ X. We shall make use of the following result from Lojasiewicz [27] and Luo and
Pang [28].

Theorem 3.1. Let S denote the set of points in Rr satisfying

s(y) ≤ 0, h(y) = 0,

where s : Rr → Rp and h : Rr → Rt are analytic functions defined on an open set
X ⊆ Rr. Suppose that S 6= ∅. Then, for each compact subset Ω ⊂ X, there exist
constants τ > 0 and γ > 0 such that

dist [y, S] ≤ τ(‖[s(y)]+‖+ ‖h(y)‖)γ ∀y ∈ Ω.(3.1)

Using this result, it is possible to define an identification function for problem (P).
Theorem 3.2. Suppose that f and g are analytic in a neighborhood of a station-

ary point x̄. Then, the function ρ1 : Rn × Rm → [0,∞), defined by

ρ1(x, λ) =

0 if r(x, λ) = 0,
−1

log(r(x,λ)) if r(x, λ) ∈ (0, 0.9),
−1

log(0.9) if r(x, λ) ≥ 0.9,

20 F. FACCHINEI, A. FISCHER, AND C. KANZOW

where

r(x, λ) = ‖∇f(x)−∇g(x)λ‖+ |λTg(x)|+ ‖[−λ]+‖+ ‖[−g(x)]+‖,(3.2)

is an identification function for K.
Proof. It is obvious, by definition, that ρ1 is a nonnegative function such that

ρ1(x̄, λ̄) = 0 for every (x̄, λ̄) ∈ K. Furthermore,

lim
(x,λ)→(x̄,λ̄)

ρ1(x, λ) = 0 = ρ1(x̄, λ̄) ∀(x̄, λ̄) ∈ K,

so that ρ1 is also continuous on K. Hence we only have to check the limit

lim
(x,λ)→(x̄,λ̄)

(x,λ)6∈K

ρ1(x, λ)

dist [(x, λ),K]
= +∞.(3.3)

To this end we recall that, for arbitrary τ > 0 and γ > 0, the limit

lim
t↓0

−1

τtγ log t
= +∞(3.4)

holds; see, e.g., [29, p. 328]. We can now apply Theorem 3.1 by considering the system
(2.1) which defines KKT points. It is then easy to see that (3.1) yields, for every given
compact set Ω ⊂ Rn+m containing (x̄, λ̄) in its interior,

dist[(x, λ),K] ≤ τr(x, λ)γ ∀(x, λ) ∈ Ω,(3.5)

where τ and γ are fixed positive constants. Therefore, we can write

lim
(x,λ)→(x̄,λ̄)

(x,λ)6∈K

ρ1(x, λ)

dist [(x, λ),K]
≥ lim

(x,λ)→(x̄,λ̄)
(x,λ)6∈K

ρ1(x, λ)

τr(x, λ)γ
,

from which (3.3) follows taking into account (3.4), recalling the definition of ρ1, and
noting that r(x, λ) is a continuous function that goes to 0 from the right as (x, λ)
tends to (x̄, λ̄).

We stress that Theorem 3.2 holds under the mere assumption that f and g are
analytic. In particular, the set of Lagrange multipliers Λ might be unbounded.

Remark 1. If we want to define an identification function for the solutions of the
KKT system (2.8), we only have to substitute the definition of the residual (3.2) by
the following:

r(x, λ) = ‖F (x)−∇g(x)λ‖+ |λTg(x)|+ ‖(−λ)+‖+ ‖(−g(x))+‖.
Obviously, also in this case, we have to assume that F and each gi (i ∈ I) are analytic
in a neighborhood of the KKT point under consideration.

3.2. The second order condition case. In this subsection we assume that f
and g are LC1, i.e., that they are differentiable with Lipschitz continuous derivatives.
We denote the Lagrangian of problem (P) by

L(x, λ) := f(x)− λTg(x)

and write∇xL(x, λ) for the gradient of L with respect to the x variables. Furthermore,
we will make use of the MFCQ and of the following second order sufficient condition
for optimality.

IDENTIFICATION OF ACTIVE CONSTRAINTS 21

Assumption 1. There is γ > 0 such that, for all λ̄ ∈ Λ,

hTHh ≥ γ‖h‖2 ∀h ∈W (λ̄), ∀H ∈ ∂x∇xL(x̄, λ̄).

Here, W (λ̄) denotes the cone

{h ∈ Rn |hT∇gi(x̄) ≥ 0 (i ∈ I0 : λ̄i = 0), hT∇gi(x̄) = 0 (i ∈ I0 : λ̄i > 0)},
and ∂x∇xL(x̄, λ̄) denotes Clarke’s [5] generalized Jacobian with respect to x of the
gradient ∇xL, calculated at (x̄, λ̄).

We remark that, if the functions f and g are twice continuously differentiable and
only one multiplier exists, then the previous definition reduces to the classical KKT
second order sufficient condition for optimality. Moreover, note that requiring MFCQ
implies that the KKT set K is compact.

Using the MFCQ, together with Assumption 1, we will show that the function
ρ2 : Rn+m → [0,∞) defined by

ρ2(x, λ) :=
√
‖Φ(x, λ)‖

is an identification function for K, where the operator Φ : Rn+m → Rn+m is given by

Φ(x, λ) :=

(∇xL(x, λ)
min{g(x), λ}

)
.(3.6)

Note that Φ is continuous on Rn+m and that (x, λ) ∈ K is equivalent to the nonlinear
system

Φ(x, λ) = 0.

To prove that ρ2 is actually an identification function, let us first consider the per-
turbed nonlinear program

(P(t)) min f(x, t) := f(x) + xT tf s.t. g(x, t) := g(x) + tg ≥ 0,

where t = (tf , tg) ∈ Rn × Rm denotes the perturbation parameter. In what follows
we will assign to any vector (y, µ) ∈ Rn × Rm a particular perturbation vector

τ(y, µ) = (τf (y, µ), τg(y, µ)) ∈ Rn × Rm.
For this purpose we first define the function µ⊕ : Rn+m → Rm+ componentwise by

µ⊕i (y, µ) :=

{
max{0, µi} if i ∈ I⊕(y, µ),
0 if i ∈ I \ I⊕(y, µ),

where, we recall, I⊕(y, µ) = {i ∈ I | gi(y) ≤ µi}. We can now introduce the function
τ : Rn+m → Rn+m by

τf (y, µ) := −∇xL(y, µ⊕(y, µ)),

τg(y, µ)i :=

{
−gi(y) if i ∈ I⊕(y, µ),

−min{0, gi(y)} if i ∈ I \ I⊕(y, µ),
(i ∈ I).

Using the particular perturbation vector t = τ(y, µ), we can prove the following result.

22 F. FACCHINEI, A. FISCHER, AND C. KANZOW

Lemma 3.3. Let (y, µ) ∈ Rn×Rm be arbitrarily chosen. Then, (y, µ⊕(y, µ)) is a
KKT point for problem (P(t)), where t = τ(y, µ).

Proof. The KKT system for the perturbed program (P(t)) reads as follows:

∇xL(x, λ) + tf = 0,(3.7)

λ ≥ 0,(3.8)

g(x) + tg ≥ 0,(3.9)

λT (g(x) + tg) = 0.(3.10)

Let (y, µ) be arbitrary but fixed. Obviously, since t = τ(y, µ), we find that (x, λ) :=
(y, µ⊕(y, µ)) solves (3.7) and (3.8). Now, we will show that (y, µ⊕(y, µ)) also satisfies
(3.9) and (3.10). For i ∈ I⊕(y, µ), the definition of τg(y, µ) yields (g(y) + tg)i = 0 so
that both (3.9) and (3.10) are fulfilled. If, instead, i ∈ I \ I⊕(y, µ), it follows from
the definition of µ⊕(y, µ) that µ⊕i (y, µ) = 0 and (3.10) is satisfied. Moreover, the
definition of τg(y, µ) implies

(g(y) + tg)i = gi(y)−min{0, gi(y)} = max{0, gi(y)} ≥ 0 ∀i ∈ I \ I⊕(y, µ).

Thus, (3.9) is also valid for i ∈ I \ I⊕(y, µ). We therefore conclude that (y, µ⊕(y, µ))
is a KKT point of (P(t)) when t = τ(y, µ).

The next lemma is a technical result which will be used in the proof of Theorem
3.6 which, in turn, is the basic ingredient used to establish the main result of this
subsection, Theorem 3.7 below.

Lemma 3.4. (a) It holds that

‖µ− µ⊕(y, µ)‖ ≤ ‖min{g(y), µ}‖ ≤ ‖Φ(y, µ)‖ ∀(y, µ) ∈ Rn × Rm.
(b) If the MFCQ is satisfied, then κ > 0 exists such that

‖τ(y, µ)‖ ≤ κ‖Φ(y, µ)‖ ∀(y, µ) ∈ K +B1.

Proof. Let us consider any (y, µ) ∈ Rn × Rm. We easily see that

min{gi(y), µi} =

{
gi(y) ≤ µi if i ∈ I⊕(y, µ),

µi ≤ gi(y) if i ∈ I \ I⊕(y, µ).

Moreover, this and the definitions of the functions µ⊕ and τg yield, for i ∈ I⊕,

|µi − µ⊕i (y, µ)| = |min{0, µi}| ≤ |min{gi(y), µi}|,
|τg(y, µ)i| = |gi(y)| = |min{gi(y), µi}|.

Similarly, for i ∈ I \ I⊕(y, µ), we get

|µi − µ⊕i (y, µ)| = |µi| = |min{gi(y), µi}|,
|τg(y, µ)i| = |min{0, gi(y)}| ≤ |min{gi(y), µi}|.

Thus, property (a) and

‖τg(y, µ)‖ ≤ ‖min{g(y), µ}‖ ≤ ‖Φ(y, µ)‖ ∀(y, µ) ∈ Rn × Rm(3.11)

follow. To prove (b) let (y, µ) ∈ K+B1. Since, due to the MFCQ, K+B1 is bounded,
the LC1 property of f and g implies that the function ‖∇xL‖ is globally Lipschitz

IDENTIFICATION OF ACTIVE CONSTRAINTS 23

continuous on K+B1 with some modulus κ0 > 0. Using property (a) and (3.11), we
therefore obtain

‖τ(y, µ)‖ ≤ ‖τf (y, µ)‖+ ‖τg(y, µ)‖
≤ ‖∇xL(y, µ)‖+ κ0‖µ− µ⊕(y, µ)‖+ ‖τg(y, µ)‖
≤ κ‖Φ(y, µ)‖

with κ := κ0 + 2.
The next result can easily be derived from Theorem 4.5b and formula 3.2f in Klatte

[20]. If the functions f and g of the program (P) are twice continuously differentiable
it can also be obtained from a corresponding result in Robinson [35, Corollary 4.3].
We further note that Assumption 1 can be weakened by using generalized directional
derivatives; see [20] for more details and references.

Theorem 3.5. Let the MFCQ and Assumption 1 be satisfied. Then, there are
δ > 0, η > 0, and c > 0 such that

dist [(x̄(t), λ̄(t)),K] ≤ c‖t‖
for every t ∈ Bδ and for every KKT point (x̄(t), λ̄(t)) of problem (P(t)) for which
x̄(t) ∈ {x̄}+Bη.

Putting together the last three results, we can prove the following theorem.
Theorem 3.6. Let the MFCQ and Assumption 1 be satisfied. Then, there are

ε > 0, κ1 > 0, and κ2 > 0 such that

κ1dist [(y, µ),K] ≤ ‖Φ(y, µ)‖ ≤ κ2dist [(y, µ),K] ∀(y, µ) ∈ K +Bε.

Proof. Let us consider any (y, µ) ∈ Rn × Rm and let z1 ∈ K and z2 ∈ K be the
projections of (y, µ) and (y, µ⊕(y, µ)), respectively, on the closed convex set K. Then,
using the triangle inequality, we get

dist[(y, µ),K] = ‖z1 − (y, µ)‖
≤ ‖z2 − (y, µ)‖
≤ ‖z2 − (y, µ⊕(y, µ))‖+ ‖(y, µ)− (y, µ⊕(y, µ))‖
= dist[(y, µ⊕(y, µ)),K] + ‖µ− µ⊕(y, µ)‖.

(3.12)

Now we will provide an upper bound for dist[(y, µ⊕(y, µ)),K]. Taking into account
Lemma 3.4(b) and that ‖Φ‖ is a continuous function with Φ(y, µ) = 0 for all (y, µ) ∈
K, we have that, for δ from Theorem 3.5, we can find ε̄ > 0 such that, if (y, µ) ∈ K+Bε̄,
then ‖τ(y, µ)‖ ≤ κ‖Φ(y, µ)‖ ≤ δ. Therefore, since ε ≤ η (with η from Theorem 3.5)
can be assumed without loss of generality, Theorem 3.5, together with Lemma 3.3,
yields

dist[(y, µ⊕(y, µ)),K] ≤ c‖τ(y, µ)‖ ∀(y, µ) ∈ K +Bε.

Using this, (3.12), and Lemma 3.4, we obtain

dist[(y, µ),K] ≤ c‖τ(y, µ)‖+ ‖µ− µ⊕(y, µ)‖ ≤ (cκ+ 1)‖Φ(y, µ)‖ ∀(y, µ) ∈ K +Bε;

i.e., the left inequality in the theorem is satisfied with κ1 := 1/(cκ + 1). The right
inequality can easily be obtained by taking into account that K is compact and convex
and that ‖Φ‖ is locally Lipschitz continuous. Therefore, κ2 > 0 exists such that

‖Φ(y, µ)‖ = ‖Φ(y, µ)−Φ(z1)‖ ≤ κ2‖(y, µ)−z1‖ = κ2dist[(y, µ),K] ∀(y, µ) ∈ K+Bε,

where (as above) z1 denotes the projection of (y, µ) onto K.

24 F. FACCHINEI, A. FISCHER, AND C. KANZOW

Theorem 3.7. Let the MFCQ and Assumption 1 be satisfied. Then ρ2 is an
identification function for K.

Proof. Taking the properties of the operator Φ into account we easily see that
ρ2 is nonnegative and continuous on Rn+m and that ρ2(x, λ) = 0 for all (x, λ) ∈ K,
so that properties (a) and (b) of Definition 2.1 are satisfied. Finally, property (c)
immediately follows from Theorem 3.6.

If, instead of the upper Lipschitz continuity as stated in Theorem 3.5, the multi-
function t 7→ K(t) is upper Hölder continuous at t = 0 with a known rate ν ∈ (0, 1],
that is, if for some δ > 0, η > 0, and c > 0,

dist [(x̄(t), λ̄(t)),K] ≤ c‖t‖ν

for every t ∈ Bδ and for every KKT point (x̄(t), λ̄(t)) of problem (P(t)) for which
x̄(t) ∈ {x̄}+Bη, then the technique presented in this subsection can easily be extended
if we define ρ2 : Rn × Rm → [0,∞) as

ρ2(x, λ) := ‖Φ(x, λ)‖ν/2.
In particular, Theorem 3.7 remains valid for this ρ2 if Assumption 1 is replaced by
the upper Hölder continuity.

An interesting case in which it is possible to prove, under an assumption weaker
than Assumption 1, the upper Hölder continuity at t = 0 of the multifunction t 7→
K(t), is the case of convex problems. Assume that f is convex and each gi (i ∈ I)
is concave, that the MFCQ holds, and that the following growth condition holds (in
place of Assumption 1): positive η̄ and c̄ exist such that

f(x) ≥ f(x̄) + c̄‖x− x̄‖2 ∀ feasible x in {x̄}+Bη̄.

Under these assumptions and using the results in [21], it is possible to show (we omit
the details) that δ > 0, η > 0, and c > 0 exist such that

dist [(x̄(t), λ̄(t)),K] ≤ c
√
‖t‖

for every t ∈ Bδ and for every KKT point (x̄(t), λ̄(t)) of problem (P(t)) for which
x̄(t) ∈ {x̄} + Bη. It may be interesting to note that the growth condition holds, in
particular, if Assumption 1 is fulfilled.

Remark 2. The extension of the results of this section to general KKT systems is
not straightforward, since the sensitivity analysis of perturbed KKT systems requires,
to date, stronger assumptions. The key point is to establish a result analogous to
Theorem 3.5. Once this has been done, we can easily prove theorems analogous to
Theorem 3.7 by substituting F for ∇f in every relevant formula. As an example of
the kind of results that can be obtained, we cite the following. Suppose that F is
C1 and g is C2. Assume also that the SMFCQ holds at x̄ along with Assumption
1. Then, according to [15, Corollary 8(c)], Theorem 3.5 holds and therefore, ρ2 is a
regular identification function for the KKT system (2.8).

3.3. The quasi-regular case. In this subsection we assume that the functions
f and g are C2. We shall introduce a condition which we call quasi-regularity. As will
be clear later, this quasi-regularity is related to, but weaker than, Robinson’s strong
regularity [34]. In order to motivate the definition of a quasi-regular KKT point we
will first recall a condition which is equivalent to the notion of a strongly regular KKT
point. To this end we shall use the index set I00 := I0 \ I+ of all those indices for

IDENTIFICATION OF ACTIVE CONSTRAINTS 25

which the strict complementarity condition does not hold at the KKT point (x̄, λ̄).
For any J ⊆ I00 (empty set included), introduce the matrix

M(J) :=

 ∇2
xxL ∇g+ ∇gJ
−∇gT+ 0 0
−∇gTJ 0 0

 ,

where ∇2
xxL, ∇g+, and ∇gJ are abbreviations for the matrices ∇2

xxL(x̄, λ̄), ∇gI+(x̄),
and ∇gJ(x̄), respectively. The following result is from Kojima [23].

Theorem 3.8. The following statements are equivalent:
(a) (x̄, λ̄) is a strongly regular KKT point.
(b) For any J ⊆ I00 (empty set included), the determinants of the matrices M(J)

all have the same nonzero sign.
Motivated by point (b) in Theorem 3.8, we introduce the following definition.
Definition 3.9. The KKT point (x̄, λ̄) is a quasi-regular point if the matrices

M(J) are nonsingular for every J ⊆ I00 (empty set included).
Note that, in view of Theorem 3.8, quasi-regularity is implied by Robinson’s

strong regularity condition, but the converse is not true. In fact, consider the following
example:

minx2
1 + x2

2 + 4x1x2

s.t. x1 ≥ 0,

x2 ≥ 0.

It is easy to check that x̄ = (0, 0) is a global minimizer and that the Lagrange mul-
tipliers of the two constraints are both 0, so that I0 = I00 = {1, 2}, while I+ = ∅.
Furthermore, detM(∅) < 0, while, for J ∈ {{1}, {2}, {1, 2}}, detM(J) > 0. Therefore,
(x̄, 0, 0) is a quasi-regular KKT point but not a strongly regular one. Note that in
this example the KKT point is an isolated KKT point. This is not a coincidence. In
fact, we shall show in this section that quasi-regularity of a KKT point implies its
local uniqueness. It is also worth pointing out that quasi-regularity implies the linear
independence of the active constraints. This easily follows from the fact that M(I00)
is nonsingular.

As in subsection 3.2 we make use of the operator Φ : Rn+m → Rn+m defined in
(3.6) which, due to the differentiability assumptions, is locally Lipschitz continuous.
Hence by Rademacher’s theorem, Φ is differentiable almost everywhere. Denote by
DΦ the set of points where Φ is differentiable. Then we can define the B-subdifferential
(see, e.g., [32]) of Φ at (x, λ) as

∂BΦ(x, λ) := {H ∈ R(n+m)×(n+m) | ∃{(xk, λk)} ⊂ DΦ :

(xk, λk)→ (x, λ), ∇Φ(xk, λk)T → H}.

Note that the B-subdifferential is a subset of Clarke’s generalized Jacobian [5, 32].
The next lemma illustrates the structure of the B-subdifferential of Φ. Before stating
this lemma, however, we introduce three index sets:

α(x, λ) := {i ∈ I| gi(x) < λi},
β(x, λ) := {i ∈ I| gi(x) = λi},
γ(x, λ) := {i ∈ I| gi(x) > λi}.

26 F. FACCHINEI, A. FISCHER, AND C. KANZOW

Lemma 3.10. Let (x, λ) ∈ Rn+m be arbitrary. Then

∂BΦ(x, λ)T ⊆
(∇2

xxL(x, λ) ∇g(x)Da(x, λ)
−∇g(x)T Db(x, λ)

)
,

where

Da(x, λ) := diag (a1(x, λ), . . . , am(x, λ)) ,

Db(x, λ) := diag (b1(x, λ), . . . , bm(x, λ))

are diagonal matrices with

ai(x, λ) =

 1 if i ∈ α(x, λ),
0 or 1 if i ∈ β(x, λ),
0 if i ∈ γ(x, λ),

and Db(x, λ) = I −Da(x, λ).
Proof. This follows immediately from the definition of the operator Φ.
We are now in the position to prove the following result.
Lemma 3.11. Let (x̄, λ̄) ∈ Rn+m be a quasi-regular KKT point. Then all matrices

H ∈ ∂BΦ(x̄, λ̄) are nonsingular.
Proof. Let H ∈ ∂BΦ(x̄, λ̄)T . In view of Lemma 3.10, there exists an index set

J ⊆ β(x̄, λ̄) such that

H =

∇2
xxL ∇gα ∇gJ 0 0
−∇gTα 0 0 0 0
−∇gTJ 0 0 0 0
−∇gT

J̄
0 0 IJ̄ 0

−∇gTγ 0 0 0 Iγ

 ,

where J̄ = β(x̄, λ̄) \ J denotes the complement of J in the set β(x̄, λ̄). Obviously, this
matrix is nonsingular if and only if the matrix ∇2

xxL ∇gα ∇gJ
−∇gTα 0 0
−∇gTJ 0 0

is nonsingular. In turn, this matrix is nonsingular if and only if the matrix M(J) is
nonsingular. Hence, the thesis follows immediately from Definition 3.9.

We are now able to prove the main result of this subsection. For this purpose
recall that ρ2(x, λ) =

√‖Φ(x, λ)‖ (see subsection 3.2).
Theorem 3.12. Let (x̄, λ̄) ∈ Rn+m be a quasi-regular KKT point of problem (P).

Then
(a) (x̄, λ̄) is an isolated KKT point,
(b) the function ρ2 is an identification function for K = {(x̄, λ̄)}.
Proof. As already shown in the proof of Theorem 3.7, the function ρ2 has the

properties (a) and (b) of Definition 2.1. Furthermore, since f and g have locally
Lipschitz continuous gradients and the min operator is semismooth (see [30, 33] for
the definition of semismoothness and [30] for the proof that the min operator is
semismooth) it follows that Φ, which is the composite of semismooth functions, is
also semismooth [30, 33]. Hence it follows from Lemma 3.11 and [31, Proposition 3]
that there exists a constant c > 0 such that

‖Φ(x, λ)‖ ≥ c‖(x, λ)− (x̄, λ̄)‖ = cdist[(x, λ),K](3.13)

IDENTIFICATION OF ACTIVE CONSTRAINTS 27

for all (x, λ) in a neighborhood of (x̄, λ̄). Therefore, one can easily see that ρ2 also
has property (c) of Definition 2.1, i.e., ρ2 is an identification function for K. Finally,
since Φ(x, λ) = 0 if and only if (x, λ) is a KKT point, part (a) of the theorem follows
from (3.13).

Remark 3. In the case of the KKT system (2.8) everything goes through. It is
sufficient to assume that F is continuously differentiable and to substitute everywhere
the gradient ∇xL(x, λ) by the function F (x)−∇g(x)λ. Also in this case the definition
of quasi-regularity is related to and weaker than that of a strongly regular KKT point
since Theorem 3.8 carries over to the KKT system (2.8); see Liu [26, Lemma 3.4].
Actually, the case of KKT systems of variational inequalities is probably the main
case in which quasi-regularity can be applied. In fact, it is not difficult to see that, if
strict complementarity holds and x̄ is a local minimum point of problem (P), quasi-
regularity implies the conditions of the previous subsection. However, these conditions
and quasi-regularity are fairly distinct if one considers variational inequalities. For
example, it can easily be checked that, given the variational inequality defined by the
function F (x) = (x1 + x2

2,−x2)T and the set X = {x ∈ R2|x2 ≥ 0}, the point (0, 0)T

is a quasi-regular solution but does not satisfy the conditions stated in Remark 2 of
the previous subsection.

4. Numerical examples. In this section we illustrate the identification tech-
nique on three nonlinear optimization problems. Our aim here is merely to give
the reader a feel for the potentialities of the new technique. A detailed study of its
numerical behavior is beyond the scope of this paper.

We consider three test problems from the Hock and Schittkowski collection [17].
The first is problem 113, and at the solution both the linear independence constraint
qualification and the strict complementarity condition are satisfied. The second prob-
lem is a modification of problem 46 and, while the linear independence constraint
qualification is satisfied at the solution, the multipliers are all 0. Finally, we consider
a modification of problem 43 whose multiplier set Λ is not a singleton.

For these test problems we applied the identification technique for both identifi-
cations functions ρ1 and ρ2 introduced in section 3. To this end, random points (x, λ)
at different fixed distances from the set K were generated. More precisely, for each
ε ∈ {10, 1, 10−1, 10−2, 10−3}, we generated 100 random vectors (x, λ) on the boundary
of the set

K +B∞ε = {(x, λ) ∈ Rn × Rm| ∃λ̄ ∈ Λ : ‖(x, λ)− (x̄, λ̄)‖∞ < ε}.
For each of these random vectors we compared our approximate active sets A(x, λ)
with the exact active set I0. For each of the constraints, for the different values of
ε and for both identification functions ρ1 and ρ2, we report the sum of the correctly
identified constraints over all 100 randomly generated vectors (x, λ); see the tables
below. The last column of each table contains the total number of correctly identified
constraints over all constraints.

Example 1. This is problem 113 from [17]. It is a convex optimization problem
with n = 10 variables and m = 8 inequality constraints, five of them being nonlinear.
The solution is given by

x̄ ≈ (2.17, 2.36, 8.77, 5.10, 0.99, 1.43, 1.32, 9.83, 8.28, 8.38)T ,

and the corresponding optimal Lagrange multiplier is unique and given by

λ̄ ≈ (1.72, 0.48, 1.38, 0.02, 0.31, 0, 0.29, 0)T .

28 F. FACCHINEI, A. FISCHER, AND C. KANZOW

Table 4.1
Numerical results for Example 1.

ε ρ g1 g2 g3 g4 g5 g6 g7 g8 g1 - g8

ε = 10 ρ1 54 54 57 89 90 2 78 16 440
ρ2 65 60 71 90 93 0 84 12 475

ε = 1 ρ1 90 76 94 68 75 22 83 100 608
ρ2 81 68 86 64 67 36 75 100 577

ε = 0.1 ρ1 100 100 100 100 100 0 100 100 700
ρ2 100 94 100 76 90 100 99 100 759

ε = 0.01 ρ1 100 100 100 100 100 82 100 100 782
ρ2 100 100 100 100 100 100 100 100 800

ε = 0.001 ρ1 100 100 100 100 100 100 100 100 800
ρ2 100 100 100 100 100 100 100 100 800

The solution satisfies the strict complementarity condition; however, since the fourth
constraint is active and λ̄4 ≈ 0.02, the solution is relatively close to being degenerate.
Our results are summarized in Table 4.1.

Example 2. This example is a modification of problem 46 from [17]. Problem 46
has two equality constraints which have 0 multipliers at the solution. We converted
the equalities to inequalities and added the constraint x2 ≤ 1 in order to maintain
the uniqueness of the solution considered. Thus, we have n = 5 variables and m = 3
inequality constraints. The objective function is given by

f(x) := (x1 − x2)2 + (x3 − 1)2 + (x4 − 1)4 + (x5 − 1)6,

and the constraints are

g1(x) := x2
1x4 + sin(x4 − x5)− 1 ≥ 0,

g2(x) := x2 + x4
3x

2
4 − 2 ≥ 0,

g3(x) := 1− x2 ≥ 0.

The solution is

x̄ := (1, 1, 1, 1, 1)T

and the corresponding multiplier is

λ̄ := (0, 0, 0)T .

Since all inequality constraints are active at the solution x̄, (x̄, λ̄) is totally degenerate.
We report our results in Table 4.2.

Example 3. This example is a modification of problem 43 from [17]. It has n = 4
variables and m = 4 inequality constraints. Its objective function is

f(x) := x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

and its constraints are

g1(x) := −x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4 + 8 ≥ 0,

g2(x) := −x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4 + 10 ≥ 0,

g3(x) := −2x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 + 5 ≥ 0,

g4(x) := x3
2 + 2x2

1 + x2
4 + x1 − 3x2 − x3 + 4x4 + 7 ≥ 0;

IDENTIFICATION OF ACTIVE CONSTRAINTS 29

Table 4.2
Numerical results for Example 2.

ε ρ g1 g2 g3 g1 - g3

ε = 10 ρ1 52 8 92 152
ρ2 85 18 100 203

ε = 1 ρ1 100 82 100 282
ρ2 88 73 100 261

ε = 0.1 ρ1 100 99 100 299
ρ2 100 97 100 297

ε = 0.01 ρ1 100 100 100 300
ρ2 100 100 100 300

ε = 0.001 ρ1 100 100 100 300
ρ2 100 100 100 300

Table 4.3
Numerical results for Example 3.

ε ρ g1 g2 g3 g4 g1 - g4

ε = 10 ρ1 100 0 100 26 226
ρ2 100 0 100 27 227

ε = 1 ρ1 100 0 100 100 300
ρ2 89 18 96 65 268

ε = 0.1 ρ1 100 0 100 100 300
ρ2 100 36 100 100 336

ε = 0.01 ρ1 100 97 100 100 397
ρ2 100 100 100 100 400

ε = 0.001 ρ1 100 100 100 100 400
ρ2 100 100 100 100 400

i.e., we added the fourth constraint to problem 43 from [17]. The solution of this
problem is

x̄ = (0, 1, 2,−1)T .

The constraints g1, g3, and g4 are active at the solution, and

∇g4(x̄) = ∇g1(x̄)−∇g3(x̄)

so that the linear independence constraint qualification is violated. However, the
corresponding set of Lagrange multipliers, given by

Λ := {λ̄(r) := (3− r, 0, r, r − 2)T | r ∈ [2, 3]},
is bounded, so that the Mangasarian–Fromovitz constraint qualification is satisfied.
Furthermore, if r ∈ {2, 3}, then strict complementarity is violated.

To test this problem, the random points (x, λ) on the boundary of K+B∞ε were
generated as follows. First, the x-part was randomly generated such that ‖x− x̄‖∞ =
ε. To obtain the λ-part we took a random number r ∈ [2, 3] and then generated the
vector λ randomly such that ‖λ − λ̄(r)‖∞ = ε. It is obvious that every point (x, λ)
generated in this way lies on the boundary of K + B∞ε . In Table 4.3 we summarize
the results obtained for this example.

We think these three examples suggest that the identification technique is viable
in practice even if we are well aware that no firm conclusion can be drawn on the
basis of these few tests.

It is also important to point out that if ρ is an identification function, then any
positive multiple of ρ is an identification function; in practice an appropriate scaling

30 F. FACCHINEI, A. FISCHER, AND C. KANZOW

of the identification functions might be crucial for a good performance of the iden-
tification technique. Finally we note that if one wants to employ the identification
technique in combination with a specific solution algorithm, one should take into ac-
count that sequences generated by specific algorithms may have additional properties
which should be exploited to enhance the identification process.

5. Final remarks. In this paper we introduced a technique to accurately iden-
tify active constraints in inequality constrained optimization and variational inequality
problems. The most remarkable features of the new identification technique are, on
the one hand, that it identifies all active constraints even if strict complementarity
does not hold and, on the other hand, that, as far as we are aware, it is the first
identification technique applicable to nonlinear variational inequalities. Furthermore,
as discussed in the introduction, it also enjoys several other favorable characteristics.
In particular, the identification technique can be used in combination with any algo-
rithm for the solution of inequality constrained optimization or variational inequality
problems.

We believe that the techniques introduced in this paper can be useful in many
cases, especially in the theoretical analysis and design of optimization methods.

From a practical point of view, the following questions may be of interest:
(a) How large is the region where exact identification occurs?
(b) Can we build identification functions which are scale invariant?
(c) Can we relax the assumption that x̄ is an isolated stationary point and still

obtain useful results?
It is difficult to answer these questions at the level of generality adopted in this paper.
We think that answers can come from practical experiments and from an analysis of
structured classes of problems, e.g., linear or quadratic problems, box or linearly
constrained problems, etc.

From a more theoretical point of view, we would like to mention that the identi-
fication technique introduced in this paper turned out to be an essential tool in the
development of the first algorithm for nonlinearly inequality constrained problems
for which convergence to points satisfying the second order necessary condition for
optimality can be established; see [11]. Moreover, the identification technique is one
basic ingredient for the algorithm suggested in [19] which is the first QP-free method
for the solution of variational inequality problems which has a global and superlinear
convergence and which generates (in some sense) only feasible iterates. Finally, let us
mention that the new identification technique has been advocated in [39] to accom-
modate a theoretical assumption needed to establish the superlinear convergence of
an SQP-type method even when the linear independence of the active constraints is
not satisfied at a solution.

Acknowledgment. We would like to thank Professor D. Klatte for helpful dis-
cussions on the stability of KKT systems.

REFERENCES

[1] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press,
New York, 1982.

[2] J.V. Burke, On the identification of active constraints II: The nonconvex case, SIAM J.
Numer. Anal., 27 (1990), pp. 1081–1102.

[3] J.V. Burke and J.J. Moré, On the identification of active constraints, SIAM J. Numer. Anal.,
25 (1988), pp. 1197–1211.

[4] J.V. Burke and J.J. Moré, Exposing constraints, SIAM J. Optim., 4 (1994), pp. 573–595.

IDENTIFICATION OF ACTIVE CONSTRAINTS 31

[5] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983 (reprinted
by SIAM, Philadelphia, PA, 1990).

[6] A.R. Conn, N.I.M. Gould, and P.L. Toint, Global convergence for a class of trust region al-
gorithms for optimization problems with simple bounds, SIAM J. Numer. Anal., 25 (1988),
pp. 433–460.

[7] A.S. El-Bakry, R.A. Tapia, and Y. Zhang, A study of indicators for identifying zero variables
in interior-point methods, SIAM Review, 36 (1994), pp. 45–72.

[8] A.S. El-Bakry, R.A. Tapia, and Y. Zhang, On the convergence rate of Newton interior-point
methods in the absence of strict complementarity, Comput. Optim. Appl., 6 (1996), pp.
157–167.

[9] F. Facchinei and S. Lucidi, A Class of Methods for Optimization Problems with Simple
Bounds, Technical Report, Dipartimento di Informatica e Sistemistica, Università di Roma
“La Sapienza,” Rome, Italy, 1992 (revised 1995).

[10] F. Facchinei and S. Lucidi, Quadratically and superlinearly convergent algorithms for the
solution of inequality constrained minimization problems, J. Optim. Theory Appl., 85
(1995), pp. 265–289.

[11] F. Facchinei and S. Lucidi, Convergence to second order stationary points in inequality
constrained optimization, DIS Working Paper 32-96, Università di Roma “La Sapienza,”
Roma, Italy, 1996; Math. Oper. Res., to appear.

[12] R. Fletcher, Practical Methods of Optimization, John Wiley, New York, 1987.
[13] J. Gauvin, A necessary and sufficient regularity condition to have bounded multipliers in

nonconvex programming, Math. Programming, 12 (1977), pp. 136–138.
[14] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic Press, London,

1981.
[15] M.S. Gowda and J.-S. Pang, Stability analysis of variational inequalities and nonlinear com-

plementarity problems, via the mixed linear complementarity problem and degree theory,
Math. Oper. Res., 19 (1994), pp. 831–879.

[16] P.T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear comple-
mentarity problems: A survey of theory, algorithms and applications, Math. Programming,
48 (1990), pp. 161–220.

[17] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Economics and Math. Systems 187, Springer-Verlag, Berlin, 1981.

[18] J. Ji and F.A. Potra, Tapia indicators and finite termination of infeasible-interior-point
methods for degenerate LCP, in The Mathematics of Numerical Analysis, Lectures in Appl.
Math. 32, Amer. Math. Soc., Providence, RI, 1996, pp. 443–454.

[19] C. Kanzow and H.-D. Qi, A QP-free constrained Newton-type method for variational inequal-
ity problems. Math. Programming, to appear.

[20] D. Klatte, Nonlinear optimization problems under data perturbations, in W. Krabs and
J. Zowe, eds.; Modern Methods of Optimization, Springer-Verlag, Berlin, 1992, pp. 204–
235.

[21] D. Klatte, On quantitative stability for C1,1 programs, in R. Durier and C. Michelot, eds.,
Recent Developments in Optimization, Springer-Verlag, Berlin, 1995, pp. 215–230.

[22] H. Kleinmichel, C. Richter, and K. Schönefeld, On a class of hybrid methods for smooth
constrained optimization, J. Optim. Theory Appl., 73 (1992), pp. 465–499.

[23] M. Kojima, Strongly stable stationary solutions in nonlinear programs, in S.M. Robinson, ed.,
Analysis and Computation of Fixed Points, Academic Press, New York, 1979, pp. 93–138.

[24] J. Kyparisis, On uniqueness of Kuhn Tucker multipliers in nonlinear programming, Math.
Programming, 32 (1985), pp. 242–246.

[25] M. Lescrenier, Convergence of trust region algorithms for optimization with bounds when
strict complementarity does not hold, SIAM J. Numer. Anal., 28 (1991), pp. 476–495.

[26] J. Liu, Strong stability in variational inequalities, SIAM J. Control Optim., 33 (1995), pp.
725–749.

[27] M.S. Lojasiewicz, Sur le problème de la division, Stud. Math., 18 (1959), pp. 87–136.
[28] Z.-Q. Luo and J.-S. Pang, Error bounds for analytic systems and their applications, Math.

Programming, 67 (1994), pp. 1–28.
[29] J. Marsden and A. Weinstein, Calculus I, Springer-Verlag, New York, 1985.
[30] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Con-

trol Optim., 15 (1977), pp. 957–972.
[31] J.-S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim., 3

(1993), pp. 443–465.

32 F. FACCHINEI, A. FISCHER, AND C. KANZOW

[32] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), pp. 227–244.

[33] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993),
pp. 353–368.

[34] S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43–62.
[35] S.M. Robinson, Generalized equations and their solution, part II: Applications to nonlinear

programming, Math. Programming Study, 19 (1982), pp. 200–221.
[36] K. Schönefeld, Hybrid optimization methods without strict complementary slackness con-

ditions, in Proceedings of the International Conference on Mathematical Optimization—
Theory and Applications, Eisenach, Germany, Technische Hochschule Ilmenau, Ilmenau,
Germany, 1986, pp. 137–140.

[37] S.J. Wright, Convergence of SQP like methods for constrained optimization, SIAM J. Control
Optim., 27 (1989), pp. 13–26.

[38] S.J. Wright, Identifiable surfaces in constrained optimization, SIAM J. Control Optim., 31
(1993), pp. 1063–1079.

[39] S.J. Wright, Superlinear convergence of a stabilized SQP method to a degenerate solution,
Comput. Optim. Appl., to appear.

ROBUST SOLUTIONS TO UNCERTAIN
SEMIDEFINITE PROGRAMS∗

LAURENT EL GHAOUI† , FRANCOIS OUSTRY† , AND HERVÉ LEBRET†

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 33–52

Abstract. In this paper we consider semidefinite programs (SDPs) whose data depend on some
unknown but bounded perturbation parameters. We seek “robust” solutions to such programs, that
is, solutions which minimize the (worst-case) objective while satisfying the constraints for every
possible value of parameters within the given bounds. Assuming the data matrices are rational
functions of the perturbation parameters, we show how to formulate sufficient conditions for a robust
solution to exist as SDPs. When the perturbation is “full,” our conditions are necessary and sufficient.
In this case, we provide sufficient conditions which guarantee that the robust solution is unique and
continuous (Hölder-stable) with respect to the unperturbed problem’s data. The approach can thus
be used to regularize ill-conditioned SDPs. We illustrate our results with examples taken from linear
programming, maximum norm minimization, polynomial interpolation, and integer programming.

Key words. convex optimization, semidefinite programming, uncertainty, robustness, regular-
ization

AMS subject classifications. 93B35, 49M45, 90C31, 93B60

PII. S1052623496305717

Notation. For a matrix X, ‖X‖ denotes the largest singular value. If X is
square, X � 0 (resp., X � 0) means X is symmetric and positive semidefinite (resp.,
definite). For X � 0, X1/2 denotes the symmetric square root of X. The notation
Ip denotes the p× p identity matrix; the subscript is omitted when it can be inferred
from context.

1. Introduction. A semidefinite program (SDP) consists of minimizing a linear
objective under a linear matrix inequality (LMI) constraint; precisely,

P0 : minimize cTx subject to F (x) = F0 +
m∑
i=1

xiFi � 0,(1)

where c ∈ Rm − {0} and the symmetric matrices Fi = FTi ∈ Rn×n, i = 0, . . . ,m,
are given. SDPs are convex optimization problems and can be solved in polynomial
time with, e.g., primal-dual interior-point methods [24, 35, 26, 19, 2]. SDPs include
linear programs and convex quadratically constrained quadratic programs, and arise
in a wide range of engineering applications; see, e.g., [12, 1, 35, 22].

In the SDP (1), the “data” consist of the objective vector c and the matrices
F0, . . . , Fm. In practice, these data are subject to uncertainty. An extensive body of
work has concentrated on the sensitivity issue, in which the perturbations are assumed
to be infinitesimal, and regularity of optimal values and solution(s), as functions of
the data matrices, is studied. Recent references on sensitivity analysis include [30,
31, 10] for general nonlinear programs, [33] for semi-infinite programs, and [32] for
semidefinite programs.

When the perturbation affecting the data of the problem is not necessarily small,
a sensitivity analysis is not sufficient. For general optimization problems, a whole field

∗Received by the editors June 21, 1996; accepted for publication (in revised form) September 22,
1997; published electronically October 30, 1998.

http://www.siam.org/journals/siopt/9-1/30571.html
†Ecole Nationale Supérieure de Techniques Avancées, 32, Bd. Victor, 75739 Paris, France

(elghaoui@ensta.fr, oustry@ensta.fr, lebret@ensta.fr).

33

34 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

of study (stochastic programming) concentrates on the case where the perturbation
is stochastic with known statistics. One object of this field is to study the impact of,
say, a random objective on the distribution of optimal values (this problem is called
the “distribution problem”). References relevant to this approach to the perturbation
problem include [15, 9, 29]. We are not aware of special references for general SDPs
with randomly perturbed data except for the last section of [30], some exercises in
the course notes of [13], and section 2.6 in [23].

The main objective of this paper is to quantify the effect of unknown but bounded
deterministic perturbation of problem data on solutions. In our framework, the per-
turbation is not necessarily small, and we seek a solution that is “robust,” that is,
remains feasible despite the allowable, not necessarily small, perturbation. Our aim
is to obtain (approximate) robust solutions via SDP. Links between regularity of so-
lutions and robustness are, of course, expected. One of our side objectives is to
clarify these links to some extent. This paper extends results given in [16] for the
least-squares problem.

The approach developed here can be viewed as a special case of stochastic pro-
gramming in which the distribution of the perturbation is uniform.

The ideas developed in this paper draw mainly from two sources: control theory,
in which we have found the tools for robustness analysis [36, 17, 12] and some recent
work on sensitivity analysis of optimization problems by Shapiro [31] and Bonnans,
Cominetti, and Shapiro [10].

Shortly after completion of our manuscript, we became aware of the ongoing
work of Ben-Tal and Nemirovski on the same subject. In [7], they apply similar ideas
to a truss topology design problem and derive very efficient algorithms for solving
the corresponding robustness problem. In [8], the general problem of tractability of
obtaining a robust solution is studied, and “tractable counterparts” of a large class of
uncertain SDPs are given. The case of robust linear programming, under quite general
assumptions on the perturbation bounds, is studied in detail in [6]. Our paper can
be seen as a complement of [8], giving ways to cope with (not necessarily) tractable
robust SDPs by means of upper bounds. (In particular, our paper handles the case
of nonlinear dependence of the data on the uncertainties.) A unified treatment, and
more results, will appear in [4].

The paper is divided as follows. Our problem is defined in section 2. In sec-
tion 3, we show how to compute upper bounds on our problem via SDP. We give
special attention to the so-called full perturbations case, for which our results are
nonconservative. In section 4, we examine sensitivity of the robust solutions in the
full perturbations case. We provide conditions which guarantee that the robust solu-
tion is unique and a regular function of the data matrices. We then consider several
interesting examples in section 5, such as robust linear programming, robust norm
minimization, and error-in-variables SDPs.

2. Problem definition.

2.1. Robust SDPs. Let F(x,∆) be a symmetric matrix-valued function of two
variables x ∈ Rm, ∆ ∈ Rp×q. In the following, we consider x to be the decision
variable, and we think of ∆ as a perturbation. We assume that ∆ is unknown but
bounded. Precisely, we assume that ∆ is known to belong to a given linear subspace
D of Rp×q, and in addition, ‖∆‖ ≤ ρ, where ρ ≥ 0 is given.

In section 2.2, we will be more precise about the dependence of F on ∆.

ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS 35

We define the robust feasible set by

Xρ =

{
x ∈ Rm

∣∣∣∣ for every ∆ ∈ D, ‖∆‖ ≤ ρ,
F(x,∆) is well defined and F(x,∆) � 0

}
.(2)

Now let c(∆) be a vector-valued rational function of the perturbation ∆, such that
c(0) = c. We consider the following min-max problem:

minimize max
∆∈D, ‖∆‖≤ρ

c(∆)Tx subject to x ∈ Xρ.(3)

From now on, we assume that the function c(∆) is independent of ∆ (in other
words, the objective vector c is not subject to perturbation). This is done with no
loss of generality: introduce a slack variable λ and define

x̃ =

[
x
λ

]
, c̃ =

[
0
1

]
, F̃(x̃,∆) = diag(F(x,∆), λ− c(∆)Tx).

Problem (3) can be formulated as

minimize c̃T x̃ subject to x̃ ∈ X̃ρ,

where X̃ρ is the robust feasible set corresponding to the function F̃.
In the following, we thus consider a problem of the form

Pρ : minimize cTx subject to x ∈ Xρ(4)

and refer to it as a robust semidefinite problem (RSDP). In general, although Xρ
is convex, Pρ is not a tractable problem—in particular, it is not an SDP. Our aim
is to find a convex, inner approximation of Xρ that is described by a linear matrix
inequality constraint. This inner approximation is then used to find an upper bound
on the optimal value of Pρ by solving an SDP. In some cases, we can prove our results
are nonconservative, that is, as in the so-called “full perturbation” case.

We refer to the set X0 (resp., problem P0, i.e., (1)) as the nominal feasible set
(resp., nominal SDP). We shall assume that the nominal SDP is feasible, that is,
X0 6= ∅. Of course, the robust feasible set Xρ may become empty for some ρ > 0; we
return to this question later.

2.2. Linear-fractional representation. In this paper, we restrict our atten-
tion to functions F that are given by a “linear-fractional representation” (LFR):

F(x,∆) = F (x) + L∆(I −D∆)−1R(x) +R(x)T (I −∆TDT)−1∆TLT ,(5)

where F (x) is defined in (1), R(·) is an affine mapping taking values in Rq×n, and
L ∈ Rn×p and D ∈ Rq×p are given matrices. Together, the mappings F (·), R(·), the
matrices L,D, the subspace D, and the scalar ρ constitute our perturbation model for
the nominal SDP (1).

The above class of models seems quite specialized. In fact, these models can
be used in a wide variety of situations, for example, in the case where the (matrix)
coefficients Fi in P0 are rational functions of the perturbation. The representation
lemma, given below, and the examples of section 5 illustrate this point.

A constructive proof of the following result can be found in [37].
Lemma 2.1. For any rational matrix function M : Rk → Rn×c, with no singular-

ities at the origin, there exist nonnegative integers r1, . . . , rk, and matrices M ∈ Rn×c,

36 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

L ∈ Rn×N , R ∈ RN×c, D ∈ RN×N , with N = r1 + · · · + rk, such that M has the
following linear-fractional representation (LFR): For all δ where M is defined,

M(δ) = M + L∆ (I −D∆)
−1
R, where ∆ = diag (δ1Ir1 , . . . , δkIrk) .(6)

Using the LFR lemma, we may devise LFR models for SDPs, where a perturbation
vector δ ∈ Rk enters rationally in the coefficient matrices. The resulting set D of
perturbation matrices ∆ is then a set of diagonal matrices of repeated elements, as
in (6). Componentwise bounds on the vector δ, such as |δ|i ≤ ρ, i = 1, . . . , k, translate
into a norm-bound ‖∆‖ ≤ ρ on the corresponding matrix ∆.

2.3. A special case. We distinguish a special case for which exact (nonconser-
vative) results can be obtained via SDP. This is when F(x,∆) is block diagonal, each
block being independently perturbed—precisely, when

F(x,∆) = diag
(
F1(x,∆1), . . . ,FL(x,∆L)

)
,(7)

where each Fi(x,∆i) assumes the form shown in section 2.2 for appropriate Li, Ri, Di,
with ∆i ∈ Rpi×pi , i = 1, . . . , L, and D consists of block-diagonal matrices of the form

D =
{

∆ = diag(∆1, . . . ,∆L),
∣∣ ∆i ∈ Rpi×qi} .

We refer to this situation as the block-full perturbation case. When L = 1, we speak
of the full perturbation case. As will be seen later, all results given for L = 1 can be
generalized to the case L > 1.

3. Robust solutions for SDPs. Unless otherwise specified, we fix ρ > 0.

3.1. Full perturbations case. In this section, we consider the full perturba-
tions case, that is, D = Rp×q. We assume ‖D‖ < ρ−1, which is a necessary and
sufficient condition for F(x,∆) to be well defined for every x ∈ Rm and ∆ ∈ Rp×q,
‖∆‖ ≤ ρ.

The following lemma is a simple corollary of a classic result on quadratic inequal-
ities, referred to as the S-procedure [12]. Its proof is detailed in [16].

Lemma 3.1. Let F = FT , L,R, D be real matrices of appropriate size. We have
det(I −D∆) 6= 0 and

F + L∆(I −D∆)−1R+RT (I −D∆)−T∆TLT � 0(8)

for every ∆, ‖∆‖ ≤ 1, if and only if ‖D‖ < 1 and there exists a scalar τ such that[
F − τLLT RT − τLDT

R− τDLT τ(I −DDT)

]
� 0.(9)

A direct application of the above lemma shows that, in the full perturbations
case, the RSDP (4) is an SDP.

Theorem 3.1. When D = Rp×q, the RSDP (4) and a corresponding solution x
can be computed by solving the SDP in variables x, τ :

minimize cTx subject to

[
F (x)− τLLT R(x)T − τLDT

R(x)− τDLT τ(ρ−2I −DDT)

]
� 0.(10)

ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS 37

Special barrier functions adapted to a conic formulation of the problem can be
devised and yield an interior-point algorithm that has the same complexity as the
nominal problem; see [24].

We may define the maximum allowable perturbation level, which is the largest
number ρmax such that Xρ 6= ∅ for every ρ, 0 ≤ ρ ≤ ρmax (note ρmax > 0 since
X0 6= ∅). Computing ρmax is a (quasi-convex) generalized eigenvalue minimization
problem [24, 11]:

minimize λ subject to

[
F (x)− τLLT R(x)T − τLDT

R(x)− τDLT τ(λI −DDT)

]
� 0.

Remark. The above exact results are readily generalized to the block-full pertur-
bation case (L > 1) as defined in section 2.2.

3.2. Structured case. We now turn to the general case (D is now an arbitrary
linear subspace). In this section, we associate with D the following linear subspace:

B ∆
=
{

(S, T,G) ∈ Rp×p ×Rq×q ×Rq×p ∣∣
S∆ = ∆T, G∆ = −∆TGT for every ∆ ∈ D} .(11)

As shown in [16], a general instance of problem (4) is NP-hard. Therefore, we
look for upper bounds on its optimal value. The following lemma is a generalization
of Lemma 3.1 that traces back to [17]. Its proof is detailed in [16].

Lemma 3.2. Let F = FT , L,R, D be real matrices of appropriate size. Let D be
a subspace of Rp×q, and denote by B the set of matrices associated with D as in (11).
We have det(I −D∆) 6= 0 and

F + L∆(I −D∆)−1R+RT (I −D∆)−T∆TLT � 0(12)

for every ∆ ∈ D, ‖∆‖ ≤ 1 if there exist a triple (S, T,G) ∈ B such that S � 0, T � 0,
and [

F − LSLT RT − LSDT + LG
R−DSL−GLT T −GDT +DG−DSDT

]
� 0.(13)

Using Lemma 3.2, we obtain the following result.
Theorem 3.2. An upper bound on the RSDP (4) and a corresponding solution

x can be computed by solving the SDP in variables x, S, T,G :

inf cTx subject to (S, T,G) ∈ B, S � 0, T � 0,[
F (x)− LSLT R(x)T − LSDT + LG

R(x)−DSL−GLT ρ−2T −GDT +DG−DSDT

]
� 0.

Note that when the perturbation is full, the variable G is zero and S, T are of the
form τIp, τIq, resp., for some τ ≥ 0. We then recover the exact results of section 3.1.

As before, we may define the maximum allowable perturbation level, which is the
largest number ρmax such that Xρ 6= ∅ for every ρ, 0 ≤ ρ ≤ ρmax. Computing a
lower bound on this number is a (quasi-convex) generalized eigenvalue minimization
problem:

inf λ subject to (S, T,G) ∈ B, S � 0, T � 0,[
F (x)− LSLT R(x)T − LSDT + LG

R(x)−DSL−GLT λT −GDT +DG−DSDT

]
� 0.

(14)

38 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

4. Uniqueness and regularity of robust solutions. In this section, we derive
uniqueness and regularity results for the RSDP in the case of full perturbations. As
before, we first take L = 1 (one block), that is, D = Rp×q. The results of this section
remain valid in the general case L > 1 (several blocks).

We fix ρ, 0 < ρ < ρmax. For simplicity of notation (and without loss of generality)
we take ρ = 1 (and thus ρmax > 1). For well-posedness reasons, we must assume
‖D‖ < 1. We make the further assumption that D = 0 (in other words, F(x,∆) is
affine in ∆). In section 4.5, we show how the case D 6= 0 can be treated.

For full perturbations and D = 0, the RSDP is the SDP

minimize cTx subject to

[
F (x)− τLLT R(x)T

R(x) τI

]
� 0.(15)

4.1. Hypotheses. We assume that the SDP (15) (with D = 0) satisfies the
following hypotheses:

H1. The Slater condition holds, that is, the problem is strictly feasible.
H2. The problem is inf-compact, meaning that any unbounded sequence (xk) of

feasible points (if any) produces an unbounded sequence of objectives. An
equivalent condition is that the Slater condition holds for the dual prob-
lem [28, p. 317, Thm. 30.4].

H3. (a) The nullspace of the matrix

λR0 +
m∑
i=1

xiRi

is independent of (λ, x) 6= (0, 0) and not equal to the whole space.
(b) For every x, [

LT

R(x)

]
is full column-rank.

Hypotheses H1 and H2 ensure, in particular, the existence of optimal points for prob-
lem (15) and its dual. Hypotheses H3(a) and (b) are difficult to check in general, but
sometimes can be easily tested in practical examples, as seen in section 5. We note
that H3(a) implies that R(x) 6= 0 for every x.

Hypothesis H1 is equivalent to Robinson’s condition [27], which can be expressed
in terms of

F(x, τ) =

[
F (x)− τLLT R(x)T

R(x) τI

]
.

Robinson’s condition is stated in [27] as the existence of x0 ∈ Rm, τ0 ∈ R such that

0 ∈ int
(F(x0, τ0) + dF(x0, τ0)Rm+1 − S+

n+q

)
,

where dF is the differential of F , and S+
n+q is the set of positive semidefinite matrices

of order n + q. The equivalence between H1 and Robinson’s assumption is not true,
in general. Here, this equivalence stems from the fact that the problem is convex and
that the cone S+

n+q has a nonempty interior.
Remark. Hypothesis H1 holds if and only if it holds for the nominal problem (1)

(recall our assumption ρmax > 1). Also, hypothesis H2 implies L 6= 0 (otherwise, we
can let τ → ∞ without affecting the objective value). If H2 holds for the nominal
problem and L 6= 0, then H2 holds for the RSDP (15).

ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS 39

4.2. An equivalent nonlinear program. Let xopt, τopt be optimal for (15).
Hypothesis H3(a) ensures that any τ that is feasible for (15) is nonzero (otherwise,
R(x) would be zero for some x). We thus have τopt > 0.

We introduce some notation. For x ∈ Rm, Z ∈ Rn×n, τ > 0 and µ ∈ R, define

d =

[
c
0

]
, y =

[
x
τ

]
, Y = diag(Z, µ),

G(y) = F (x)− τLLT − 1

τ
R(x)TR(x), G(y) = diag(G(y), τ − .99τopt),

L(y, Y) = dT y −TrY G(y).

Using Schur complements and τopt > 0, we obtain that problem (15) can be
rewritten as

minimize dT y subject to G(y) � 0(16)

and that yopt = [xTopt τopt]
T is optimal for (16). Our aim is first to prove that the

so-called quadratic growth condition [10] holds at yopt for problem (16). Then, we
will apply the results of [10] to obtain uniqueness and regularity theorems.

4.3. Checking the quadratic growth condition. Following [10], we say that
the quadratic growth condition (QGC) holds at yopt if there exists a scalar α > 0 such
that, for every feasible y,

dT y ≥ dT yopt + α‖y − yopt‖2 + o(‖y − yopt‖2).

Roughly speaking, this condition guarantees that yopt is not on a facet on the bound-
ary of the feasible set.

Define the set of dual variables associated with yopt by

Y(yopt) =

{
Y = diag(Z, µ)

∣∣∣∣ Y � 0, TrY
∂G

∂yi
(yopt) = di, i = 1, . . . ,m+ 1

}
.

The following result is a direct consequence of a general result by Bonnans,
Cominetti, and Shapiro [10]. Roughly speaking, this result states that, if an opti-
mization problem satisfies Robinson’s condition and has an optimal point, and if a
certain “curvature” condition is satisfied, then the QGC holds at that point.

Theorem 4.1. With the notation above, if H1 and H2 hold, and if

∃ Y ∈ Y(yopt) such that ∇2
yyL(yopt, Y) > 0,(17)

then problem (16) satisfies the QGC.
The following theorem is proven in appendix A.
Theorem 4.2. If H1–H3 hold, problem (15) satisfies the quadratic growth condi-

tion at every optimal point yopt. Consequently, there exists a unique solution to the
SDP (15).

Remark. Note that the QGC is satisfied independent of the objective vector. This
means that the boundary of the feasible set is strictly convex (it contains no facets).

4.4. Regularity results. In problem (15), the data consist of the matrices L,
and Fi, Ri, i = 0, . . . ,m. We seek to examine the sensitivity of the problem with
respect to small variations in Fi, Li, and Ri.

40 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

In this section, we consider matrices L(u), Ri(u), and Fi(u), i = 0, . . . ,m that
are functions of class C1 of a (small) parameter vector u. Define

F (x, u) = F0(u) +
m∑
i=1

xiFi(u), R(x, u) = R0(u) +
m∑
i=1

xiRi(u).

We denote by P(u) the corresponding problem (15), where F (·), R(·), and L are
replaced by F (·, u), R(·, u), and L(u). We assume that F (·, 0) = F (·), R(·, 0) = R(·),
and L(0) = L, so that P(0) is (15).

We first note that, in the vicinity of u = 0, problem P(u) satisfies the hypotheses
H1 and H2 if P(0) does. In this case, for every ε > 0 we may define the set Sε(u) of
ε-suboptimal points of P(u):

Sε(u) =
{
x
∣∣ x is feasible for P(u) and cTx ≤ v(u) + ε

}
,

where v(u) is the optimal value of P(u).
Recall that, if P0 satisfies hypotheses H1 and H2, the optimal value v(u) is con-

tinuous, and even directionally differentiable, at u = 0 [32, Thm. 5.1]. With the QGC
in force, and using [31, Thm. 4.1], we can give quite complete regularity results for
the robust solutions.

Theorem 4.3. If hypotheses H1–H3 hold for P(0), then for every ε = O(u),
there exists a γ > 0 and a neighborhood V of u = 0 such that for every u ∈ V and
x ∈ Sε(u), we have

‖x− x(0)‖ ≤ γ‖u‖1/2.(18)

When H1–H3 hold for P(0), the above theorem states that every (sufficiently)
suboptimal solution to P(0) is Hölder-stable (with coefficient 1/2). This is true, in
particular, for any optimal solution of P(u) (that is, for ε = 0). The fact that the
theorem remains true for ε > 0 guarantees regularity of numerical solutions to the
RSDP. The main consequence is that even if the nominal SDP is ill conditioned (with
respect to variations in the Fi’s), the RSDP becomes well conditioned for every ρ > 0.

Now assume ρ 6= 1. We seek to examine the behavior of problem (10) (with
D = 0) when the uncertainty level ρ for 0 < ρ < ρmax varies. This is a special case of
the problem examined above, with u = ρ, F (·, u) = F (·), R(·, u) = R(·), L(u) = ρL.

Corollary 4.1. For every ρ, 0 < ρ < ρmax, the solution to (10) (with D = 0)
is unique and satisfies the regularity results (written with u = ρ) of Theorem 4.3.

Remark. The results of this section are all valid in the block-full perturbation
case (L > 1), as defined in section 2.2. Of course, the conditions given in H3 should
be understood blockwise.

4.5. Case D 6= 0. When D 6= 0, we can get back to the case D = 0 as follows.
Recall that we have ‖D‖ < 1 in order to ensure that F(x,∆) is defined everywhere
on D. With this assumption, we can define, for x ∈ Rm and τ > 0,

L̃ = L(I −DTD)−1/2,

R̃(x) = (I −DDT)−1/2R(x),

F̃ (x) = F (x)− LDT (I −DDT)−1R(x)−R(x)T (I −DDT)−1LT ,

G̃(y) = F̃ (x)− τL̃L̃T − 1

τ
R̃(x)T R̃(x).

ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS 41

Using Schur complements, we have, for every x and τ > 0,

G̃(y) � 0 if and only if

[
F (x)− τLLT R(x)T − τLDT

R(x)− τDLT τ(I −DDT)

]
� 0.

Hypothesis H3 holds for L̃, R̃(·) if and only if it holds for L,R(·). We can then follow
the steps detailed previously.

Corollary 4.2. If the SDP (10) (with ρ = 1) satisfies H1–H3 and if ‖D‖ < 1,
then the results of Theorem 4.3 hold.

5. Examples.

5.1. Unstructured perturbations. Assume

F(x,∆) = F (x) + ∆0 + ∆T
0 +

m∑
i=1

xi(∆i + ∆T
i),

where ∆ = [∆0 . . .∆m]. This case corresponds to the representation in section 5, with

L = I, R(x) =

[
1
x

]
⊗ I, D = 0, D = Rn×nm.(19)

Using Lemma 3.2, we obtain that problem (4) is equivalent to the SDP

minimize cTx subject to

[
F (x)− τI [

1 xT
]⊗ ρI[

1 xT
]T ⊗ ρI τI

]
� 0.(20)

It turns out that we may get rid of the variable τ and get back to a convex problem
of the same size as that of the unperturbed problem (1). To see this, first note that
every feasible variable τ in problem (20) is strictly positive. Use Schur complements
to rewrite the matrix inequality in (20) as

F (x) �
(
τ + ρ2 1 + ‖x‖2

τ

)
I, τ > 0.

Minimizing (over variable τ) the scalar in the left-hand side of the above inequality
shows that the RSDP (1) is equivalent to

minimize cTx subject to F (x) � 2ρ
√‖x‖2 + 1 · I.(21)

Formulation (21) is more advantageous than (20), since (21) involves a (convex) matrix
inequality constraint of the same size as the original problem. As noted before, special
barrier functions can be devised for this problem and yield an interior-point algorithm
that has the same complexity as the original problem; see [24].

We note that, with the above choice for L,R, hypothesis H3 holds, which yields
the following result.

Theorem 5.1. The optimal value of the RSDP (20) can be computed by solving
the convex problem (21). If (21) satisfies hypotheses H1 and H2, then for every ρ > 0,
the solution is unique and satisfies the regularity conditions of Theorem 4.3.

Remark. A sufficient condition for hypotheses H1 and H2 to hold for (21) is that
they hold for the nominal problem. A more restrictive sufficient condition is that the
nominal feasible set X0 is nonempty and bounded, and ρ < ρmax.

42 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

ρ = 0

ρ = .1
ρ = .2
ρ = .3
ρ = .4

ρ = 1

ρ = 3
x

Fig. 1. Nominal and robust solutions of an SDP, with a 5× 5 matrix F (x). Here ρmax = 5.

5.2. Robust center of a linear matrix inequality. In this section, for ρ > 0,
we consider the SDP (21) and corresponding feasible (convex) set Xρ. We assume
that X0 is nonempty and bounded, and that P0 is strictly feasible. Then, for every ρ,
0 < ρ < ρmax, Xρ is nonempty and bounded, and we can define a (unique) solution
x(ρ) to the strictly convex problem (21).

In view of Corollary 4.1, x(ρ) is a continuous function of ρ in]0 ρmax[. Since (Xρ)
is a decreasing family of bounded sets, we may define

x∗ = lim
ρ→ρmax

x(ρ).(22)

Note that x∗ is independent on the objective vector c.
Thus, to the matrix inequality F (x) � 0, we may associate the robust center,

defined by (22). The robust center has the property of being the most tolerant (with
respect to unstructured perturbation) among the feasible points.

An example is depicted in Fig. 1. The nominal feasible set X0 is described by a
linear matrix inequality F (x) � 0, where F is a 5× 5 matrix. For various values of ρ,
we seek to minimize x2. The dashed lines correspond to the optimal objectives. As ρ
increases, we observe that the robust feasible sets shrink. A crucial property of these
robust sets is that they do not possess any straight faces, as observed in the figure.
For ρ = ρmax ' 5, the robust feasible set is a singleton (in this example, x? = 0).
When ρ = 0, the optimal solution is not unique and not continuous with respect
to changes in the coefficient matrices Fi, i = 0, 1, 2 (although the optimal value is
continuous). Since the sets Xρ become strictly convex as soon as ρ > 0, the resulting
robust solutions are continuous.

5.3. Robust linear programs. An interesting special case arises with linear
programming (LP). Consider the LP

minimize cTx subject to aTi x ≥ bi, i = 1, . . . , L.

Assume that the ai’s and bi’s are subject to unstructured perturbations. The per-
turbed value of [aTi bi]

T is [aTi bi]
T + δi, where ‖δi‖2 ≤ ρ, i = 1, . . . , L. We seek a

ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS 43

robust solution to our problem, which is a special case of the block-full perturbation
case referred to in section 2.2, with F given by (7), and

Fi(x,∆i) = aTi x− bi + 2[xT − 1]∆i, i = 1, . . . , L,

where ∆i = δi/2, and D is the set of diagonal, L× L matrices. The robust LP is

minimize cTx subject to aTi x− ρ
√
‖x‖22 + 1 ≥ bi, i = 1, . . . , L.(23)

The above program is readily written as an SDP by introducing slack variables. In
fact, the robust LP is a second-order cone program (SOCP) for which efficient special-
purpose interior-point methods are available [24, 20, 23].

We note that hypothesis H3 holds blockwise. This yields the following result.
Theorem 5.2. The optimal value of the robust LP can be computed by solving

the convex problem (23). If the latter satisfies hypotheses H1 and H2, then for every
ρ, 0 < ρ < ρmax, the solution is unique and satisfies the regularity conditions of
Theorem 4.3.

In [6], robust linear programming is studied in detail. For a wide class of pertur-
bation models, where the data of every linear constraint vary in an ellipsoid, explicit
robust solutions are constructed using convex SOCPs. Reference [23] also provides
examples of robust linear programs solved via SOCP.

5.4. Robust eigenvalue minimization. Consider the case where the nomi-
nal problem consists of minimizing the largest eigenvalue of a matrix-valued func-
tion F (x):

minimize λmax(F (x)).(24)

When F (·) is subject to unstructured perturbations (as defined in section 5.1), the
robust version of the problem is

minimize λ+ 2ρ
√‖x‖2 + 1 subject to λI � F (x),

or equivalently

minimize λmax(F (x)) + 2ρ
√‖x‖2 + 1.(25)

Let ρ > 0. When written in an SDP form, the above problem satisfies the
hypotheses H1–H3. From Theorem 4.3 we obtain that the solution is unique. If we
consider that the data of the above problem consist of the matrices Fi, i = 0, . . . ,m,
then we know that the corresponding solution is Hölder-stable (with coefficient 1/2).
Since the problem is unconstrained, we can use a result of Shapiro [31, Thm. 3.1], by
which we conclude that the solution is actually Lipschitz stable (inequality (18) holds
with the exponent 1/2 replaced by 1). Finally, using the results from Attouch [3], we
can show that computing the solution for ρ → 0 amounts to selecting the minimum
norm solution among the solutions of the nominal problem.

Theorem 5.3. The optimal value of the min-max problem (24) can be computed
by solving the convex problem (25). For every ρ > 0, the solution is unique and is
Lipschitz stable with respect to perturbations in Fi, i = 0, . . . ,m. When ρ → 0, the
solution converges to the minimum norm solution of the nominal problem (24).

Remark. In this case, the RSDP is a regularized version of the nominal SDP, which
belongs to the class of Tikhonov regularizations [34]. The regularization parameter

44 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

is 2ρ and is chosen according to some a priori information on uncertainty associated
with the nominal problem’s data. Taking ρ close to zero can be used as a selection
procedure for choosing a particular (minimum norm, regular) solution among the (not
necessarily unique and/or regular) solutions of the nominal problem.

Problem (25) is particularly suitable to the recent so-called U-Newton algorithms
for solving problem (24). These methods, described in [21, 25], require that the Hes-
sian of the “smooth part” (the so-called U-Hessian) of the objective of (24) be positive
definite. For general mappings F (·), this property is not guaranteed. However, when
looking at the robust problem (25), we see that the modified U-Hessian is guaranteed
to be positive definite for every x and ρ > 0. This indicates that the RSDP approach
may be used to devise robust algorithms for solving SDPs.

5.5. Robust SOCPs. An SOCP is a problem of the form

minimize cTx
subject to ‖Cix+ di‖ ≤ eTi x+ fi, i = 1, . . . , L,

(26)

where Ci ∈ Rni×m, di ∈ Rni , ei ∈ Rm, fi ∈ R, i = 1, . . . , L. SOCPs can be
formulated as SDPs, but special-purpose, more efficient algorithms can be devised for
them; see [24, 5, 23].

Assuming that Ci, di, ei, fi are subject to linear—or even rational—uncertainty,
we may formulate the corresponding RSDP as an SDP. This SDP can be written as
an SOCP if the uncertainty is unstructured and affects each constraint independently.

The subject of robust SOCPs is explored in [5] in detail. Explicit SDPs that
yield robust counterparts to SOCPs nonconservatively are given for a wide class of
uncertainty structures. In some cases, albeit not all, the robust counterpart is itself
an SOCP. In [16, 14], the special case of least-squares problems with uncertainty in
the data is studied at length.

5.6. Robust maximum norm minimization. Several engineering problems
take the form

minimize ‖H(x)‖,(27)

where

H(x) = H0 +
m∑
i=1

xiHi,

and Hi, i = 1, . . . ,m are given p×q matrices. A well-known instance of this problem is
the linear least-squares problem, with H(x) = Ax− b. Another example is a minimal
norm extension problem for a Hankel operator studied in [18], in which H0 is a given
(arbitrary) n × n Hankel matrix and Hi, i = 1, . . . ,m is the n × n Hankel matrix
associated with the polynomial 1/zi. In practice, the matrices Hi, i = 0, . . . ,m are
subject to perturbation, which motivates a study of the robust version of problem (27).
Note that the least-squares case is extensively studied in [16].

Consider the full perturbation case, which occurs when each Hi is perturbed in-
dependently in a linear manner. Precisely, consider the matrix-valued function

H(x,∆) = H0 + ∆0 +
m∑
i=1

xi(Hi + ∆i),

ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS 45

where ∆ = [∆0 . . .∆m]. For a given ρ > 0, we address the min-max problem

min
x

max
‖∆‖≤ρ

‖H(x,∆)‖.(28)

This problem is an RSDP for which we can get exact results using SDP. Indeed, for
every x ∈ Rm and λ ≥ 0, the property

max
‖∆‖≤ρ

‖H(x,∆)‖ ≤ λ

is equivalent to F(x, λ,∆) � 0 for every ∆, ‖∆‖ ≤ ρ, where

F(x, λ,∆) = F (x, λ) + L∆R(x) +R(x)T∆TLT ,

where

F (x, λ) =

[
λI H(x)

H(x)T λI

]
, L =

[
I
0

]
, R(x) =

[
0

[
1
x

]
⊗ I

]
.

We thus write problem (28) as (4), where the perturbation set D is Rp×q.
Applying Theorem 3.2, we obtain that the RSDP above is equivalent to the

SDP (15) (with D = 0). As in section 5.1, we may get rid of the variable τ and
obtain the equivalent formulation

minimize ‖H(x)‖+ ρ
√‖x‖2 + 1.(29)

This RSDP satisfies hypotheses H1–H3, so we conclude that the results of Theorem 4.3
hold. As in robust eigenvalue minimization, we can get improved results using [31,
section 3, Thm. 3.1].

Theorem 5.4. The optimal value of the min-max problem (28) can be computed
by solving the convex problem (29). For every ρ > 0, the solution is unique and
Lipschitz stable with respect to perturbations in Hi, i = 0, . . . ,m. When ρ → 0, the
solution converges to the minimum norm solution of the nominal problem (27).

Remark. As for the RSDP arising in robust eigenvalue minimization, the robust
minimum norm minimization problem is a regularized version of the nominal problem,
which belongs to the class of Tikhonov regularizations.

We now consider the general case where each matrix Hi in (27) is perturbed in
a structured manner. To be specific, we concentrate on the minimal norm extension
problem mentioned above.

In practice, the matrix H0 is obtained from measurement and is thus subject to
error. We may assume that this matrix is constructed from an n × 1 vector h0(δ) =
h0 + δ, where δ is unknown but bounded. The perturbed matrix H0 is of the form

H0(∆) = H0 + L∆R,

where L,R are given matrices (the exact form of which we do not detail), and

∆ ∈ D = {diag(δ1I1, . . . , δnIn) | δi ∈ R, i = 1, . . . , n} .
(In the above, each δi corresponds to the uncertainty associated with the ith antidi-
agonal of H0.) We address the min-max problem

minimize max
∆∈D, ‖∆‖≤ρ

‖H(x) + L∆R‖ ,(30)

where ρ ≥ 0 is given.

46 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

This problem is amenable to the robustness analysis technique. Defining

S ∆
=
{
diag(S1, . . . , Sn)

∣∣ Si ∈ Ri×i, i = 1, . . . , n
}
,

we obtain the following result.
Theorem 5.5. An upper bound on the objective value of the min-max prob-

lem (30) can be computed by solving the SDP in variables x, S,G:

inf λ subject to S = ST , G = −GT ∈ S,
 λI − LSLT H(x) LG

H(x)T λI ρR
GTLT ρRT S

 � 0.

5.7. Polynomial interpolation. This example, taken from [16], can be formu-
lated as an RSDP with rational dependence. For given integers n ≥ 1, k, we seek a
polynomial of degree n − 1 p(t) = x1 + · · · + xnt

n−1 that interpolates given points
(ai, bi), i = 1, . . . , k, that is,

p(ai) = bi, i = 1, . . . , k.

If we assume that (ai, bi) are known exactly, we obtain a linear equation in the un-
known x, with a Vandermonde structure: 1 a1 . . . an−1

1
...

...
...

1 ak . . . an−1
k

 ,
 x1

...
xn

 =

 b1
...
bn

 ,
which can be solved via standard least-squares techniques.

Now assume that the interpolation points are not known exactly. For instance,
we may assume that the bi’s are known, while the ai’s are parameter dependent:

ai(δ) = ai + δi, i = 1, . . . , k,

where the δi’s are unknown but bounded: |δi| ≤ ρ, i = 1, . . . , k, where ρ ≥ 0 is given.
We seek a robust interpolant, that is, a solution x that minimizes

max
‖δ‖∞≤ρ

‖A(δ)x− b‖,(31)

where

A(δ) =

 1 a1(δ) . . . a1(δ)n−1

...
...

...
1 ak(δ) . . . ak(δ)n−1

 .
The above problem is an RSDP. Indeed, it can be shown that[

A(δ) b
]

=
[

A(0) b
]

+ L∆(I −D∆)−1R,

where

L =

k⊕
i=1

[
1 ai . . . an−2

i

]
, R =

 R1

...
Rk

 , D =

k⊕
i=1

Di, ∆ =
k⊕
i=1

δiIn−1,

ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS 47

and, for each i, i = 1, . . . , k,

Ri =

0 1 ai . . . an−2

i
...

. . .
. . .

. . .
...

...
. . .

. . . ai
0 0 1

 ∈ R(n−1)×n,

Di =

0 1 ai . . . an−3

i
...

. . .
. . .

. . .
...

...
. . .

. . . ai
0 0 1

 ∈ R(n−1)×(n−1).

(Note that det(I − D∆) 6= 0, since D is strictly upper triangular.) With the above
notation, if we define F(x,∆) as in section 5, then problem (31) can be formulated as
the RSDP (4).

With the approach described in this paper, one can compute an upper bound for
the minimizing value of (31), and a corresponding suboptimal x. We do not know if
the problem can be solved exactly in polynomial time, e.g., using SDP. We conjecture
(as the reviewers of this paper did) that the answer is no. To motivate this claim,
note that the solution to the problem of computing (31) for arbitrary affine functions
A is already NP-hard [16].

5.8. Error-in-variables RSDPs. In many SDPs that arise in engineering, the
variable x represents physical parameters that can be implemented with finite absolute
precision only. A typical example is integer programming, where integer solutions
to (linear) programs are sought. These problems (which are equivalent to integer
programming) are NP-hard. We now show that we may find upper bounds on these
problems using robustness analysis.

Consider, for instance, the problem of finding a solution x to the feasibility SDP

find an integer vector x such that F (x) � 0.(32)

Now, consider the robust SDP

maximize λ subject to

λI ≤ F0 +
m∑
i=1

(xi + ∆xi)Fi for every ∆x, ‖∆x‖∞ ≤ 1/2.
(33)

Assume there exists a feasible pair (xfeas, λ) to the above problem, with λ ≥ 0. By
construction, xfeas satisfies F (xfeas) � 0. Furthermore, any vector x chosen such that
‖x − xfeas‖∞ ≤ 1/2 is guaranteed to satisfy F (x) � 0. This is true, in particular,
for xint, the integer closest to xfeas. Thus, if we know a positive lower bound λ,
and corresponding feasible point for problem (33), then we can compute an integer
solution to our original problem.

Finding a lower bound for (33) and an associated feasible point can be done as
follows. For i, 1 ≤ i ≤ m, define Fi = 2LiRi, where Li, R

T
i ∈ Rn×ri , ri = RankFi.

Let

L =
[
L1 . . . Lm

]
, R =

 R1

...
Rm

 , and D =

{
∆ =

m⊕
i=1

∆xiIri , ∆xi ∈ R

}
.

48 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

Problem (33) can be formulated as

maximize λ subject to λI ≤ F (x) + L∆R+RT∆TLT

for every ∆ ∈ D, ‖∆‖ ≤ 1/2.
(34)

The above is a special instance of the structured problem examined in section 3.2.
Define

S ∆
=
{
diag(S1, . . . , Sm)

∣∣ Si ∈ Rri×ri , i = 1, . . . , n
}
.

Theorem 5.6. A sufficient condition for an integer solution to the feasibility
SDP (32) is that the constraints

λ ≥ 0, S =ST ∈ S, G= −GT ∈ S,
[
F (x)−λI−LSLT (1/2)RT + LG

(1/2)R−GLT S

]
� 0

are feasible. If xfeas is feasible for the above constraints, then any integer vector closest
to xfeas (in the maximum norm sense) is feasible for (32).

6. Conclusions. In this paper, we considered semidefinite programs subject to
uncertainty. Assuming the latter is unknown but bounded, we have provided sufficient
conditions that guarantee “robust” solutions to exist via SDPs. Under some conditions
(detailed in section 4), the robust solution is unique, and not surprisingly, stable. The
method can then be used to regularize possibly ill-conditioned problems. For some
perturbation structures (as for unstructured perturbations), the conditions are also
necessary. That is, there is no conservatism induced by the method.

The paper raises several open questions.
In our description, we have considered the problem of making the primal SDP

robust, thereby obtaining upper bounds on an SDP subject to uncertainty. The
dual point of view should be very interesting. One might be interested in applying
the approach to the dual problem instead. Does this lead to lower bounds on the
perturbed problem? Also, in some cases, the RSDP approach leads to a unique (and
stable) primal solution. May we obtain a unique solution to the dual problem by
making the latter robust? (This would lead to analyticity of the primal solution;
see [32].)

As seen in section 5.2 the notion of robust center has, certainly, connections with
the well-known analytic center; is the latter related to some robustness characteriza-
tion?

It seems that the RSDP method could be useful for deriving fast and robust
(stable) algorithms for solving SDPs (see section 5.4), especially in connection with
maximum eigenvalue minimization.

Finally, as said in section 2.2 (Lemma 2.1), an SDP with coefficient matrices
depending rationally on a perturbation vector can always be represented by an LFR
model. Now, this LFR model is not unique. However, the results given here (for
example, Theorem 3.2) hinge on a particular linear-fractional representation for a
perturbed SDP. Hence we have the question: are our results independent of the chosen
representation? We partially answer this difficult question in Appendix B.

Appendix A. Proof of Theorem 4.2. We take the notation of section 4.
Let Y = diag(Z, µ) be dual variables associated with (xopt, τopt) that are optimal
(their existence is guaranteed by H1 and H2). Then, Y ∈ Y(yopt). Let us show that
condition (17) holds for this choice of Y .

ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS 49

Since the problem satisfies H1 and H2, the complementarity conditions hold;
therefore, the (optimal) dual variable µ associated with the constraint τ = τopt is
zero. Consequently the variable Z is nonzero (recall c 6= 0). Using

TrY
∂G

∂ym+1
(yopt) = dm+1 = 0,

we obtain

τ2
optTrLLTZ = TrR(xopt)

TR(xopt)Z.

From τopt 6= 0 (implied by H3(a)), and using hypothesis H3(b), we can show that

TrLLTZ = 0 and TrR(xopt)
TR(xopt)Z = 0

are impossible for Z � 0, Z 6= 0. This yields TrR(xopt)
TR(xopt)Z > 0.

Now let ξ ∈ Rm and λ ∈ R, and define

Φ(ξ, λ) = d2G(xopt, τopt)[(ξ, λ), (ξ, λ)],

φ(ξ, λ) =

[
ξ
λ

]T
∇2
yyL(yopt, Y)

[
ξ
λ

]
= −TrZΦ(ξ, λ).

We have, for every i, j, 1 ≤ i, j ≤ m,

∂G

∂xi
= Fi − 1

τ
(R(x)TRi +RTi R(x)),

∂G

∂τ
= −LLT +

1

τ2
R(x)TR(x),

∂2G

∂xi∂xj
= −1

τ
(RTj Ri +RTi Rj),

∂2G

∂xi∂τ
=

1

τ2
(R(x)TRi +RTi R(x)),

∂2G

∂τ2
= − 2

τ3
R(x)TR(x).

By summation, we have

−Φ(ξ, λ) =
2

τopt
(R(ξ)−R(0))T (R(ξ)−R(0)) + 2

λ2

τ3
opt

R(xopt)
TR(xopt)

− λ

τ2
opt

(
R(xopt)

T (R(ξ)−R(0)) + (R(ξ)−R(0))TR(xopt)
)

=
λ2

τ3
opt

R(xopt)
TR(xopt)+

1

τopt
RTR+

1

τopt
(R(ξ)−R(0))T (R(ξ)−R(0)),

where R = R(ξ)−R(0)− λ

τopt
R(xopt). We obtain finally,

φ(ξ, λ) =
1

τopt
TrZRTR+

λ2

τ3
opt

TrZR(xopt)
TR(xopt)

+
1

τopt
TrZ(R(ξ)−R(0))T (R(ξ)−R(0)).

If φ(ξ, λ) = 0, then λ = 0 (from TrR(xopt)
TR(xopt)Z > 0), and thus TrZRTR =

0 with R = R(ξ)−R(0). Since Z � 0, this means that every column of Z1/2 belongs
to the nullspace of R(ξ)−R(0). Now assume ξ 6= 0. By hypothesis H3(a), we obtain
that every column of Z1/2 also belongs to the nullspace of R(xopt), which contradicts

50 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

TrR(xopt)
TR(xopt)Z > 0. We conclude that ∇2

yyL is positive definite at (yopt, Y).
Thus, problem (15) satisfies the QCG.

Appendix B. Invariance with respect to the LFR model. In this section,
we show that the sufficient conditions obtained in this paper are, in some sense,
independent of the LFR model used to describe the perturbation structure.

Consider a function F taking values in the set of symmetric matrices having an
LFR such as that in section 5. This function can be written in a more symmetric
form,

F(∆) = F + L̃∆̃(I −D∆̃)−1L̃T ,(35)

where we have dropped the dependence on x for convenience, and

L̃ =
[
L RT

]
, D̃ =

[
0 DT

D 0

]
, ∆̃ =

[
0 ∆

∆T 0

]
.

It is easy to check that, if an invertible matrix Z satisfies the relation Z∆̃ZT = ∆̃ for
every ∆ ∈ D, then

F(∆) = F + (L̃Z)∆̃(I − (ZT D̃Z)∆̃)−1(L̃Z)T .

In other words, the “scaled” triple (F, (L̃Z), (ZT D̃Z)) can be used to represent F
instead of F, L̃, D̃ in (35). By spanning valid scaling matrices Z, we span a subset of
all LFR models that describe F.

A valid scaling matrix Z can be constructed as follows. Let (S, T,G) ∈ B, and
define

Z =

[
T−1/2 0

0 S1/2

] [
I G
0 I

]
.

It turns out that such a Z satisfies the relation Z∆̃ZT = ∆̃ for every ∆ ∈ D.
Using the above facts, we can show that if condition (13) is true for the original

LFR model F,L,R,D with appropriate S, T,G, then it is also true for the scaled LFR
obtained using any scaling matrix Z such as that above, for appropriate matrices S̃,
G̃, T̃ . That is, the condition is independent of the scaling Z.

In this sense, the conditions we obtained are independent of the LFR used to
represent the perturbation structure.

Acknowledgments. This paper has benefitted from many stimulating discus-
sions with several colleagues, including Aharon Ben-Tal, Stephen Boyd, Arkadii Ne-
mirovski, Michael Overton, and particularly, Lieven Vandenberghe (who pointed out
a mistake just before the final version was sent). Last but not least, the authors would
like to thank the editor and reviewers for their very helpful comments and revisions.

REFERENCES

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[2] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods
for semidefinite programming: Convergence rates, stability and numerical results, SIAM
J. Optim., 8 (1998), pp. 746–768.

[3] H. Attouch, Viscosity Solutions of Optimization Problems, Tech. Report 07, Dépt. des Sci-
ences Mathématiques, Université Montpellier 2, France, 1994.

ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS 51

[4] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski, Robust semidefinite programming, in Semidef-
inite Programming and Applications, to appear.

[5] A. Ben-Tal and A. Nemirovski, Robust Convex Programming, Tech. Report 1/95, Opti-
mization Laboratory, Faculty of Industrial Engineering and Management, Technion, Israel
Institute of Technology, Technion City, Haifa 32000, Israel, 1995; Math. Oper. Res., to
appear.

[6] A. Ben-Tal and A. Nemirovski, Robust Solutions to Uncertain Linear Programs, Tech. Re-
port 6/95, Optimization Laboratory, Faculty of Industrial Engineering and Management,
Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel, 1995; Oper.
Res. Lett., to appear.

[7] A. Ben-Tal and A. Nemirovski, Robust truss topology design via semidefinite programming,
SIAM J. Optim., 7 (1997), pp. 991–1016.

[8] A. Ben-Tal and A. Nemirovski, Robust convex programming, IMA J. Numer. Anal., 1998, to
appear.

[9] B. Bereanu, Some Numerical Methods in Stochastic Programming Under Risk and Uncer-
tainty, Academic Press, New York, 1980, Ch. 11, pp. 169–205.

[10] J. F. Bonnans, R. Cominetti, and A. Shapiro, Sensitivity Analysis of Optimization Problems
under Second Order Regular Constraints, Tech. Report 2989, INRIA, 1996; Math. Oper.
Res., to appear.

[11] S. Boyd and L. El Ghaoui, Method of centers for minimizing generalized eigenvalues, Linear
Algebra and Appl., special issue on Numerical Linear Algebra Methods in Control, Signals
and Systems, 188 (1993), pp. 63–111.

[12] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory, Studies in Applied Mathematics series, SIAM, Philadelphia,
PA, 1994.

[13] S. P. Boyd and L. Vandenberghe, Introduction to convex optimization with engineering
applications, lecture notes for ee392x, Stanford University, Stanford, CA, 1996. Available
via anonymous ftp at isl.stanford.edu/pub/boyd.

[14] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, An efficient algorithm for a
bounded errors-in-variables model, SIAM J. Matrix Anal. Appl., to appear.

[15] M. Dempster, Stochastic Programming, Academic Press, New York, 1980.
[16] L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data,

SIAM J. Matrix Anal. Appl., 18 (1997), pp. 1035–1064.
[17] M. K. H. Fan, A. L. Tits, and J. C. Doyle, Robustness in the presence of mixed parametric

uncertainty and unmodeled dynamics, IEEE Trans. Automat. Control, 36 (1991), pp. 25–
38.

[18] J. W. Helton and H. J. Woerdeman, Symmetric Hankel operators: Minimal norm extensions
and eigenstructures, Linear Algebra Appl., 185 (1993), pp. 1–19.

[19] M. Kojima, M. Shida, and S. Shindoh, Global and Local Convergence of Predictor-Corrector-
Interior-Point Algorithm for Semidefinite Programming, Tech. Report B-308, Dept. of In-
formation Sciences, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguru-ku, Tokyo
152, Japan, 1995.

[20] H. Lebret, Synthèse de diagrammes de réseaux d’antennes par optimisation convexe, Ph.D.
thesis, Université de Rennes I, Nov. 1994.

[21] C. Lemaréchal, F. Oustry, and C. Sagastizábal, The U-Lagrangian of a convex function,
Trans. Amer. Math. Soc., to appear.

[22] A. S. Lewis and M. L. Overton, Eigenvalue optimization, Acta Numerica, 5 (1996), pp. 149–
190.

[23] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Second-order cone programming:
Interior-point methods and engineering applications, Linear Algebra Appl., submitted.

[24] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Program-
ming: Theory and Applications, Studies in Applied Mathematics series, SIAM, Philadel-
phia, PA, 1994.

[25] F. Oustry, The U-Lagrangian of the maximum eigenvalue function, SIAM J. Optim., to
appear.

[26] F. A. Potra and R. Sheng, On homogeneous interior-point algorithms for semidefinite pro-
gramming, Optim. Methods Softw., 9 (1998), pp. 161–184.

[27] S. Robinson, Stability theorems for systems of inequalities, part II: Differentiable nonlinear
systems, SIAM J. Numer. Anal., 13 (1976), pp. 497–513.

[28] R. T. Rockafellar, Convex Analysis, 2nd ed., Princeton Univ. Press, Princeton, NJ, 1970.

52 L. EL GHAOUI, F. OUSTRY, AND H. LEBRET

[29] R. Rubinstein and A. Shapiro, Discrete Event Systems, John Wiley, New York, 1993.
[30] A. Shapiro, Perturbation theory of nonlinear programs when the set of optimal solutions is

not a singleton, Appl. Math. Optim., 18 (1988), pp. 215–229.
[31] A. Shapiro, Perturbation analysis of optimization problems in Banach spaces, Numer. Funct.

Anal. Optim., 13 (1992), pp. 97–116.
[32] A. Shapiro, First and second order analysis of nonlinear semidefinite programs. Semidefinite

programming, Math. Programming Ser. B, 77 (1997), pp. 301–320.
[33] A. Shapiro and M. K. H. Fan, On eigenvalue optimization, SIAM J. Optim., 5 (1995), pp. 552–

568.
[34] A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems, John Wiley, New York, 1977.
[35] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[36] V. A. Yakubovich, The solution of certain matrix inequalities in automatic control theory,

Soviet Math. Dokl., 3 (1962), pp. 620–623.
[37] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control, Prentice–Hall, Upper

Saddle River, NJ, 1995.

STOCHASTIC SIMULATION ON INTEGER CONSTRAINT SETS∗

I. H. DINWOODIE†

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 53–61

Abstract. Bounds are given on the number of steps sufficient for convergence of simulation
algorithms on domains of nonnegative integer constraint sets.

Key words. Markov chains, eigenvalues, annealing, integer optimization

AMS subject classifications. 60J20, 65K05, 90C10

PII. S1052623496313842

1. Introduction. This article is concerned with convergence of Markov chains
on nonnegative integer constraint sets and applications to simulated annealing algo-
rithms for optimization.

Despite the lack of applicable results on its performance, the annealing algorithm
is used for optimization of nonlinear functions on discrete domains. One application
of the algorithm is finding modes of probability distributions on finite sets, a problem
which arises in Bayesian statistics and image analysis (see [6] and [14]). It is used for
other problems in combinatorial optimization as well, some of which are described in
[13]. Here we are interested in domains of nonnegative integer lattice points on hyper-
planes, which arise in integer optimization problems, image analysis, and statistics.
Symmetric Markov chains on these domains were constructed in [4] using algebraic
techniques.

Whereas optimal cooling schedules have been widely studied [1], [7], [8], [9], we
are interested in establishing clear bounds on the time required for a given accuracy
δ > 0 and reliability ε > 0. The main result is Theorem 3.1, which gives a sufficient
number of steps in the algorithm in a computable form. We expect that the results
can be improved as new technology in Markov chains becomes available. They are
based on geometrical techniques from [3] and [9], which also are used in the more
general and abstract study [10].

Let us establish some notation. Let µ > 0 be a probability distribution function
on the set S = {x ∈ Zd+, A(x) = b ∈ Zr+}, where A is a linear map or matrix with
nonnegative integer entries such that S is finite. We show first in section 2 how
to simulate from µ using techniques from [4], then we get convergence rates from
eigenvalue estimates and apply these results in section 3 to the case where µ is chosen
to put most of its mass where f is small. Our Markov chain is homogeneous, which
means that the parameter β corresponding to the reciprocal of temperature is held
fixed over time at a level which gives the desired stationary distribution.

2. The algorithm. We define a symmetric Markov chain on S as follows. Let
Q(ξ1, . . . , ξd) be the ring of polynomials in variables ξ1, . . . , ξd with coefficients in the
rational numbers Q. If x is a vector of nonnegative integers, define Xx = ξx1

1 · · · ξxdd .

Let M = {g1, . . . , gm}, where gi ∈ Zd and {Xg+
i − Xg−

i : i = 1, . . . ,m} is a
Gröbner basis for the ideal IA in Q(ξ1, . . . , ξd) given by IA = 〈Xv − Xw : A(v) =

∗Received by the editors December 18, 1996; accepted for publication (in revised form) January
5, 1998; published electronically October 30, 1998.

http://www.siam.org/journals/siopt/9-1/31384.html
†Department of Mathematics, Tulane University, New Orleans, LA 70118 (ihd@math.

tulane.edu).

53

54 I. H. DINWOODIE

A(w)〉. Recall that g = g+ − g−, where g+ = max{g, 0}, g− = max{−g, 0}. Our
ordering on monomials is purely lexicographic, based on the indeterminate ordering
ξ1 > ξ2 > · · · > ξd.

Now define a Markov chain on S as follows. Let x = (x1, . . . , xd) denote an
element of S, and let Nx be the set of its neighbors in S, so Nx = {x± gi : x± gi ≥
0, gi ∈M}. Let K(x, ·) be the probability vector

K(x,y) =
1

2m
for y ∈ Nx.

Also, K(x,x) = 1 −∑y∈Nx
K(x,y) makes the vector sum to 1 and will be positive

precisely when |Nx| < 2m. The transition can be realized by uniformly choosing an
element ±gi from among the 2m choices {±g1, . . . ,±gm} and adding it to x if the
result is nonnegative. Then K is symmetric, irreducible, and aperiodic.

Recall that µ > 0 is an arbitrary distribution on S. Let Kµ be the transition
matrix given by

Kµ(x,y) = K(x,y) min{µ(y)/µ(x), 1}, x 6= y,

and the holding probability makes the matrix stochastic. Let the spectrum of Kµ be
1 = λ1 > λ2 ≥ · · · ≥ λ|S| > −1, and let γ = 1−λ2. In the next section, µ will depend
on a parameter β > 0 interpreted as the reciprocal of temperature.

To estimate γ, observe that

γ = inf
φ

〈φ, (I −Kµ)φ〉µ
‖φ− 〈φ,1〉µ1‖2µ

= inf
φ

∑
(x,y)

(φ(x)− φ(y))2µ(x)Kµ(x, y)∑
(x,y)

(φ(x)− φ(y))2µ(x)µ(y)

= inf
φ

∑
e∈G

φ(e)2Q(e)∑
f∈Gc

φ(f)2Qc(f)
,

where φ ranges through nonconstant functions on the state space S,G is the graph
with edge e = {x, y} if and only if Q(e) = µ(x)Kµ(x, y) (= µ(y)Kµ(y, x)) > 0,
and Gc is the complete graph with edges f = {x, y} connecting all ordered pairs,
Qc(f) = µ(x)µ(y), and φ(f)2 = (φ(y)− φ(x))2. Now this representation can be used
as in [3] and [9] to bound 1/γ from above in the form of a Poincaré inequality, which
we use in Lemma 2.1 below.

Define the following quantities. Let µmax = max{µ(x)}, µmin = min{µ(x)}, ρ =
µmax/µmin. The following eigenvalue estimate uses a result of [3], which is implicit in
[9]. Recall that m is the number of moves in the set M .

Lemma 2.1. Let γ = 1− λ2. Then 1/γ ≤ mρµmax|S|3.
Proof. If x > y are two points in S ordered lexicographically, form a path from x

to y by dividing the monomial difference Xx−Xy by the Gröbner basis {Xg+
i −Xg−

i :
1 ≤ i ≤ m}, ordered in some arbitrary but fixed way. The multidegrees of the lead
terms in the division give a path pxy which joins the endpoints x and y with decreasing
(in lexicographic order) path segments to a common point in S. The number of edges
in this path pxy is no greater than #x− 1, if #x is the rank of x in the set S using

STOCHASTIC SIMULATION ON INTEGER CONSTRAINT SETS 55

lexicographic order (the smallest element of S in lexicographic order has rank 1, the
largest has rank |S|). Define the measure of length |pxy|Q =

∑
e∈pxy

Q(e)−1.

Proposition 1 of [3] shows that 1/γ ≤ maxe
∑
pxy3e |pxy|Q µ(x)µ(y), where pxy

is the path from x to y constructed above and e is an edge in the graph on S, say
{a,a±gα}, with Q(e) = µ(a)Kµ(a,a±gα) = µ(a)K(a,a±gα) min{µ(a±gα)/µ(a), 1}.
Then Q(e)−1 ≤ µ−1

min(2m).
For x ∈ S, the maximum number of edges in a path joining x to y < x is #x− 1,

so |pxy|Q ≤ (#x − 1)2m/µmin. With e = {a,a − gα}, the paths through e can be
partitioned into collections starting at the different maximal values x ≥ a. There can
be at most #x − 1 paths starting from x ≥ a and going to some point less than x,
and the length of each is at most #x− 1. Thus∑

pxy3e
|pxy|Q µ(x)µ(y) ≤ 2m/µmin

∑
x≥a

(#x− 1)2µ2
max

≤ 2m
(
µ2

max/µmin

)∑
x

(#x− 1)2

= 2m
(
µ2

max/µmin

)
(|S| − 1)|S|(2|S| − 1)/6

≤ mρµmax|S|3.
The main contribution of the bound in Lemma 2.1 is the estimate for γ when µ

is uniform. Since the paths in the estimate joining two points do not change with
µ, they cannot yield the optimal result for a particular µ (see [9]). On the other
hand, the technique gives a practical estimate of the path length |pxy|Q. In some
examples, one can find a shorter path by going through intermediate points and using
various orderings on the variables ξ1, . . . , ξd for different path segments. This applies
in particular to Example 3.3.

Finally let Tµ be the Markov chain obtained by runningKµ a Poisson(1) number of
steps each time to avoid complications from negative eigenvalues. If we let ∆ = Kµ−I
be the generator for Kµ, we can define

(2.1) Tµ = e∆,

which is reversible with stationary distribution µ. The spectrum of e∆ is {exp(λi −
1), i = 1, . . . , |S|}.

Recall that any reversible and irreducible kernel T with stationary distribution
µ > 0 implies that multiplying the matrix T with a column vector on the right gives
a self-adjoint operator on L2(µ), which leaves invariant 1⊥, and multiplying T with a
row vector on the left gives a self-adjoint operator on L2(1/µ), which leaves invariant
µ⊥. If 〈·, ·〉1/µ denotes the inner product in L2(1/µ),

|Tn(x, A)− µ(A)| = 〈(δx − µ)Tn, (IA − µ(A))µ〉1/µ
≤ ‖δx − µ‖1/µ‖Tn‖1/µ‖(IA − µ(A))µ‖1/µ

and ‖δx−µ‖1/µ ≤ 1/
√
µ(x), ‖(IA−µ(A))µ‖1/µ ≤ 1/2, ‖Tn‖1/µ is its largest eigenvalue

as an operator restricted to µ⊥, which in our situation is exp(−γ).
For two distributions µ and ν on S, define the total variation distance ‖ν − µ‖ =

supA⊂S |ν(A)− µ(A)|.
Proposition 2.1. Let ε > 0, and let Tµ be defined in (2.1). Then ‖Tnµ (x, ·)−µ‖ ≤

ε for all n ≥ −mρµmax|S|3 log(ε
√
µ(x)).

Proof. Since ‖Tnµ (x, ·) − µ‖ ≤ 1/
√
µ(x) exp(−nγ) (see [3]), it is sufficient that

n ≥ − log(ε
√
µ(x))/γ, which follows if n ≥ − log(ε

√
µ(x))(mρµmax|S|3).

56 I. H. DINWOODIE

3. Application to simulated annealing. Let f : S → R, and let fmin =
min{f(x) : x ∈ S} = f(x∗), fmax = max{f(x) : x ∈ S}, and set h = fmax− fmin. Our
optimization problem is to minimize f . Let µβ be the Gibbs measure on S given by
µβ(x) = e−βf(x)|S|−1/φ(−β), where φ is the moment generating function for f with
respect to the uniform distribution on S:

(3.1) φ(t) =
∑
x

etf(x)

|S| .

Also, let φβ(t) = Eβe
tf = φ(t− β)/φ(−β). Let (log φ)∗ denote the convex conjugate

of the function log(φ), given by (log φ)∗(a) = supt∈R{ta − log φ(t)}. Recall that µβ
converges, as β gets large, to the uniform distribution on the points where f attains
its minimum, which we make precise in Lemma 3.1 below.

Lemma 3.1. Let δ > 0, let ε > 0, and set a = fmin + δ. Let β > 0 be sufficiently
large that both Eβ(f) < a and a(−β) − log φ(−β) ≤ log(ε) + (log φ)∗(a). Then
µβ({x : f(x) > a}) ≤ ε.

Proof. Clearly µβ({x : f(x) > a}) ≤ e−taEβetf = e−taφβ(t) for all t ≥ 0, so

logµβ({x : f(x) > a}) ≤ − sup
t≥0
{ta− log φβ(t)}

= − sup
t∈R
{ta− log φβ(t)} (since a > Eβ(f))

= − sup
t
{(t− β)a− log φ(t− β)} − aβ − log φ(−β)

= −(log φ)∗(a)− βa− log φ(−β).

Let β > 0 be sufficiently large that Eβ(f) < a and a(−β) − log φ(−β) ≤ log(ε) +
(log φ)∗(a). Then the result follows.

Let x = X0, X1, . . . be the Markov chain defined in (2.1) with stationary distri-
bution µβ , transition matrix Tβ = e∆ with ∆ = I −Kβ , and probability measure P βx
on the sample space. Note that max{µβ(x)} = µβ(x∗) = µβ,max.

Theorem 3.1. Let a = fmin + δ for δ > 0, and let β > 0 be sufficiently large that
Eβ(f) < a and a(−β)− log φ(−β) ≤ log(ε) + (log φ)∗(a). Then P βx {f(Xn) > a} ≤ 2ε

for all n ≥ −mµβ,maxe
βh|S|3 log(ε

√
µβ(x)).

Remark. For the uniform distribution, the result simplifies to

n ≥ −m|S|2 log(ε/
√
|S|).

Proof. First,

P βx {f(Xn) > a} = P βx {Xn ∈ f−1(a,∞)} − µβ(f−1(a,∞)) + µβ(f−1(a,∞))

≤ ‖Tnβ (x, ·)− µβ‖+ µβ(f−1(a,∞)).

By Proposition 2.1, ‖Tnβ (x, ·)− µβ‖ ≤ ε if n ≥ −mµβ,maxe
βh|S|3 log(ε

√
µβ(x)), since

the parameter ρ = max{µβ}/min{µβ} = exp(β(fmax − fmin)) = exp(βh). In addi-
tion, µβ(f−1(a,∞)) ≤ ε if β is sufficiently large (depending on δ and ε) by Lemma
3.1.

Theorem 3.1 suggests the following. If ε = 1/2 and the Markov chain starts at
a point x not far from x∗ so that µβ(x) ≈ µβ(x∗) ≈ 1, then a sufficient number
of iterations is roughly meβh|S|3. This does not give the exact exponential rate of

STOCHASTIC SIMULATION ON INTEGER CONSTRAINT SETS 57

growth in β of [9], but the bound leaves no unspecified constants and does not rely
on detailed knowledge of the function f .

It may be simpler and faster to get the same reliability by running several inde-
pendent chains with moderate values of β and observing the minimum over all these
chains.

Example 3.1. Let S = {x ∈ Z2
+ : x1 + x2 = k − 1} for an integer k > 0.

Then |S| = k. Let β = 0, which corresponds to infinite temperature. Then µβ is the
uniform distribution on S = {(0, k−1), . . . , (k−1, 0)}. A Gröbner basis consists of the
difference x1−x2 which corresponds to the vector g1 = (1,−1), and the Markov chain
K0 is essentially a reflecting random walk with second largest eigenvalue cos(π/k) [5, p.
389]. Then the chain T0 = e∆ has the second largest eigenvalue exp(cos(π/k)− 1) ≈
exp(−(π2/2)/k2). On the other hand, the bound of Lemma 2.1 gives γ ≥ |S|−2 =
k−2, so the second eigenvalue exp(−γ) ≤ exp(−1/k2), which is not an unreasonable
bound.

For β > 0 and the objective function f , Theorem 3.1 says that a sufficient number
of steps is eβhk2(kµβ,max) log(ε

√
µβ(x)). The dependence of β on the desired δ > 0

and ε > 0 is explained in Lemma 3.1 and requires some estimates of the moment
generating function φ.

Example 3.2. Consider the knapsack problem [11, p. 14] with general increasing
utility functions fi : R+ → R+, fi(0) = 0. The problem is to maximize f1(q1) + · · ·+
fd(qd), where qi represents a nonnegative integer quantity of object i, subject to the
overall weight constraint 〈w,q〉 ≤ W, where w = (w1, . . . , wd) is a vector of positive
integer weights and W is a positive integer.

Add a slack variable xd+1 so that its corresponding indeterminate ξd+1 is less than
ξd. This ordering is important to get a simple Gröbner basis. For x = (x1, . . . , xd, xd+1)
∈ Zd+1

+ , let f(x) = −(f1(x1) + · · ·+ fd(xd)). Then the problem becomes one to min-

imize f(x) over S, where S ⊂ Zd+1
+ is defined by w1x1 + · · ·+ wdxd + xd+1 = W .

To apply Theorem 3.1, observe that h = fmax − fmin = 0 + max{f1(q1) + · · · +
fd(qd)} ≤

∑d
i=1 fi(W/wi). Also, |S| is the coefficient on zW in the generating function

g(z) =
1

1− z
d∏
i=1

1

1− zwi ,

which is easily computed and satisfies |S| ≤ (W + d)d/d!. By Schur’s theorem [17, p.
90], |S| is well approximated by W d/(d!w1 . . . wd) when W is large compared to d.

That a set of d moves on S from a Gröbner basis is, in general, easy to describe.
Each corresponds to incrementing a coordinate 1 through d by ±1 and adjusting the
slack variable accordingly to maintain the equation w1x1 + · · · + wdxd + xd+1 = W
(cf. Proposition 3.1).

Theorem 3.1 says that a sufficient number of steps for the uniform distribution
(β = 0) is roughly d|S|2 log(ε/

√|S|), or essentially dW 2d/(d!2w2
1 . . . w

2
d), if we ignore

the logarithm. For β > 0, the quantity is roughly deβhW 3d log(ε)/(d!3w3
1 · · ·w3

d). This
quantity is polynomial in W for fixed d but is not polynomial in both W and d. The
Ibarra–Kim theorem [15, p. 262] indicates that when the objective function is linear,
there exists a dynamic programming “approximation” algorithm that is polynomial
in both d and W, which would in theory be superior. The annealing method has
the advantage in terms of generality, since it can easily be applied with any objec-
tive function. Neither the annealing algorithm nor the exact dynamic programming
approach is fully polynomial in all the parameters.

58 I. H. DINWOODIE

In general, inequality constraints such as in the knapsack problem can be treated
quite simply. Consider the situation where a state space S0 is the intersection of a
finite number of half-spaces, say S0 = {x ∈ Zd+ : Ax ≤ b}, where b ∈ Zr+ and the
nonnegative integer matrix A of rank r is such that |S0| < ∞. This includes the
knapsack problem of Example 3.3. By adding r slack variables, S0 is equivalent to a
finite state space S in Zd+r

+ with equality constraints. For the algebra, we need r new
indeterminates ψi, which we order ξ1 > · · · > ξd > ψ1 > · · · > ψr. A Gröbner basis for
the appropriate ideal is the generating set {ξi −ΨA(ei), 1 ≤ i ≤ d}, with ei the basis
element for Rd, since the S-polynomials leave remainder 0 when divided by this set.
These polynomials correspond to d moves given by incrementing or decrementing each
of the original coordinates, chosen uniformly from the d choices, and adjusting the
slack variables accordingly. This is then a special case of the Markov chain described
in [2] for uniform generation within an arbitrary convex set of lattice points in Zd.

A path between points x and y can be constructed by moving within S0 along the
edges of a d-dimensional rectangle as follows. Let z = min{x,y}, which belongs to S0.
Join x to z by decrementing the first coordinate, then the second, etc. Then join y
to z in the same manner. The two segments form a path from x to y within S0. This
path can be somewhat shorter than the one that arises from the division algorithm.
The number of steps in the path pxy is Σi|xi − yi| ≤ 2 max{Σiui : u ∈ S0}. Let
ai − 1 bound the ith coordinate of elements in S0, so max{xi : (x1, . . . , xd) ∈ S0} ≤
ai − 1, i = 1, . . . , d.

Proposition 3.1. Let S0 be as above with D = max{Σixi : x ∈ S0}, and let A =∏d
i=1 ai. Let Tβ be the Markov transition operator on S0 (or equivalently S) defined

in (2.1). Then ‖Tnβ (x, ·)− µβ‖ ≤ ε for all n ≥ −d2d+1eβhµβ,maxAD
2 log(ε

√
µβ(x)).

Remark. When β = 0, µβ,max = |S|−1, so the bound is roughly

−d2d+1D2(A/|S|) log(ε/
√
|S|)

for the uniform distribution. For a rectangular region A, A/|S| = 1, and this special-
izes to a quantity on the order of d2d+1D2. D measures the diameter of S0 in the L1

sense, so this is consistent with the results of [2], which suggest that for most convex
regions in dimension d, the number of steps required is on the order of the squared
diameter. The bounds of Theorem 3.1 and Proposition 3.1 are comparable when |S|
is comparable to D.

Proof. First we estimate the gap γ = 1 − λ2 for Kβ . With Proposition 1′ of [3],
we see that 1/γ ≤ maxeQ(e)−1Σpxy3e|pxy|µβ(x)µβ(y), where |pxy| ≤ 2D denotes the
number of edges in the path joining points x and y. Now Q(e)−1 ≤ 2d/µβ,min. To
bound Σpxy3e1, consider the edge e joining vertices u = (u1, u2, . . . , ui, . . . , ud) and
u− ei (here ei is the ith basis element in Rd). We need to count first all the ordered
pairs (x,y) ∈ S0 × S0 such that their connecting path can traverse e. Then half this
number will bound the number of unordered pairs.

The edge e is either on the path from x down to z = min{x,y} or from y down
to z. Since the ith coordinate is changed along the edge e, the coordinates 1, . . . , i−1
remain fixed throughout the remaining part of the path. Thus uj = min{xj , yj}, j =
1, . . . , i− 1. Also, since coordinates i+ 1, . . . , d have not yet been visited, uj = xj for
j = i + 1, . . . , d, or uj = yj for j = i + 1, . . . , d, depending on whether the edge is in
the segment from x to z or from y to z.

Partition the pairs (x,y), whose connecting path goes through e into 2i−1 groups,
where a group is identified with a sequence of 0’s and 1’s of length i − 1, and a 0 in
the jth place indicates xj ≥ yj , whereas a 1 indicates xj < yj , 1 ≤ j ≤ i− 1. Now the

STOCHASTIC SIMULATION ON INTEGER CONSTRAINT SETS 59

size of each of these groups is at most 2a1a2 · · · ai−1aiDai+1 · · · ad = 2AD as follows.
For a particular sequence of 0’s and 1’s, the possible values of (x,y) are constrained
so that xj = uj for indices j ≤ i− 1 where there is a 1 (indicating xj < yj , and thus
xj = min(xj , yj) = uj), and similarly yj = uj for indices j ≤ i − 1 where there is
a 0 (indicating yj ≤ xj , and thus yj = min(xj , yj)). For indices i < j ≤ d, either
(xi+1, . . . , xd) = (ui+1, . . . , ud) and the y coordinates are unclear, or (yi+1, . . . , yd) =
(ui+1, . . . , ud) and the x coordinates are unclear. Finally, the ith coordinates in both
x and y can take at most ai and also at most max{xi : x ∈ S0}+ 1 ≤ D + 1 values,
so the number of such pairs is at most 2(a1a2 · · · ai−1 × aiD × ai+1 · · · ad).

Then summing over all 2i−1 groups and dividing by 2 to get unordered pairs
{x,y} we get Σpxy3e1 ≤ 2i−1(2AD/2) ≤ 2d−1AD.

Therefore

1/γ ≤ (2d/µβ,min)µ2
β,max2D(2d−1AD) = dρµβ,max2d+1AD2 = d2d+1eβhµβ,maxAD

2.

Again using the basic bound ‖Tnβ (x, ·) − µβ‖ ≤ 1/
√
µβ(x) exp(−nγ), we see that

‖Tnβ (x, ·)− µβ‖ ≤ ε for n ≥ − log(ε
√
µβ(x))/γ, which occurs if

n ≥ −d2d+1eβhµβ,maxAD
2 log(ε

√
µβ(x)).

If we apply Proposition 3.1 to the knapsack problem of Example 3.2, we can
let ai = (W/wi) + 1. Then A is approximately the product W d/(w1 · · ·wd), and
the quantity |S| ≈ W d/(d!w1 . . . wd) ≈ A/d! for W large and fixed d. Since D ≤
W/mini wi, we get the estimate d2d+1W 2/(mini wi)

2(A/|S|), or roughly the quantity
d2d+1d!W 2/(mini wi)

2. For fixed d and weights wi, this grows more slowly in W than
the estimate dW 2d/(d!2w2

1 . . . w
2
d) from Example 3.2.

We mention finally that significant improvements are possible in situations where
a certain block structure is present in the constraint set. Suppose that the constraint
set S ⊂ Zd+ can be described by g independent constraints on disjoint sets of di
variables, 1 ≤ i ≤ g, as follows. Let Ai : Rdi → Rri be a matrix with nonnegative
integer entries which define a constraint set Si = {x ∈ Zdi+ : Ai(x) = bi}, i = 1, . . . , g.
Then we assume that S has the product form S = S1 × · · · × Sg.

Let bi index the start of the variables for constraint i, so bi = d1+· · ·+di−1+1, i =
1, . . . , g. Let Mi of size mi be the set of moves corresponding to a Gröbner basis for the
symmetric Markov chain on each of these sets Si, i = 1, . . . , g, considered separately.
Let Ki be the symmetric kernel on Si given by

(3.2) Ki(x,y) =
1

2mi
if y ≥ 0 and y = x± f for some f in Mi,

and Ki vanishes otherwise. This means that one updates the di coordinates corre-
sponding to the constraints Ai with moves from Mi. Take arbitrary positive weights
w1, . . . , wg with w1 + · · ·+ wg = 1, and form the irreducible kernel K on S by

(3.3) K(h1 ⊗ h2 · · · ⊗ hg)(x) =

g∑
i=1

wih1 ⊗ · · · ⊗Ki(hi)⊗ · · · ⊗ hg(x),

which means that one chooses a block of coordinates i with probability wi, and then
one runs the chain Ki in Si to update those di coordinates while leaving the others
unchanged. The eigenvectors of K are the weighted averages of tensor products of

60 I. H. DINWOODIE

those for the kernels {Ki, i = 1, . . . , g}, weighted by the family {wi}, with eigenvalues
being the corresponding weighted averages. It is then a simple fact that the gap γ for
K, the difference between unity and the second largest eigenvalue, is γ = min{wiγi :
i = 1, . . . , g}, where γi is one minus the second largest eigenvalue for the kernel Ki

on the set Si. Below we consider a special case with uniform distribution on one-
dimensional blocks.

Example 3.3 (Reflecting random walk in a box [2]). Consider the state space
S0 = {x ∈ Zd+ : 0 ≤ xi ≤ a − 1} for an integer a > 1. The reflecting random
walk makes a transition from a lattice point by uniformly choosing one of the 2d
neighbors and moving to the one selected if the candidate is within the box. The
boundary points have some positive holding probability. Another description is that
one uniformly chooses one of the d dimensions or coordinates to update, then one
runs the one-dimensional reflecting random walk one step on that coordinate in the
space {0, 1, . . . , a− 1}.

The state space S0 is equivalent for our purposes to S = {x ∈ Z2d
+ : xi,1 + xi,2 =

a− 1, i = 1, . . . , d} by adding d slack variables. Applying Lemma 2.1 at this point to
S yields a spectral estimate that is not accurate for d ≥ 2. Recall that the exact gap
γ = (1− cos(π/a))/d ≈ π2/2a2d, which is on the order of the square of the euclidean
diameter of S [2].

To get something comparable with our method, write S = S1 × · · · × Sd, where
Si = {x ∈ Z2

+ : xi,1 + xi,2 = a − 1}. The Markov chain on Si is run with moves
Mi = {(1,−1)}. With uniform weights wi = 1/d, the kernel (3.3) is exactly the
reflecting walk in the box, and Lemma 2.1 gives γi ≥ |Si|−2 = a−2. Then K has gap
at least 1/a2d as the average of the kernels Ki, and this result is of the right size in
the parameters a and d.

We conclude from this example that in situations where a product structure exists
on the state space (and also on the objective function, which we have taken to be
constant in this example) the bound of Lemma 2.1 can be significantly improved.

4. Conclusions. Nonnegative integer constraint sets are difficult and interesting
domains for optimization and simulation problems. The results in this paper give gen-
eral bounds on the time required for a given accuracy in some problems of simulation
on such domains without prior enumeration of the state space. They are formulated
in terms of computable quantities. In some interesting examples the bounds are quite
accurate, in particular, when the state space S is low dimensional. An example where
they would not be accurate would be simulation on the set of multigraphs with given
vertex degrees, which can be interpreted as simulation on symmetric nonnegative in-
teger matrices with certain row and column sums. Here the dimension is on the order
of the number of vertices, and we would not expect the results to be useful in this
case. The basic technique for estimating eigenvalues of Lemma 2.1 is generally not
powerful in high dimensions (see [2]) but does not require detailed properties of the
objective function f which appear in theoretical results on annealing. Furthermore,
the techniques for estimating the spectral gap γ and the path length between two
elements of the state space may be adapted in particular situations to yield substan-
tial improvements. Examples of this are shown for inequality constraints and when a
product structure exists on the constraint set.

Improving the bounds of this paper and extending them to the nonreversible
annealing algorithms treated in somewhat abstract terms in [12] and [16] would serve
as interesting problems for further related research.

STOCHASTIC SIMULATION ON INTEGER CONSTRAINT SETS 61

REFERENCES

[1] O. Catoni, Applications of sharp large deviations estimates to optimal cooling schedules, Ann.
Inst. H. Poincaré Probab. Statist., 27 (1991), pp. 463–518.

[2] P. Diaconis and L. Saloff-Coste, Nash inequalities for finite Markov chains, J. Theoret.
Probab., 9 (1996), pp. 459–510.

[3] P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Appl.
Probab., 1 (1991), pp. 36–61.

[4] P. Diaconis and B. Sturmfels, Algebraic Algorithms for Sampling from Conditional Distri-
butions, Technical Report 6, Department of Statistics, Stanford University, Stanford, CA,
1993.

[5] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed., John
Wiley, New York, 1957.

[6] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images, IEEE Trans. Pattern Analysis and Machine Intelligence, 6 (1984), pp. 721–
741.

[7] B. Gidas, Nonstationary Markov chains and convergence of the annealing algorithm, J. Stat.
Phys., 39 (1985), pp. 73–131.

[8] B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res., 13 (1988), pp. 311–329.
[9] R. Holley and D. Stroock, Simulated annealing via Sobolev inequalities, Comm. Math.

Phys., 115 (1988), pp. 553–569.
[10] S. Ingrassia, On the rate of convergence of the Metropolis algorithm and Gibbs sampler by

geometric bounds, Ann. Appl. Probab., 4 (1994), pp. 347–389.
[11] E. L. Johnson, Integer Programming: Facets, Subadditivity, and Duality for Group and Semi-

group Problems, CBMS-NSF Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia,
1980.

[12] L. Miclo, Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de
Markov finies, in Seminaire de Probabilités XXXI, J. Azéma, ed., Springer, New York,
1997, pp. 136–167.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in C, 2nd ed., Cambridge University Press, New York, 1992.

[14] B. Ripley, Stochastic Simulation, John Wiley, New York, 1987.
[15] A. Schrijver, Theory of Linear and Integer Programming, John Wiley, New York, 1986.
[16] A. Trouvé, Rough large deviation estimates for the optimal convergence speed exponent of

generalized simulated annealing algorithms, Ann. Inst. H. Poincaré Probab. Statist., 32
(1996), pp. 299–348.

[17] H. Wilf, Generating Functionology, Academic Press, San Diego, 1988.

A FINITE CONTINUATION ALGORITHM FOR BOUND
CONSTRAINED QUADRATIC PROGRAMMING∗

KAJ MADSEN† , HANS BRUUN NIELSEN† , AND MUSTAFA ÇELEBI PıNAR‡

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 62–83

Abstract. The dual of the strictly convex quadratic programming problem with unit bounds
is posed as a linear `1 minimization problem with quadratic terms. A smooth approximation to
the linear `1 function is used to obtain a parametric family of piecewise-quadratic approximation
problems. The unique path generated by the minimizers of these problems yields the solution to
the original problem for finite values of the approximation parameter. Thus, a finite continuation
algorithm is designed. Results of extensive computational experiments are reported.

Key words. bound constrained quadratic programming, Lagrangian duality, linear `1 estima-
tion, Huber’s M-estimator, robust regression

AMS subject classifications. 90C20, 65K05, 65U05, 65F20

PII. S1052623495297820

1. Introduction. We consider the strictly convex quadratic programming prob-
lem (QP) with unit bounds:

[BCQP]

min
y

H(y) = −dT y + 1
2y
TQy

subject to −1 ≤ y ≤ 1,

where Q is an m×m symmetric, positive definite matrix, and y and d are m-vectors.
In this paper we study a dual continuation algorithm for the solution of [BCQP].

We first show that the dual of [BCQP] is an unconstrained minimization problem,
where the function is composed of a linear `1 term and strictly convex quadratic
terms. This nondifferentiable function is approximated by a smooth piecewise linear-
quadratic Huber function. The resulting smooth problems yield a unique path that
converges to the primal-dual optimal solutions. We follow the path using a continua-
tion algorithm based on Newton’s method. This algorithm is inspired by our earlier
work on linear programming with unit bounds [11]. In this reference, the dual of a
linear program is formulated as an `1 minimization problem. We solve the dual prob-
lem using a continuation algorithm based on the piecewise-linear paths generated by
a smooth approximation problem. The smooth problem comes from robust statistics,
where it was used by Huber as an alternative to the least squares estimation [7]. The
most important property of the smooth problems is that they yield primal-dual opti-
mal solutions for sufficiently small values of a continuation parameter. This allows a
new finite, numerically stable continuation algorithm for linear programming.

We apply a similar philosophy here to the dual of [BCQP]. We approximate the `1
term by a Huber function term. This yields a family of problems parameterized by a
smoothing parameter γ. This parameter is alternatively referred to as a continuation

∗Received by the editors December 3, 1995; accepted for publication (in revised form) February
9, 1998; published electronically October 30, 1998. This research was supported in part by Danish
Natural Sciences Research Council grant 11-0505.

http://www.siam.org/journals/siopt/9-1/29782.html
†Institute of Mathematical Modelling, Technical University of Denmark, 2800, Lyngby, Denmark

(km@imm.dtu.dk, hbn@imm.dtu.dk).
‡Department of Industrial Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey

(mustafap@bilkent.edu.tr).

62

CONTINUATION FOR QUADRATIC PROGRAMMING 63

parameter as in the linear programming case. However, unlike the linear programming
case, the path generated by the minimizers of the smooth problem is unique and is no
longer piecewise linear. This requires a fresh look at the properties of the path and
its behavior for sufficiently small values of the continuation parameter, that is, the
analysis of [11] does not apply here. However, we are able to establish that primal-dual
optimal solutions are obtained from the path for positive, sufficiently small values of
the parameter.

The following properties of the approximation are emphasized as the main con-
tributions of this paper:

P0. The primal-dual minimizers of the smooth problem define a unique path as
a function of the smoothing parameter γ.

P1. The primal-dual optimal solutions to [BCQP] are obtained for sufficiently
small γ > 0 using information from the path, that is, γ does not have to
be decreased to zero in order to obtain an exact solution to the QP problem
(Theorems 2.2 and 2.3).

P2. Although the unique path leading to the primal-dual solutions is nonlinear,
a powerful extrapolation result allows computation of primal-dual candidates
for optimality (Theorem 2.2).

Furthermore, our main results are obtained without any nondegeneracy assump-
tions on the problem. In particular, Theorem 2.2 (the description of the extrapola-
tion) and Theorem 2.3 (the behavior of the path for small values of the continuation
parameter) are established in the absence of any restrictive assumptions.

These properties suggest an algorithm to trace the path to arrive at a solution of
[BCQP]. We refer to the path as the “solution path” throughout the rest of the paper.
Our algorithm is best interpreted as a continuation algorithm since it possesses the
following main features of continuation algorithms.

1. The solution of a parametrized family of subproblems as a parameter varies
over an interval; in our case, the smooth “Huber” problem as a function of
the smoothing parameter γ.

2. The use of a local iterative method to solve the subproblems. We use a finite
Newton method [10] to solve the smooth Huber problem.

3. The use of an extrapolation technique to guess an optimal primal-dual pair
from a point on the path.

As a result of P1 and P2 above, the continuation algorithm is a finite procedure
provided that γ is decreased by at least a certain factor after each unconstrained
minimization. We make these ideas precise in the forthcoming sections.

In this algorithm, Newton’s method is used to locate the path for some value of
the smoothing parameter. Unless optimality is reached, Newton’s method is invoked
for a reduced value of the parameter from a point no longer on the path, and the cycle
is repeated. We summarize the algorithmic scheme as follows:

Compute initial γ
repeat

compute a solution of the approximation problem
decrease γ

until optimality.
This scheme closely relates our algorithm to penalty and barrier methods and

in general to path-following methods. To the best of our knowledge, from this per-
spective, both the theoretical analysis of section 2 and the algorithm stand as novel
contributions to the quadratic programming literature.

64 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

We develop a numerically stable implementation of the new algorithm for dense
problems. We also compare the performance of the algorithm to LSSOL, a software
system for quadratic programming from Stanford University’s Systems Optimization
Laboratory, and to an interior point algorithm of Han, Pardalos, and Ye [6].

For a review of the literature on quadratic programming we refer the reader to
the paper by Moré and Toraldo [14]. It seems that currently the fastest algorithms
for [BCQP] are the active set methods [14]. For problem [BCQP], active set methods
can efficiently add or delete many constraints from the active set at one iteration.
Primal-dual interior point algorithms have also been recently developed for [BCQP]
[6]. Other related ideas have been proposed in more recent papers by Coleman and
Hulbert [1] and Li and Swetits [8, 9]. In [1] Coleman and Hulbert reformulate [BCQP]
as an unconstrained minimization problem involving an `1 term. This reformulation
is obtained by manipulating the Karush–Kuhn–Tucker conditions of [BCQP]. They
apply a superlinearly convergent modified Newton method to this reformulation. In
this regard our point of departure is identical to that of [1]. Li and Swetits [8, 9] refor-
mulate the convex quadratic programming problem as an unconstrained minimization
of a convex quadratic spline function.

In the rest of the paper we proceed as follows. In section 2 we present a simple
derivation of the dual problem, and we explore the relation of the nondifferentiable
dual to the approximation problem. We give the details and analysis of Newton’s
method applied to the approximation problem in section 3. In section 4 we discuss
some implementation details and generation of test problems, and we report the results
of extensive computational experiments with the new algorithm. Comparisons to
competing algorithms are also made. Concluding remarks are offered in section 5.

2. A nondifferentiable dual problem and its approximation. We begin
our study of [BCQP] by deriving a dual problem. Since Q is symmetric positive
definite, there exists a full rank matrix A ∈ <m×m such that Q = ATA. Then the
quadratic program can be rewritten

min
y

−(AT b)T y +
1

2
yTATAy

subject to −1 ≤ y ≤ 1

for some b ∈ <m such that d = AT b. Let u = Ay and rewrite the problem as

min
y,u

−bTu+
1

2
uTu

subject to Ay = u

−1 ≤ y ≤ 1.

Associating dual multipliers x ∈ <m with the equality constraints, we form
the following Lagrangian max-min problem:

max
x

min
u,−1≤y≤1

{
1

2
uTu− bTu+ xT (Ay − u)

}
,

which is equivalent to

max
x

{
min
u

{
1

2
uTu− bTu− uTx

}
+

{
min
−1≤y≤1

xTAy

}}
.

CONTINUATION FOR QUADRATIC PROGRAMMING 65

It is easy to see that the first minimization yields the identity

Ay = x+ b.(2.1)

Hence, we get the term

−1

2
xTx− bTx− 1

2
bT b.

The second minimization over y is also straightforward and yields

min
−1≤yi≤1

xi(Ay)i =

{
(ATx)i if (ATx)i ≤ 0,
−(ATx)i if (ATx)i ≥ 0.

However, this is simply the negative of the `1-norm of ATx. Therefore, our dual
problem is

minimizeF (x) ≡ ‖ATx‖1 +
1

2
xTx+ bTx+

1

2
bT b.(2.2)

As a result of strict convexity, the primal and dual optimal solutions are unique.
Let

r(x) = ATx.(2.3)

From the derivation, the conditions for (y0, x0) to be optimal can be expressed as

Ay0 = b+ x0 ,

ri(x0) > 0 =⇒ y0i = −1,
ri(x0) < 0 =⇒ y0i = 1,

−1 < y0i < 1 =⇒ ri(x0) = 0,

for all i = 1, . . . ,m. From this point on, we use (y0, x0) to denote a primal-dual
optimal pair.

Let us define a set Ŝ of “sign vectors” such that Ŝ = {s ∈ <m | si ∈ {−1, 0, 1}}.
Now, define the sign vector s0(x) such that

s0i(x) =

 −1 if ri(x) < 0,
0 if ri(x) = 0,
1 if ri(x) > 0,

(2.4)

and define

W0 = diag(w1, . . . , wm) with wi = 1− s2
0i.(2.5)

Let s0 = s0(x0) and let W0 be derived from s0 using (2.5). Now, we can compactly
express the optimality conditions as

AW0y0 −As0 = b+ x0.(2.6)

Since A has full rank, this implies that the following linear system is consistent:

(AW0A
T)h = As0 + b+ x0.(2.7)

Since the null space N (AW0A
T) coincides with the null space N (W0A

T), W0A
Th is

constant no matter which solution h to (2.7) is picked.

66 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

2.1. The smooth Huber approximation. Consider the function φ : < 7→ <:

φγ(t) =

{ 1
2γ t

2 if |t| ≤ γ,

|t| − 1
2γ if |t| > γ,

(2.8)

for some scalar parameter γ > 0. This function is known as Huber’s M-estimator
function in robust statistics. Now, we replace (2.2) by the following differentiable
problem:

min
x

Φγ(x) +
1

2
xTx+ bTx+

1

2
bT b,(2.9)

where

Φγ(x) =

m∑
i=1

φγ(ri(x)).(2.10)

We discuss some well-known properties of this function in section 3.1. To view this
problem in quadratic programming format, we define a new sign vector sγ :

sγ(x) = [sγ1(x), . . . , sγm(x)] with sγi(x) =

 −1 if ri(x) < −γ,
0 if |ri(x)| ≤ γ,
1 if ri(x) > γ,

(2.11)

and define

Ws = diag(w1, . . . , wm) with wi = 1− s2
γi.(2.12)

Therefore, we have the following minimization problem:

minimize Fγ(x) ≡ 1

2γ
rTWsr + sTγ

[
r − 1

2
γsγ

]
+

1

2
xTx+ bTx+

1

2
bT b,(2.13)

where the argument x of r and sγ is dropped for notational convenience. We refer
to the above problem as the “Huber problem” for ease of expression. Clearly, this
problem has a unique minimizer as a result of strict convexity. In the following, we
use the notations xγ for the minimizer of Fγ and Wγ = Ws, where s = sγ(xγ). For
notational convenience, we use Wγ and Ws interchangeably in our analysis when the
meaning is clear from the context.

It can be shown using Lagrangian duality that the dual problem to (2.13) is
given by

[PBCQP]

min
y

H(y) = −dT y +
1

2
yT (Q+ γI)y

subject to −1 ≤ y ≤ 1.

We notice that the above problem is simply a quadratically perturbed version of
[BCQP]. This relates our analysis to previous studies by Mangasarian [12] and Man-
gasarian and Meyer [13], where quadratic and nonlinear perturbations of linear pro-
grams were addressed.

CONTINUATION FOR QUADRATIC PROGRAMMING 67

2.2. The relation between F, Fγ , and [BCQP]. In this section we establish
some important properties of the Huber approximation. These properties characterize
the proposed algorithm and are used to verify finite convergence.

We begin with some simple results. We can immediately observe the following
elementary fact:

lim
γ→0

φγ(t) = |t| ,(2.14)

for any t ∈ <. Now, we have the following simple result.
Lemma 2.1. Let xγ denote the minimizer of the function Fγ . Then,

0 ≤ F (x0)− Fγ(xγ) ≤ mγ

2
.(2.15)

Proof. From the definitions of F and Fγ , we have for any x ∈ <m

0 ≤ F (x)− Fγ(x) ≤ mγ

2
.

Since x0 and xγ are minimizers of F and Fγ , we therefore obtain

Fγ(xγ) ≤ Fγ(x0) ≤ F (x0)

and

F (x0)−mγ

2
≤ Fγ(xγ)−mγ

2
≤ Fγ(xγ).

This proves (2.15).
Theorem 2.1. Let xγ denote the minimizer of the function Fγ . Then,

lim
γ→0

xγ = x0.(2.16)

Proof. Since the functions are continuous and strictly convex, i.e., the minimizers
are unique, the result follows using (2.14) and (2.15).

Let s = sγ(xγ). The minimizer xγ of Fγ satisfies the following necessary condition:

A

[
1

γ
Wsr(xγ) + s

]
+ b+ xγ = 0,(2.17)

which may be written in the form(
AWsA

T + γI
)
xγ = −γ(As+ b),(2.18)

or as

Ayγ = b+ xγ ,(2.19)

where we have defined

yγ = −
(

1

γ
Wγr(xγ) + s

)
.(2.20)

Using (2.17) we see that yγ is feasible in [BCQP] and optimal in [PBCQP]. Clearly,
using (2.1), (2.16), and (2.19) we have

lim
γ→0

yγ = y0.(2.21)

68 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

In the remainder of this section, we study the behavior of the solution paths {xγ}
and {yγ} as γ ↘ 0. For fixed s (and therefore Ws) we introduce the singular value
decomposition (SVD) of the matrix WsA

T :

WsA
T = UΣV T .(2.22)

Here, the matrices U and V with columns {uj}mj=1 and {vj}mj=1 are orthogonal, and
the singular values are given in Σ :

Σ = diag(σ1, . . . , σm) with σ1 ≥ · · · ≥ σq > 0, σq+1 = · · · = σm = 0.(2.23)

The number q is the rank of the matrix WsA
T , the vectors {uj}qj=1 and {vj}qj=1 form

an orthonormal basis of the range of WsA
T and AWsA

T , respectively, and {vj}mj=1 is
an orthonormal basis of <m. This means that we can write

As+ b =

m∑
j=1

αjvj = V α,(2.24)

and by inserting (2.22) into (2.18) we get(
V Σ2V T + γI

)
xγ = −γV α,

from which we find

xγ = −γ
m∑
j=1

αj
σ2
j + γ

vj = −γ
q∑
j=1

αj
σ2
j + γ

vj −
m∑

j=q+1

αjvj .(2.25)

Furthermore, from (2.20) and (2.22) we get

yγ =

q∑
j=1

σjαj
σ2
j + γ

uj − s.(2.26)

As we shall see in Theorem 2.3, sγ(xγ) and therefore, Ws are constant for γ small
enough. When the SVD factorization (2.22) corresponds to this Ws, it follows that

x0 = lim
γ→0

xγ = −
m∑

j=q+1

αjvj and y0 = lim
γ→0

yγ =

q∑
j=1

αj
σj

uj − s.(2.27)

In the algorithm of section 3 we do not compute the SVD, but the following
theorem provides us with an extrapolation formula that is used in our algorithm to
test for optimality. To the best of our knowledge, this is a new result in the path-
following literature.

Theorem 2.2. Let xδ be the minimizer of Fδ for 0 < δ ≤ γ with s = sδ(xδ) and
W = Ws. Assume that sδ(xδ) = s for 0 < δ ≤ γ. Then,

x0 = xδ + δd
(δ)
δ and y0 = WAT d

(0)
δ − s ,(2.28)

where d
(δ)
δ and d

(0)
δ are the minimum-norm solutions to the linear systems

(AWAT)d = As+ b+ xδ and (AWAT)d = As+ b+ x0 ,(2.29)

respectively.

CONTINUATION FOR QUADRATIC PROGRAMMING 69

Proof. From (2.24)–(2.25) we get

As+ b+ xδ =

q∑
j=1

(
1− δ

σ2
j + δ

)
αjvj =

q∑
j=1

σ2
j

σ2
j + δ

αjvj(2.30)

(the contributions for j = q+1, . . . , n cancel). Thus, the first of the rank-deficient
systems in (2.29) is consistent, and the minimum-norm solution is

d
(δ)
δ =

q∑
j=1

αj
σ2
j + δ

vj .(2.31)

By adding δd
(δ)
δ to xδ (given by (2.25)) we get x0, as expressed in (2.27). For the

other system, we find

As+ b+ x0 =

q∑
j=1

αjvj .(2.32)

Thus, the second system in (2.29) is also consistent. The minimum-norm solution is

d
(0)
δ =

q∑
j=1

αj
σ2
j

vj ,(2.33)

and by inserting this into (2.28) we get y0 as expressed in (2.27).
In general, let (x̂0, ŷ0) denote the quantities computed by (2.28). They provide

practical termination criteria for the algorithm defined in section 3.
In Theorem 2.3 we show that sγ(xγ) is constant when γ is small enough. For

some of the components of sγ this is almost trivial. The components which cause
difficulty are those for which ri(x0) = 0 and |y0i| = 1. This set is denoted by D, and
the set of sign vectors for which the “easy” components equal those of s0 is denoted
by S. More precisely, D and S are defined as follows. Let s ∈ Ŝ, κ+

s = {i : si = 1},
and κ−s = {i : si = −1} with κs = κ+

s ∪ κ−s and κ0
s = {i : si = 0}. Let D = {i : |y0i| =

1} ∩ κ0
s and S = {s ∈ Ŝ | si = s0i for i 6∈ D}.

Theorem 2.3. Let s0 = s0(x0). There exists γ∗ such that sγ(xγ) is constant,
with κ+

s0 ⊆ κ+
sγ , κ

−
s0 ⊆ κ−sγ for 0 < γ ≤ γ∗.

Proof. Since the number of different sign vectors is finite, there must exist a
sequence of positive numbers γ1, γ2, . . ., with γk ↘ 0 for k → ∞ such that sγ(xγ) is
constant for γ = γk, k = 1, 2, Denote this constant sign vector by s.

According to (2.3) and (2.11), the elements of s are defined by the values of
ri(xγ) = aTi xγ . Since xγ→x0, we have |aTi xγ |>γ for i∈κ0

s and γ small enough.
Furthermore, since yγ→y0, we have from (2.20) that |aTi xγ |/γ<1 for i∈κ0

s0\D, and γ
small enough. Therefore, since γk↘0, it must be the case that s∈S.

Now, let W = Ws and let (2.22) be the SVD factorization of WAT . Furthermore,
let dγ be the solution to

(AWAT + γI)dγ = As+ b+ x0.

By inserting (2.32), we see that

dγ =

q∑
j=1

αj
σ2
j + γ

vj .(2.34)

70 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

We introduce

ψi(γ) ≡ aTi dγ =

q∑
j=1

αj
σ2
j + γ

aTi vj

for i = 1, 2, . . . ,m. Since ψi is a rational function for γ>0, it can only have a finite
number of oscillations as γ→0, and hence there exists γ∗1 > 0 such that for each i

either |ψi(γ)| > 1 for 0 < γ ≤ γ∗1
or |ψi(γ)| ≤ 1 for 0 < γ ≤ γ∗1 .

If i /∈ κs0 , then ri(x0) = 0 and

ri(x0 − γdγ) = −γψi(γ).

Hence, the ith component of sγ(x0 − γdγ) is constant for 0 < γ ≤ γ∗1 . Since dγ is
bounded (see (2.34)) the other components of sγ(x0 − γdγ) must also be constant in
some interval 0 < γ ≤ γ∗2 . Therefore, sγ(x0 − γdγ) is constant for 0 < γ ≤ γ∗3 ≡
min{γ∗1 , γ∗2}.

Finally, let γ = γk, γk ≤ γ∗3 denote a value for which sγ(xγ) = s. It follows from
(2.25), (2.27), and (2.34) that the unique minimizer xγ is equal to x0 − γdγ .

Notice that S may be a singleton, in which case it is possible to establish a
stronger result. This depends on a certain nondegeneracy assumption stated below.

Theorem 2.4. Let x0 be the minimizer of F with s = s0(x0) and W = Ws.
Assume there exists γ1 > 0 such that the solution dγ to the system

(AWAT + γI)d = As+ b+ x0(2.35)

has the property

‖WAT dγ‖∞ ≤ 1 for γ ∈ (0, γ1] .(2.36)

Then, there exists γ∗ > 0 such that sγ(xγ) is constant for γ ∈ (0, γ∗]. Furthermore,
sγ(xγ) = s for γ ∈ (0, γ∗].

Proof. Let δ = min{|ri(x0)| : ri(x0) 6= 0}. Choose γ2 < δ such that, for 0 < γ ≤
γ2,

ri(x0)− γaTi dγ > γ2 for i ∈ κ+
s ,(2.37)

ri(x0)− γaTi dγ < −γ2 for i ∈ κ−s .(2.38)

Using (2.36), sγ(x0 − γdγ) = s(x0). Now, from (2.35) and using the fact that
WATx0 = 0, we get

(AWAT + γI)(−γdγ) = −γ(As+ b+ x0),
(AWAT + γI)(−γdγ) = −AWATx0 − γ(As+ b+ x0),

(AWAT + γI)(x0 − γdγ) = −γ(As+ b).

Hence, x0 − γdγ is the minimizer of Fγ , and the theorem is proved with γ∗ =
min{γ1, γ2}.

Definition 2.1. A primal-dual optimal pair (y, x) is nondegenerate if the fol-
lowing condition holds for each zero component ri(x) of r(x):

ri(x) = 0 and − 1 < yi < 1 .(2.39)

CONTINUATION FOR QUADRATIC PROGRAMMING 71

Corollary 2.1. Let (y0, x0) be a nondegenerate primal-dual optimal pair for
[BCQP] with s = s0(x0) and W = W0(x0). Then, there exists γ∗ > 0 with γ∗ <
min{|ri(x0)| : i ∈ σs} such that sγ(xγ) = s for γ ∈ (0, γ∗].

Proof. Since A has full rank, under the nondegeneracy assumption on (y0, x0) any
solution d to the optimality system (2.7)

(AWAT)d = As+ b+ x0

satisfies

‖WAT d‖∞ < 1.

Now, using the fact that limγ→0 dγ = d∗, where d∗ denotes the minimum-norm solu-
tion to (2.7) and the continuity of the norm in its argument, there exists γ∗1 > 0 such
that for γ ∈ (0, γ∗1] the unique solution dγ of (2.35) satisfies

‖WAT dγ‖∞ < 1.

The rest of the proof follows from Theorem 2.4.
Hence, under a nondegeneracy assumption, the Huber problem is guaranteed to

generate a sign vector identical to the sign vector corresponding to the dual optimal
point x0 for a sufficiently small value γ∗ of γ. The magnitude of γ∗ is related to the
smallest nonzero component of r(x0) as stated in Corollary 2.1.

3. The algorithm. The new algorithm is based on minimizing the function Fγ
for a set of decreasing values of γ. It can be described as follows. Starting from a
point x, we find a minimizer of Fγ for some γ > 0, i.e., we locate the solution path for
some value of γ. Utilizing Theorem 2.2 we compute (ŷ0, x̂0), estimates of primal-dual
solutions. If optimality is not reached at (ŷ0, x̂0), we reduce the value of γ. Starting
from a new point corresponding to the reduced value of γ, we compute the exact
minimizer of Fγ using a Newton-type algorithm. Hence, we follow the solution path
closely without having to stay on it. Based on Theorem 2.2, this process terminates
when the duality gap is closed and primal feasibility is obtained.

The algorithm has two main components: (1) the solution of the smooth problem,
i.e., minimization of Fγ for a given value of γ; (2) the check for optimality and
the reduction of γ with the computation of an initial point for the solution of the
subsequent Huber problem. We now consider these two components in detail.

3.1. Solving the Huber problem.

3.1.1. Properties of Fγ . In this section we describe some essential properties
of Fγ .

Clearly, Fγ is composed of a finite number of quadratic functions. In each domain
D⊆<m, where sγ(x) is constant, Fγ is equal to a specific quadratic function. These
domains are separated by the following union of hyperplanes:

Bγ = {x ∈ <m | ∃i : |ri(x)| = γ}.
A sign vector s is γ-feasible at x if

for all ε>0 ∃z ∈ <m \Bγ : ‖x− z‖ < ε ∧ s = sγ(z).

If s is a γ-feasible sign vector at some point x, then let Qs be the quadratic function
which equals Fγ on the subset

Cγs = cl{z ∈ <m | sγ(z) = s}.(3.1)

72 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

Cγs is called a Q-subset of <m. Notice that any x ∈ <m \ Bγ has exactly one cor-
responding Q-subset (s = sγ(x)), whereas a point x ∈ Bγ belongs to two or more
Q-subsets. Therefore, in general we must give a sign vector s in addition to x in order
to specify which quadratic function we are currently considering as representative of
Fγ . However, the gradient of Fγ is independent of the choice of s.

Qs can be defined as follows:

Qs(z) =
1

2γ
(z − x)T (AWsA

T + I)(z − x) + F
′T
γ (x)(z − x) + Fγ(x).(3.2)

The gradient of the function Fγ is given by

F ′γ(x) = A

[
1

γ
Wsr(x) + s

]
+ b+ x,(3.3)

where s is a γ-feasible sign vector at x. For x ∈ <m \ Bγ , the Hessian of Fγ exists
and is given by

F ′′γ (x) =
1

γ
AWsA

T + I.(3.4)

The set of indices corresponding to “small” residuals

Aγ(z) = {i | 1 ≤ i ≤ m ∧ sγi(z) = 0}(3.5)

is called the γ-active set at z.

3.1.2. Computing a minimizer of Fγ . The algorithm for computing a mini-
mizer x∗ of Fγ is based on a modified Newton algorithm given in [10]. This algorithm
becomes simpler in our case as a result of strict convexity of the objective function.
The algorithm consists of applying Newton’s method to the function Fγ followed by
a piecewise linear one-dimensional search. The idea is to locate the Q-subset of <m
which contains its own minimizer using Newton’s method. A search direction h is
computed by minimizing the quadratic Qs, where s = sγ(x) and x is the current
iterate. More precisely, we consider the equation

Q′′sh = −Q′s(x),

where Q′′s and Q′s denote the Hessian and gradient of Qs, respectively. From (3.2)–
(3.4) we obtain

(AWsA
T + γI)h = −AWsr − γ(As+ b+ x).(3.6)

The next iterate is found by a line search aiming for a zero of the directional derivative
[10]. More precisely, the next iterate is the point x+αh, α > 0, for which the function

ρ(α) = Fγ(x+ αh)

is minimized. Since ρ is a convex univariate function, the problem is to find a zero of
the increasing piecewise-linear smooth function ρ′. The solution α to this problem is
positive since ρ′(0) < 0 by the definition of h.

Let {αk}, k = 1, . . . , n be the set of positive breakpoints where ρ′ has kinks,
i.e., the set of points where an sγi(x+ αh) changes value:

K = {α > 0 | ∃i ∈ E : |(AT (x+ αh))i| = γ},

CONTINUATION FOR QUADRATIC PROGRAMMING 73

where E = {i | 1 ≤ i ≤ m ∧ (ATh)i 6= 0}. Assume that the points αk, k = 1, . . . , n
are given in ascending order. Then the line search procedure is as follows:

j := 0
α0 = 0
repeat

j ← j + 1
find ρ′(αj)

until ρ′(αj) ≥ 0
find the zero α of the linear function ρ′ in the interval [αj−1, αj].

This procedure is computationally cheap as a result of the piecewise-linear nature
of F ′γ . First, the elements of the set K need not be sorted in practice. It suffices to
pick the smallest element among the elements that remain in the set as the search
proceeds. Furthermore, the quantity ρ′(αj) is easily obtained from ρ′(αj−1), since the
move from αj−1 to αj only affects one term in the defining equation of ρ′. A more
detailed description of this procedure is given in [10].

We summarize below the modified Newton algorithm:

repeat
s = sγ(x)
find h from (3.6)
if x+ h ∈ Cγs then

x← x+ h
stop = true

else
x← x+ αh (line search)

endif
until stop.

The algorithm stops when we have x + h ∈ Cγs(x), i.e., we have found the local

quadratic which contains its own minimum. Therefore, x + h is a minimizer of Fγ
as a result of (3.1), (3.2), and the convexity of Fγ . Now, we show that this occurs
in a finite number of iterations. First, we notice that the line searches made in the
algorithm are well defined. This follows from two observations. First, since A has
full rank, there exists an index j for which (ATh)j 6= 0. Hence, the set E of break-
points is always nonempty. Furthermore, ρ(α) is a strictly convex quadratic function
of α, which implies that the line search must terminate at a minimum along the
half-line.

Theorem 3.1. The Newton algorithm stops at a minimizer of Fγ after a finite
number of iterations.

Proof. The set of iterates is bounded since the method is descent. Suppose that
the iteration is infinite. Then, the set of iterates must have an accumulation point,
z∗, say. We consider two cases:

(i) F ′γ(z∗) 6= 0: Since F ′γ is continuous and since Fγ is composed of a finite
number of quadratics, all directions are found via a finite set of positive definite
matrices AWsA

T + γI. Hence, there exists ε > 0 and δ > 0 such that ‖z∗ − x‖ < ε
implies Fγ(x)−Fγ(xnext) > δ, where xnext is the successor of x in the iteration. Since
this happens infinitely often, the function values must tend to −∞, which contradicts
the boundedness of Fγ from below.

(ii) F ′γ(z∗) = 0: In this case, z∗ is the minimizer of Fγ because of convexity.
Let x be an iterate with z∗ ∈ Cγs(x). Since z∗ minimizes the quadratic Qs and h is

found by (3.6), x+ h = z∗, and the algorithm stops.

74 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

3.2. Checking optimality and reducing γ. Let xγ be a minimizer of Fγ
computed using the Newton algorithm of the previous section. Then, either the con-
tinuation algorithm terminates or the Newton algorithm is restarted using a reduced
value of γ.

The stopping test is based on Theorem 2.2. It consists of checking the duality
gap H(ŷ0) − F (x̂0) and the feasibility of ŷ0, where (ŷ0, x̂0) are as given in Theorem
2.2. If the duality gap is zero (within the roundoff tolerance), then the algorithm is
stopped provided the components of ŷ0 satisfy

−1 ≤ yi ≤ 1.

Otherwise, γ is decreased as

γnew = β · γold,
where β ∈ (0, 1). The precise description of this procedure is as follows:

s = sγ(xγ)

compute the minimum norm solution d
(γ)
γ to (AWAT)d = As+ b+ xγ

compute x̂0 = xγ + γd
(γ)
γ

compute the minimum norm solution d
(0)
γ to (AWAT)d = As+ b+ x̂0

compute ŷ0 = WAT d
(0)
γ − s

if H(ŷ0)− F (x̂0) = 0 and ŷ0 is feasible then
stop = true

else
γ ← β · γ

endif
To compute an advantageous starting point for the subsequent Newton iteration with
γnew, we use the following linear system derived from necessary conditions (2.17):

(AWAT + γnewI)x = −γnew(As+ b),(3.7)

where s = sγ(xγ) and W = Wγ(xγ). The solution xnew of (3.7) is used as the starting
point for the Newton iteration.

We note that this procedure guarantees that, unless the duality gap is closed, γ
is decreased by a nonzero factor after each unconstrained minimization. Hence, we
have the following theorem.

Theorem 3.2. The continuation algorithm described in sections 3.1.2 and 3.2
stops at a primal-dual optimal pair (y0, x0) after a finite number of iterations.

Proof. As a result of the above observation, γ is reduced by a certain factor after
each unconstrained minimization phase unless optimality is reached. Hence, using
Theorem 2.3, γ can only be decreased a finite number of times. Since the Newton
algorithm of section 3.1.2 is finite (Theorem 3.1), the result follows.

4. Implementation and testing. The major effort in the dual algorithm of
section 3.1.2 is spent in solving systems (3.6) and (2.29). We use the AAFAC package
of [15] to perform this. The solution is obtained via an LDLT factorization of the
matrix Ck = AWsA

T + γI (where γ is zero in the case of (2.29)), so D and L
are computed directly from the γ-active columns of A, i.e., without squaring the
condition number as would be the case if Ck was first computed. The efficiency
of the Newton algorithm depends critically on the fact that the difference between
the γ-active set Aγ(xk) and Aγ(xk−1) is caused by a few elements. This implies

CONTINUATION FOR QUADRATIC PROGRAMMING 75

that the factorization of Ck can be obtained by relatively few up- and downdates of
the factorization of Ck−1. Therefore, the computational cost of a typical iteration
step is O(m2). Occasionally, a refactorization is performed. This consists of the
successive updating of LDLT ← LDLT + aja

T
j for all j in the γ-active set (starting

with L = I,D = γI). It is considered only when some columns of A leave the active
set, i.e., when downdating is involved. If many columns leave, we may refactorize
because it is cheaper. This part of the algorithm combines ideas from [3, 4]. For
details see section 2 in [15]. The refactorization is an O(m3) process.

When a minimizer xγ is at hand, a refactorization is needed to compute the
minimum-norm solutions in system (2.29).

The stopping criteria in the Newton algorithm are implemented as follows. The
iterate x+ h is considered to be in Cγs if

[for all i ∈ Aγ(x) : |ri + (ATh)i| ≤ γ + τ] and

[for all i /∈ Aγ(x) : sγi · (ri + (ATh)i) > γ − τ].

Here, τ ≈ O(εM‖A‖∞‖x‖∞) is used to take into account effects of rounding errors; εM
denotes unit roundoff of the computer. We refer to the subroutine that implements
the algorithm as QPASL1. With the exception of some internal tolerance parameters
(e.g., tolerances used for numerical checks for zero) QPASL1 does not allow any control
over the execution of the algorithm. Hence, all the results reported in this study were
obtained under identical algorithmic choices. Further implementation details are given
in [16].

4.1. Test problems. We generate test problems using ideas described in [1, 6,
14].

A symmetric positive definite matrix Q is generated as Q = MTM , where M =
D1/2Y and Y = I − (2/‖y‖2)yyT for some vector y ∈ <m randomly generated in the
interval (−1, 1). The matrix D is diagonal with components di:

log di =
(i− 1)

(n− 1)
ncond for i = 1, . . . ,m.

It is easy to verify that ncond specifies the condition number of the matrix Q. The
matrix A is obtained as the Cholesky factor of Q. This implies that A is triangular,
and it is easy to recover the dual optimal solution from the generated “residual” vector
r using (2.3).

The components of vectors y and r are generated simultaneously in accordance
with a randomly generated sign vector s as follows.

for i = 1 : m do
Generate µ uniformly in (−1, 1)
if |m · µ| < nb then

si = (−1)i−1

Generate ν uniformly in (0, 1)
ri = si10−ν·ndeg

else
yi = µ
ri = 0
si = 0

endif
end

76 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

To introduce near-degeneracy, we use the following identity to define ri if si = 1
or −1:

ri = si10−ν·ndeg.

Near-degeneracy is turned off by choosing ndeg = 1. Furthermore, the parameter nb
in the above procedure is chosen as a fraction of m. Knowing r, x is computed from
definition (2.3) by solving the linear system

ATx = r.

Finally, using the necessary condition for a minimizer (2.17) of Fγ we obtain b from
the identity:

b = Ay − x.
4.2. Competing algorithms. The main competitors of the proposed algorithm

are active set methods and interior point methods.
Active set methods choose a subset of the set of variables to be fixed at their

lower and upper bounds. The resulting quadratic problem is solved over the free
variables. The algorithm generates a descent direction keeping the variables in the
active set fixed at their bounds, and performs a line search restricted by the largest
step that can be used before one of the free variables reaches a bound. This scheme
is repeated until a unit step length is found. At the end of this phase the Karush–
Kuhn–Tucker optimality conditions are checked at the candidate point. If there is a
variable which fails to satisfy the optimality conditions, it is removed from the active
set. The algorithm repeats by solving a new quadratic problem over the updated
set of free variables. The software system LSSOL contains a numerically stable and
efficient implementation of the active set algorithm [5].

In [14], Moré and Toraldo propose a modification of the active set algorithm. The
modification consists of taking projected gradient steps starting from a point obtained
from solving the quadratic problem over the free variables as described above. This
way, the proposed algorithm is able to make bigger changes to the active set than the
original active set algorithm which makes a single change at a time. Unfortunately,
an implementation of this algorithm was not available for comparison.

Our algorithm makes significant changes to the active set at each iteration and
also when γ is reduced. In this regard, it is closer to the Moré–Toraldo algorithm
than the pure active set strategy.

In [6], Han, Pardalos, and Ye develop a primal-dual potential reduction algorithm
for bound constrained quadratic programming problems. The main computational
effort in their algorithm is the solution of a linear system of the form

(I +RTD−1R)p = g,

where R is an m×n matrix, D is a diagonal n×n positive definite matrix, and p and
g are m-vectors. As this algorithm was simple to program, we developed an efficient
implementation making extensive use of BLAS routines for comparison to QPASL1.
We refer to this code as HPY.

In [1], Coleman and Hulbert propose a superlinearly convergent Newton algorithm
for bound constrained quadratic programs with unit bounds. The main effort in this
algorithm is also the solution of a linear system

(|Y |+R1/2HR1/2)v = g,

CONTINUATION FOR QUADRATIC PROGRAMMING 77

where Y is a diagonal matrix with nonzero entries, R is a nonsingular matrix, and
H is the matrix of the quadratic term in [BCQP]. Clearly, both linear systems have
a structure similar to (3.6). The algorithm by Coleman and Hulbert also uses a one-
dimensional search which is similar to that described in section 3.1.2. However, in the
algorithms of [6] and [1] a numerical refactorization needs to be performed at each
iteration, whereas we only perform a refactorization when it is cheaper or numerically
advisable to so. Hence, our average iteration is cheaper than any iteration of these
algorithms. An implementation of the Coleman–Hulbert algorithm is not available
for comparison. However, a close inspection of the results of [1] reveals that our
algorithm uses consistently much smaller numbers of iterations to solve test problems
with similar characteristics. To give an example, the Coleman–Hulbert algorithm
requires between 10.8 and 17.0 iterations (varying lcnd and ndeg) on the average for
m = 100, whereas our algorithm only requires between 3.8 and 9.6 for the same size
for a similar degree of accuracy.

4.3. Initialization. We tested both QPASL1 and LSSOL with different starting
points based on the recommendation of an anonymous referee. For LSSOL, we use
the following starting points: (1) we choose a starting point y0 as y0

j = 0 for all

j = 1, . . . ,m; (2) we compute ȳ = Q−1d and select the initial point as

yi =

 −1 if ȳi ≤ −1,
1 if ȳi ≥ +1,
ȳi otherwise.

For QPASL1 we also use two different starting points. The first starting point is
computed as follows. We fix a value of γ and use the following procedure, based on
treating the objective function as

1

2γ
rT (x)r(x) + bTx+

1

2
xTx+

1

2
bT b.

The necessary condition for a minimizer is

(AAT + γI)x = −γb.

We compute a solution x to the above linear system and use x0 = x. This is referred
to as the least squares starting point. The second starting point is inspired by the
second starting point used for LSSOL. We fix a value of γ and compute ȳ = Q−1d.
Then we set

si =

 −1 if ȳi ≤ −1,
1 if ȳi ≥ +1,
0 otherwise.

We compute x0 as the solution to the system

(AWAT + γI)x = −γ(As+ b),

where W is the diagonal matrix associated with s.

For HPY we use the initial point suggested in [6].

78 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

4.4. Numerical results. In this section we report our numerical experience
with a Fortran 77 implementation of the new algorithm, which does not exploit spar-
sity. We have three goals when we perform numerical experiments. The first is to
examine the growth in solution time and iteration count of the new algorithm as
the problem size is increased. The second is to test the numerical accuracy of the
algorithm. The third is to estimate the relative standing of the algorithm vis-á-vis
other software systems. We compare our results to a library routine, E04NCF, from
the NAG subroutine library. E04NCF is based on LSSOL from the Stanford Systems
Optimization Library. We also offer comparisons with our own implementation of the
interior point algorithm of Han, Pardalos, and Ye [6].

Below we report the results of the following experiments:
1. The effect of near-degeneracy.
2. The effect of the condition number.
3. The effect of the number of variables at their bounds at the optimal solution.
4. The impact of the problem size.

We solve 10 problems of each size. The parameter nb is kept at the value m/2 unless
otherwise indicated. The tests were performed on a SPARC 4 Workstation running
Solaris with the -O switch of the F77 compiler. In all tables below, each line reports
the average over 10 problems of the following QPASL1 statistics: number of iterations,
run time in CPU seconds, number of refactorizations, and number of γ reductions.
The column “it” refers to the total number of iterations of the Newton method and
the total number of optimality checks during the execution of the algorithm. The
column “rf” refers to the total number of refactorizations in connection with the
computations of the factors L and D. The column “rd” refers to the total number
of times the optimality check was performed and/or γ was reduced. The heading
QPASL1(2) refers to the second starting point for QPASL1, whereas QPASL1(1)
refers to the least squares starting point. Similarly, LSSOL(2) indicates the second
initial point, while LSSOL(1) refers to the use of the origin as the initial point. The
columns under the heading LSSOL contain the run time statistics of LSSOL averaged
over 10 problems for each line. All runs with QPASL1, LSSOL, and HPY were
performed using default parameters, i.e., no fine tuning of the codes was done for any
test problem.

QPASL1 is stopped when the relative duality gap

(H(ŷ0)− F (x̂0))/(1 + F (x̂0))

is less than or equal to 10−8 and the primal feasibility measure ‖ŷ0‖∞ is less than or
equal to 1 + εy with εy = 10−5. The final accuracy obtained in QPASL1 is measured
using the accuracy in the objective function and the primal solution with respect to
the known optimal value and optimal solution vector. The accuracy in the optimal
value is checked using

q1 =
H(y0)−H(ŷ0)

H(y0)
,

where H(y0) is the known optimal value, and the accuracy in the solution is checked
using

q2 = ‖y0 − ŷ0‖2/‖y0‖2,
where y0 and ŷ0 denote the known and computed optimal values, respectively. In all
test problems solved in this study, we have

10−16 ≤ q1 ≤ 10−12.

CONTINUATION FOR QUADRATIC PROGRAMMING 79

Depending on the conditioning of the problem, we also obtain

10−12 ≤ q2 ≤ 10−9.

This indicates that we achieve high accuracy in the computed optimal solution. Re-
garding other parameters, we use γ0 = 10−3 as the starting value of γ, and β = 1/100.

LSSOL yields objective function values accurate to machine precision in all cases.
For HPY, the quantities q1 and q2 vary as follows:

10−9 ≤ q1 ≤ 10−8,

10−8 ≤ q2 ≤ 10−5.

4.4.1. Experiment 1: The effect of near-degeneracy. In Table 4.1 we
give computational results obtained when the near-degeneracy parameter ndeg is
increased.

We make the following observations.
• QPASL1 is competitive with LSSOL for small values (1,3) of the parameter
ndeg, whereas for larger values it loses its advantage. It is also substantially
faster than HPY.
• The iteration number of QPASL1 remains very small and almost constant

with the increasing problem size for small values of ndeg.
• The parameter ndeg has almost no effect on the performance of LSSOL.
• The two starting points for QPASL1 tend to perform similarly when near-

degeneracy is increased.
The reason for the deterioration in performance of QPASL1 for larger values of ndeg
is precisely related to Corollary 2.1. It is shown in this corollary that the value of

Table 4.1
Solution statistics of QPASL1 and LSSOL when near-degeneracy is increased.

m, lcnd, ndeg QPASL1(2) QPASL1(1)

it rf rd CPU it rf rd CPU
100, 1, 1 3.8 2 1 0.4 4.1 3 1 0.6
100, 1, 3 5.2 2.1 1.1 0.5 5.9 3.1 1.1 0.7
100, 1, 6 9.6 3.1 2.1 1.1 10.3 3.4 2.1 1.3
200, 1, 1 4.2 2 1 2.3 5.1 3 1 4.0
200, 1, 3 5.1 2.1 1.1 3.0 6 3.1 1.1 4.8
200, 1, 6 9.5 3.1 2.1 6.9 10.2 3.3 2.1 8.6
300, 1, 1 4 2 1 6.8 3.8 3 1 13.1
300, 1, 3 4.8 2.2 1.2 8.7 5.6 3.2 1.2 15.2
300, 1, 6 9.3 3.3 2.3 22.1 10.9 3.8 2.3 27.5

m, lcnd, ndeg LSSOL(2) LSSOL(1) HPY

it CPU it CPU it CPU
100, 1, 1 14.5 0.5 50 0.9 18 2.6
100, 1, 3 21.6 0.6 50 0.9 16.9 2.3
100, 1, 6 23.5 0.6 45.7 0.8 14.9 2.0
200, 1, 1 27.8 3.8 100.6 6.0 16 15.9
200, 1, 3 39.9 4.1 100.6 6.0 16.2 15.6
200, 1, 6 46.4 4.4 91.7 5.6 17.5 16.7
300, 1, 1 16 10.1 152.4 19.7 16.8 51.5
300, 1, 3 34.6 10.9 152.4 19.5 18.6 56.9
300, 1, 6 44.5 11.7 140.2 18.7 18.2 55.5

80 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

Table 4.2
Solution statistics of QPASL1 and LSSOL when the condition number is increased.

m, lcnd, ndeg QPASL1(2) QPASL1(1)

it rf rd CPU it rf rd CPU
100, 4, 1 3.8 2 1 0.4 3.9 3.1 1 0.6
100, 8, 1 3.8 2 1 0.4 4.1 3.1 1 0.6
200, 4, 1 4 2 1 2.2 5.2 3 1 4.0
200, 8, 1 8.5 2.2 1 2.9 5.5 3 1 4.0
300, 4, 1 3.9 2 1 6.8 3.8 3 1 12.3
300, 8, 1 3.9 2 1 6.9 4.1 3 1 12.4

m, lcnd, ndeg LSSOL(2) LSSOL(1) HPY

it CPU it CPU it CPU
100, 4, 1 12.8 0.5 50 0.9 14.6 1.9
100, 8, 1 13.9 0.5 49.7 0.8 17.2 2.3
200, 4, 1 32.2 3.9 100.6 5.9 14.9 14.2
200, 8, 1 29.2 3.8 100.2 5.8 17.3 16.6
300, 4, 1 18 10.2 152.6 19.1 17.3 52.9
300, 8, 1 32.4 11.4 152.4 19.1 17 51.9

γ∗ is affected by the magnitude of nonzero residuals r(x0) at the optimal solution
x0. The smaller the residuals, the more γ should be reduced in order to reach the
optimal solution. This increases the number of reduction steps and the total number
of iterations, thereby causing a degradation in performance.

4.4.2. Experiment 2: The effect of the condition number. In Table 4.2
we summarize the average performance of the three codes when the conditioning
parameter lcond is increased.

It is observed that all three codes handle problems with increasing condition
number equally well.

4.4.3. Experiment 3: The effect of the number of variables at bounds.
The number of variables at a bound at an optimal solution can be controlled by
varying the parameter nb. We do so in this experiment and report the results in
Table 4.3.

We notice that the performance of LSSOL improves significantly when nb becomes
smaller than m/2 and worsens when it exceeds that value. This improvement is more
marked when the zero starting point is used. A similar improvement occurs with
HPY, whereas the opposite is true of QPASL1.

4.4.4. Experiment 4: The effect of the problem size. To illustrate the
effect of increasing problem size on the performance of the three codes, we provide
some results in Table 4.4.

We notice that LSSOL consumes about 1.5 times more CPU time than QPASL1
as we increase the problem size, while HPY uses approximately 10 times more CPU
compared to QPASL1.

5. Summary and concluding remarks. In this paper, we presented a dual
approach to strictly convex quadratic programming with unit bounds.

Our dual approach consisted of posing the problem [BCQP] as an unconstrained `1
minimization problem and approximating this nondifferentiable problem by a smooth
Huber problem. The minimizers of the smooth problem define a unique path that
converges to the primal-dual optimal solutions as a function of a scalar parameter

CONTINUATION FOR QUADRATIC PROGRAMMING 81

Table 4.3
Solution statistics of QPASL1 and LSSOL when nb is varied.

m, lcnd, ndeg, nb QPASL1(2) QPASL1(1)

it rf rd CPU it rf rd CPU
100, 1, 1,m/2 3.8 2 1 0.4 4.1 3 1 0.6
100, 1, 1,m/10 3.7 2 1 0.5 4.2 2 1 0.5
100, 1, 1, 3m/4 5 3.1 1 0.4 3.5 3 1 0.5
200, 1, 1,m/2 4.2 2 1 2.3 5.1 3 1 4.0
200, 1, 1,m/10 4.1 2 1 3.6 6 4.6 2 4.0
200, 1, 1, 3m/4 8.1 3 1 2.8 4.5 3 1 3.1
300, 1, 1,m/2 4 2 1 6.8 3.8 3 1 13.1
300, 1, 1,m/10 3.9 2 1 11.4 4.2 2 1 12.7
300, 1, 1, 3m/4 9.3 3 1 8.8 3.9 3 1 10.0

m, lcnd, ndeg, nb LSSOL(2) LSSOL(1) HPY

it CPU it CPU it CPU
100, 1, 1,m/2 14.5 0.5 50 0.9 18 2.6
100, 1, 1,m/10 13 0.3 10.6 0.21 13.6 1.9
100, 1, 1, 3m/4 14.4 0.4 76.1 1.1 15.6 2.1
200, 1, 1,m/2 27.8 3.8 100.6 6.0 16 15.9
200, 1, 1,m/10 17.2 1.9 19.4 1.4 14.4 14.0
200, 1, 1, 3m/4 28.5 3.0 150.4 7.5 16 15.3
300, 1, 1,m/2 16 10.1 152.4 19.7 16.8 51.5
300, 1, 1,m/10 26.1 6.19 30 4.5 15.5 47.7
300, 1, 1, 3m/4 25.3 9.1 223.3 24.0 16 49.9

Table 4.4
Solution statistics of QPASL1 and LSSOL when the problem size is increased.

m, lcnd, ndeg QPASL1(2) QPASL1(1)

it rf rd CPU it rf rd CPU
100, 1, 1 3.8 2 1 0.4 4.1 3 1 0.6
200, 1, 1 4.2 2 1.0 2.3 5.1 3 1 4
300, 1, 1 4 2 1 6.8 3.8 3 1 13.1
400, 1, 1 4.2 2 1 16.0 4.9 3.1 1 29.7
500, 1, 1 4.3 2 1 30.4 5.3 3.1 1 58.7

m, lcnd, ndeg LSSOL(2) LSSOL(1) HPY

it CPU it CPU it CPU
100, 1, 1 14.5 0.5 50 0.9 18 2.6
200, 1, 1 27.8 3.8 100.6 6.0 16 15.9
300, 1, 1 16 10.1 152.4 19.7 16.8 51.5
400, 1, 1 30.8 25.4 203.7 45.1 18.8 139.4
500, 1, 1 40.8 48.1 253 85.9 20.2 288.4

γ. This suggested a continuation algorithm, where we follow this path to arrive at
primal-dual optimal solutions.

On the theoretical front, we established an extrapolation property of the solution
path and a constant sign property (for sufficiently small γ), which formed the pillar
of finite convergence of the continuation algorithm. We also gave a finite Newton
algorithm to solve the Huber problems.

On the practical front, we developed a stable and efficient implementation of
the algorithm for dense problems. We compared our results to an established soft-
ware system for quadratic programming, LSSOL, and to more recent algorithms for
[BCQP]. The following picture emerged from our experiments. The new algorithm is
competitive with a state-of-the-art implementation of active set methods for problems

82 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

with low degree of near-degeneracy. It also handles problems with increasing condi-
tion number very well. It is also substantially faster than an interior point algorithm
proposed for [BCQP].

Finally we remark that the duality framework of section 2 can be easily extended
to problems where bounds are different from unity and/or where one of the bounds
is missing; see [2]. Nonunit bounds simply change the slope of the nondifferentiable
function arising in the dual problem. By way of illustration, consider the following
case:

min
y

H(y) = −dT y + 1
2y
TQy

subject to l ≤ y.

The nondifferentiable dual problem corresponding to the program above is

minimize F (x) ≡
m∑
i=1

ρi(ri(x)) +
1

2
xTx+ bTx+

1

2
bT b,

where

ρi(ri) =

{
liri if ri ≥ 0
∞ otherwise,

and the vectors r and b are defined as in section 2. The nondifferentiable function ρ
can be approximated by the following smooth Huber function

ψγ(ri) =

{
liri − 1

2γ if ri ≥ γ,
1

2γ r
2
i if ri < γ,

for some scalar parameter γ > 0. The properties and the algorithm derived in this
paper apply to the above approximation as well.

Acknowledgments. The helpful comments and suggestions of two anonymous
referees are gratefully acknowledged.

REFERENCES

[1] T. Coleman and L. Hulbert, A globally and superlinearly convergent algorithm for quadratic
programming with simple bounds, SIAM J. Optim., 3 (1993), pp. 298–321.

[2] O. Edlund, Private communication, Lule̊a University of Technology, Lule̊a, Sweden, 1997.
[3] R. Fletcher and M. J. D. Powell, On the modification of LDLT factorizations, Math.

Comp., 28 (1974), pp. 1067–1087.
[4] W. M. Gentleman, Least squares computation by Givens transformations without square roots,

J. Inst. Math. Appl., 12 (1973), pp. 329–336.
[5] P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H. Wright, User’s

Guide for LSSOL (Version 1.0): A Fortran Package for Constrained Linear Least Squares
and Convex Quadratic Programming, Technical Report SOL 86-1, Systems Optimization
Laboratory, Department of Operations Research, Stanford University, Stanford, CA, 1986.

[6] C.-G. Han, P. Pardalos, and Y. Ye, Computational aspects of an interior point algorithm
for quadratic programming problems with box constraints, in Large-Scale Numerical Opti-
mization, T. F. Coleman and Y. Li, eds., SIAM, Philadelphia, PA, 1990, pp. 92–112.

[7] P. Huber, Robust Statistics, John Wiley, New York, 1981.
[8] W. Li and J. Swetits, A Newton method for convex regression, data smoothing, and quadratic

programming with bounded constraints, SIAM J. Optim., 3 (1993), pp. 466–488.
[9] W. Li and J. Swetits, A new algorithm for solving strictly convex quadratic programs, SIAM

J. Optim., 7 (1997), pp. 595–619.

CONTINUATION FOR QUADRATIC PROGRAMMING 83

[10] K. Madsen and H. B. Nielsen, Finite algorithms for robust linear regression, BIT, 30 (1990),
pp. 682–699.

[11] K. Madsen, H. B. Nielsen, and M.Ç. Pınar, A new finite continuation algorithm for linear
programming, SIAM J. Optim., 6 (1996), pp. 600–616.

[12] O. L. Mangasarian, Normal solution of linear programs, Math. Programming Stud., 22 (1984),
pp. 206–216.

[13] O. L. Mangasarian and R. R. Meyer, Nonlinear perturbation of linear programs, SIAM J.
Control Optim., 17 (1979), pp. 745–752.

[14] J. Moré and G. Toraldo, Algorithms for bound constrained quadratic programming problems,
Numer. Math., 55 (1989), pp. 377–400.

[15] H. B. Nielsen, AAFAC: A Package of Fortran 77 Subprograms for Solving ATAx = c, Re-
port NI-90-11, Institute of Mathematical Modelling, Numerical Analysis Group, Technical
University of Denmark, DK-2800 Lyngby, Denmark, 1990.

[16] H. B. Nielsen, Implementation of a Finite Algorithm for Linear `1 Estimation, Report NI-91-
01, Institute of Mathematical Modelling, Numerical Analysis Group, Technical University
of Denmark, DK-2800 Lyngby, Denmark, 1991.

ILL-CONDITIONING AND COMPUTATIONAL ERROR
IN INTERIOR METHODS FOR NONLINEAR PROGRAMMING∗

MARGARET H. WRIGHT†

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 84–111

Abstract. Ill-conditioning has long been regarded as a plague on interior methods, but its
damaging effects have rarely been documented. In fact, implementors of interior methods who
ignore warnings about the dire consequences of ill-conditioning usually manage to compute accurate
solutions. We offer some insight into this seeming contradiction by analyzing ill-conditioning within
a primal-dual method in which the full, usually well-conditioned primal-dual matrix is transformed
to a “condensed,” inherently ill-conditioned matrix Mpd. We show that ill-conditioning in the exact
condensed matrix closely resembles that known for the primal barrier Hessian, and then examine the
influence of cancellation in the computed constraints.

Using the structure of Mpd, various bounds are obtained on the absolute accuracy of the com-
puted primal-dual steps. Without cancellation, the portion of the computed x step in the small
space of Mpd (a subspace close to the null space of the Jacobian of the active constraints) has an
absolute error bound comparable to machine precision, and its large-space component has a much
smaller error bound. With cancellation (the usual case), the absolute error bounds for both the small-
and large-space components of the computed x step are comparable to machine precision. In either
case, the absolute error bound for the computed multiplier steps associated with active constraints
is comparable to machine precision; the computed multiplier steps for inactive constraints, although
converging to zero, retain (approximately) full relative precision.

Because of errors in forming the right-hand side, the absolute error in the computed solution of
the full, well-conditioned primal-dual system is shown to be comparable to machine precision. Thus,
under quite general conditions, ill-conditioning in Mpd does not noticeably impair the accuracy of
the computed primal-dual steps. (A similar analysis applies to search directions obtained by direct
solution of the primal Newton equations.)

Key words. interior method, primal-dual method, barrier method, constrained optimization

AMS subject classifications. 65K05, 90C30

PII. S1052623497322279

1. Introduction. The perplexing issue of extreme but mystifyingly harmless
ill-conditioning has haunted interior methods for more than 25 years. It is widely
known that the Hessian matrices in the original interior method—the logarithmic
barrier method developed, analyzed, and popularized by Fiacco and McCormick in
the late 1960s [10]—suffer from structural ill-conditioning that worsens as the solu-
tion is approached; see, for example, [23, 25, 34]. Several authors have described
how to compute accurate search directions via alternative formulations that finesse
the ill-conditioning; see, for example, [20, 34]. Yet practitioners who apply standard
linear-equation solvers directly to the ill-conditioned system have consistently experi-
enced very few harmful effects. In fact, given the ill-conditioning of the matrices, the
computed solutions in interior methods are almost always much more accurate than
they should be (see, for example, [33, 27]).

Previous publications about this seeming anomaly include work by several au-
thors showing that fully accurate solutions can be obtained when specific direct
methods, such as the Cholesky or symmetric indefinite factorizations, are applied
to certain matrices from interior methods. In particular, ill-conditioned systems from
linear programming and linear complementarity problems are analyzed in detail in

∗Received by the editors May 1, 1997; accepted for publication (in revised form) April 14, 1998;
published electronically October 30, 1998.

http://www.siam.org/journals/siopt/9-1/32227.html
†Bell Laboratories, Murray Hill, NJ 07974 (mhw@research.bell-labs.com).

84

ILL-CONDITIONING IN INTERIOR METHODS 85

[37, 38, 39], including the significance of rounding errors; and symmetrized full primal-
dual systems for nonlinear problems are considered in [14, 12]. In contrast with ear-
lier research, this paper looks at the generic process of forming the ill-conditioned
“condensed” primal-dual system and solving it using any backward-stable numerical
method. An element in our analysis is the effect of cancellation error in the active
constraints. (The same approach applies in an obvious way to the primal barrier
Hessian.) Selected subsequent related work is briefly summarized in section 8.

1.1. The role of ill-conditioning. When solving Mx = b with a nonsingular
but ill-conditioned matrix M , the relative sensitivity of the solution is bounded by—
in the worst case, equal to—the condition number of M multiplied by the relative
perturbations in b or M . In certain situations, however, special properties of M or
b ensure much more favorable bounds. Definitions of alternative condition numbers
have been discussed in the literature for many years; see [30, 31]. In [5], “effectively
well conditioned” linear systems are defined in which properties of the right-hand side
are central; also see [7, 1].

Let M = UΣV T be the singular value decomposition (SVD) of an n × n non-
singular matrix M , where U and V are orthogonal and Σ is a nonnegative diagonal
matrix. Our interest is in the case when the singular values of M fall into exactly two
groups with the property that the two submatrices of Σ are separately much better
conditioned than M itself. This special structure is not contrived: it is precisely that
of the primal barrier Hessian (see [34]) and the condensed matrix defined in section
3. The consequences of this structure are explored in sections 2.2–2.4.

1.2. Notation. Unless otherwise indicated, all norms are two-norms; the sin-
gular values {σi} of a matrix are ordered so that σi ≥ σi+1, and similarly for the
eigenvalues. We use the following notation; see [26].

Definition 1.1. (Order notation.) Let φ be a scalar, vector, or matrix function
of a positive variable h, let p be fixed, and let κu and κl denote constants.

• If there exists κu > 0 such that ‖φ‖ ≤ κuh
p for all sufficiently small h, we

write φ = O(hp).

• If there exists κl > 0 such that ‖φ‖ ≥ κlh
p for all sufficiently small h, we

write φ = Ω(hp).

• If there exist κl > 0 and κu > 0 such that κlh
p ≤ ‖φ‖ ≤ κuh

p for all
sufficiently small h, we write φ = Θ(hp).

2. Solving an ill-conditioned linear system.

2.1. Background. The effects of changes in b and M on the exact solution of
Mx = b are well known (see, for example, [18, 22]). Let x̃ denote the exact solution
of Mx̃ = b+ ∆b, and let ∆x = x̃− x. Then

‖∆x‖ ≤ ‖M−1‖ ‖∆b‖ and
‖∆x‖
‖x‖ ≤ cond(M)

‖∆b‖
‖b‖ ,(2.1)

where cond(M) = ‖M‖ ‖M−1‖. Equality is achieved in the first inequality of (2.1)
when ‖M−1

∆b‖ = ‖M−1‖ ‖∆b‖; equality holds in the second when ∆b satisfies this
same condition and ‖M−1b‖ = ‖b‖/‖M‖.

When the matrix changes by ∆M , the exact solution x̃ of the perturbed system
satisfies

(M + ∆M)x̃ = Mx = b, or x̃− x = −(M + ∆M)−1
∆Mx̃.(2.2)

86 MARGARET H. WRIGHT

If we ignore second-order terms (which is acceptable as long as cond(M) ≈ cond(M +
∆M)), an approximation to (2.2) is satisfied by ∆x ≈ x̃− x:

M ∆x = −∆M x or ∆x = −M−1
∆M x,(2.3)

which gives the bounds

‖∆x‖ ≤ ‖M−1‖ ‖∆M‖ ‖x‖ and
‖∆x‖
‖x‖ ≤ cond(M)

‖∆M‖
‖M‖ .(2.4)

Equality can hold in these relations for any vector b in (2.2) (see [32] and [22, p. 133]).
Since the normwise bounds (2.1) and (2.4) can be achieved, when M is ill-

conditioned we tend to expect substantial relative inaccuracy in the computed so-
lution, i.e., a “large” value of ‖∆x‖/‖x‖. In section 2.2, however, we show that more
favorable bounds apply to the accuracy of certain parts of the solution when M has
a particular structure.

In some circumstances it is convenient to work with perturbations only in the
matrix rather than in the right-hand side. The following lemma, based on Theorem
III.2.16 of [31], characterizes the effect of folding a perturbation from the right-hand
side into the matrix.

Lemma 2.1. Let x be the solution of Mx = b and x̃ be the solution of Mx̃ = b̃,
where b and b̃ are nonzero and M is nonsingular. Then x̃ is also the solution of
(M +E)x̃ = b, where E is the rank-one matrix (b− b̃)x̃T /‖x̃‖2. For this choice of E,

‖E‖
‖M‖ ≤

‖b̃− b‖
‖b̃‖ .(2.5)

Beginning with section 3, our interest will be entirely in symmetric systems. The
following theorem, a simplified version of Theorem 3 of [2], shows that, when M is
symmetric, we are allowed to consider only symmetric perturbations.

Theorem 2.1. Suppose that M is symmetric and nonsingular and that the
nonzero vector z satisfies (M+E)z = b for some matrix E. Then there is a symmetric
perturbation F satisfying ‖F‖ = ‖E‖ such that (M + F)z = b.

With the most widely used numerical methods, the computed solution of a linear
system is typically the exact solution of a nearby problem; see, e.g., [18, 22]. In
particular, when solving the symmetric system Mx = b in finite precision with any
backward-stable method, the computed solution x

∼
is the exact solution of a nearby

system involving a perturbed symmetric matrix M
∼

:

M
∼
x
∼

= b, where M
∼

= M + ∆sM and ∆sM = (∆sM)T .(2.6)

The subscript “s” indicates that the perturbation arises entirely from numerical so-
lution; symmetry can be assumed because of Theorem 2.1. For the most common
backward-stable methods performed on a machine with unit roundoff u (see (4.1)),
the perturbation ∆sM satisfies

‖∆sM‖ ≤ uγn‖M‖,(2.7)

where γn is a function involving a low-order polynomial in n and characteristics of M
(such as the growth factor).

Characterizations of γn are known under various conditions for (i) the Cholesky
factorization when M is sufficiently positive definite (see, e.g., [21]); (ii) the symmetric

ILL-CONDITIONING IN INTERIOR METHODS 87

indefinite factorization with partial pivoting (see [22]); (iii) Gaussian elimination with
partial pivoting (see, e.g., [22]); (iv) the partial Cholesky factorization of [13]; and
(v) the modified Cholesky factorizations of [16] and [28] (see [6]). In the absence of
pathologies such as extreme growth, γn is of “reasonable” size for all these methods
in the sense that uγn � 1.

2.2. Structured ill-conditioning. We now consider the effects of perturba-
tions when M is nonsingular and ill-conditioned, but its singular values split into two
well-behaved subgroups, as follows:

M = UΣV T =
(
UL US

) (ΣL 0

0 ΣS

) (
V TL
V TS

)
,(2.8)

where U and V are orthogonal and Σ is a positive diagonal matrix with diagonal
elements in decreasing order. (The subscripts “L” and “S” should be interpreted as
signifying “large” and “small”.)

Let m̂ denote the dimension of ΣL; we assume that n > 1, 0 < m̂ < n, and
σm̂ > σm̂+1. By definition of the two-norm,

‖M‖ = ‖ΣL‖ and ‖M−1‖ = ‖Σ−1
S ‖, so that cond(M) = ‖ΣL‖ ‖Σ−1

S ‖.

The results to be derived are of interest when ΣL and ΣS are individually much better
conditioned than M itself, i.e.,

σ1

σm̂
� σ1

σn
and

σm̂+1

σn
� σ1

σn
.(2.9)

Note that this property does not imply a large gap between σm̂ and σm̂+1, nor that
the diagonal elements are comparable within each of ΣL and ΣS. For example, (2.9)
is satisfied for n = 4 by the singular values 1, 10−4, 10−5, and 10−10 with m̂ = 1, 2,
or 3.

To begin our analysis, we express b in terms of UL and US, and x in terms of VL
and VS:

b = bL + bS = ULβL + USβS and x = xL + xS = VLξL + VSξS.(2.10)

At a slight risk of ambiguity, the same subscripts denote the representations of b
and x in terms of different sets of vectors; however, the right-hand side is always
associated with U and the solution with V . The large space of M means the subspace
of vectors spanned by the columns of VL or UL; the choice will always be clear from
context. Similarly, the small space of M refers to the subspace of vectors spanned by
the columns of VS or US. Either bL or βL may be called the “large-space part” of b,
and either bS or βS is the “small-space part” of b, with a similar terminology for x.

Because U and V are orthogonal, we know that

‖b‖2 = ‖bL‖2 + ‖bS‖2, ‖bL‖2 = ‖βL‖2, and ‖bS‖2 = ‖βS‖2,

with analogous relations involving x and ξ. Substituting the partitioned SVD of M
(2.8) and the representations (2.10) into the equation Mx = b, we have

Σξ =

(
ΣLξL
ΣSξS

)
=

(
βL
βS

)
= β,

88 MARGARET H. WRIGHT

giving the bounds

‖bL‖ ≤ ‖ΣL‖ ‖xL‖ and ‖bS‖ ≤ ‖ΣS‖ ‖xS‖(2.11)

as well as the relations ξL = Σ−1
L βL and ξS = Σ−1

S βS, so that

‖xL‖ ≤ ‖Σ−1
L ‖ ‖bL‖ and ‖xS‖ ≤ ‖Σ−1

S ‖ ‖bS‖.(2.12)

2.3. Perturbations in the right-hand side. First we examine the effects of
perturbing the right-hand side by ∆b, and consider ∆x satisfying M(x+∆x) = b+∆b.
Expressing ∆b and ∆x in terms of the partitioned U and V as in (2.10) gives(

∆ξL
∆ξS

)
=

(
Σ−1
L ∆βL

Σ−1
S ∆βS

)
,

so that

‖∆xL‖ ≤ ‖Σ−1
L ‖ ‖∆bL‖ and ‖∆xS‖ ≤ ‖Σ−1

S ‖ ‖∆bS‖.(2.13)

Assuming that bL 6= 0 and bS 6= 0, these relations can be combined with the bounds
on ‖bL‖ and ‖bS‖ from (2.11) to produce two distinct bounds for the relative pertur-
bations in xL and xS, both involving factors substantially less than cond(M):

‖∆xL‖
‖xL‖

≤ ‖ΣL‖ ‖Σ−1
L ‖
‖∆bL‖
‖bL‖

and
‖∆xS‖
‖xS‖

≤ ‖ΣS‖ ‖Σ−1
S ‖
‖∆bS‖
‖bS‖

.

These relations are of interest because they show, in effect, that the relative pertur-
bations in the solution within the column spaces of VL and VS separate according to
the portions of b and ∆b in the column spaces of UL and US: the maximum relative
change in xL depends only on cond(ΣL) and the relative change in bL, and similarly
for xS.

In general, however, we may not know the size of the relative perturbations in
bL and bS separately; the only available bounds may be on the overall ‖∆b‖ and ‖b‖.
In this case, there is a dramatic difference in the bounds for perturbations in xL
and xS. Beginning with the first bound in (2.13) and applying the two inequalities
‖∆bL‖ ≤ ‖∆b‖ and ‖b‖ ≤ ‖ΣL‖ ‖x‖, we obtain

‖∆xL‖
‖x‖ ≤ ‖Σ−1

L ‖ ‖ΣL‖
‖∆b‖
‖b‖ .(2.14)

Thus, when ΣL is much better conditioned than M , the change in xL compared to ‖x‖
is guaranteed to be much smaller than cond(M) times the relative perturbation in b.
In contrast, since the bound in (2.13) on ‖∆xS‖ includes ‖Σ−1

S ‖, the worst-case bound
on the relative change in xS compared to ‖x‖ includes the condition of M rather than
of ΣS.

2.4. Perturbations in the matrix. When the matrix M changes, we use the
first-order approximation (2.3), ∆x = −M−1

∆M x. To analyze this relation, we
consider each column of ∆M as a linear combination of columns of U and define a
matrix B such that ∆M = UBV T , where U and V are the orthogonal matrices from
the SVD of M . Thus, ‖∆M‖ = ‖B‖ and

B = UT∆MV, with B =

(
BL

BS

)
=

(
BL1 BL2

BS1 BS2

)
.(2.15)

ILL-CONDITIONING IN INTERIOR METHODS 89

Expressing all quantities in partitioned form and writing ∆x = V ∆ξ, we have(
∆ξL
∆ξS

)
= −

(
Σ−1
L BLξ

Σ−1
S BSξ

)
.

It follows that

‖∆xL‖ ≤ ‖Σ−1
L ‖ ‖BL‖ ‖x‖ ≤ ‖Σ−1

L ‖ ‖∆M‖ ‖x‖ and(2.16)

‖∆xS‖ ≤ ‖Σ−1
S ‖ ‖BS‖ ‖x‖ ≤ ‖Σ−1

S ‖ ‖∆M‖ ‖x‖.(2.17)

Relative perturbations in xL and xS cannot be developed without further assump-
tions about the structure of B. However, since ‖ΣL‖ = ‖M‖, (2.16) implies that

‖∆xL‖
‖x‖ ≤ ‖Σ−1

L ‖ ‖ΣL‖
‖∆M‖
‖M‖ ,

so that the change in xL relative to x can be blown up compared to the relative per-
turbation in M only by cond(ΣL) rather than cond(M). In contrast, the perturbation
in xS relative to x can in general be blown up by cond(M).

3. Linear systems in primal-dual methods. In this section we consider prop-
erties of the condensed matrices arising in primal-dual methods for constrained opti-
mization, and develop connections with the structure just described.

3.1. Inequality-constrained optimization. Consider an optimization prob-
lem with only inequality constraints:

minimize
x∈Rn

f(x) subject to cj(x) ≥ 0, j = 1, . . . ,m,(3.1)

where f and {cj} are smooth. We use the following notation: g(x) and H(x) are the
gradient and Hessian matrix of f(x); aj(x) and Hj(x) are the gradient and Hessian
of cj(x); and the m × n matrix A(x) is the Jacobian of c(x), so that its jth row is
aj(x)T . Exact second derivatives of f and {ci} are assumed to be available; note that
all Hessian matrices are symmetric.

Let x∗ denote a point where the following conditions hold:
Feasibility. c(x∗) ≥ 0.
Constraint qualification. The gradients of the constraints active (equal to zero) at

x∗ are linearly independent.
First-order Karush–Kuhn–Tucker (KKT) condition. g(x∗) = AT(x∗)λ∗ for a

Lagrange multiplier λ∗, with λ∗ ≥ 0 and λ∗jcj(x∗) = 0 for j = 1, . . . , m.

Strict complementarity. λ∗j > 0 if cj(x
∗) = 0.

Second-order KKT condition. The matrix Z∗TW∗Z∗ is positive definite, where
Z∗ is a basis for the null space of the Jacobian of the active constraints at x∗
and W∗ = H(x∗)−∑m

j=1 λ
∗
jHj(x

∗), so that W∗ is the Hessian of the Lagrangian

function f(x)− λT c(x) evaluated at (x∗, λ∗). (See (3.7).)
Under the above conditions, it is well known (see, for example, [10] and [11]) that x∗
is an isolated local constrained minimizer of problem (3.1) and that λ∗ is unique.

The logarithmic barrier function associated with the inequality-constrained prob-
lem (3.1) is

B(x, µ) = f(x)− µ
m∑
j=1

ln cj(x),(3.2)

90 MARGARET H. WRIGHT

where µ is a positive scalar called the barrier parameter. Interior methods for con-
strained optimization, many based on this barrier function, have been the subject of
intense research since their revival in 1984; see, for example, [19, 33] for a selection of
references.

Given a sequence of monotonically decreasing and sufficiently small values of µ,
our assumptions about x∗ imply that there is a sequence of isolated local uncon-
strained minimizers xµ of the barrier function (3.2) such that limµ→0 xµ = x∗ and
limµ→0 µ/cj(xµ) = λ∗j ; the points {xµ} define the barrier trajectory. For proofs and
details, see, for example, [10] and [33].

3.2. The primal and primal-dual equations. The viewpoint taken in this
paper is that the barrier parameter µ is specified at each iteration of algorithms based
on the logarithmic barrier function, and that µ can be interpreted as characterizing an
(unknown) target point on the barrier trajectory toward which we wish the current
iterate to move. Algorithm-dependent rules govern selection of the initial µ and
the decision about when to decrease µ. The strategy for obtaining a new µ is also
algorithm-dependent; for example, the old µ may be multiplied by a constant factor,
or modified using rules intended to achieve superlinear convergence (see, e.g., [9]).

To move from x to xµ, an obvious strategy is to seek a zero of the barrier gradient
∇B(x, µ) by applying Newton’s method to a local quadratic model of the barrier
function. The gradient and Hessian of B(x, µ) are given by

∇B(x, µ) = g(x)− µAT(x)C
−1(x)1;(3.3)

∇2B(x, µ) = H(x)−
m∑
j=1

µ

cj(x)
Hj(x) + µAT(x)C−2(x)A(x).(3.4)

(When v is a vector, V denotes diag(v), and 1 denotes the vector of appropriate
dimension whose components are all equal to one.) Omitting arguments, the resulting
n× n primal Newton barrier equations are

Mpp = −g + µATC
−11 ≡ bp, where Mp ≡ ∇2B(3.5)

and “primal” refers to the original problem variables x.
The primal barrier Hessian Mp has many well known properties. Of particular

interest here is its ill-conditioning at points lying on the barrier trajectory as µ→ 0,
which was observed in the late 1960s (see [23, 25]) and was one of the reasons for
the decline in use of barrier methods. More recently, a detailed analysis was given
in [34] of the structure of the primal barrier Hessian (3.4) in an entire neighborhood
of the solution. In addition to ill-conditioning of the Hessian matrix (which can be
overcome by various means), primal barrier methods suffer from other, more serious
drawbacks; see, for example, [35].

An alternative, increasingly popular, approach for locating x∗ via xµ is to use a
primal-dual method based on the properties of xµ; see, for example, [9, 4, 12, 8, 15].
In a primal-dual method, x and λ (the Lagrange multipliers, or dual variables) are
treated as independent. Once we define n + m nonlinear equations that hold along
the barrier trajectory, Newton’s method is invoked to solve for steps in x and λ.

Primal-dual equations are usually derived by interpreting xµ as a point where two
conditions hold: (i) the objective gradient g is a linear combination of the constraint
gradients {aj}, and (ii) the coefficients in the linear combination are given by λµ(x) =
µC(x)−11, and so have a special relationship to the constraint values and barrier

ILL-CONDITIONING IN INTERIOR METHODS 91

parameter. Thus the following n+m nonlinear equations are satisfied at (xµ, λµ(xµ)):

g = ATλ and ciλi = µ, i = 1, . . . ,m.(3.6)

The first equation in (3.6) is a universal ingredient in primal-dual methods. Ap-
plying Newton’s method, we obtain n equations satisfied by the primal-dual steps p
(in x) and ` (in λ):

W (λ)p−AT ` = −g +ATλ, with W (λ) ≡ H −
m∑
j=1

λjHj ,(3.7)

where vector and matrix functions are evaluated at the current x and λ. The second
relation in (3.6), called “approximate complementarity,” provides m additional equa-
tions to complete a primal-dual method. Four mathematically equivalent forms have
been suggested (see, e.g., [19]):

(i) ciλi − µ = 0; (ii) ci − µ/λi = 0; (iii) λi − µ/ci = 0; (iv) 1/µ− 1/(ciλi) = 0.

For many reasons, (i) leads to the most effective primal-dual method—in particular, it
is the only formulation among (i)–(iv) in which the condition of the primal-dual matrix
asymptotically reflects the condition of the problem; see, for example, [24, 33, 12]. The
(full) n+m primal-dual equations associated with (i) are(

W (λ) −AT
ΛA C

) (
p

`

)
=

(
−g +ATλ

µ1− Cλ

)
.(3.8)

One option for calculating the primal-dual steps (p, `) is to solve (3.8) explicitly
at every iteration. An advantage of this approach is that, as already mentioned,
the matrix in (3.8) has a bounded condition number as x and λ converge to x∗ and
λ∗. However, because the dimension of the linear system is n + m, the associated
linear algebraic work may be excessive. A more substantive difficulty is that, for
nonconvex problems, an effective primal-dual method needs to be able to move away
from nonminimizing stationary points and to determine whether the reduced Hessian
of the Lagrangian function is positive definite. No straightforward way is known to
achieve these results automatically while factorizing the unsymmetric matrix (3.8).

In [14], the effect of symmetrizing (3.8) is analyzed. Although this creates an ill-
conditioned matrix without reducing the dimensionality, the ill-conditioning is shown
to be benign when the symmetrized system is solved using a suitable symmetric
indefinite factorization, which can also detect indefiniteness in the reduced Hessian of
the Lagrangian; the primal-dual method of [12] is based on this approach.

An alternative—used in [15], for example—is to eliminate the (1, 2) block of (3.8),
leading to an n× n symmetric linear system in p alone:

Mpdp = −g + µATC
−11 ≡ bp, where Mpd ≡W (λ) +ATC

−1ΛA.(3.9)

We shall call Mpd the condensed primal-dual matrix. Observe that the right-hand
side of (3.9) is the negative barrier gradient bp, as in (3.5), and that, when λ is taken
as λµ(x) = µC−11, the condensed primal-dual “Hessian” Mpd and the primal barrier
Hessian Mp are the same matrix. (This does not imply, however, an algorithmic
equivalence between primal and primal-dual methods; see [9].)

92 MARGARET H. WRIGHT

3.3. Properties of the condensed primal-dual matrix. We wish to analyze
Mpd when it is evaluated at strictly feasible (x, λ) satisfying

‖x− x∗‖ = δ and ‖λ− λ∗‖ = O(δ),(3.10)

where δ � 1. (The value of δ will of course be unknown in a practical setting.)
Given the target value µ, a primal-dual step p will be useful only if it moves from

x toward xµ and closer to x∗. We thus further limit our analysis to points such that
x is farther from x∗ than xµ is, so that x and xµ satisfy

‖x− x∗‖ ≥ ‖xµ − x∗‖.(3.11)

(Although this condition cannot be guaranteed in practice, it should hold at later
iterates in primal-dual methods with sensible rules for adjusting µ.) Under the con-
ditions of section 3.1, ‖xµ − x∗‖ = κµµ, where κµ = Θ(1) (see, for example, [10] and
[33]). Combined with (3.11) and the definition (3.10) of δ, this property of κµ implies
that κµµ ≤ δ, i.e.,

µ = O(δ).(3.12)

It should be noted that, although the current barrier parameter µ does not affect
Mpd, it influences the right-hand side of the condensed primal-dual equations (3.9).

Let m̂ denote the number of constraints active at x∗. For any point x, Â(x)
denotes the Jacobian of the active constraints (where “active” means active at x∗),
and Ā(x) is the Jacobian of the inactive constraints. For any m-vector v, v̂ denotes the
m̂-subvector of components corresponding to active constraints, and similarly for v̄
and the inactive constraints. The analysis to be given is interesting only if 0 < m̂ < n,
which we henceforth assume. (See [34] for a discussion of m̂ = 0 and m̂ = n in the
case of the primal barrier Hessian.)

Because of smoothness, (3.10) implies boundedness of g, c, A, H, and {Hj}, as
well as O(δ) closeness to their values at x∗. Although ĉ(x) = O(δ), components of
ĉ(x) can be arbitrarily small. As we shall see, the smallest constraint value affects
Mpd, and hence we define cmin as

cmin(x) ≡ min ĉi(x).

The next two results from [31] and [34] are quoted for completeness. Lemma 3.1
is Corollary IV.4.10 of [31], and Theorem 3.1 combines Theorems 2.3 and 2.4 of [34].

Lemma 3.1. (Closeness of eigenvalues.) Let M and M
∼

be real symmetric matrices

with eigenvalues {ηi} and {η̃i}, respectively. Then max{|η̃i − ηi|} ≤ ‖M∼ −M‖.
Theorem 3.1. Let M denote a real symmetric matrix, and define the perturbed

matrix M
∼

as M +E, where E is symmetric. Consider an orthogonal matrix (X1 X2)
where X1 has ` columns, such that range(X1) is a simple invariant subspace of M ,
with(

XT
1

XT
2

)
M(X1 X2) =

(
L1 0

0 L2

)
and

(
XT

1

XT
2

)
E(X1 X2) =

(
E11 E12

ET12 E22

)
.

Let d1 = sep(L1, L2) − ‖E11‖ − ‖E22‖ and υ = ‖E12‖/d1, where sep(L1, L2) =
mini,j |eigi(L1) − eigj(L2)|, with eigk(·) denoting the kth eigenvalue of its argument.

If d1 > 0 and υ < 1
2 , then

ILL-CONDITIONING IN INTERIOR METHODS 93

(i) there are orthonormal bases X
∼

1 and X
∼

2 for simple invariant subspaces of the

perturbed matrix M
∼

satisfying ‖X1 −X∼1‖ ≤ 2υ and ‖X2 −X∼2‖ ≤ 2υ;

(ii) for i = 1, . . . , `, there is an eigenvalue ω̃ of M
∼

satisfying | ω̃ − ω̆i| ≤
3‖E12‖ υ, where {ω̆i} are the eigenvalues of XT

1M
∼
X1.

Using analysis very similar to that in [34], we now establish several mathematical
properties of Mpd when δ of (3.10) is sufficiently small.

Theorem 3.2. (Properties of Mpd.) Suppose that the condensed primal-dual
matrix Mpd of (3.9) is evaluated at (x, λ) satisfying (3.10) for sufficiently small δ.
Let {φk} denote the n eigenvalues of Mpd, ordered so that |φ1| ≥ · · · ≥ |φn|, and let

(Y Z) be an orthogonal matrix, where the columns of Z span the null space of Â(x).
Then

(i) the m̂ largest-magnitude eigenvalues of Mpd are positive, with φ1 = Θ(1/cmin)
and φm̂ = Ω(1/δ);

(ii) the n− m̂ smallest-magnitude eigenvalues of Mpd are Θ(1);
(iii) if 0 < m̂ < n, cond(Mpd) = Θ(1/cmin);

(iv) there are matrices Y
∼

and Z
∼

whose columns form orthonormal bases for sim-

ple invariant subspaces of Mpd, such that Y −Y∼ = O(δ) and Z −Z∼ = O(δ).
Proof. The form of Mpd is

Mpd = W (λ) +ATC
−1ΛA = W (λ) + ĀTC̄

−1Λ̄Ā+ Â
T
Ĉ
−1Λ̂Â,(3.13)

and we examine its three elements in turn.
The matrix W is O(1); this follows from smoothness of H and Hj , full rank of

Â(x∗), strict complementarity, and closeness of λ to λ∗. It is straightforward that

ĀTC̄
−1Λ̄Ā = O(δ),(3.14)

since Ā = O(1), each c̄i is bounded away from zero, and λ̄ is O(δ). Thus

Mpd = ÂTĈ
−1Λ̂Â+O(1).(3.15)

Since Ĉ > 0 and Λ̂ > 0, the eigenvalues {ηi} of ÂTĈ−1Λ̂Â satisfy ηi > 0 for i = 1,
. . . , m̂, and ηi = 0 for i = m̂ + 1, . . . , n. Next we consider the size of the elements
of Ĉ−1Λ̂. Because ‖x− x∗‖ = δ and λ̂ − λ̂∗ = O(δ), we know that ĉ(x) = O(δ) and

every element of λ̂ is Θ(1). Hence the smallest diagonal element in Ĉ−1Λ̂ is Ω(1/δ)
and the largest element of Ĉ−1Λ̂ is Θ(1/cmin). For sufficiently small δ, smoothness
and the constraint qualification imply that Â is Θ(1) and has rank m̂. It follows from,
for example, Theorem I.4.5 in [31] that

η1 = Θ(1/cmin) and ηm̂ = Ω(1/δ).

Result (i) follows by applying Lemma 3.1 in conjunction with these bounds and (3.15).

We now apply Theorem 3.1 with M
∼

= Mpd, M = ÂTĈ−1Λ̂Â, X1 = Z, and
X2 = Y . As shown in [34], X1 and X2 form orthonormal bases for simple invariant

subspaces of ÂTĈ−1Λ̂Â, and we have L1 = 0 and L2 = Y T Â
T
Ĉ−1Λ̂ÂY . The smallest

eigenvalue of L2 is Ω(1/δ) and the matrix E is O(1), from which it follows that the
conditions on d1 and υ of Theorem 3.1 are satisfied.

Part (ii) of Theorem 3.1 implies that n−m̂ eigenvalues of Mpd differ by O(δ) from
those of ZTMpdZ. Combining (3.13) and (3.14), we see that ZTMpdZ − ZTWZ =
O(δ). Since Z∗TW∗Z∗ is positive definite, smoothness implies that ZTWZ is positive

94 MARGARET H. WRIGHT

definite for small enough δ, and hence that all of its eigenvalues are Θ(1). Result (ii)
follows by invoking Lemma 3.1. When 0 < m̂ < n, results (i) and (ii) imply (iii).

Result (iv) is obtained by applying part (i) of Theorem 3.1.
Analogues of Theorem 3.2 hold for the condensed n × n matrices in the primal-

dual methods derived from forms (ii)–(iv) of the second relation in (3.6). For each
matrix, there are slightly different assumptions and bounds on the eigenvalues and
the closeness of the invariant subspaces, depending on δ, cmin, and µ.

3.4. Connections with section 2.

3.4.1. Special structure of Mpd. Parts (i) and (ii) of Theorem 3.2 show that
Mpd has m̂ large positive eigenvalues that are well separated from the n − m̂ small
eigenvalues, thereby implying that the largest m̂ singular values of Mpd are equal to
its m̂ large eigenvalues. In the notation of section 2,

Mpd = UΣV T =
(
UL US

) (ΣL 0

0 ΣS

) (
V TL
V TS

)
,(3.16)

where ΣL contains the m̂ large eigenvalues of Mpd, ΣS contains the absolute values
of the n− m̂ small eigenvalues of Mpd, the columns of U are the eigenvectors of Mpd,
VL = UL, and VS is equal to US, possibly with the signs of its columns changed. The
ordering of the elements of ΣS and the associated changes of sign in VS do not affect
the results here, which depend only on the condition of ΣS and the subspace spanned
by VS; hence we assume (subject to this proviso) that VS = US.

We know from part (iv) of Theorem 3.2 that, for suitably chosen Y and Z,

UL − Y = O(δ) and US − Z = O(δ).(3.17)

Although it is therefore natural (and correct) to associate the large space of Mpd with

the range space of ÂT, and the small space of Mpd with the null space of Â, we stress
that these subspaces must, strictly speaking, always be distinguished. In particular,
a nonsingular Mpd has a nontrivial small space of dimension n − m̂ that is close to

the null space of Â, but only a trivial (zero-dimensional) null space.
Much of our later analysis relies on the closeness of Y to UL and Z to US. In

particular, relation (3.17) implies that

UL = Y + ΥY O(δ) and US = Z + ΥZO(δ),(3.18)

where ΥY and ΥZ are matrices of unit norm. Consequently,

Y TUL = I +O(δ) and Y TUS = O(δ);(3.19)

ZTUS = I +O(δ) and ZTUL = O(δ).(3.20)

As indicated in the proof of Theorem 3.2, the condition of ΣL depends on cond(Â),
cond(Λ̂), and the ratio ĉmax/ĉmin, which is O(δ/cmin). The condition of ΣS ultimately
reflects the condition of Z∗TW∗Z∗.

In summary, when (3.10) holds for small enough δ, we have

‖Mpd‖ = ‖ΣL‖ = Θ(1/cmin), Σ
−1
L = O(δ),(3.21)

ΣS = Θ(1), and ‖M−1
pd ‖ = ‖Σ−1

S ‖ = Θ(1).(3.22)

ILL-CONDITIONING IN INTERIOR METHODS 95

3.4.2. Properties of perturbed matrices. The properties discussed in section
3.3 apply to the exact matrix Mpd. Assuming that δ of (3.10) is sufficiently small,

we examine circumstances in which these properties continue to hold for M
∼

pd, a
symmetric perturbation of Mpd:

M
∼

pd = Mpd +∆, where ∆ is symmetric.(3.23)

The main point of interest is how large a perturbation can be tolerated while retaining
the special structure of Mpd.

The proof of Theorem 3.2 shows that ηm̂, the smallest positive eigenvalue of
Â
T
Ĉ−1Λ̂Â, is Ω(1/δ). If the perturbation ∆ in (3.23) satisfies

‖∆‖ � ηm̂,(3.24)

then the combination of Lemma 3.1 and our analysis of the eigenvalues of Mpd shows

that the perturbed matrix M
∼

pd = Mpd +∆ continues to have m̂ large positive eigen-
values that are Ω(1/δ) and n− m̂ small eigenvalues that are O(max(1, ‖∆‖)) in mag-
nitude. It follows from result (iv) of Theorem 3.1 that, if ‖∆‖ is sufficiently small

compared to ηm̂, the perturbed matrix M
∼

pd has invariant subspaces close to the range

space of ÂT and the null space of Â.
The perturbations to Mpd that we derive later are bounded by multiples of ‖Mpd‖

rather than ηm̂, which means that we cannot use (3.24) as stated. However, result
(i) of Theorem 3.2 shows that the ratio of ‖Mpd‖ to ηm̂ is O(δ/cmin), so that the
following guideline may be applied.

Guideline 3.1. If δ/cmin is not too large, then any positive θ satisfying θ �
‖Mpd‖ also satisfies θ � ηm̂, where ηm̂ is the m̂-th eigenvalue of ÂTĈ−1Λ̂Â.

4. Forming the matrix and right-hand side. In addition to errors associated
with ill-conditioning, numerical errors incurred while forming the needed quantities in
finite precision can exert a major influence on the accuracy of various interior methods,
including the primal-dual methods considered here. In particular, [37, 38, 39] discuss
the important role of rounding errors in primal-dual methods for linear programming
and linear complementarity problems.

4.1. Cancellation in calculating the active constraints. Let u denote unit
roundoff as defined in, for example, [22, pages 42–44], and let fl(·) denote the rounded
version of its argument—which may be a scalar, vector, or matrix—in a floating-point
number system. For any real number x in the range of a floating-point number system
and any two representable numbers y and z in that system, u is the smallest positive
number such that

fl(x) = x(1 + τ), |τ | < u, and fl(y op z) = (y op z)(1 + τ), |τ | ≤ u,(4.1)

where “op” denotes one of {+,−, ∗, /}. Thus u is a bound on the relative error
occurring in representing a single number or performing one floating-point operation
on two representable numbers. With binary IEEE arithmetic, u ≈ 6×10−8 in single
precision and u ≈ 1.1×10−16 in double precision.

A common rule of thumb in computation is that floating-point quantities of in-
terest involve a relative error bounded by an order-unity multiple of u. In the primal-
dual method considered here, however, relative errors substantially exceeding unit
roundoff often occur because inaccuracy in the computed active constraints propa-
gates through their (large) reciprocals into the condensed primal-dual matrix and the

96 MARGARET H. WRIGHT

associated right-hand side. By contrast, errors in the active constraints do not have
an inordinately large effect on calculation of the search direction in other optimiza-
tion algorithms, such as sequential quadratic programming (SQP) methods (see, for
example, [11]).

By definition, the active constraints are converging to zero and will be small
during the final iterations of an interior method. Calculation of small quantities
often involves cancellation (subtraction of close numbers that have previously been
rounded), and it is well known that cancellation may produce a large relative error in
a computed quantity; see, for example, the detailed discussions in [17, pages 40–42]
and [22, pages 10–11]. Although some small quantities, such as fl(x2) for x near zero,
can be computed with high relative accuracy, in general this cannot be guaranteed.

Suppose that the active constraint ci is evaluated in finite precision at a strictly
feasible point x at which u < ci(x)� 1. If calculation of ci(x) is subject to cancella-
tion, the computed value will satisfy fl(ci(x)) = ci(x)+O(u), giving an absolute error
that is O(u) and a relative error that is O(u/ci). Note that the relative accuracy
bound worsens as ci becomes smaller, i.e., as the iterates converge to x∗. The com-
puted value of 1/ci is obtained by performing one additional floating-point operation,
so that the relative error in the computed value of 1/ci thus remains the (unfavorable)
value O(u/ci). The relative error arising from multiplication by C−1 is O(u/cmin),
where cmin is the smallest constraint value.

In typical optimization problems, the constraints are calculated by the user in
a standard way, which means that their values will almost certainly be subject to
cancellation. In some instances, however, the active constraints may be calculated to
higher precision—for example, the constraints may be nonnegativity bounds on the
variables (so that their values are exactly those of the variables), or may represent
a delicate physical process computed from a numerical simulation whose accuracy
is controllable by the user [29]. We therefore consider two cases: either the active
constraints are calculated to full precision or they are subject to cancellation. Analysis
of the no-cancellation case allows us to separate the effects of the constraints’ accuracy
from those of ill-conditioning in the condensed matrix.

The quantity ζ will be used to indicate an upper bound on the relative accuracy
of the computed constraints:

ζ = u when all constraints have full relative precision;(4.2)

ζ = u/cmin when cancellation occurs in the active constraints.

4.2. Accuracy of the matrix and right-hand side. The relative accuracy of
the active constraints affects the accuracy of the computed versions of Mpd and bp,
both of which involve division by the constraint values. The actual errors associated
with any particular computation are unknown in advance. All of our results involve
only bounds on the error.

4.2.1. The condensed primal-dual matrix. At points of interest, Mpd is

dominated by ÂTĈ−1Λ̂Â, where the (ultimately unbounded) active constraint recip-
rocals appear in the diagonal matrix Ĉ−1. To obtain an expression for the computed
version of Mpd, denoted by computed(Mpd), we work through the associated floating
point operations (see, for example, [22, pages 77–78]). The notation “computed(·)”
is meant to indicate that a sequence of floating-point operations is performed. The
result is

computed(Mpd) = (A+ ∆A)T (D + ∆D)(A+ ∆A) +W + E,(4.3)

ILL-CONDITIONING IN INTERIOR METHODS 97

where D denotes the (positive diagonal) matrix C−1Λ, |∆di| ≤ ζdi (see (4.2)), ‖∆A‖ =
uO(‖A‖), and E is symmetric, with ‖E‖ = O(u/cmin). Thus the computed Mpd is

the exact sum of ÃT D̃Ã, the exact matrix W , and an error matrix E, where Ã is
a perturbation of the exact A and D̃ is a diagonal perturbation of the exact D.
The major effects of cancellation error are represented by the appearance of ζ in the
elements of ∆D.

Separating active and inactive constraints and grouping the elements of (4.3) by
size, we have

Â
T
D̂Â = Θ(1/cmin), ÂT∆D̂Â = O(ζ/cmin), and D̂∆Â = O(u/cmin).

All other terms are O(u/cmin) or smaller, and may be subsumed in E. The result is

computed(Mpd) = Â
T
D̂Â+ ĀTD̄Ā+W + Â

T
∆D̂Â+O(u/cmin)

= Mpd + ÂT∆D̂Â+O(u/cmin).

We now analyze the size and structure of the perturbation ∆Mpd, defined as

∆Mpd ≡ computed(Mpd)−Mpd = ∆M +R, where(4.4)

∆M ≡ ÂT∆D̂Â = O(ζ/cmin) and R = O(u/cmin).

Note that we have split the full perturbation ∆Mpd into two pieces: a matrix ∆M

lying entirely in the range of ÂT and a remainder matrix R.
If the active constraints retain full accuracy, both ∆M and R are O(u/cmin), so

that

∆Mpd = O(u/cmin),(4.5)

and no general conclusions can be drawn about its structure. In this case, the per-
turbation ∆Mpd created by forming Mpd is typically much smaller than in the case
of cancellation; see the numerical examples in section 4.3.

When cancellation occurs in calculating the active constraints, so that ζ = u/cmin,
∆Mpd satisfies

∆Mpd = ÂT∆D̂Â+O(u/cmin) = ∆M +O(u/cmin) = O(u/c2min).(4.6)

Relation (4.6) reveals that cancellation has two major and related effects: ∆Mpd

has a much larger error bound than for the non-cancellation case (see (4.5)), and
furthermore is likely to be dominated by a matrix that lies entirely in the range space
of Â

T
. As we shall see in section 6, we thus have the comforting property that,

although there is a potentially large error in the computed Mpd, the nature of the
perturbation ensures that the search direction does not blow up as it would following
a general perturbation to Mpd of the same size. (See section 6.2.2 and (6.25).)

4.2.2. The right-hand side. The significance of rounding errors for the right-
hand side depends primarily on errors in the constraints, but also on the size of cmin

and closeness of x to xµ. Exactly as with the computed matrix Mpd, both the size
and the nature of the error in computed(bp) are affected when cancellation occurs
in the constraints. (We assume that errors of representation in g and A are O(u).)
Let F denote µC−1, and recall our assumption (3.12) that µ = O(δ). The vector
computed(ATF1) may be expressed as

computed(ATF1) = (A+ ∆A)T (F + ∆F)1 + ẽ, where

∆A = O(u), ∆F = O(δζ/cmin) and ẽ = O(u).

98 MARGARET H. WRIGHT

Forming computed(bp) and simplifying, we see that

computed(bp)− bp ≡ ∆bp = ∆b+ e, where

∆b ≡ ÂT∆F̂ 1 = O(µζ/cmin) and e = O(δ/ucmin).(4.7)

When the constraints are calculated with full precision, so that ζ = u, the error
in computed(bp) has no special structure and satisfies

∆bp = O(δu/cmin).(4.8)

In contrast, when c is subject to cancellation, so that ζ = u/cmin, (4.7) shows that,
when µ is not too small, the error in computed(bp) tends to be dominated by ∆b,

which lies entirely in the range of ÂT and is O(δu/c2min):

∆bp = ∆b+ e, where ∆b = O(δu/c2min).(4.9)

With or without cancellation, the relative error in computed(bp) may be large
when x is very close to xµ because of cancellation error in subtracting g and µATC−11.

4.3. Numerical examples. To illustrate the effects of forming Mpd and bp, we
examine a specific problem:

minimize 5x1x2x3 − 1
2x

2
1 + 10(x1 − 1)2 − 2x2x3 − x3 − 3

2x
2
2 − x2

3

subject to −x2
1 − x2

3 − x1 − 2x2 − x3 + 2 ≥ 0(4.10)

x1 + 3
4 ≥ 0

(x1 − x3)2 + x3
2 − 0.1x1 + 0.05x2

1 + 1.05 ≥ 0.

An optimal solution of (4.10) is x∗ = (1, −1, 1)T, where the first and third con-
straints are active, with λ∗ = (2, 0, 10

3)T. All calculations were performed on a Silicon
Graphics 4D/440VGX using binary IEEE arithmetic. Values labeled as computed(·)
or sing(·) were computed in single precision (u ≈ 6× 10−8); other values (designated
as “exact”) were obtained by rounding the final results of calculations performed in
double precision (u ≈ 1.1×10−16). The numbers displayed are correctly rounded to
the number of digits shown.

For µ = 10−4, we consider the points

x̂ =

 1 + 2−12

−1 + 2−12

1− 2−11

 ≈
 1.00024

−0.99976

0.99951

 and xµ =

 1.00002311749

−0.99999000148

0.99995354848

 ,(4.11)

where x̂ is representable exactly in IEEE single precision and satisfies ‖x̂− x∗‖ =
5.98×10−4 and ‖x̂− xµ‖ = 5.47×10−4. We chose an exactly representable x̂ to focus
attention on errors in computing the constraints.

The form of the first constraint c1 in (4.10) is obviously subject to cancellation if
implemented in a standard way. The single-precision and “exact” (double-precision,
rounded to eight digits) versions of c1(x̂) are

sing(c1(x̂)) = 2.4390221×10−4 and c1(x̂) = 2.4384260×10−4.

These values differ in the fourth decimal place, revealing a relative error much larger
than u. The relative error |sing(c1) − c1|/c1 is 2.4×10−4, which is well estimated

ILL-CONDITIONING IN INTERIOR METHODS 99

by the bound u/c1 = 4.1×10−4. As expected, the single-precision version of 1/c1(x̂)
displays the same relative error, 2.4×10−4, as sing(c1).

We now consider the matrix Mpd at x̂ of (4.11) with

λ = (2 + 3/4096, 1/1024, 10/3 + 3/4096)T ,(4.12)

for which ‖λ− λ∗‖ = 1.42×10−3. The constraints were first computed in double preci-
sion and then rounded to single, thereby avoiding cancellation error in the constraints
at the single-precision level; all other computations were performed in single precision.
The results, denoted by the subscript “2,” are

‖∆2Mpd‖ = 8.24×10−3, ‖Y T∆2Mpd‖ = 7.15×10−3, and ‖ZT∆2Mpd‖ = 6.51×10−3,

where Y and Z are orthonormal bases for the range space of Â
T and the null space of

Â. When the constraints are subject to cancellation, the prediction in (4.6) of a much

larger perturbation ∆Mpd lying almost entirely in the range space of ÂT is confirmed
by the values

‖∆Mpd‖ = 43.006, ‖Y T∆Mpd‖ = 43.006, and ‖ZT∆Mpd‖ = 6.8416×10−3.(4.13)

Comparing the exact and computed right-hand sides at x̂, we have

‖computed(bp)− bp‖ = 5.027×10−4 and ‖ZT (computed(bp)− bp)‖ = 8.437×10−8,

showing, as predicted by (4.9), that computed(bp)−bp lies almost entirely in the range

space of ÂT.

5. Numerical solution of the condensed primal-dual equations. In this
section we consider the effects of applying a generic backward-stable numerical method
to solve the n × n condensed primal-dual system Mpd p = bp. To simplify the error
bounds in the remainder of the paper, we henceforth assume that, at all points x of
interest,

cmin(x) = Ω(δ).(5.1)

This assumption can be interpreted as excluding points x that are “too close to the
boundary”; see Guideline 3.1. Even with this restriction, there are too many unknown
factors and mathematically imprecise rules of thumb to permit a rigorous theorem.
Nonetheless, our analysis justifies the following guideline.

Guideline 5.1. Assume that the matrix Mpd and vector bp of (3.9) are evaluated
at (x, λ) satisfying (3.10) for sufficiently small δ, that the given barrier parameter µ
satisfies µ = O(δ), and that, in addition,

(a) cmin(x) = Ω(δ), i.e., x is not too close to the boundary of the feasible region;
(b) cmin is large enough relative to u to ensure that the chosen factorization runs

successfully to completion;
(c) the computed primal-dual step p∼ is obtained by applying a backward-stable

method to the computed version of the linear system Mpdp = bp, and the
corresponding value γn (see (2.7)) is bounded by a reasonable constant.

Then we can expect several results:
(i) Bounds on the computed matrix and right-hand side. The computed

matrix Mpd and right-hand side bp satisfy the following relations:

computed(Mpd)−Mpd = ∆Mpd = O(ζ) ‖Mpd‖ = O(ζ/δ) and(5.2)

computed(bp)− bp = ∆bp = O(ζ),(5.3)

where ζ is defined by (4.2).

100 MARGARET H. WRIGHT

(ii) Special structure in the computed matrix and right-hand side. The
perturbations ∆Mpd of (5.2) and ∆bp of (5.3) may be written as

∆Mpd = ∆M +O(u/δ), where ∆M ≡ ÂT∆D̂Â = O(ζ/δ), and(5.4)

∆bp = ∆b+O(u), where ∆b ≡ ÂT∆F̂ 1 = O(ζ).(5.5)

When cancellation occurs, these relations imply that ∆Mpd is likely to be domi-

nated by a matrix whose columns lie in the range space of ÂT, and ∆bp is likely

to be dominated by a vector in the range space of Â
T.

(iii) Backward error bounds for the primal-dual step in x. The computed step
p∼ is the exact solution of the symmetric system

M
∼

pdp
∼

= (Mpd +∆)p
∼

= bp + ∆b, where(5.6)

∆ = ÂT∆D̂Â+O(u/δ) = O(ζ/δ) and ∆b = Â
T
∆F̂ 1 = O(ζ).(5.7)

The assumptions of this guideline are included for various reasons. The analysis
in section 3 of Mpd applies only if δ is sufficiently small. Assumption (a) implies that
computed(Mpd) has properties similar to those of Mpd (see Guideline 3.1), and ensures
that the condition number of ΣL (see (3.16)) is Θ(1). Condition (b) implicitly bounds
cond(Mpd) with respect to machine precision, thereby ensuring that most backward-
stable direct methods applied to Mpd will run to completion. Because of Lemma 2.1
and condition (c), we can fold ∆bp − ∆b into the matrix and reflect the effects of
numerical solution in an additional O(u/δ) perturbation to the matrix. Theorem 2.1
can then be invoked to create the symmetric perturbation ∆ of (5.7).

6. Properties of the computed solution. The computed solution p∼ of the
condensed primal-dual equations satisfies the perturbed equation (5.6). This section
develops bounds on the error in p∼ using the special structure of Mpd, ∆, and ∆b
derived in sections 3, 4, and 5, subject to the assumptions of Guideline 5.1. In par-
ticular, note that the error bounds have been simplified by assuming that

cmin(x) = Ω(δ) and µ = O(δ).

Let UL and US denote the orthonormal matrices of singular vectors associated
with the large and small singular values of the exact matrix Mpd (see (3.16)), and let

Y and Z denote orthonormal bases for the range space of ÂT and the null space of Â.
The exact solution p of the condensed primal-dual equations can be expressed as

p = ULpL + USpS = Y pY + ZpZ ,(6.1)

with analogous forms for p∼ and other n-vectors of interest.

6.1. Perturbing the right-hand side. Let p̄ denote the exact solution of the
intermediate system Mpdp̄ = bpd +∆b. Since M−1

pd = Θ(1) (see (3.22)) and ∆b = O(ζ)
(see (5.7)), the general bound (2.1) would imply that

p̄− p = O(ζ).(6.2)

However, we shall see that a more favorable bound can be obtained because ∆b lies
entirely in the range space of Â

T
.

By definition of p̄,

p̄− p = M
−1
pd ∆b = ULΣ

−1
L ∆bL + USΣ

−1
S ∆bS,

ILL-CONDITIONING IN INTERIOR METHODS 101

so that

‖p̄L − pL‖ ≤ ‖Σ−1
L ‖ ‖∆bL‖, ‖p̄S − pS‖ ≤ ‖Σ−1

S ‖ ‖∆bS‖, and(6.3)

‖p̄− p‖ ≤ ‖Σ−1
L ‖ ‖∆βL‖+ ‖Σ−1

S ‖ ‖∆βS‖.(6.4)

Because ∆b lies in the range space of Â
T
, ∆bZ = 0 and ‖∆bY ‖ = ‖∆b‖. It follows from

(3.19) and the fact that ∆b = O(ζ) (see (5.5)) that

‖UTL ∆b‖ = ‖∆bL‖ = O(ζ) and ‖UTS ∆b‖ = ‖∆bS‖ = O(δζ),(6.5)

where the smaller (by a factor of δ) bound on ‖∆bS‖ compared to ‖∆bL‖ arises because
∆bZ = 0.

We know from (3.21) and (3.22) that the matrices ΣL and ΣS associated with
Mpd satisfy Σ−1

L = O(δ) and ‖Σ−1
S ‖ = ‖M−1

pd ‖ = Θ(1). Combining these estimates
with (6.3), (6.4), and (6.5), we see that

p̄L − pL = O(δζ), p̄S − pS = O(δζ), and p̄− p = O(δζ),(6.6)

with the same form of bound in all cases. Note that these bounds are smaller than
the standard bound (6.2) by a factor of δ, and reflect both the size and structure of
∆b. We conclude from (6.6) that ‖p̄‖ ≈ ‖p‖ as long as p is not too small relative to δ.

6.2. Perturbing the matrix. We now turn to the relationship between p∼ and
p̄, which satisfy an equation analogous to (2.2),

M
∼

pdp
∼

= (Mpd +∆)p
∼

= Mpdp̄ = b+ ∆b,

in which the matrix is perturbed by ∆ of (5.7). Since M−1
pd = Θ(1) and ∆ = O(ζ/δ),

application of the general bound (2.4) would give

‖p∼ − p̄‖ ≤ ‖M−1
pd ‖ ‖∆‖ ‖p̄‖ = ‖p̄‖ O(ζ/δ).(6.7)

By exploiting the special structure of ∆ and the ill-conditioning of Mpd, we obtain
an improved bound for the range-space part of p∼ in the no-cancellation case (section
6.2.1), and for all of p∼ when cancellation occurs (section 6.2.2).

To begin, we express ∆ in the form of (2.15):

UT∆U =

(
BL

BS

)
=

(
B11 B12

BT12 B22

)
,(6.8)

where B11 = UTL∆UL, B12 = UTL∆US, and B22 = UTS ∆US. The analysis of p∼ varies with
the presence or absence of cancellation, so that we consider the two cases separately.

6.2.1. Without cancellation. When cancellation does not occur, ∆ is O(u/δ)
and has no special structure, so that both BL and BS in (6.8) are O(u/δ). Applying
the second inequalities of (2.16) and (2.17), we have

‖p∼L − p̄L‖ ≤ ‖Σ−1
L ‖ ‖∆‖ ‖p̄‖ = ‖p̄‖O(u) and(6.9)

‖p∼S − p̄S‖ ≤ ‖Σ−1
S ‖ ‖∆‖ ‖p̄‖ = ‖p̄‖O(u/δ).(6.10)

A key feature of these relations is that the bound on ‖p∼L − p̄L‖ is smaller by a factor
of δ than the bound on ‖p∼S − p̄S‖, reflecting the (expected) result that only the small-

space part of p∼ will be blown up by ill-conditioning in M
∼

pd; see the numerical example
(6.23).

102 MARGARET H. WRIGHT

Putting together (6.6), (6.9), (6.10), and standard norm inequalities, we obtain
the following bounds involving the computed p∼ and the exact p when cancellation
does not occur:

‖p∼L − pL‖ ≤ ‖p∼L − p̄L‖+ ‖p̄L − pL‖ ≤ ‖p̄‖O(u) +O(δu);(6.11)

‖p∼S − pS‖ ≤ ‖p∼S − p̄S‖+ ‖p̄S − pS‖ ≤ ‖p̄‖O(u/δ) +O(δu);(6.12)

‖p∼ − p‖ ≤ ‖p∼ − p̄‖+ ‖p̄− p‖ ≤ ‖p̄‖O(u/δ) +O(δu).(6.13)

The first term in the second bound on ‖p∼L − pL‖ is smaller than the corresponding
bound for the small space by a factor of δ because perturbations in the large space
are multiplied by at most ‖Σ−1

L ‖ = O(δ). The first term in the second bound on each
of ‖p∼S − pS‖ and ‖p∼ − p‖ reveals the worst-case effects of cond(Mpd) when the matrix
undergoes a relative perturbation of O(u).

Relation (6.13) shows that

‖p∼‖ ≈ ‖p‖ as long as p = Ω(δ).(6.14)

Although (6.14) indicates that p∼ and p are similar in norm, it does not imply that
they display a small relative error when both are small.

6.2.2. With cancellation. When the constraints are subject to cancellation
(ζ = u/δ), the perturbation ∆ is O(u/δ2), and the standard bound (6.7) would imply
a (horrific) relative error bound for p∼ of O(u/δ2); see (6.25). Fortunately, when we
lose because ‖∆‖ is large, there is a countervailing win because the perturbation lies

almost entirely in the range of ÂT, the subspace that is not blown up by M−1
pd .

Using (3.19), the matrices in (6.8) satisfy B11 = O(u/δ2), B12 = O(u/δ), and
B22 = O(u/δ), so that

BL = O(u/δ2) and BS = O(u/δ),(6.15)

implying that ‖BS‖ has a much smaller upper bound than ‖BL‖, in contrast to the
parity of these bounds in the noncancellation case. Hence it is meaningful to apply
the first inequalities in (2.16) and (2.17), yielding the following connections between
p∼ and p̄:

‖p∼L − p̄L‖ ≤ ‖Σ−1
L ‖ ‖BL‖ ‖p̄‖ = ‖p̄‖O(u/δ);(6.16)

‖p∼S − p̄S‖ ≤ ‖Σ−1
S ‖ ‖BS‖ ‖p̄‖ = ‖p̄‖O(u/δ).(6.17)

The bound on ‖p∼L − p̄L‖ is larger by a factor of 1/δ than the analogous bound (6.9)
in the noncancellation case, reflecting the O(u/δ2) large-space perturbation to Mpd

created by cancellation; see (5.4). However, the bound on ‖p∼S − p̄S‖ is the same as in
the noncancellation case because the relative perturbation to Mpd in the small space
is O(u) with or without cancellation.

Relations (6.6), (6.16), (6.17), and standard norm inequalities imply that, with
cancellation, the following bounds apply to the computed p∼ and the exact p:

‖p∼L − pL‖ ≤ ‖p̄‖O(u/δ) +O(u),(6.18)

‖p∼S − pS‖ ≤ ‖p̄‖O(u/δ) +O(u), and(6.19)

‖p∼ − p‖ ≤ ‖p̄‖O(u/δ) +O(u).(6.20)

ILL-CONDITIONING IN INTERIOR METHODS 103

Together with (6.6), (6.20) shows that

‖p∼‖ ≈ ‖p‖ as long as p = Ω(δ),(6.21)

so that p∼ and p are similar in norm, but it does not imply that they display a small
relative error when both are small.

6.3. Numerical examples. To illustrate the results just described, we return
to example (4.10) with µ = 10−4, x̂ from (4.11), and λ from (4.12); the condition
number of Mpd is 3.2×104.

When we evaluate the constraints in double precision (without cancellation at the
single-precision level), performing all other calculations in single precision, the exact
p and the computed p∼2 are

p =

 −2.212210×10−4

−2.339970×10−4

4.419855×10−4

 and p
∼

2 =

 −2.216191×10−4

−2.339966×10−4

4.423836×10−4

 ,(6.22)

which gives ‖p∼2 − p‖ = 5.63×10−7. Although the overall error in p∼2 is comparable to
machine precision, almost all the error lies in the small space, as predicted by (6.11)
and (6.12):

‖UTL (p
∼

2 − p)‖ = 8.46×10−11, whereas ‖UTS (p
∼

2 − p)‖ = 5.63×10−7.(6.23)

When cancellation occurs,

p
∼

=

 −2.216789×10−4

−2.339558×10−4

4.424361×10−4

 ,

which gives ‖p∼ − p‖ = 6.43×10−7. As expected, p∼ has overall accuracy comparable to
that of p∼2; compare (6.13) and (6.20). Note, however, that the large- and small-space
parts of p∼ are of similar absolute accuracy, as suggested by the bounds (6.18) and
(6.19):

‖p∼L − pL‖ = 4.10×10−8, and ‖p∼S − pS‖ = 6.42×10−7.(6.24)

It was observed in section 4.2.1 that, when cancellation causes a large error in the
computed Mpd, the resulting perturbation tends to lie almost entirely in the range

space of ÂT (see (5.4)). The saving grace of this property can be seen if we perturb
Mpd by a random 3 × 3 symmetric matrix ∆M of approximately the same size as
∆Mpd of (4.13) and then solve in double precision for the solution p̂ of the perturbed
system:

(Mpd +∆M)p̂ = bp, with ‖∆M‖ = 40, so that
‖∆M‖
‖Mpd‖ = 2.3×10−4.

The ill-conditioning is obvious from the striking difference between p̂ and the exact p:

p̂ =

 3.899913×10−4

−2.344138×10−4

−1.693300×10−4

 , with
‖p̂− p‖
‖p‖ = 1.58.(6.25)

104 MARGARET H. WRIGHT

Even so, the large-space parts of p̂ and p remain close. The ill-conditioning magnifies
only the part of p̂ in the small space:

‖UTL (p̂− p)‖
‖p‖ = 4.3×10−4 and

‖UTS (p̂− p)‖
‖p‖ = 1.58.

7. Calculating the multiplier estimate. This section shows why, under the
conditions of Guideline 5.1, inaccuracies in p∼ resulting from ill-conditioning of Mpd

have very little effect on the accuracy of the computed multiplier steps, even in the
presence of cancellation. From (3.8), the m-vector `, the change in the multiplier
estimate, satisfies

ΛAp+ C` = µ1− Cλ, so that ` = C
−1(µ1− ΛAp)− λ.(7.1)

Since δ = ‖x∗ − x‖, a “reasonable” primal-dual step p will satisfy ‖p‖ ≈ δ. Fur-
thermore, we know that ZT bp = O(δ), which means, using (3.20), that UTS bp is O(δ).
It follows from (2.12) that p cannot be too much larger than δ. We thus assume in
this section that

‖p‖ ≈ δ, which implies that ‖p∼‖ ≈ ‖p̄‖ ≈ δ,(7.2)

using (6.6), (6.14), and (6.21).

7.1. Inactive constraints. A component-wise version of (7.1) is

`i =
µ− λiaTi p

ci
− λi.(7.3)

Let `
∼
i denote the computed change in the ith multiplier estimate, obtained by per-

forming the calculations shown in (7.3) in floating point using p∼ instead of p, and
with the computed value of ci. To analyze `

∼
i− `i, we apply the rules of floating-point

computation (4.1) and the relation fl(ci) = ci(1 +O(ζ)) (see section 4.1) to (7.3):

`
∼
i − `i =

−λiaTi (p∼ − p)
ci

+ O(ζ)
µ− λiaTi p∼

ci
+ O(u) (λi + µ+ ‖p∼‖).(7.4)

In all cases, ai = O(1) and p∼ = O(δ).
When constraint i is inactive, λi = O(δ) and ci = Θ(1), and we have assumed that

µ = O(δ). Relations (6.13) and (6.20) applied to (7.4) imply that, with or without
cancellation,

`
∼
i − `i = O(δu).(7.5)

This bound shows that the multiplier estimates for inactive constraints retain (ap-
proximately) full relative precision as they converge to zero.

7.2. Active constraints. To estimate the accuracy of the multiplier steps for
active constraints, we exploit the backward-error formulation of p∼ from section 5.
(With cancellation, direct application of the bounds from section 6.2.2 gives an overly
pessimistic result.)

Limiting ourselves to active constraints, observe that (7.1) may be written as

λ̂′ ≡ λ̂+ ˆ̀ = Ĉ
−1(µ1− Λ̂Âp),(7.6)

ILL-CONDITIONING IN INTERIOR METHODS 105

where λ̂′ can be interpreted as the “new” multiplier estimate (if a step of unity is

taken along ˆ̀). We next show that the expression on the right of (7.6) is closely
related to the condensed primal-dual equations. By definition, the exact solution of
Mpdp = bp satisfies(

W + Â
T
Ĉ
−1Λ̂Â+ ĀTC̄

−1Λ̄Ā
)
p = −g + µÂ

T
Ĉ
−11 + µĀTC̄

−11,(7.7)

which becomes, after rearrangement,

Â
T
(µĈ

−11− Ĉ−1Λ̂Âp) = g − µĀTC̄−11 +Wp+ ĀC̄
−1Λ̄Āp.(7.8)

Since range(Â
T) and null(Â) are orthogonal complements, equality must hold between

the range-space parts of both sides of (7.8). To separate the elements of this equation

into range(Â
T) and null(Â), we define

g = Â
TgA + ZgZ , µĀTC̄

−11 = ÂTrA + ZrZ ,(7.9)

Wp = Â
TwA + ZwZ , and ĀC̄

−1Λ̄Āp = Â
TaA + ZaZ .

Substituting from (7.9), rearranging, and using (7.6), we have

λ̂′ = Ĉ
−1
(
µ1− Λ̂Âp) = gA − rA + wA + aA.(7.10)

To analyze the computed version of λ̂′, we revisit the formulation of the perturbed
system satisfied by p∼. Let ĉi denote fl(ĉi), an exact number satisfying ĉi ≡ fl(ĉi) =

ĉi + ξ, where ξ = O(u). Let Ĉ denote diag(ĉi). The computed version of λ̂′, denoted

by λ
∧ ′, may then be written as

λ
∧ ′ = computed

(
Ĉ
−1
(
µ1− Λ̂Âp∼)).(7.11)

Because ĉi is simply a floating-point number, it satisfies

fl
(1

ĉi

)
= computed

(1

fl(ĉi)

)
=
(1

ĉi

)
(1 +O(u)),(7.12)

with only an O(u) relative difference between computed(1/fl(ĉi)) and 1/ĉi.
The definition (7.12), the assumption that cmin = Ω(δ), and standard floating-

point rules (4.1) lead to the following relationships:

computed(Â
T
Ĉ
−1Λ̂Â) = Â

T Ĉ
−1Λ̂Â+O(u/δ) and(7.13)

computed(µÂ
T
Ĉ
−11) = µÂ

T
Ĉ
−11 +O(u).

The key here is that Ĉ−1 appears in the computed versions of both the matrix and
the right-hand side of (7.7); i.e., the same (albeit possibly inaccurate) quantities serve
as the active constraint values throughout the computation.

Using (7.13) and reasoning like that leading to (5.6), we can show that the com-
puted solution p∼ satisfies a relation very similar to (7.7), except that the matrix

multiplying p∼ involves Ĉ and contains a perturbation ∆:(
W + Â

T
Ĉ
−1Λ̂Â+ ĀTC̄

−1Λ̄Ā+∆
)
p
∼

= −g + µÂ
T
Ĉ
−11 + µĀTC̄

−11,(7.14)

106 MARGARET H. WRIGHT

where ∆ = O(u/δ). Exactly as with (7.9), we separate out the range-space parts of
this equation and obtain an analogue of (7.10):

Ĉ
−1
(
µ1− Λ̂Âp∼) = gA − rA + w

∼
A + aA + dA,(7.15)

where Wp
∼

= ÂTw
∼
A + Zw

∼
Z and ∆p

∼
= ÂTdA + ZdZ .(7.16)

The vector dA is O(u); this follows from the relations ∆ = O(u/δ) and ‖p∼‖ ≈ δ.
Two points emerge from this analysis. First, by combining (7.10) and (7.15) we

have

Ĉ
−1
(
µ1− Λ̂Âp∼) = λ̂′ + w

∼
A − wA + dA.(7.17)

Since W = O(1) and p∼ − p = O(u) (see (6.13) and (6.20)), the vector w
∼
A − wA is

O(u). Thus

Ĉ
−1
(
µ1− Λ̂Âp∼) = λ̂′ +O(u).(7.18)

Second, the computed version of the expression on the left-hand side of (7.18) is

precisely λ
∧ ′ (see (7.11)). Using the floating-point rules (4.1) and relation (7.12), we

obtain

λ
∧ ′ = computed

(
Ĉ
−1
(
µ1− Λ̂Âp∼)) = Ĉ

−1
(
µ1− Λ̂Âp∼)+O(u).(7.19)

Combining (7.18) and (7.19) gives

λ
∧ ′ = λ̂′ +O(u), so that `

∧
= ˆ̀+O(u),(7.20)

since subtracting λ̂ from λ
∧ ′ to produce `

∧
introduces only one further error of O(u).

In many ways this result is quite remarkable: despite the possibility of substantial

relative error in both the matrix and right-hand side, the vector `
∧

calculated using p∼

differs from the exact ˆ̀ by (approximately) machine precision. Thus, since λ̂′ = Θ(1),
we are able to obtain close to full precision in the new multiplier estimate, even with
cancellation.

7.3. Numerical examples. We return once more to example (4.10), with x̂
from (4.11), λ from (4.12), and µ = 10−4. Let λ′ denote λ + `, and λ

∼ ′ its computed
version, so that the components of λ

∼ ′ corresponding to active constraints are given

by λ
∧ ′. The exact λ′ and computed λ

∼ ′ are

λ′ =

 1.9999053

5.7258318×10−5

3.3333196

 and λ
∼ ′ =

 1.9999059

5.7258585×10−5

3.3333199

 ,

and the exact ` and computed `
∼

are

` =

 −8.271445×10−4

−9.193042×10−4

−7.461919×10−4

 and `
∼

=

 −8.264780×10−4

−9.193039×10−4

−7.457733×10−4

 .(7.21)

Thus the error is

`
∼ − ` =

 6.6646×10−7

2.6671×10−10

4.1858×10−7

 ,(7.22)

ILL-CONDITIONING IN INTERIOR METHODS 107

which corresponds well to the bounds of (7.5) and (7.20). Note the better absolute ac-
curacy of the component corresponding to the single inactive constraint, as predicted
by (7.5).

8. Alternative derivations of the error bounds. After publication of [36]
(the initial version of the present paper), R. H. Byrd [3] pointed out to the author that
the bound (6.20) could be derived by relating p∼ to the exact solution of a perturbed
version of the primal-dual system (3.8) in which both the matrix and right-hand
side include perturbations attributable to cancellation. In a referee’s report on the
present paper, S. J. Wright sketched a derivation of the error bounds based on a
similar observation. We now summarize this derivation.

Along the lines of the discussion in section 7.2, let c denote fl(c). When the
constraints are subject to cancellation,

c = c+ ξ, with ξ = O(u).(8.1)

Consider the (exact) system that contains the computed constraints,(
W (λ) −AT
ΛA C

) (
p′

`′

)
=

(
−g +ATλ

µ1−Cλ

)
,(8.2)

and observe that the matrix and right-hand side of the computed condensed system
(3.9) can be interpreted as the result of performing block elimination on (8.2). The
numerical solution of the computed condensed system can be analyzed by bounding
first the errors associated with carrying out this block elimination, and then the errors
arising from solution of the resulting system with a backward-stable method. It follows
from this analysis that p∼ satisfies

(W (λ) +ATC
−1ΛA+∆W)p

∼
= −g + µATC

−11 + ∆b, where(8.3)

∆W = O(u/cmin) and ∆b = O(µu/cmin).

It can then be shown that p∼ and an approximate multiplier step satisfy a per-
turbed version of the exact primal-dual system (3.8), where the perturbations are ∆W ,
∆b, and ξ of (8.1). Since the full primal-dual matrix is well conditioned by assumption,
an expression involving these perturbations can be derived that relates the computed
p∼ and the exact p, leading to the bound (6.20). By partitioning the constraints into
active and inactive, the bounds of section 7 on the computed multiplier estimates can
be derived. When cancellation does not occur in the constraints, S. J. Wright [41]
has subsequently shown how to derive the sharper bound (6.13) for the error in the
large-space component p∼L using the approach described above and the relation (3.17).

A complete presentation of the alternative approach is given in [40], which dis-
cusses the effects of finite precision in interior-point methods when the Mangasarian–
Fromowitz constraint qualification holds (rather than the stronger assumption made
here of linear independence of the active constraint normals).

9. Solving the full primal-dual system. We have examined in detail the
properties of the vectors p∼ and `

∼
obtained by solving the condensed (necessarily

ill-conditioned) primal-dual equations. To complete our analysis, we consider the
accuracy of the vectors resulting from solving the full primal-dual system Pz = d,
with

P ≡
(
W (λ) −AT
ΛA C

)
, z ≡

(
p

`

)
, and d ≡

(
−g +ATλ

µ1− Cλ

)
.(9.1)

108 MARGARET H. WRIGHT

We stress that the condition of P corresponds to the condition of the original con-
strained problem; see, for example, [14].

Suppose that we wish to solve Pz = d at a point (x, λ) satisfying the conditions
listed in Guideline 5.1, which means that P = Θ(1). Let us make the further as-
sumption that P−1 = Θ(1), so that cond(P) ≈ 1 and the full system is perfectly
conditioned. Then the accuracy that can be expected in z∼, the computed z, depends
directly on the size of the perturbations associated with representing P and d in finite
precision.

Since the elements of P are O(1), the absolute error in computed(P) is O(u), as
is the relative error ‖computed(P)− P‖/‖P‖. We now show that the absolute error
in computed(d) is O(u). Since g is Θ(1), its computed version will in general have an
error that is O(u); therefore computed(−g + ATλ), the first block of the computed
d in (9.1), has an absolute error that is O(u) and independent of whether or not
cancellation occurs. When the constraints are subject to cancellation, each component
of c has an associated absolute error of O(u). Since the multiplier estimate for an
active constraint is Θ(1), the computed version of λici will also contain an absolute
error of O(u). Consequently, with cancellation the second block of the computed d in
(9.1) contains an O(u) error in each component corresponding to an active constraint.
Although the absolute error in computed(d) is O(u), d itself is not O(1). In fact, we
expect each component of d to be O(δ).

If only the matrix P were subject to computational errors, relation (2.4) would
imply a relative error of O(u) in the computed solution. But since the absolute
difference between computed(d) and d is O(u), the first inequality in (2.1) implies
that

‖z∼ − z‖ ≤ ‖P−1‖ ‖computed(d)− d‖ = O(u).(9.2)

Thus, because of absolute errors that are O(u) in the computed d, the numerical
solution of the well-conditioned system (9.1) produces steps in x and λ that may
contain absolute errors comparable to machine precision.

The import of this result can be seen by recalling that, when δ/cmin = O(1), the
primal-dual steps p∼ and `

∼
for the active constraints computed from the condensed

matrix Mpd have essentially the same bound (an O(1) multiple of machine precision)
on their deviations from the exact p and ` (see (6.13), (6.20), and (7.20)). Rather
surprisingly, we are only marginally better off with the full primal-dual matrix P than
with its ill-conditioned cousin Mpd! (In effect, the favorable condition of P cannot
overcome the inherent error in the right-hand side.)

This phenomenon can be seen in our familiar example (4.10), with x̂ from (4.11),
λ from (4.12), and µ = 10−4. If we form P and d and solve Pz = d in single precision,
the computed d and z∼ satisfy

computed(d)− d =

−2.166×10−7

−5.962×10−7

1.788×10−7

−1.193×10−7

−5.342×10−11

4.075×10−7

and z

∼
=

−2.212746×10−4

−2.339562×10−4

4.420320×10−4

−8.270238×10−4

−9.193041×10−4

−7.457245×10−4

.(9.3)

Observe that the absolute error in each component of computed(d) is similar in size
to u, except for the component in the second block corresponding to the inactive

ILL-CONDITIONING IN INTERIOR METHODS 109

constraint. Splitting z∼ into its p and ` subvectors, we have

(z
∼

)p − p =

 −5.368×10−8

4.074×10−8

4.646×10−8

 and (z
∼

)` − ` =

 1.206×10−7

3.389×10−11

4.674×10−7

 ,(9.4)

which gives ‖z∼ − z‖ = 4.896×10−7. (The exact p is given in (6.22) and the exact ` in
(7.21).) All components are shown to confirm that neither the step in x nor the step
in λ is significantly more accurate than p∼ or `

∼
; compare (9.4) with (6.24) and (7.22).

The more accurate component of (z∼)` corresponding to the single inactive constraint,
like the same component in `

∼ − ` of (7.22), can be explained via an analysis along
the lines of section 7.1.

10. Summary and conclusions. This paper contains several related results.
First, under conditions that usually hold in the final stages of a primal-dual method,
the exact condensed primal-dual matrix Mpd (3.9) is structurally ill-conditioned. Like
the primal barrier Hessian, Mpd has two widely separated sets of eigenvalues, where
the invariant subspace corresponding to the large eigenvalues (the large space) is

close to the range of ÂT (the transposed Jacobian of the active constraints), and the
complementary small space is close to the null space of Â.

Active constraints computed in a standard way are likely to be subject to cancel-
lation, thereby degrading their relative accuracy. With cancellation, we have shown
that both the condensed matrix and the right-hand side are likely to experience rel-
ative perturbations much larger than machine precision. However, these lie almost
entirely in the range space of Â

T and hence are not magnified by the ill-conditioning
in Mpd.

If the condensed system is solved using any backward-stable method, then p∼, the
computed step in x, can be characterized as the exact solution of a perturbed system.
If x and λ are close enough to optimal (as measured by (3.10) for sufficiently small δ),
and if cmin = Ω(δ) and µ = O(δ), this backward-error form leads to two conclusions:

(i) without cancellation, the large-space part of p∼ is much more accurate than the
small-space part, whose absolute accuracy is bounded by an O(1) multiple of
machine precision;

(ii) with cancellation, both large- and small-space parts of p∼ have the same bound—
an O(1) multiple of machine precision—on their absolute accuracy.

Based on these properties of p∼, we have also demonstrated that, with or without
cancellation, the step `

∼
in λ for the active constraints calculated using p∼ has an

absolute error bounded by an O(1) multiple of machine precision. For the inactive
constraints, the multiplier step retains (approximately) full relative precision.

Finally, we have noted that the computed right-hand side in the full primal-dual
system will almost always (because of finite precision) be subject to absolute errors
that are O(u). Hence, even though the matrix is well-conditioned, the steps in x
and λ calculated from the full system can be expected to contain absolute errors
of order machine precision—i.e., errors not much smaller than those associated with
steps computed from the ill-conditioned condensed system.

Because of the intermingled effects of structure, cancellation, and asymptotic
properties of the primal-dual iterates, we conclude that in most cases ill-conditioning
in the condensed matrix impairs only marginally the accuracy of the computed results.
Although solving ill-conditioned systems should emphatically be avoided in general,

110 MARGARET H. WRIGHT

we now understand why, in this very special case, the negative consequences of ill-
conditioning are likely to be imperceptible.

Obvious generalizations of the same approach apply to the effects of computing
the search direction from the ill-conditioned Hessian in a primal barrier method. We
believe that the results in this paper may explain the lack of documented difficulties
in primal barrier methods that are explicitly attributable to ill-conditioning rather
than to poor properties of the Newton barrier direction.

Acknowledgments. I thank the referees very much for their careful reading of
the manuscript, their detection of several errors, and their interesting perspectives on
ill-conditioning in primal-dual methods.

REFERENCES

[1] J. M. Banoczi, N.-C. Chiu, G. E. Cho, and I. C. F. Ipsen, The Influence of the Right-Hand
Side on the Accuracy of Linear System Solution, Technical Report, North Carolina State
University, Raleigh, NC, 1996.

[2] J. R. Bunch, J. W. Demmel, and C. F. Van Loan, The strong stability of algorithms for
solving symmetric linear systems, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 494–499.

[3] R. H. Byrd, Private communication, 1997.
[4] R. H. Byrd, J. C. Gilbert, and J. Nocedal, A Trust Region Method Based on Interior

Point Techniques for Nonlinear Programming, Technical Report OTC 96-02, Northwestern
University, Evanston, IL, 1996.

[5] T. F. Chan and D. E. Foulser, Effectively well-conditioned linear systems, SIAM J. Sci.
Statist. Comput., 9 (1988), pp. 963–969.

[6] S. H. Cheng and N. J. Higham, A modified Cholesky algorithm based on a symmetric indefinite
factorization, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 1097–1110.

[7] S. Christiansen and P. C. Hansen, The effective condition number applied to error analysis
of certain boundary collocation methods, J. Comput. Appl. Math., 54 (1994), pp. 15–36.

[8] A. R. Conn, N. I. M. Gould, and P. L. Toint, A Primal-Dual Algorithm for Minimizing
a Non-convex Function Subject to Bound and Linear Equality Constraints, Report RC
20639, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1996.

[9] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang, On the formulation and theory
of the Newton interior-point method for nonlinear programming, J. Optim. Theory Appl.,
89 (1996), pp. 507–541.

[10] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, John Wiley and Sons, New York, 1968; republished by the
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.

[11] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley and Sons, Chichester,
1987.

[12] A. Forsgren and P. E. Gill, Primal-dual interior methods for nonconvex nonlinear program-
ming, SIAM J. Optim., 8 (1998), pp. 1132–1152.

[13] A. Forsgren, P. E. Gill, and W. Murray, Computing modified Newton directions using a
partial Cholesky factorization, SIAM J. Sci. Comput., 16 (1995), pp. 139 –150.

[14] A. Forsgren, P. E. Gill, and J. R. Shinnerl, Stability of symmetric ill-conditioned systems
arising in interior methods for constrained optimization, SIAM J. Matrix Anal. Appl., 17
(1996), pp. 187–211.

[15] D. M. Gay, M. L. Overton, and M. H. Wright, A primal-dual interior method for nonconvex
nonlinearly constrained optimization, in Advances in Nonlinear Programming, Y. Yuan,
ed., Kluwer, Dordrecht, 1998, pp. 31–56.

[16] P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press, London,
New York, 1981.

[17] P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and Optimization,
Vol. 1, Addison-Wesley, Redwood City, CA, 1991.

[18] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University
Press, Baltimore, MD, 1989.

[19] C. C. Gonzaga, Path-following methods for linear programming, SIAM Rev., 34 (1992), pp.
167–224.

ILL-CONDITIONING IN INTERIOR METHODS 111

[20] N. I. M. Gould, On the accurate determination of search directions for simple differentiable
penalty functions, IMA J. Numer. Anal., 6 (1986), pp. 357–372.

[21] N. J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix, in Reliable
Numerical Computation, M. G. Cox and S. Hammarling, eds., Clarendon Press, Oxford,
1990, pp. 161–185.

[22] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1996.

[23] F. A. Lootsma, Hessian Matrices of Penalty Functions for Solving Constrained Optimization
Problems, Philips Res. Repts. 24, Eindhoven, The Netherlands, 1969, pp. 322–331.

[24] G. P. McCormick, The Superlinear Convergence of a Nonlinear Primal-Dual Algorithm, Re-
port T-550/91, Department of Operations Research, George Washington University, Wash-
ington, DC, 1991.

[25] W. Murray, Analytical expressions for the eigenvalues and eigenvectors of the Hessian ma-
trices of barrier and penalty functions, J. Optim. Theory Appl., 7 (1971), pp. 189–196.

[26] C. R. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-
plexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[27] M. A. Saunders, Major Cholesky would feel proud, ORSA J. Comput., 6 (1994), pp. 23–27.
[28] R. B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J. Sci. Statist.

Comput., 11 (1990), pp. 1136–1158.
[29] R. K. Smith, Private communication, 1997.
[30] G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.
[31] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
[32] A. van der Sluis, Stability of solutions of linear algebraic systems, Numer. Math., 14 (1970),

pp. 246–251.
[33] M. H. Wright, Interior methods for constrained optimization, in Acta Numerica 1992, A.

Iserles, ed., Cambridge University Press, NY, 1992, pp. 341–407.
[34] M. H. Wright, Some properties of the Hessian of the logarithmic barrier function, Math.

Programming, 67 (1994), pp. 265–295.
[35] M. H. Wright, Why a pure primal Newton barrier step may be infeasible, SIAM J. Optim., 5

(1995), pp. 1–12.
[36] M. H. Wright, Ill-Conditioning and Computational Error in Interior Methods for Nonlin-

ear Programming, Technical Report 97-4-04, Computing Sciences Research Center, Bell
Laboratories, Murray Hill, NJ, 1997.

[37] S. J. Wright, Stability of linear equation solvers in interior-point methods, SIAM J. Matrix
Anal. Appl., 16 (1995), pp. 1287–1307.

[38] S. J. Wright, Modified Cholesky Factorizations in Interior-Point Algorithms for Linear Pro-
gramming, Technical Report ANL/MCS-P600-0596, Argonne National Laboratory, Ar-
gonne, IL, 1996.

[39] S. J. Wright, Stability of augmented system factorizations in interior-point methods, SIAM
J. Matrix Anal. Appl., 18 (1997), pp. 191–222.

[40] S. J. Wright, Finite-Precision Effects on the Local Convergence of Interior-Point Algorithms
for Nonlinear Programming, Preprint ANL/MCS P705-0198, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL, 1998.

[41] S. J. Wright, Private communication, 1998.

CONVERGENCE PROPERTIES OF THE
NELDER–MEAD SIMPLEX METHOD IN LOW DIMENSIONS∗

JEFFREY C. LAGARIAS† , JAMES A. REEDS‡ , MARGARET H. WRIGHT§ , AND

PAUL E. WRIGHT¶

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 112–147

Abstract. The Nelder–Mead simplex algorithm, first published in 1965, is an enormously pop-
ular direct search method for multidimensional unconstrained minimization. Despite its widespread
use, essentially no theoretical results have been proved explicitly for the Nelder–Mead algorithm.
This paper presents convergence properties of the Nelder–Mead algorithm applied to strictly convex
functions in dimensions 1 and 2. We prove convergence to a minimizer for dimension 1, and various
limited convergence results for dimension 2. A counterexample of McKinnon gives a family of strictly
convex functions in two dimensions and a set of initial conditions for which the Nelder–Mead algo-
rithm converges to a nonminimizer. It is not yet known whether the Nelder–Mead method can be
proved to converge to a minimizer for a more specialized class of convex functions in two dimensions.

Key words. direct search methods, Nelder–Mead simplex methods, nonderivative optimization

AMS subject classifications. 49D30, 65K05

PII. S1052623496303470

1. Introduction. Since its publication in 1965, the Nelder–Mead “simplex” al-
gorithm [6] has become one of the most widely used methods for nonlinear uncon-
strained optimization. The Nelder–Mead algorithm should not be confused with the
(probably) more famous simplex algorithm of Dantzig for linear programming; both
algorithms employ a sequence of simplices but are otherwise completely different and
unrelated—in particular, the Nelder–Mead method is intended for unconstrained op-
timization.

The Nelder–Mead algorithm is especially popular in the fields of chemistry, chem-
ical engineering, and medicine. The recent book [16], which contains a bibliography
with thousands of references, is devoted entirely to the Nelder–Mead method and vari-
ations. Two measures of the ubiquity of the Nelder–Mead method are that it appears
in the best-selling handbook Numerical Recipes [7], where it is called the “amoeba
algorithm,” and in Matlab [4].

The Nelder–Mead method attempts to minimize a scalar-valued nonlinear func-
tion of n real variables using only function values, without any derivative information
(explicit or implicit). The Nelder–Mead method thus falls in the general class of di-
rect search methods; for a discussion of these methods, see, for example, [13, 18]. A
large subclass of direct search methods, including the Nelder–Mead method, maintain
at each step a nondegenerate simplex, a geometric figure in n dimensions of nonzero
volume that is the convex hull of n+ 1 vertices.

Each iteration of a simplex-based direct search method begins with a simplex,
specified by its n + 1 vertices and the associated function values. One or more test
points are computed, along with their function values, and the iteration terminates

∗Received by the editors May 13, 1996; accepted for publication (in revised form) November 24,
1997; published electronically December 2, 1998.

http://www.siam.org/journals/siopt/9-1/30347.html
†AT&T Labs–Research, Florham Park, NJ 07932 (jcl@research.att.com).
‡AT&T Labs–Research, Florham Park, NJ 07932 (reeds@research.att.com).
§Bell Laboratories, Murray Hill, NJ 07974 (mhw@research.bell-labs.com).
¶AT&T Labs–Research, Florham Park, NJ 07932 (pew@research.att.com).

112

PROPERTIES OF NELDER–MEAD 113

with a new (different) simplex such that the function values at its vertices satisfy some
form of descent condition compared to the previous simplex. Among such algorithms,
the Nelder–Mead algorithm is particularly parsimonious in function evaluations per
iteration, since in practice it typically requires only one or two function evaluations
to construct a new simplex. (Several popular direct search methods use n or more
function evaluations to obtain a new simplex.) There is a wide array of folklore
about the Nelder–Mead method, mostly along the lines that it works well in “small”
dimensions and breaks down in “large” dimensions, but very few careful numerical
results have been published to support these perceptions. Apart from the discussion
in [12], little attention has been paid to a systematic analysis of why the Nelder–Mead
algorithm fails or breaks down numerically, as it often does.

Remarkably, there has been no published theoretical analysis explicitly treating
the original Nelder–Mead algorithm in the more than 30 years since its publication.
Essentially no convergence results have been proved, although in 1985 Woods [17]
studied a modified1 Nelder–Mead algorithm applied to a strictly convex function.
The few known facts about the original Nelder–Mead algorithm consist mainly of
negative results. Woods [17] displayed a nonconvex example in two dimensions for
which the Nelder–Mead algorithm converges to a nonminimizing point. Very recently,
McKinnon [5] gave a family of strictly convex functions and a starting configuration
in two dimensions for which all vertices in the Nelder–Mead method converge to a
nonminimizing point.

The theoretical picture for other direct search methods is much clearer. Torczon
[13] proved that “pattern search” algorithms converge to a stationary point when ap-
plied to a general smooth function in n dimensions. Pattern search methods, including
multidirectional search methods [12, 1], maintain uniform linear independence of the
simplex edges (i.e., the dihedral angles are uniformly bounded away from zero and π)
and require only simple decrease in the best function value at each iteration. Rykov
[8, 9, 10] introduced several direct search methods that converge to a minimizer for
strictly convex functions. In the methods proposed by Tseng [15], a “fortified descent”
condition—stronger than simple descent—is required, along with uniform linear in-
dependence of the simplex edges. Depending on a user-specified parameter, Tseng’s
methods may involve only a small number of function evaluations at any given itera-
tion and are shown to converge to a stationary point for general smooth functions in
n dimensions.

Published convergence analyses of simplex-based direct search methods impose
one or both of the following requirements: (i) the edges of the simplex remain uni-
formly linearly independent at every iteration; (ii) a descent condition stronger than
simple decrease is satisfied at every iteration. In general, the Nelder–Mead algorithm
fails to have either of these properties; the resulting difficulties in analysis may explain
the long-standing lack of convergence results.

Because the Nelder–Mead method is so widely used by practitioners to solve
important optimization problems, we believe that its theoretical properties should be
understood as fully as possible. This paper presents convergence results in one and two
dimensions for the original Nelder–Mead algorithm applied to strictly convex functions
with bounded level sets. Our approach is to consider the Nelder–Mead algorithm

1The modifications in [17] include a contraction acceptance test different from the one given
in the Nelder–Mead paper and a “relative decrease” condition (stronger than simple decrease) for
accepting a reflection step. Woods did not give any conditions under which the iterates converge to
the minimizer.

114 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

as a discrete dynamical system whose iterations are “driven” by the function values.
Combined with strict convexity of the function, this interpretation implies restrictions
on the allowed sequences of Nelder–Mead moves, from which convergence results can
be derived. Our main results are as follows:

1. In dimension 1, the Nelder–Mead method converges to a minimizer (Theorem 4.1),
and convergence is eventually M -step linear2 when the reflection parameter ρ = 1
(Theorem 4.2).

2. In dimension 2, the function values at all simplex vertices in the standard Nelder–
Mead algorithm converge to the same value (Theorem 5.1).

3. In dimension 2, the simplices in the standard Nelder–Mead algorithm have diam-
eters converging to zero (Theorem 5.2).

Note that Result 3 does not assert that the simplices converge to a single point x∗.
No example is known in which the iterates fail to converge to a single point, but the
issue is not settled.

For the case of dimension 1, Torczon [14] has recently informed us that some
convergence results for the original Nelder–Mead algorithm can be deduced from the
results in [13]; see section 4.4. For dimension 2, our results may appear weak, but the
McKinnon example [5] shows that convergence to a minimizer is not guaranteed for
general strictly convex functions in dimension 2. Because the smoothest McKinnon
example has a point of discontinuity in the fourth derivatives, a logical question is
whether or not the Nelder–Mead method converges to a minimizer in two dimensions
for a more specialized class of strictly convex functions—in particular, for smooth
functions. This remains a challenging open problem. At present there is no function
in any dimension greater than 1 for which the original Nelder–Mead algorithm has
been proved to converge to a minimizer.

Given all the known inefficiencies and failures of the Nelder–Mead algorithm (see,
for example, [12]), one might wonder why it is used at all, let alone why it is so
extraordinarily popular. We offer three answers. First, in many applications, for ex-
ample in industrial process control, one simply wants to find parameter values that
improve some performance measure; the Nelder–Mead algorithm typically produces
significant improvement for the first few iterations. Second, there are important ap-
plications where a function evaluation is enormously expensive or time-consuming,
but derivatives cannot be calculated. In such problems, a method that requires at
least n function evaluations at every iteration (which would be the case if using finite-
difference gradient approximations or one of the more popular pattern search meth-
ods) is too expensive or too slow. When it succeeds, the Nelder–Mead method tends
to require substantially fewer function evaluations than these alternatives, and its rel-
ative “best-case efficiency” often outweighs the lack of convergence theory. Third, the
Nelder–Mead method is appealing because its steps are easy to explain and simple to
program.

In light of weaknesses exposed by the McKinnon counterexample and the analysis
here, future work involves developing methods that retain the good features of the
Nelder–Mead method but are more reliable and efficient in theory and practice; see,
for example, [2].

The contents of this paper are as follows. Section 2 describes the Nelder–Mead
algorithm, and section 3 gives its general properties. For a strictly convex function

2By M -step linear convergence we mean that there is an integer M , independent of the function
being minimized, such that the simplex diameter is reduced by a factor no less than 1/2 after M
iterations.

PROPERTIES OF NELDER–MEAD 115

with bounded level sets, section 4 analyzes the Nelder–Mead method in one dimen-
sion, and section 5 presents limited convergence results for the standard Nelder–Mead
algorithm in two dimensions. Finally, section 6 discusses open problems.

2. The Nelder–Mead algorithm. The Nelder–Mead algorithm [6] was pro-
posed as a method for minimizing a real-valued function f(x) for x ∈ Rn. Four scalar
parameters must be specified to define a complete Nelder–Mead method: coefficients
of reflection (ρ), expansion (χ), contraction (γ), and shrinkage (σ). According to the
original Nelder–Mead paper, these parameters should satisfy

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, and 0 < σ < 1.(2.1)

(The relation χ > ρ, while not stated explicitly in the original paper, is implicit in
the algorithm description and terminology.) The nearly universal choices used in the
standard Nelder–Mead algorithm are

ρ = 1, χ = 2, γ = 1
2 , and σ = 1

2 .(2.2)

We assume the general conditions (2.1) for the one-dimensional case but restrict our-
selves to the standard case (2.2) in the two-dimensional analysis.

2.1. Statement of the algorithm. At the beginning of the kth iteration, k ≥ 0,
a nondegenerate simplex ∆k is given, along with its n + 1 vertices, each of which is
a point in Rn. It is always assumed that iteration k begins by ordering and labeling

these vertices as x
(k)
1 , . . . , x

(k)
n+1, such that

f
(k)
1 ≤ f (k)

2 ≤ · · · ≤ f (k)
n+1,(2.3)

where f
(k)
i denotes f(x

(k)
i). The kth iteration generates a set of n + 1 vertices that

define a different simplex for the next iteration, so that ∆k+1 6= ∆k. Because we seek

to minimize f , we refer to x
(k)
1 as the best point or vertex, to x

(k)
n+1 as the worst point,

and to x
(k)
n as the next-worst point. Similarly, we refer to f

(k)
n+1 as the worst function

value, and so on.
The 1965 paper [6] contains several ambiguities about strictness of inequalities

and tie-breaking that have led to differences in interpretation of the Nelder–Mead
algorithm. What we shall call “the” Nelder–Mead algorithm (Algorithm NM) includes
well-defined tie-breaking rules, given below, and accepts the better of the reflected
and expanded points in step 3 (see the discussion in section 3.1 about property 4 of
the Nelder–Mead method).

A single generic iteration is specified, omitting the superscript k to avoid clutter.
The result of each iteration is either (1) a single new vertex—the accepted point—
which replaces xn+1 in the set of vertices for the next iteration, or (2) if a shrink is
performed, a set of n new points that, together with x1, form the simplex at the next
iteration.

One iteration of Algorithm NM (the Nelder–Mead algorithm).
1. Order. Order the n + 1 vertices to satisfy f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1),

using the tie-breaking rules given below.
2. Reflect. Compute the reflection point xr from

xr = x̄ + ρ(x̄− xn+1) = (1 + ρ)x̄− ρxn+1,(2.4)

116 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

where x̄ =
∑n
i=1 xi/n is the centroid of the n best points (all vertices except for

xn+1). Evaluate fr = f(xr).
If f1 ≤ fr < fn, accept the reflected point xr and terminate the iteration.

3. Expand. If fr < f1, calculate the expansion point xe,

xe = x̄ + χ(xr − x̄) = x̄ + ρχ(x̄− xn+1) = (1 + ρχ)x̄− ρχxn+1,(2.5)

and evaluate fe = f(xe). If fe < fr, accept xe and terminate the iteration; otherwise
(if fe ≥ fr), accept xr and terminate the iteration.

4. Contract. If fr ≥ fn,
perform a contraction between x̄ and the better of xn+1 and xr.
a. Outside. If fn ≤ fr < fn+1 (i.e., xr is strictly better than xn+1), perform an
outside contraction: calculate

xc = x̄ + γ(xr − x̄) = x̄ + γρ(x̄− xn+1) = (1 + ργ)x̄− ργxn+1,(2.6)

and evaluate fc = f(xc). If fc ≤ fr, accept xc and terminate the iteration; otherwise,
go to step 5 (perform a shrink).
b. Inside. If fr ≥ fn+1, perform an inside contraction: calculate

xcc = x̄− γ(x̄− xn+1) = (1− γ)x̄ + γxn+1,(2.7)

and evaluate fcc = f(xcc). If fcc < fn+1, accept xcc and terminate the iteration;
otherwise, go to step 5 (perform a shrink).

5. Perform a shrink step. Evaluate f at the n points vi = x1 + σ(xi − x1),
i = 2, . . . , n+ 1. The (unordered) vertices of the simplex at the next iteration consist
of x1, v2, . . . , vn+1.

Figures 1 and 2 show the effects of reflection, expansion, contraction, and shrink-
age for a simplex in two dimensions (a triangle), using the standard coefficients ρ = 1,
χ = 2, γ = 1

2 , and σ = 1
2 . Observe that, except in a shrink, the one new vertex always

lies on the (extended) line joining x̄ and xn+1. Furthermore, it is visually evident that
the simplex shape undergoes a noticeable change during an expansion or contraction
with the standard coefficients.

The Nelder–Mead paper [6] did not describe how to order points in the case of
equal function values. We adopt the following tie-breaking rules, which assign to

the new vertex the highest possible index consistent with the relation f(x
(k+1)
1) ≤

f(x
(k+1)
2) ≤ · · · ≤ f(x

(k+1)
n+1).

Nonshrink ordering rule. When a nonshrink step occurs, the worst vertex

x
(k)
n+1 is discarded. The accepted point created during iteration k, denoted by v(k),

becomes a new vertex and takes position j + 1 in the vertices of ∆k+1, where

j = max
0≤`≤n

{ ` | f(v(k)) < f(x
(k)
`+1) };

all other vertices retain their relative ordering from iteration k.

Shrink ordering rule. If a shrink step occurs, the only vertex carried over

from ∆k to ∆k+1 is x
(k)
1 . Only one tie-breaking rule is specified, for the case in which

x
(k)
1 and one or more of the new points are tied as the best point: if

min{f(v
(k)
2), . . . , f(v

(k)
n+1)} = f(x

(k)
1),

PROPERTIES OF NELDER–MEAD 117

x̄

xr

x3

x̄

xr

xe

x3

Fig. 1. Nelder–Mead simplices after a reflection and an expansion step. The original simplex is
shown with a dashed line.

x̄

xr

xc

x3

x̄

xcc

x3

x1

Fig. 2. Nelder–Mead simplices after an outside contraction, an inside contraction, and a shrink.
The original simplex is shown with a dashed line.

then x
(k+1)
1 = x

(k)
1 . Beyond this, whatever rule is used to define the original ordering

may be applied after a shrink.

We define the change index k∗ of iteration k as the smallest index of a vertex
that differs between iterations k and k + 1:

k∗ = min{ i | x
(k)
i 6= x

(k+1)
i }.(2.8)

(Tie-breaking rules are needed to define a unique value of k∗.) When Algorithm NM
terminates in step 2, 1 < k∗ ≤ n; with termination in step 3, k∗ = 1; with termination
in step 4, 1 ≤ k∗ ≤ n + 1; and with termination in step 5, k∗ = 1 or 2. A statement
that “xj changes” means that j is the change index at the relevant iteration.

The rules and definitions given so far imply that, for a nonshrink iteration,

118 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

f
(k+1)
j = f

(k)
j and x

(k+1)
j = x

(k)
j , j < k∗;

f
(k+1)
k∗ < f

(k)
k∗ and x

(k+1)
k∗ 6= x

(k)
k∗ ;(2.9)

f
(k+1)
j = f

(k)
j−1 and x

(k+1)
j = x

(k)
j−1, j > k∗.

Thus the vector (f
(k)
1 , . . . , f

(k)
n+1) strictly lexicographically decreases at each nonshrink

iteration.
For illustration, suppose that n = 4 and the vertex function values at a nonshrink

iteration k are (1, 2, 2, 3, 3). If f(v(k)) = 2, the function values at iteration k + 1 are

(1, 2, 2, 2, 3), x
(k+1)
4 = v(k), and k∗ = 4. This example shows that, following a single

nonshrink iteration, the worst function value need not strictly decrease; however, the
worst function value must strictly decrease after at most n+ 1 consecutive nonshrink
iterations.

2.2. Matrix notation. It is convenient to use matrix notation to describe
Nelder–Mead iterations. The simplex ∆k can be represented as an n× (n+ 1) matrix
whose columns are the vertices

∆k =
(

x
(k)
1 · · · x

(k)
n+1

)
=
(
Bk x

(k)
n+1

)
, where Bk =

(
x

(k)
1 · · · x(k)

n

)
.

For any simplex ∆k in Rn, we define Mk as the n × n matrix whose jth column

represents the “edge” of ∆k between x
(k)
j and x

(k)
n+1:

Mk ≡
(

x
(k)
1 − x

(k)
n+1 x

(k)
2 − x

(k)
n+1 · · · x(k)

n − x
(k)
n+1

)
= Bk − x

(k)
n+1e

T ,(2.10)

where e = (1, 1, . . . , 1)T . The n-dimensional volume of ∆k is given by

vol(∆k) =
|det(Mk)|

n!
.(2.11)

A simplex ∆k is nondegenerate if Mk is nonsingular or, equivalently, if vol(∆k) > 0.
The volume of the simplex obviously depends only on the coordinates of the vertices,
not on their ordering. For future reference, we define the diameter of ∆k as

diam(∆k) = max
i 6=j
‖x(k)

i − x
(k)
j ‖,

where ‖·‖ denotes the two-norm.
During a nonshrink iteration, the function is evaluated only at trial points of the

form

z(k)(τ) := x̄(k) + τ(x̄(k) − x
(k)
n+1) = (1 + τ)x̄(k) − τx(k)

n+1,(2.12)

where the coefficient τ has one of four possible values:

τ = ρ (reflection); τ = ρχ (expansion);(2.13)

τ = ργ (outside contraction); τ = −γ (inside contraction).

In a nonshrink step, the single accepted point is one of the trial points, and we let
τk denote the coefficient associated with the accepted point at iteration k. Thus the

new vertex v(k) produced during iteration k, which will replace x
(k)
n+1, is given by

v(k) = z(k)(τk). We sometimes call τk the type of move for a nonshrink iteration k.

PROPERTIES OF NELDER–MEAD 119

During the kth Nelder–Mead iteration, (2.12) shows that each trial point (reflection,
expansion, contraction) may be written as

z(k)(τ) = ∆kt(τ), where t(τ) =

(
1 + τ

n
, . . . ,

1 + τ

n
,−τ

)T
.(2.14)

Following the kth Nelder–Mead iteration, the (unordered) vertices of the next
simplex are the columns of ∆kSk, where Sk is an (n+ 1)× (n+ 1) matrix given by In

(1 + τk)

n
e

0T −τk

 for a step of type τ and by

(
1 (1− σ)eT

0 σIn

)

for a shrink step, with 0 being an n-dimensional zero column and In being the n-
dimensional identity matrix. After being ordered at the start of iteration k + 1, the
vertices of ∆k+1 satisfy

∆k+1 = ∆kTk, with Tk = SkPk,(2.15)

where Pk is a permutation matrix chosen to enforce the ordering and tie-breaking
rules (so that Pk depends on the function values at the vertices).

The updated simplex ∆k+1 has a disjoint interior from ∆k for a reflection, an
expansion, or an outside contraction, while ∆k+1 ⊆ ∆k for an inside contraction or a
shrink.

By the shape of a nondegenerate simplex, we mean its equivalence class under
similarity, i.e., ∆ and λ∆ have the same shape when λ > 0. The shape of a simplex
is determined by its angles, or equivalently by the singular values of the associated
matrix M (2.10) after scaling so that ∆ has unit volume. The Nelder–Mead method
was deliberately designed with the idea that the simplex shapes would “adapt to the
features of the local landscape” [6]. The Nelder–Mead moves apparently permit any
simplex shape to be approximated—in particular, arbitrarily flat or needle-shaped
simplices (as in the McKinnon examples [5]) are possible.

3. Properties of the Nelder–Mead algorithm. This section establishes var-
ious basic properties of the Nelder–Mead method. Although there is a substantial
level of folklore about the Nelder–Mead method, almost no proofs have appeared in
print, so we include details here.

3.1. General results. The following properties follow immediately from the
definition of Algorithm NM.

1. A Nelder–Mead iteration requires one function evaluation when the iteration
terminates in step 2, two function evaluations when termination occurs in step 3 or
step 4, and n+ 2 function evaluations if a shrink step occurs.

2. The “reflect” step is so named because the reflection point xr (2.4) is a
(scaled) reflection of the worst point xn+1 around the point x̄ on the line through
xn+1 and x̄. It is a genuine reflection on this line when ρ = 1, which is the standard
choice for the reflection coefficient.

3. For general functions, a shrink step can conceivably lead to an increase in

every vertex function value except f1, i.e., it is possible that f
(k+1)
i > f

(k)
i for 2 ≤ i ≤

n+ 1. In addition, observe that with an outside contraction (case 4a), the algorithm
takes a shrink step if f(xc) > f(xr), even though a new point xr has already been
found that strictly improves over the worst vertex, since f(xr) < f(xn+1).

120 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

4. In the expand step, the method in the original Nelder–Mead paper accepts
xe if f(xe) < f1 and accepts xr otherwise. Standard practice today (which we follow)
accepts the better of xr and xe if both give an improvement over x1. The proofs of
Lemmas 4.6 and 5.2 depend on the rule that the expansion point is accepted only if
it is strictly better than the reflection point.

It is commonly (and correctly) assumed that nondegeneracy of the initial simplex
∆0 implies nondegeneracy of all subsequent Nelder–Mead simplices. We first give
an informal indication of why this property holds. By construction, each trial point
(2.12) in the Nelder–Mead method lies strictly outside the face defined by the n best
vertices, along the line joining the worst vertex to the centroid of that face. If a
nonshrink iteration occurs, the worst vertex is replaced by one of the trial points. If
a shrink iteration occurs, each current vertex except the best is replaced by a point
that lies a fraction of the step to the current best vertex. In either case it is clear
from the geometry that the new simplex must be nondegenerate. For completeness,
we present a proof of nondegeneracy based on a useful result about the volumes of
successive simplices.

Lemma 3.1. (Volume and nondegeneracy of Nelder–Mead simplices.)
(1) If the initial simplex ∆0 is nondegenerate, so are all subsequent Nelder–Mead

simplices.
(2) Following a nonshrink step of type τ , vol(∆k+1) = |τ | vol(∆k).
(3) Following a shrink step at iteration k, vol(∆k+1) = σn vol(∆k).

Proof. A simplex ∆ is nondegenerate if it has nonzero volume. Result (1) will
follow immediately from (2) and (3) because τ 6= 0 (see (2.13)) and σ 6= 0.

When iteration k is a nonshrink, we assume without loss of generality that the
worst point is the origin. In this case, it follows from (2.14) that the new vertex is

v(k) = Mkw, where w =

(
1 + τ

n
, · · · , 1 + τ

n

)T
,(3.1)

so that the vertices of ∆k+1 consist of the vector Mkw and the columns of Mk. Since
the volume of the new simplex does not depend on the ordering of the vertices, we
may assume without affecting the volume that the new vertex is the worst. Applying
the form of M in (2.10), we have

|det(Mk+1)| = |det(Mk −MkweT)| = |det(Mk)| |det(I −weT)|.

The matrix I − weT has n − 1 eigenvalues of unity and one eigenvalue equal to
1−wTe = −τ , so that det(I −weT) = −τ . Application of (2.11) gives result (2).

If iteration k is a shrink step, each edge of the simplex is multiplied by σ. Thus
Mk+1 is a permutation of σMk and result (3) for a shrink follows from a standard
property of determinants for n× n matrices.

Lemma 3.1 shows that, in any dimension, a reflection step with ρ = 1 preserves
volume. The choice ρ = 1 is natural geometrically, since a reflection step is then a
genuine reflection. A reflected simplex with ρ = 1 is necessarily congruent to the
original simplex for n = 1 and n = 2, but this is no longer true for n ≥ 3.

Note that, although the Nelder–Mead simplices are nondegenerate in exact arith-
metic, there is in general no upper bound on cond(Mk). In fact, the algorithm permits
cond(Mk) to become arbitrarily large, as it does in the McKinnon example [5].

Our next result involves affine-invariance of the Nelder–Mead method when both
the simplex and function are transformed appropriately.

PROPERTIES OF NELDER–MEAD 121

Lemma 3.2. (Affine-invariance.) The Nelder–Mead method is invariant under
affine motions of Rn, i.e., under a change of variables φ(x) = Ax + b in which A
is invertible, in the following sense: when minimizing f(x) starting with simplex ∆0,
the complete sequence of Nelder–Mead steps and function values is the same as when
minimizing the function f̃(z) = f(φ(z)) with initial simplex ∆̃0 defined by

∆̃0 = φ−1(∆0) = A−1(∆0)−A−1b.

Proof. At the vertices of ∆̃0, f̃(x̃
(0)
i) = f(x

(0)
i). We proceed by induction,

assuming for simplicity that b = 0. If ∆̃k = A−1∆k and f̃(x̃
(k)
i) = f(x

(k)
i) for

1 ≤ i ≤ n + 1, then relation (2.14) shows that the trial points generated from ∆̃k

satisfy z̃(τ) = A−1z(τ), which means that f̃(z̃(τ)) = f(z(τ)). The matrix Tk of (2.15)
will therefore be the same for both ∆k and ∆̃k, so that ∆̃k+1 = A−1∆k+1. It follows

that f̃(x̃
(k+1)
i) = f(x

(k+1)
i) for 1 ≤ i ≤ n + 1, which completes the induction. A

similar argument applies when b 6= 0.

Using Lemma 3.2, we can reduce the study of the Nelder–Mead algorithm for
a general strictly convex quadratic function on Rn to the study of f(x) = ‖x‖2 =
x2

1 + · · ·+ x2
n.

The next lemma summarizes several straightforward results.

Lemma 3.3. Let f be a function that is bounded below on Rn. When the Nelder–
Mead algorithm is applied to minimize f , starting with a nondegenerate simplex ∆0,
then

(1) the sequence {f (k)
1 } always converges;

(2) at every nonshrink iteration k, f
(k+1)
i ≤ f

(k)
i for 1 ≤ i ≤ n + 1, with strict

inequality for at least one value of i;
(3) if there are only a finite number of shrink iterations, then

(i) each sequence {f (k)
i } converges as k →∞ for 1 ≤ i ≤ n+ 1,

(ii) f∗i ≤ f (k)
i for 1 ≤ i ≤ n+ 1 and all k, where f∗i = limk→∞ f

(k)
i ,

(iii) f∗1 ≤ f∗2 ≤ · · · ≤ f∗n+1;
(4) if there are only a finite number of nonshrink iterations, then all simplex

vertices converge to a single point.

We now analyze the Nelder–Mead algorithm in the case when only nonshrink steps
occur. Torczon [12] observes that shrink steps essentially never happen in practice (she
reports only 33 shrink steps in 2.9 million Nelder–Mead iterations on a set of general
test problems), and the rarity of shrink steps is confirmed by our own numerical
experiments. We show in Lemma 3.5 that no shrink steps are taken when the Nelder–
Mead method is applied to a strictly convex function. All of our results that assume
no shrink steps can obviously be applied to cases when only a finite number of shrink
steps occur.

Assuming that there are no shrink steps, the next lemma gives an important
property of the n+1 limiting vertex function values whose existence is verified in part
(3) of Lemma 3.3.

Lemma 3.4. (Broken convergence.) Suppose that the function f is bounded below
on Rn, that the Nelder–Mead algorithm is applied to f beginning with a nondegenerate
initial simplex ∆0, and that no shrink steps occur. If there is an integer j, 1 ≤ j ≤ n,
for which

f∗j < f∗j+1, where f∗j = lim
k→∞

f
(k)
j ,(3.2)

122 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

then there is an iteration index K such that for all k ≥ K, the change index satisfies

k∗ > j,(3.3)

i.e., the first j vertices of all simplices remain fixed after iteration K. (We refer to
property (3.2) as broken convergence for vertex j.)

Proof. The lemma is proved by contradiction. By hypothesis (3.2), f∗j + δ = f∗j+1

for some δ > 0. Pick ε > 0 such that δ − ε > 0. Since f∗j = limk→∞ f
(k)
j , there exists

K such that for all k ≥ K, f
(k)
j − ε ≤ f∗j . Then, for all k ≥ K,

f
(k)
j < f

(k)
j − ε+ δ ≤ f∗j + δ = f∗j+1.

But, from Lemma 3.3, part (3), for any index `, f∗j+1 ≤ f (`)
j+1. Therefore, for all k ≥ K

and any `,

f
(k)
j < f

(`)
j+1.(3.4)

But if k∗ ≤ j for any k ≥ K, then, using the third relation in (2.9), it must be true

that f
(k+1)
j+1 = f

(k)
j , which contradicts (3.4). Thus k∗ > j for all k ≥ K.

The following corollary is an immediate consequence of Lemma 3.4.
Corollary 3.1. Assume that f is bounded below on Rn, the Nelder–Mead algo-

rithm is applied beginning with a nondegenerate initial simplex ∆0, and no shrink steps
occur. If the change index is 1 infinitely often, i.e., the best point changes infinitely
many times, then f∗1 = · · · = f∗n+1.

3.2. Results for strictly convex functions. Without further assumptions,
very little more can be said about the Nelder–Mead algorithm, and we henceforth
assume that f is strictly convex.

Definition 3.1. (Strict convexity.)The function f is strictly convex on Rn if,
for every pair of points y, z with y 6= z and every λ satisfying 0 < λ < 1,

f(λy + (1− λ)z) < λf(y) + (1− λ)f(z).(3.5)

When f is strictly convex on Rn and

c =
∑̀
i=1

λizi, with 0 < λi < 1 and
∑̀
i=1

λi = 1,

then f(c) <
∑̀
i=1

λif(zi) and hence f(c) < max{f(z1), . . . , f(z`)}.(3.6)

We now use this property to show that, when the Nelder–Mead method is applied
to a strictly convex function, shrink steps cannot occur. (This result is mentioned
without proof in [12].)

Lemma 3.5. Assume that f is strictly convex on Rn and that the Nelder–Mead
algorithm is applied to f beginning with a nondegenerate initial simplex ∆0. Then no
shrink steps will be taken.

Proof. Shrink steps can occur only if the algorithm reaches step 4 of Algorithm
NM and fails to accept the relevant contraction point. When n = 1, f(x̄) = fn. When
n > 1, application of (3.6) to x1, . . . , xn shows that f(x̄) < fn.

PROPERTIES OF NELDER–MEAD 123

Consider an outside contraction, which is tried if fn ≤ fr < fn+1. Since the
contraction coefficient γ satisfies 0 < γ < 1, xc as defined by (2.6) is a convex
combination of x̄ and the reflection point xr. Thus, by (3.6),

f(xc) < max{f(x̄), fr}.
We know that f(x̄) ≤ fn and fn ≤ fr, so that max{f(x̄), fr} = fr. Hence f(xc) < fr,
xc will be accepted, and a shrink step will not be taken.

A similar argument applies for an inside contraction, since fn+1 ≤ fr and xcc is
a convex combination of x̄ and xn+1.

Note that simple convexity of f (for example, f constant) is not sufficient for this
result, which depends in the case of an inside contraction on the fact that f(xcc) is
strictly less than f(xn+1).

By combining the definition of a Nelder–Mead iteration, Lemma 3.4, and a mild
further restriction on the reflection and contraction coefficients, we next prove that
the limiting worst and next-worst function values are the same. (For n = 1, the result
holds without the additional restriction; see Lemma 4.4).

Lemma 3.6. Assume that f is strictly convex on Rn and bounded below. If, in
addition to the properties ρ > 0 and 0 < γ < 1, the reflection coefficient ρ and the
contraction coefficient γ satisfy ργ < 1, then

(1) f∗n = f∗n+1; and

(2) there are infinitely many iterations for which x
(k+1)
n 6= x

(k)
n .

Proof. The proof is by contradiction. Assume that f∗n < f∗n+1. From Lemma 3.4,
this means that there exists an iteration index K such that the change index k∗ = n+1
for k ≥ K. Without loss of generality, we may take K = 0. Since k∗ = n + 1 for all
k ≥ 0, the best n vertices, which must be distinct, remain constant for all iterations;
thus the centroid x̄(k) = x̄, a constant vector, and f(xn) is equal to its limiting value
f∗n. Because f is strictly convex, f(x̄) ≤ f(xn) = f∗n. (This inequality is strict if
n > 1.)

The change index will be n + 1 at every iteration only if a contraction point is

accepted and becomes the new worst point. Therefore, the vertex x
(k+1)
n+1 satisfies one

of the recurrences

x
(k+1)
n+1 = (1 + ργ)x̄− ργx

(k)
n+1 or x

(k+1)
n+1 = (1− γ)x̄ + γx

(k)
n+1.(3.7)

The homogeneous forms of these equations are

y
(k+1)
n+1 = −ργy

(k)
n+1 or y

(k+1)
n+1 = γy

(k)
n+1.(3.8)

Since 0 < γ < 1 and 0 < ργ < 1, we have limk→∞ y
(k)
n+1 = 0, so that the solutions of

both equations in (3.8) are zero as k →∞.
Now we need only to find a particular solution to the inhomogeneous forms of

(3.7). Both are satisfied by the constant vector x̄, so that their general solutions are

given by x
(k)
n+1 = y

(k)
n+1 + x̄, where y

(k)
n+1 satisfies one of the relations (3.8). Since

limk→∞ y
(k)
n+1 = 0, it follows that

lim
k→∞

x
(k)
n+1 = x∗n+1 = x̄, with f∗n+1 = f(x̄).

But we know from the beginning of the proof that f(x̄) ≤ f∗n, which means that
f∗n+1 ≤ f∗n. Lemma 3.3, part (3), shows that this can be true only if f∗n = f∗n+1, which
gives part (1).

124 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

The result of part (2) is immediate because we have already shown a contradiction

if there exists K such that x
(k)
1 , . . . , x

(k)
n remain constant for k ≥ K.

In analyzing convergence, we know from Lemma 3.4 that, if broken convergence

occurs, there exists an index j such that all vertices {x(k)
i }, for 1 ≤ i ≤ j, remain

constant from some point on. If this happens, the best point x
(k)
1 will not be changed,

and hence expansion steps cannot occur. (Nor can reflection steps in which a strict
improvement is found over f1.) For this reason, it is interesting to consider a restricted
Nelder–Mead algorithm in which expansion steps are not taken; the analysis of the
restricted algorithm is simpler because both vol(∆k) and diam(∆k) are nonincreasing
if ρ ≤ 1. We do not discuss the restricted algorithm further in this paper, but see [3].

In the remainder of this paper we consider strictly convex functions f with
bounded level sets. The level set Γµ(f) is defined as

Γµ(f) = { x : f(x) ≤ µ }.(3.9)

A function f has bounded level sets if Γµ(f) is bounded for every µ; this restriction
excludes strictly convex functions like e−x. The point of this restriction is that a
strictly convex function with bounded level sets has a unique minimizer xmin.

4. Nelder–Mead in dimension 1 for strictly convex functions. We an-
alyze the Nelder–Mead algorithm in dimension 1 on strictly convex functions with
bounded level sets. The behavior of the Nelder–Mead algorithm in dimension 1 de-
pends nontrivially on the values of the reflection coefficient ρ, the expansion coefficient
χ, and the contraction coefficient γ. (The shrink coefficient σ is irrelevant because
shrink steps cannot occur for a strictly convex function; see Lemma 3.5.) We show
that convergence to xmin always occurs as long as ρχ ≥ 1 (Theorem 4.1) and that
convergence is M -step linear when ρ = 1 (Theorem 4.2). The algorithm does not
always converge to the minimizer xmin if ρχ < 1. An interesting feature of the analy-
sis is that M -step linear convergence can be guaranteed even though infinitely many
expansion steps may occur.

4.1. Special properties in one dimension. In one dimension, the “next-
worst” and the “best” vertices are the same point, which means that the centroid x̄(k)

is equal to x
(k)
1 at every iteration. A Nelder–Mead simplex is a line segment, so that,

given iteration k of type τk,

diam(∆k+1) = |τk|diam(∆k).(4.1)

Thus, in the special case of the standard parameters ρ = 1 and χ = 2, a reflection step
retains the same diameter and an expansion step doubles the diameter of the simplex.
To deal with different orderings of the endpoints, we use the notation int(y, z) to
denote the open interval with endpoints y and z (even if y > z), with analogous
notation for closed or semiopen intervals.

The following lemma summarizes three important properties, to be used repeat-
edly, of strictly convex functions in R1 with bounded level sets.

Lemma 4.1. Let f be a strictly convex function on R1 with a unique minimizer
xmin.

(1) Let y1, y2, and y3 be three distinct points such that y2 ∈ int(y1, y3). Then

f(y1) ≥ f(y2) and f(y2) ≤ f(y3) =⇒ xmin ∈ int(y1, y3).

PROPERTIES OF NELDER–MEAD 125

(2) If xmin ∈ int[y1, y2], then f(y2 + ξ2(y1 − y2)) > f(y2 + ξ1(y1 − y2)) if ξ2 >
ξ1 ≥ 1.

(3) f is continuous.

A special property of the one-dimensional case is that a Nelder–Mead iteration
can never terminate in step 2 of Algorithm NM (see section 2): either a contraction
will be taken (step 4), or an expansion step will be tried (step 3). Using the rule
in step 3 that we must accept the better of the reflection and expansion points, a
reflection step will be taken only if fr < f1 and fe ≥ fr.

4.2. Convergence to the minimizer. We first consider general Nelder–Mead
parameters satisfying (2.1) and show that the condition ρχ ≥ 1 is necessary for the
global convergence of the algorithm to xmin. If ρχ < 1, the so-called “expand” step
actually reduces the simplex diameter, and the endpoints of the Nelder–Mead interval

can move a distance of at most diam(∆0)/(1− ρχ) from the initial vertex x
(0)
1 . Thus

convergence to xmin will not occur whenever

ρχ < 1 and |xmin − x(0)
1 | > diam(∆0)/(1− ρχ).

We next show the general result that the condition ρχ ≥ 1, combined with the
requirements (2.1), is sufficient for global convergence to xmin of the Nelder–Mead
algorithm in one dimension.

Theorem 4.1. (Convergence of one-dimensional Nelder–Mead method.) Let f
be a strictly convex function on R1 with bounded level sets. Assume that the Nelder–
Mead algorithm is applied to f with parameters satisfying ρ > 0, χ > 1, χ > ρ,
ρχ ≥ 1, and 0 < γ < 1, beginning with a nondegenerate initial simplex ∆0. Then both
endpoints of the Nelder–Mead interval converge to xmin.

The proof of this theorem depends on several intermediate lemmas. First we
show that the Nelder–Mead algorithm finds, within a finite number of iterations, an
“interval of uncertainty” in which the minimizer must lie.

Lemma 4.2. (Bracketing of xmin.) Let f be a strictly convex function on R1 with
bounded level sets. Assume that the Nelder–Mead algorithm is applied to f beginning
with a nondegenerate initial simplex ∆0 and that the reflection and expansion coeffi-
cients satisfy ρ > 0, χ > 1, χ > ρ, and ρχ ≥ 1. Then there is a smallest integer K
satisfying

K ≤ |xmin − x(0)
1 |

diam(∆0)
, such that f

(K)
2 ≥ f (K)

1 and f
(K)
1 ≤ f (K)

e .(4.2)

In this case, xmin ∈ int(x
(K)
2 , x

(K)
e) and we say that xmin is bracketed by x

(K)
2 and

x
(K)
e .

Proof. To reduce clutter, we drop the superscript k and use a prime to denote
quantities associated with iteration k + 1. By definition, f2 ≥ f1, so that the first
inequality in the “up–down–up” relation involving f in (4.2) holds automatically for
every Nelder–Mead interval. There are two possibilities.

(i) If f1 ≤ fe, the “up–down–up” pattern of f from (4.2) holds at the current
iteration.

(ii) If f1 > fe, we know from strict convexity that fr < f1, and the expansion
point is accepted. At the next iteration, x′2 = x1 and x′1 = xe. There are two cases
to consider.

126 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

First, suppose that xmin lies in int(x′2, x
′
1] = int(x1, xe]. Using result (2) of

Lemma 4.1, both f(x′r) and f(x′e) must be strictly larger than f(x′1). Hence the
“up–down–up” pattern of (4.2) holds at the next iteration.

Alternatively, suppose that xmin lies “beyond” xe, i.e., beyond x′1. Then

|xmin − x′1| = |xmin − x1| − diam(∆′).

It follows from (4.1) and the inequality ρχ ≥ 1 that diam(∆′) = ρχdiam(∆) ≥
diam(∆). Thus the distance from xmin to the current best point is reduced by an
amount bounded below by ∆0, the diameter of the initial interval. This gives the
upper bound on K of (4.2).

The next result shows that, once xmin lies in a specified interval defined by the
current Nelder–Mead interval and a number depending only on the reflection, expan-
sion, and contraction coefficients, it lies in an analogous interval at all subsequent
iterations.

Lemma 4.3. Let f be a strictly convex function on R1 with bounded level sets.
Assume that the Nelder–Mead algorithm with parameters satisfying ρ > 0, χ > 1,
χ > ρ, ρχ ≥ 1, and 0 < γ < 1, is applied to f beginning with a nondegenerate initial
simplex. We define NNM as

NNM = max
(1

ργ
,
ρ

γ
, ρχ, χ− 1

)
,(4.3)

and we say that the proximity property holds at iteration k if

xmin ∈ int
(
x

(k)
2 , x

(k)
1 +NNM(x

(k)
1 − x(k)

2)
]
.(4.4)

Then, if the proximity property holds at iteration k, it holds at iteration k + 1.
Proof. To reduce clutter, we omit the index k and use a prime to denote quantities

associated with iteration k + 1. The proof considers all possible cases for location
of xmin in the interval defined by (4.4). We have either x2 < x1 < xr < xe or
xe < xr < x1 < x2.

Case 1. xmin ∈ int(x2, x1].
Lemma 4.1, part (2), implies that fr > f1, which means that a contraction step

will be taken.
1a. If fr ≥ f2, an inside contraction will occur, with xcc = x1 − γ(x1 − x2). Strict
convexity implies that fcc < f2.

(i) If fcc ≥ f1, xmin lies in int(xcc, x1]. The next Nelder–Mead interval is given
by x′2 = xcc and x′1 = x1, which means that xmin ∈ int(x′2, x

′
1], and the proximity

property holds at the next iteration.
(ii) If fcc < f1, the next Nelder–Mead interval is x′2 = x1 and x′1 = xcc. We also

know that xmin 6= x1, so that xmin ∈ int(x2, x1) = int(x2, x
′
2). To check whether (4.4)

holds, we express x2 in terms of the new Nelder–Mead interval as x2 = x′1 +ξ(x′1−x′2).
Using the definition of xcc gives

x2 = xcc + ξ(xcc − x1) = x1 + γ(x2 − x1) + ξγ(x2 − x1), so that ξ = 1/γ − 1.

For ρ > 1, we have 1/γ − 1 < ρ/γ ≤ NNM , while for 0 < ρ ≤ 1 we have 1/γ − 1 <
1/(ργ) ≤ NNM , so that the proximity property (4.4) holds at the next iteration.

1b. If fr < f2, an outside contraction will occur, with xc = x1 + ργ(x1 − x2). Since
xmin ∈ int(x2, x1], part (2) of Lemma 4.1 implies that fc > f1. The new Nelder–Mead

PROPERTIES OF NELDER–MEAD 127

interval is given by x′2 = xc and x′1 = x1, and the interval of uncertainty remains
int(x2, x

′
1]. Expressing x2 as x′1 + ξ(x′1 − x′2) gives

x2 = x1 + ξ(x1 − xc) = x1 − ξργ(x1 − x2), so that ξ = 1/ργ ≤ NNM ,
and (4.4) holds at the next iteration.

Case 2. xmin ∈ int(x1, xr].
2a. If fr < f1, we try the expansion step xe. Part (2) of Lemma 4.1 implies that
fe > fr, which means that the reflection step is accepted, and the new Nelder–Mead
interval is x′2 = x1 and x′1 = xr. Then xmin ∈ int(x′2, x

′
1], and (4.4) holds at the next

iteration.

2b. If fr ≥ f2, an inside contraction will be taken, xcc = x1 − γ(x1 − x2). We also
know that xmin 6= xr, so that xmin ∈ int(x1, xr). Part (2) of Lemma 4.1 implies
that fcc > f1, and the next Nelder–Mead interval is x′2 = xcc and x′1 = x1, with
xmin ∈ int(x′1, xr). We express xr as x′1 + ξ(x′1 − x′2), which gives

xr = x1 +ρ(x1−x2) = x1 +ξ(x1−xcc) = x1 +ξγ(x1−x2), so that ξ = ρ/γ ≤ NNM ,
and (4.4) holds at the next iteration.

2c. If fr ≥ f1 and fr < f2, an outside contraction will be taken, xc = x1 +ργ(x1−x2).
We also know that xmin 6= xr, so that xmin ∈ int(x1, xr).

(i) If fc > f1, the new Nelder–Mead interval is x′2 = xc and x′1 = x1. Because
fc > f1, xmin ∈ int(x1, xc) = int(x′2, x

′
1), and (4.4) holds at the next iteration.

(ii) If fc < f1, the new Nelder–Mead interval is x′2 = x1 and x′1 = xc, and
xmin 6= x1. The interval of uncertainty remains int(x1, xr) = int(x′2, xr). We thus
write xr as x′1 + ξ(x′1 − x′2):

xr = xc+ξ(xc−x1) = x1 +ργ(x1−x2)+ξργ(x1−x2), so that ξ = 1/γ−1 < NNM ,

and (4.4) holds at the next iteration.
Case 3. xmin ∈ int(xr, xe].

3a. If fe ≥ fr, the new Nelder–Mead interval is x′2 = x1 and x′1 = xr; furthermore,
xmin 6= xe and xmin ∈ int(x′1, xe). Expressing xe as x′1 + ξ(x′1 − x′2) gives

xe = x1 + ρχ(x1 − x2) = x1 + ρ(x1 − x2) + ξρ(x1 − x2), so that ξ = χ− 1.

Since ξ ≤ NNM , (4.4) holds at the next iteration.

3b. If fe < fr, we accept xe. The new Nelder–Mead interval is x′2 = x1 and x′1 = xe.
Since xr lies between x1 and xe, xmin ∈ int(x′2, x

′
1) and (4.4) holds at the next iteration.

Case 4. xmin ∈ int(xe, x1 +NNM(x1 − x2)].
Case 4 can happen only if NNM > ρχ, since xe = x1 + ρχ(x1 − x2). Thus it

must be true that f1 > fr > fe, and the expansion point will be accepted. The new
Nelder–Mead interval is defined by x′2 = x1 and x′1 = xe. Writing x1 +NNM(x1 − x2)
as xe + ξ(xe − x1) gives

x1 +NNM(x1 − x2) = x1 + ρχ(x1 − x2) + ξρχ(x1 − x2), so that ξ = (NNM − ρχ)/ρχ.

Since ρχ ≥ 1, ξ < NNM and the proximity property holds at the next iteration.
Cases 1–4 are exhaustive, and the lemma is proved.
We prove that the Nelder–Mead simplex diameter converges to zero by first show-

ing that the result of Lemma 3.6 holds, i.e., the function values at the interval end-
points converge to the same value, even when ργ ≥ 1.

128 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

Lemma 4.4. Let f be a strictly convex function on R1 with bounded level sets.
Assume that the Nelder–Mead algorithm with parameters satisfying ρ > 0 and 0 <
γ < 1 is applied to f beginning with a nondegenerate initial simplex. Then f∗1 = f∗2 .

Proof. If ργ < 1, the result follows from Lemma 3.6. Hence we assume that
ργ ≥ 1, which means that ρ > 1. The proof is by contradiction, beginning as in the
proof of Lemma 3.6. If f∗1 < f∗2 , there is an iteration index K such that, for k ≥ K,
every iteration k is a contraction and x1 does not change. (Without loss of generality,
we may take K = 0.)

If iteration k is an inside contraction, diam(∆k+1) = γ diam(∆k) < diam(∆k). If
iteration k is an outside contraction, diam(∆k+1) = ργ diam(∆k) ≥ diam(∆k). Thus
limk→∞ diam(∆k)→ 0 if there are a finite number of outside contractions, and so we
need to consider only the case of an infinite number of outside contractions.

Suppose that iteration k is an outside contraction. Then f
(k)
r ≥ f (k)

1 , f
(k)
r < f

(k)
2 ,

and the contraction point is x
(k)
c = x

(k)
1 + ργ(x

(k)
1 − x(k)

2). Since the best point does

not change, f
(k)
c ≥ f (k)

1 and x
(k+1)
2 = x

(k)
c . By strict convexity, f

(k)
c < f

(k)
r .

Define z(ξ) as

z(ξ) ≡ x(k)
1 + ξ

(
x

(k)
1 − x(k)

2

)
,

so that x
(k)
2 = z(−1) and x

(k)
r = z(ρ). Expressing f

(k)
2 , f

(k)
1 , and f

(k)
c in this form, we

have

f
(
z(−1)

)
> f

(
z(0)

) ≤ f
(
z(ργ)

)
= f

(k+1)
2 ,(4.5)

so that xmin ∈ int
(
z(−1), z(ργ)

)
. The relation f(z(−1)) = f

(k)
2 > f

(k+1)
2 and result

(2) of Lemma 4.1 then imply that

f(z(ξ)) > f
(k+1)
2 if ξ ≤ −1.(4.6)

The next reflection point x
(k+1)
r is given by

x(k+1)
r = x

(k)
1 + ρ(x

(k)
1 − x(k+1)

2) = x
(k)
1 − ρ2γ(x

(k)
1 − x(k)

2) = z(−ρ2γ).

Since ργ ≥ 1 and ρ > 1, we have ρ2γ > 1, and we conclude from (4.6) that f
(k+1)
r

strictly exceeds f
(k+1)
2 . Iteration k + 1 must therefore be an inside contraction, with

x(k+1)
cc = x

(k+1)
1 + γ(x

(k+1)
1 − x(k+1

2) = x
(k)
1 + ργ2(x

(k)
1 − x(k)

2) = z(ργ2).

Because x1 does not change, x
(k+2)
2 = x

(k+1)
cc and the reflection point at iteration k+2

is given by

x(k+2)
r = x

(k)
1 + ρ(x

(k)
1 − x(k+2)

2) = x
(k)
1 − ρ2γ2(x

(k)
1 − x(k)

2) = z(−ρ2γ2).

Since ρ2γ2 ≥ 1, (4.6) again implies that the value of f at x
(k+2)
r exceeds f

(k+2)
2 ,

and iteration k + 2 must be an inside contraction. Continuing, if iteration k is an
outside contraction followed by j inside contractions, the (rejected) reflection point
at iteration k + j is z(−ρ2γj) and the (accepted) contraction point is z(ργj+1).

Because of (4.6), iteration k+j must be an inside contraction as long as ρ2γj ≥ 1.
Let c∗ denote the smallest integer such that ρ2γc

∗
< 1; note that c∗ > 2. It follows

that the sequence of contractions divides into blocks, where the jth block consists of

PROPERTIES OF NELDER–MEAD 129

a single outside contraction followed by some number cj of inside contractions, with
cj ≥ c∗ in each case. Letting kj denote the iteration index at the start of the jth such
block, we have

diam(∆kj) = ργcj diam(∆kj−1
) ≤ θ diam(∆kj−1

), with θ = ργc
∗
< 1.

The simplex of largest diameter within each block occurs after the outside contraction,
and has diameter ργ diam(∆kj). Thus we have

lim
k→∞

diam(∆k)→ 0, lim
k→∞

x
(k)
2 = x

(k)
1 , and f∗2 = f∗1 ,

contradicting our assumption that f∗1 < f∗2 and giving the desired result.
We next show that in all cases the simplex diameter converges to zero, i.e., the

simplex shrinks to a point.
Lemma 4.5. Let f be a strictly convex function on R1 with bounded level sets.

Assume that the Nelder–Mead algorithm with parameters satisfying ρ > 0 and 0 <
γ < 1 is applied to f beginning with a nondegenerate initial simplex ∆0. Then
limk→∞ diam(∆k) = 0.

Proof. Lemma 4.4 shows that f∗1 = f∗2 . If f∗1 = fmin, this function value is
assumed at exactly one point, xmin, and the desired result is immediate. If f∗1 > fmin,
we know from strict convexity that f takes the value f∗1 at exactly two distinct points,
denoted by x∗1 and x∗2, with x∗1 < xmin < x∗2. The vertex function values converge
from above to their limits and f is continuous. Thus for any ε > 0 there is an iteration

index K̃ such that, for k ≥ K̃, x
(k)
1 and x

(k)
2 are confined to Iε1 ∪ Iε2, where

Iε1 = [x∗1 − ε, x∗1] and Iε2 = [x∗2, x
∗
2 + ε].(4.7)

There are two cases to consider.
Case 1. Both endpoints x

(k)
1 and x

(k)
2 lie in the same interval for infinitely many

iterations, i.e., for one of j = 1, 2, the relation

x
(k)
1 ∈ Iεj and x

(k)
2 ∈ Iεj(4.8)

holds for infinitely many k.
In this case we assert that both endpoints remain in one of these intervals for all

sufficiently large k. This result is proved by contradiction: assume that for any ε > 0

and iteration K1 where (4.8) holds, there is a later iteration K2 at which x
(K2)
1 and

x
(K2)
2 are in different intervals. Then, since diam(∆K1

) ≤ ε and diam(∆K2
) ≥ x∗2−x∗1,

we may pick ε so small that diam(∆K2
) > max(1, ρχ) diam(∆K1

). The simplex
diameter can be increased only by reflection, expansion, or outside contraction, and
the maximum factor by which the diameter can increase in a single iteration is ρχ.

If x
(K1)
1 and x

(K1)
2 are both in Iε1, then strict convexity implies that any reflection,

expansion, or outside contraction must move toward Iε2 (and vice versa if the two
vertices lie in Iε2). But if ε is small enough so that ερχ < x∗2 − x∗1, then some trial
point between iterationsK1 andK2 must lie in the open interval (x∗1, x

∗
2), and by strict

convexity its associated function value is less than f∗1 , a contradiction. We conclude

that, since the Nelder–Mead endpoints x
(k)
1 and x

(k)
2 are in Iεj for all sufficiently large

k, and since f
(k)
2 → f

(k)
1 → f∗1 , both endpoints must converge to the point x∗j , and

diam(∆k)→ 0.

130 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

Case 2. Both endpoints x
(k)
1 and x

(k)
2 are in separate intervals Iε1 and Iε2 for all

k ≥ K1.
We show by contradiction that this cannot happen because an inside contraction

eventually occurs that generates a point inside (x∗1, x
∗
2). Let x∗r denote the reflection

point for the Nelder–Mead interval [x∗1, x
∗
2], where either point may be taken as the

“best” point; we know from strict convexity that f(x∗r) > f∗1 , with f∗r = f∗1 + δr for

some δr > 0. Because f is continuous and x
(k)
r is a continuous function of x

(k)
1 and

x
(k)
2 , it follows that, given any δ > 0, eventually f

(k)
1 , f

(k)
2 , and f

(k)
r are within δ of

their limiting values. Thus, for sufficiently large k, f
(k)
r > f

(k)
2 ≥ f

(k)
1 and an inside

contraction will be taken.
Since x

(k)
1 and x

(k)
2 are in different intervals, the inside contraction point x

(k)
cc

satisfies

x∗1 − ε+ γ
(
x∗2 − (x∗1 − ε)

) ≤ x(k)
cc ≤ x∗2 + ε+ γ

(
x∗1 − (x∗2 + ε)

)
.

If ε is small enough, namely, ε < γ(x∗2 − x∗1)/(1− γ), then

x∗1 < x∗1 + γ(x∗2 − x∗1)− (1− γ)ε ≤ x(k)
cc ≤ x∗2 − γ(x∗2 − x∗1) + (1− γ)ε < x∗2,

i.e., x
(k)
cc lies in the open interval (x∗1, x

∗
2) and f(x

(k)
cc) < f∗1 , a contradiction.

We now combine these lemmas to prove Theorem 4.1.
Proof of Theorem 4.1. (Convergence of Nelder–Mead in one dimension.) Lemma

4.2 shows that xmin is eventually bracketed by the worst vertex and the expansion
point, i.e., for some iteration K,

xmin ∈ int
(
x

(K)
2 , x

(K)
1 + ρχ(x

(K)
1 − x(K)

2)
)
.

Since the constant NNM of (4.3) satisfies NNM ≥ ρχ, Lemma 4.3 shows that, for all
k ≥ K, xmin satisfies the proximity property (4.4),

xmin ∈ int
(
x

(k)
2 , x

(k)
1 +NNM(x

(k)
1 − x(k)

2)
)
,

which implies that

|xmin − x(k)
1 | ≤ NNM diam(∆k).(4.9)

Lemma 4.5 shows that diam(∆k) → 0. Combined with (4.9), this gives the desired
result.

4.3. Linear convergence with ρ = 1. When the reflection coefficient is the
standard choice ρ = 1, the Nelder–Mead method not only converges to the minimizer,
but its convergence rate is eventually M -step linear, i.e., the distance from the best
vertex to the optimal point decreases every M steps by at least a fixed multiplicative
constant less than one. This result follows from analyzing the special structure of
permitted Nelder–Mead move sequences.

Theorem 4.2. (Linear convergence of Nelder–Mead in one dimension with ρ = 1.)
Let f be a strictly convex function on R1 with bounded level sets. Assume that the
Nelder–Mead algorithm with reflection coefficient ρ = 1, and expansion and contrac-
tion coefficients satisfying χ > 1 and 0 < γ < 1, is applied to f beginning with a
nondegenerate initial simplex ∆0. Then there is an integer M depending only on χ
and γ such that

diam(∆k+M) ≤ 1
2 diam(∆k) for all k ≥ K,

where K is the iteration index defined in Lemma 4.2.

PROPERTIES OF NELDER–MEAD 131

As the first step in proving this theorem, we obtain two results unique to dimen-
sion 1 about sequences of Nelder–Mead iterations.

Lemma 4.6. Let f be a strictly convex function on R1 with bounded level sets, and
assume that the Nelder–Mead method with parameters ρ = 1, χ > 1, and 0 < γ < 1,
is applied to f beginning with a nondegenerate initial simplex. Then

(1) the number of consecutive reflections is bounded by r∗ = dχ− 1e;
(2) the iteration immediately following a reflection cannot be an expansion.

Proof. For any iteration k, define z(k)(ξ) as

z(k)(ξ) ≡ x(k)
1 + ξ

(
x

(k)
1 − x(k)

2

)
,(4.10)

so that x
(k)
2 = z(k)(−1), x

(k)
r = z(k)(1), and x

(k)
e = z(k)(χ).

If iteration k is a reflection,

f (k)
r < f

(k)
1 , f (k)

e ≥ f (k)
r , x

(k+1)
1 = x(k)

r , and x
(k+1)
2 = x

(k)
1 .(4.11)

Applying Lemma 4.1 to the first two relations in (4.11), we can see that xmin ∈
int(x

(k)
1 , x

(k)
e) and

f
(
z(k)(ξ)

) ≥ f (k+1)
1 if ξ ≥ χ.(4.12)

Starting with iteration k, the (potential) `th consecutive reflection point is given by

x(k+`−1)
r = x

(k)
1 + `(x

(k)
1 − x(k)

2) = z(k)(`),(4.13)

which can be accepted only if its function value is strictly less than f(x
(k+`−1)
1). Strict

convexity and (4.12) show that any point z(k)(ξ) with ξ ≥ χ cannot be an accepted
reflection point. Thus the number of consecutive reflections is bounded by the integer
r∗ satisfying

r∗ < χ and r∗ + 1 ≥ χ, i.e., r∗ = dχ− 1e.
This completes the proof of (1).

If iteration k is a reflection, the expansion point at iteration k + 1 is given by

x(k+1)
e = x

(k+1)
1 + χ(x

(k+1)
1 − x(k+1)

2) = x
(k)
1 + (1 + χ)(x

(k)
1 − x(k)

2) = z(k)(1 + χ).

Relation (4.12) implies that the function value at x
(k+1)
e exceeds f

(k+1)
1 , so that x

(k+1)
e

will not be accepted. This proves result (2) and shows that the iteration immediately
following a successful reflection must be either a reflection or a contraction.

Note that r∗ = 1 whenever the expansion coefficient χ ≤ 2; thus there cannot
be two consecutive reflections with the standard Nelder–Mead coefficients (2.2) for
n = 1.

As a corollary, we show that a contraction must occur no later than iteration
K + r∗, where K is the first iteration at which the minimizer is bracketed by x2 and
the expansion point (Lemma 4.2).

Corollary 4.1. Let f be a strictly convex function on R1 with bounded level
sets. Assume that the Nelder–Mead algorithm with ρ = 1 is applied to f beginning
with a nondegenerate initial simplex ∆0, and let K denote the iteration index defined

by Lemma 4.2 at which, for the first time, f
(K)
1 ≤ f

(K)
e . Then a contraction must

occur no later than iteration K + r∗.

132 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

Proof. There are two cases. If f
(K)
r ≥ f (K)

1 , iteration K is a contraction, and the

result is immediate. Otherwise, if f
(K)
r < f

(K)
1 , iteration K is a reflection. Lemma 4.6

shows that there cannot be more than r∗ consecutive reflections, and any sequence of
consecutive reflections ends with a contraction. Hence a contraction must occur no
later than iteration K + r∗.

The next lemma derives a bound on the number of consecutive expansions imme-
diately following a contraction.

Lemma 4.7. (Bounded consecutive expansions.) Let f be a strictly convex func-
tion on R1 with bounded level sets. Assume that the Nelder–Mead algorithm with
ρ = 1, χ > 1, and 0 < γ < 1 is applied to f beginning with a nondegenerate initial
simplex ∆0. Let NNM = max(χ, 1/γ), which is equivalent to its general definition (4.3)
when ρ = 1. If iteration k is a contraction, then for all subsequent iterations there
can be no more than j∗ consecutive expansion steps, where j∗ is defined as follows:

(a) if χ = NNM , j∗ = 0;
(b) if χ < NNM , j∗ is the largest integer satisfying χ+ χ2 + · · ·+ χj

∗
< NNM .

Proof. Since iteration k is a contraction, xmin ∈ int(x
(k)
2 , x

(k)
r). Thus the prox-

imity property (4.4) is satisfied at iteration k and, by Lemma 4.3, for all subsequent
iterations. The first expansion in a sequence of consecutive expansions must immedi-
ately follow a contraction (see result (2) of Lemma 4.6), and strict convexity imposes
a bound on the number of subsequent consecutive expansions.

Using the notation of (4.10), we consider inequalities that apply to the best func-

tion value f
(k+1)
1 at the next iteration, which is (possibly) the first expansion step in

a sequence of consecutive expansions.

Case 1. If f
(k)
r < f

(k)
2 , iteration k is an outside contraction with x

(k)
c = x

(k)
1 +

γ(x
(k)
1 − x(k)

2).

(i) If f
(k)
c ≥ f

(k)
1 , the next Nelder–Mead interval is defined by x

(k+1)
2 = x

(k)
c

and x
(k+1)
1 = x

(k)
1 , and xmin ∈ int(x

(k)
2 , x

(k+1)
2). (The tie-breaking rule in section 2 is

invoked if f
(k)
c = f

(k)
1 .) If an expansion occurs, the interval will expand toward x

(k)
2 ,

which satisfies

x
(k)
2 = x

(k+1)
1 +

(
xk+1

1 − x(k+1)
2

)
/γ = z(k+1)(1/γ), with f

(k)
2 > f

(k+1)
1 .(4.14)

(ii) If f
(k)
c < f

(k)
1 , the next Nelder–Mead interval is defined by x

(k+1)
2 = x

(k)
1

and x
(k+1)
1 = x

(k)
c , and xmin ∈ int(x

(k+1)
2 , x

(k)
r). Any expansion will be toward x

(k)
r ,

which satisfies

x(k)
r = x

(k+1)
1 + (1/γ − 1)

(
x

(k+1)
1 − x(k+1)

2

)
= z(k+1)(1/γ − 1),(4.15)

with f
(k)
r > f

(k+1)
1 .

Case 2. If f
(k)
r ≥ f

(k)
2 , iteration k is an inside contraction with x

(k)
cc = x

(k)
1 −

γ(x
(k)
1 − x(k)

2).

(i) If f
(k)
cc ≥ f

(k)
1 , the next Nelder–Mead interval is defined by x

(k+1)
2 = x

(k)
cc

and x
(k+1)
1 = x

(k)
1 , and xmin ∈ int(x

(k+1)
2 , x

(k)
r). (The tie-breaking rule in section 2 is

invoked if f
(k)
cc = f

(k)
1 .) If an expansion occurs, the interval will expand toward x

(k)
r ,

which satisfies

x(k)
r = x

(k+1)
1 +

(
x

(k+1)
1 − x(k+1)

2

)
/γ = z(k+1)(1/γ),(4.16)

PROPERTIES OF NELDER–MEAD 133

with f
(k)
r > f

(k+1)
1 .

(ii) If f
(k)
cc < f

(k)
1 , the next Nelder–Mead interval is defined by x

(k+1)
2 = x

(k)
1

and x
(k+1)
1 = x

(k)
cc , and xmin ∈ int(x

(k)
2 , x

(k+1)
2). Any expansion will be toward x

(k)
2 ,

which satisfies

x
(k)
2 = x

(k+1)
1 + (1/γ − 1)

(
xk+1

1 − x(k+1)
2

)
= z(k+1)(1/γ − 1),(4.17)

with f
(k)
2 > f

(k+1)
1 .

For each of the four cases 1(i)–2(ii), the value of f at z(k+1)(ξ) exceeds f
(k+1)
1 for

some ξ that is equal to or bounded above by NNM . Applying result (2) of Lemma 4.1
to the interval in which xmin lies and the corresponding expression from (4.14)–(4.17),
we conclude that, if a sequence of consecutive expansions begins at iteration k + 1,
then

f(z(k+1)(ξ)) > f(x
(k+1)
1) whenever ξ ≥ NNM .(4.18)

The remainder of the proof is similar to that of Lemma 4.6. The expansion point

at iteration k + 1 is x
(k+1)
e = z(k+1)(χ). If χ = NNM , it follows from (4.18) that this

point will not be accepted, and consequently iteration k + 1 cannot be an expansion;
this corresponds to the case j∗ = 0. If χ < NNM , then, starting with iteration k + 1,
the (potential) jth consecutive expansion point for j ≥ 1 is given by

x(k+j)
e = z(k+1)

(
χ+ χ2 + · · ·+ χj

)
.(4.19)

This point can be accepted only if its function value is strictly less than f(x
(k+j)
1),

which strictly decreases after each accepted expansion. Relations (4.18) and (4.19)

together show that, for j ≥ 1, x
(k+j)
e might be accepted only if

χ+ χ2 + · · ·+ χj < NNM .

Applying the definition of j∗, it follows that the value of j must be bounded above
by j∗.

For the standard expansion coefficient χ = 2, the value of NNM is max(2, 1/γ) and
the values of j∗ for several ranges of γ are

j∗ = 0 when 1
2 ≤ γ < 1; j∗ = 1 when 1

6 ≤ γ < 1
2 ; j∗ = 2 when 1

14 ≤ γ < 1
6 .

In the “standard” Nelder–Mead algorithm with contraction coefficient γ = 1
2 , the zero

value of j∗ means that no expansion steps can occur once the minimizer is bracketed
by the worst point and the reflection point at any iteration.

We now examine the effects of valid Nelder–Mead move sequences on the simplex
diameter.

Lemma 4.8. Let f be a strictly convex function on R1 with bounded level sets.
Assume that the Nelder–Mead algorithm with ρ = 1, χ > 1, and 0 < γ < 1 is applied
to f beginning with a nondegenerate initial simplex ∆0. Let ∆ denote the simplex
immediately following any contraction, and ∆′ the simplex immediately following the
next contraction. Then there exists a value ϕ depending only on χ and γ such that
diam(∆′) ≤ ϕdiam(∆), where ϕ < 1.

Proof. Lemma 4.7 shows that the number of consecutive expansions between any
two contractions cannot exceed j∗. Since NNM = max(1/γ, χ) and reflection does not

134 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

change the diameter, the worst-case growth occurs when j∗ expansions are followed
by a contraction, which corresponds to ϕ = χj

∗
γ. If j∗ = 0, ϕ = γ and is consequently

less than 1. If NNM = χ, j∗ must be zero. In the remaining case when NNM = 1/γ
and j∗ > 0, the condition defining j∗ (part (b) of Lemma 4.7) may be written as

γ(χ+ · · ·+ χj
∗
) < 1, which implies that ϕ = γχj

∗
< 1, the desired result.

Combining all these results, we prove M -step linear convergence of Nelder–Mead
in dimension 1 when ρ = 1.

Proof of Theorem 4.2. In proving M -step linear convergence, we use a directed
graph to depict the structure of valid Nelder–Mead move sequences. We have shown
thus far that the minimizer is bracketed at iteration K (Lemma 4.2) and that a
contraction must occur no later than iteration K+r∗ (Lemmas 4.6 and Corollary 4.1).
Thereafter, no more than j∗ consecutive expansions can occur (Lemma 4.7), and
any sequence of consecutive expansions must end with either a contraction alone
or a sequence of at most r∗ consecutive reflections followed by a contraction (see
Lemma 4.6).

The structure of legal iteration sequences following a contraction can thus be
represented by a directed graph with four states (nodes): expansion, reflection, and the
two forms of contraction. Each state is labeled by the absolute value of its move type,
so that an inside contraction is labeled “γ”, an outside contraction is labeled “ργ”,
a reflection is labeled “ρ”, and an expansion is labeled “ρχ”. For example, Figure 3
shows the graph corresponding to ρ = 1, χ = 2, and any contraction coefficient
satisfying 1

14 ≤ γ < 1
6 . For these coefficients, at most two consecutive expansion steps

can occur (j∗ = 2), and at most one consecutive reflection (r∗ = 1). (Because ρ = 1,
we have not distinguished between inside and outside contractions.)

2 2 γ

1

Fig. 3. Directed graph depicting legal Nelder–Mead moves for ρ = 1, χ = 2, and 1
14
≤ γ < 1

6
.

According to (4.1), the simplex diameter is multiplied by ρ for a reflection, ρχ
for an expansion, ργ for an outside contraction, and γ for an inside contraction.
Starting in the contraction state with initial diameter 1, the diameter of the Nelder–
Mead interval after any sequence of moves is thus the product of the state labels
encountered. The first contraction in the Nelder–Mead method can occur no later
than iteration K + r∗. Thereafter, Lemmas 4.6 and 4.7 show that any minimal cycle

PROPERTIES OF NELDER–MEAD 135

in the graph of valid Nelder–Mead moves (i.e., a cycle that does not pass through
any node twice) has length at most j∗ + r∗ + 1; Lemma 4.8 shows that the product
of state labels over any cycle in the Nelder–Mead graph cannot exceed ϕ. For any
integer m, a path of length m(j∗ + r∗ + 1) must contain at least m minimal cycles.
Given any such path, we can remove minimal cycles until at most j∗ + r∗ edges are
left over. Consequently, the simplex diameter at the end of the associated sequence
of Nelder–Mead iterations must be multiplied by a factor no larger than χj

∗+r∗ϕm.
If we choose m as the smallest value such that

χj
∗+r∗ϕm ≤ 1

2 , then M = m(j∗ + r∗ + 1) satisfies diam(∆k+M) ≤ 1
2 diam(∆k),

which gives the desired result.
M -step linear convergence can also be proved for certain ranges of parameter

values with ρ 6= 1 by imposing restrictions that guarantee, for example, that j∗ = 0
and r∗ = 1.

4.4. A pattern search method interpretation of Nelder–Mead for n = 1.
Pattern search methods [13] are direct search methods that presuppose a lattice grid
pattern for search points. Torczon [14] has recently informed us that the analysis
[13] for pattern search methods can be adapted in dimension 1 to the Nelder–Mead
method when

ρ = 1 and χ and γ are rational.(4.20)

(These restrictions are satisfied for the standard coefficients ρ = 1, χ = 2, and γ = 1
2 .)

The condition ρ = 1 is needed to guarantee that, following an outside contraction at
iteration k, the reflection point at iteration k+ 1 is identical to the inside contraction
point at iteration k (and vice versa). Rationality of χ and γ is needed to retain
the lattice structure that underlies pattern search methods. When (4.20) holds and
f is once-continuously differentiable, the Nelder–Mead method generates the same
sequence of points as a (related) pattern search method with relabeled iterations.
Consequently, the results in [13] imply that lim inf |∇f(xk)| → 0, where xk denotes
the best point in ∆k.

5. Standard Nelder–Mead in dimension 2 for strictly convex functions.
In this section we consider the standard Nelder–Mead algorithm, with coefficients
ρ = 1, χ = 2, and γ = 1

2 , applied to a strictly convex function f(x) on R2 with
bounded level sets. The assumption that ρ = 1 is essential in our analysis.

We denote the (necessarily unique) minimizer of f by xmin, and let fmin =
f(xmin). Note that the level set {x | f(x) ≤ µ} is empty if µ < fmin, the single
point xmin if µ = fmin, and a closed convex set if µ > fmin.

5.1. Convergence of vertex function values. Our first result shows that, for
the standard Nelder–Mead algorithm, the limiting function values at the vertices are
equal.

Theorem 5.1. (Convergence of vertex function values for n = 2.) Let f be a
strictly convex function on R2 with bounded level sets. Assume that the Nelder–Mead
algorithm with reflection coefficient ρ = 1 and contraction coefficient γ = 1

2 is applied
to f beginning with a nondegenerate initial simplex ∆0. Then the three limiting vertex
function values are the same, i.e.,

f∗1 = f∗2 = f∗3 .

136 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

Proof. Corollary 3.1, which applies in any dimension, gives the result immediately

if the best vertex x
(k)
1 changes infinitely often. The following lemma treats the only

remaining case, in which x
(k)
1 eventually becomes constant.

Lemma 5.1. Let f be a strictly convex function on R2 with bounded level sets.
Assume that the Nelder–Mead algorithm with ρ = 1 and γ = 1

2 is applied to f beginning

with a nondegenerate initial simplex ∆0. If the best vertex x
(k)
1 is constant for all k,

then the simplices ∆k converge to the point x
(0)
1 as k →∞.

Proof. Without loss of generality, the (constant) best vertex x1 may be taken as
the origin. The proof that x2 and x3 converge to the origin has four elements: (i)
a matrix recursion that defines the Nelder–Mead vertices at the infinite subsequence
of iterations when x2 changes; (ii) a special norm that measures progress toward
the origin; (iii) bounds on this norm obtained from the singular values of a matrix
constrained to a subspace; and (iv) the illegality of certain patterns of Nelder–Mead
move types in the iteration subsequence.

(i) The matrix recursion. We know from Lemma 3.6 that the next-worst vertex

x
(k)
2 must change infinitely often. There is thus a subsequence of iterations {k`},
` = 0, 1, . . . , with k0 = 0, where x2 changes, i.e.,

x
(k`+1)
2 6= x

(k`)
2 and x

(i)
2 = x

(i−1)
2 , i = k` + 1, . . . , k`+1 − 1.

We then define new sequences x̃2 and x̃3 from

x̃
(`)
2 = x

(k`)
2 and x̃

(`)
3 = x

(k`)
3 .(5.1)

Because x1 is constant and x2 changes at iteration k`, x3 thereupon becomes the
“old” x2, i.e.,

x̃
(`)
3 = x̃

(`−1)
2 .(5.2)

For each iteration strictly between k` and k`+1, only x3 changes, so that

x
(i)
3 = 1

2x
(i−1)
2 + τi−1(1

2x
(i−1)
2 − x

(i−1)
3) for i = k` + 1, . . . , k`+1 − 1,(5.3)

where τi is the type of iteration i. Note that any iteration in which only x3 changes
must be a contraction, so that τi is necessarily ± 1

2 when k` < i < k`+1; the value of
τk` , however, can be 1 or ±1

2 . Since only x3 is changing between iterations k` and
k`+1, relation (5.3) implies that

x
(k`+j)
3 = 1

2x
(k`)
2 + (−1)j−1

j−1∏
i=0

τk
`
+i

(
1
2x

(k`)
2 − x

(k`)
3

)
(5.4)

for j = 1, . . . , k`+1 − k` − 1.

Using (5.1), (5.2) and (5.4), we obtain an expression representing x̃
(`+1)
2 entirely

in terms of x̃
(`)
2 and x̃

(`−1)
2 :

x̃
(`+1)
2 = 1

2 x̃
(`)
2 + τ̃`

(
1
2 x̃

(`)
2 − x̃

(`−1)
2

)
,(5.5)

where

τ̃` = (−1)
˜̀

˜̀∏
i=0

τk`+i, with ˜̀= k`+1 − k` − 1.

PROPERTIES OF NELDER–MEAD 137

Because reflections cannot occur between iterations k` and k`+1, we know that |τ̃`| ≤ 1
2

or τ̃` = 1. (The latter happens only when iterations k` and k`+1 are consecutive).
Using matrix notation, we have

x̃
(`)
2 =

(
x̃

(`)
21

x̃
(`)
22

)
=

(
u`
v`

)
; (5.1) then gives x̃

(`)
3 = x̃

(`−1)
2 =

(
u`−1

v`−1

)
.(5.6)

The Nelder–Mead update embodied in (5.5) can be written as a matrix recursion in
u and v: (

u`+1 v`+1

u` v`

)
=

(
1
2 (1 + τ̃`) −τ̃`

1 0

)(
u` v`
u`−1 v`−1

)
.(5.7)

Define u` and v` by

u` =

(
u`
u`−1

)
and v` =

(
v`
v`−1

)
,

so that u` contains the x-coordinates of the current second-worst and worst ver-

tices, x̃
(`)
2 and x̃

(`)
3 , and v` contains their y coordinates. The desired conclusion of

Lemma 5.1 follows if we can show that

lim
`→∞

u` = 0 and lim
`→∞

v` = 0.(5.8)

We shall prove only the first relation in (5.8); the proof of the second is similar.
(ii) Measuring progress toward the origin. To prove convergence of u` to the

origin, it might appear that we could simply apply norm inequalities to the matrix
equation (5.7). Unfortunately, the two-norm of the matrix in (5.7) exceeds one for all
valid τ̃`, which means that ‖u`+1‖ can be larger than ‖u`‖. Hence we need to find a
suitable nonincreasing size measure associated with each Nelder–Mead iteration (5.7).

Such a size measure is given by a positive definite quadratic function Q of two
scalar arguments (or, equivalently, of a 2-vector):

Q(a, b) = 2(a2 − ab+ b2) = a2 + b2 + (a− b)2.(5.9)

Evaluating Q(u`+1) using (5.7) gives

Q(u`+1) = (3
2 + 1

2 τ̃
2
`)u2

` − 2τ̃2
` u`u`−1 + 2τ̃2

` u
2
`−1.

After substitution and manipulation, we obtain

Q(u`)−Q(u`+1) = 2(1− τ̃2
`)(1

2u` − u`−1)2,(5.10)

which shows that

Q(u`+1) ≤ Q(u`) when − 1 ≤ τ̃` ≤ 1.(5.11)

It follows that Q is, as desired, a size measure that is nonincreasing for all valid values
of τ̃`. Furthermore, because Q is positive definite, we can prove that u` → 0 by
showing that Q(u`)→ 0.

An obvious and appealing geometric interpretation of Q in terms of the Nelder–
Mead simplices is that the quantity Q(u`) + Q(v`) is the sum of the squared side

138 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

lengths of the Nelder–Mead triangle at iteration k`, with vertices at the origin, x̃
(`)
2 ,

and x̃
(`)
3 . Relation (5.11) indicates that, after a reflection or contraction in which x2

changes, the sum of the squared side lengths of the new Nelder–Mead triangle cannot
increase, even though ‖u`+1‖ may be larger. Figure 4 depicts an example in which,
after an outside contraction, both ‖u`+1‖ and ‖v`+1‖ increase. Nonetheless, the sum
of the squared triangle side lengths is reduced.

x2

x3

sum of squared sides = 3.895

x2
21 + x2

31 = 0.9925

x2
22 + x2

32 = 0.85

x′2

x′3

sum of squared sides = 2.9003

(x′21)2 + (x′31)2 = 1.646

(x′22)2 + (x′32)2 = 1.1406

Fig. 4. A triangle and its outside contraction.

(iii) Singular values in a subspace. To obtain worst-case bounds on the size of
Q, it is convenient to interpret Q as the two-norm of a specially structured 3-vector
derived from u`. Within the context of a Nelder–Mead iteration (5.6), we use the
notation

ξ` =

 u`
u`−1

u` − u`−1

 , so that Q(u`) = ‖ξ`‖2.(5.12)

The structure of ξ (5.12) can be formalized by observing that it lies in the two-
dimensional null space of the vector (1,−1,−1). Let Z denote the following 3 × 2
matrix whose columns form a (nonunique) orthonormal basis for this null space:

Z =
(
z1 z2

)
, where z1 =

1√
6

 2
1
1

 and z2 =
1√
2

 0
1
−1

 .

Let q` denote the unique 2-vector satisfying

ξ` = Zq` =

 u`
u`−1

u` − u`−1

 .(5.13)

Since ZTZ = I, we have

‖ξ`‖ = ‖q`‖ and Q(u`) = ‖ξ`‖2 = ‖q`‖2,(5.14)

so that we may use ‖q`‖ to measure Q.
The Nelder–Mead move (5.7) can be written in terms of a 3×3 matrix M` applied

to ξ`:

ξ`+1 = M`ξ`, where M` =

1
2 (1 + τ̃`) −τ̃` 0

1 0 0

− 1
2 − 1

2 τ̃`
1
2 τ̃`

 .(5.15)

PROPERTIES OF NELDER–MEAD 139

As we have already shown, the special structure of the vector ξ` constrains the effects
of the transformation M` to a subspace. To analyze these effects, note that, by
construction of M`, its application to any vector in the column space of Z produces
a vector in the same column space, i.e.,

M`Z = ZW`, where W` = ZTM`Z.(5.16)

A single Nelder–Mead move (5.7) is thus given by

ξ`+1 = M`ξ` = M`Zq` = ZW`q`,

so that, using (5.14),

Q(u`+1) = ‖ξ`+1‖2 = ‖W`q`‖2,

and we may deduce information about the behavior of Q from the structure of the
2× 2 matrix W .

Direct calculation shows that, for any τ̃`, W` is the product of an orthonormal

matrix Z̃ and a diagonal matrix:

W` = Z̃Σ`, where Z̃ =

(
1
2

√
3

2√
3

2 − 1
2

)
and Σ` =

(
1 0
0 −τ̃`

)
,(5.17)

with Z̃ representing a rotation through 60 degrees. The form (5.17), analogous to
the singular value decomposition apart from the possibly negative diagonal element
of Σ`, reveals that the extreme values of ‖W`q`‖ are

max
‖q‖=1

‖W`q‖ = 1 when q =

(
1
0

)
and

min
‖q‖=1

‖W`q‖ = |τ̃`| when q =

(
0
1

)
.(5.18)

For a reflection (τ̃` = 1), the value of Q is unchanged for all q and hence for all
u. When |τ̃`| = 1

2 , relationship (5.13) indicates how the extremes of (5.18) map into
u-space. The value of Q remains constant, i.e., Q(u`+1) = Q(u`), only when u` has
the form (2α, α) for some nonzero α; this can also be seen directly in (5.10). The
maximum reduction in Q, by a factor of τ̃2

` , occurs only when u` has the form (0, α)
for some nonzero α.

A geometric interpretation of reflection and contraction moves is depicted in Fig-
ure 5. The plane in each case represents u-space. The first figure shows an elliptical
level curve of points (u`, u`−1) for which Q = 2 ; three particular points on the level
curve are labeled as ui. The second figure shows the image of this level curve follow-
ing the reflection move (5.7) with τ̃ = 1. Points on the level curve are transformed
by a reflection to rotated points on the same level curve; the image points of ui are
labeled as u′i. The third figure shows the image of the level curve in the first figure
after a Nelder–Mead contraction move (5.7) with τ̃ = 1

2 . The transformed points are
not only rotated, but their Q-values are (except for two points) reduced. The points
u2 = (2/

√
3, 1/

√
3) and u3 = (0, 1) represent the extreme effects of contraction, since

Q(u′2) = Q(u2), and Q(u′3) = 1
4Q(u3).

140 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

u1

u2

u3

Original level curve

u′1
u′2

u′3

Image under reflection

u′1

u′2

u′3

Image under contraction

Fig. 5. The effects of reflection and contraction moves in u-space on a level curve of constant Q.

Our next step is to analyze what can happen to the value of Q following a sequence
of Nelder–Mead iterations and to show that even in the worst case Q must eventually
be driven to zero. Relation (5.17) implies that, for any vector q,

‖Wjq‖ ≤ ‖Wkq‖ if |τ̃j | ≤ |τ̃k|.
In determining upper bounds on Q, we therefore need to consider only the two values
τ̃` = 1 and τ̃` = 1

2 (the latter corresponding to the largest possible value of |τ̃ | when
τ̃ 6= 1).

Using (5.16) repeatedly to move Z to the left, we express a sequence of N Nelder–
Mead moves (5.7) starting at iteration ` as

ξ`+N = M`+N−1 · · ·M`Zq` = ZW`+N−1 · · ·W`q`.

Substituting for each W from (5.17), the Euclidean length of q`+N is bounded by

‖q`+N‖ ≤ ‖Z̃Σ`+N−1 · · · Z̃Σ`‖ ‖q`‖.(5.19)

A relatively straightforward calculation shows that ‖q`+N‖ is strictly smaller than
‖q`‖ after any of the move sequences:

(c, c) for N = 2, (c, 1, c) for N = 3,

(c, 1, 1, 1, c) for N = 5, (c, 1, 1, 1, 1, c) for N = 6,(5.20)

where “c” denotes τ̃ = 1
2 and “1” denotes τ̃ = 1. For these sequences,

‖q`+N‖ ≤ βcc ‖q`‖, where βcc ≈ 0.7215.

(The quantity βcc is the larger root of the quadratic λ2 + 41
64λ + 1

16 .) Following any
of the Nelder–Mead type patterns (5.20), the size measure Q must be decreased by a
factor of at least β2

cc ≈ 0.5206.
(iv) Illegal patterns of Nelder–Mead move types. At this point we add the final

element of the proof: certain patterns of Nelder–Mead move types cannot occur in
the subsequence (5.1). Recall that a new point can be accepted only when its func-
tion value is strictly less than the current worst function value. Now consider five

PROPERTIES OF NELDER–MEAD 141

consecutive Nelder–Mead iterations (5.7) of types (1, 1, τ̃3, 1, 1) in which x2 changes.
After such a pattern, the newly accepted vertex is defined by(

u`+5 v`+5

u`+4 v`+4

)
=

(
1 −1

1 0

)2(
1
2 (1 + τ̃3) −τ̃3

1 0

)(
1 −1

1 0

)2(
u` v`
u`−1 v`−1

)

=

(
0 1

−τ̃3 1
2 (1 + τ̃3)

)(
u` v`
u`−1 v`−1

)
.(5.21)

The first row of this relation gives

(u`+5, v`+5) = (u`−1, v`−1), so that x̃
(`+5)
2 = x̃

(`)
3 ,

which implies the impossible result that the newly accepted vertex is the same as
the worst vertex in a previous simplex. Hence the type sequence (1, 1, τ̃3, 1, 1) cannot
occur.

x3 (start)

x2 (start)
0

1

2
3

4

5

x3 (start)

x2 (start)
0

1

2
3

4

5

x3 (start)

x2 (start)0

1

2
3

4

5

Fig. 6. Returning to the original worst point with Nelder–Mead type patterns (1, 1, 1, 1, 1),
(1, 1, 1

2
, 1, 1), and (1, 1,− 1

2
, 1, 1).

Figure 6 depicts these unacceptable move sequences geometrically. From left
to right, we see five consecutive reflections; two reflections, an outside contraction,
and two further reflections; and two reflections, an inside contraction, and two more
reflections.

If we eliminate both the norm-reducing patterns (5.20) and the illegal pattern
(1, 1, ∗, 1, 1), only three valid 6-move sequences remain during which Q might stay
unchanged:

(1, 1, 1, 1, c, 1), (1, c, 1, 1, 1, 1), and (1, c, 1, 1, c, 1).

Examination of these three cases shows immediately that no legal sequence of 7 steps
exists for which Q can remain constant, since the next move creates either a norm-
reducing or illegal pattern. In particular, for all legal sequences of 7 steps it holds
that

‖q`+7‖ ≤ βcc‖q`‖ < 0.7216‖q`‖.

142 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

We conclude that ‖q`‖ → 0 and hence, using (5.14), that Q(u`)→ 0, as desired. This
completes the proof of Lemma 5.1.

To finish the proof of Theorem 5.1, we note that, in the case when x
(k)
1 eventually

becomes constant, the just-completed proof of Lemma 5.1 implies convergence of x2

and x3 to x1, which gives f∗1 = f∗2 = f∗3 , as desired.

5.2. Convergence of simplex diameters to zero. Knowing that the vertex
function values converge to a common value does not imply that the vertices them-
selves converge. We next analyze the evolution of the shapes of the triangles ∆k

produced by the Nelder–Mead algorithm on a strictly convex function in R2. First,
we show that they “collapse” to zero volume, i.e., to either a point or a line segment.

Lemma 5.2. (Convergence of simplex volumes to zero.) Assume that f is a strictly
convex function on R2 with bounded level sets and that the Nelder–Mead algorithm
with reflection coefficient ρ = 1, expansion coefficient χ = 2, and contraction coeffi-
cient γ = 1

2 is applied to f beginning with a nondegenerate initial simplex ∆0. Then
the simplices {∆k} generated by the algorithm satisfy

lim
k→∞

vol(∆k) = 0.(5.22)

Proof. We know from Theorem 5.1 that the limiting function values at the vertices
are equal, say to f∗. If f∗ = fmin, then by strict convexity this value is assumed at a
unique point, in which case the desired result (5.22) follows immediately and the proof
is complete. Furthermore, Lemma 5.1 shows that, if the best vertex x1 eventually
becomes constant, then the remaining two vertices converge to x1, and (5.22) holds
in this case also.

In the rest of the proof we assume that f∗ > fmin and that x1 changes infinitely
often. Corresponding to f∗, we define the level set L∗ and its boundary Γ∗:

L∗ = {x | f(x) ≤ f∗} and Γ∗ = {x | f(x) = f∗}.(5.23)

It follows from our assumptions about f that L∗ is nonempty, closed, and strictly
convex.

The proof is obtained by contradiction. Suppose that (5.22) does not hold, so
that

lim sup
k→∞

vol(∆k) > 0.(5.24)

We know that all Nelder–Mead simplices ∆k lie inside the compact level set {x |
f(x) ≤ f(x

(0)
3)}, and that all vertex function values converge to f∗. Hence we can

extract at least one subsequence {kj} of iterations such that the simplices ∆kj satisfy

lim
j→∞

∆kj = T,(5.25)

where T is a triangle of nonzero volume whose vertices all lie on Γ∗.
Next we consider properties of the set T∗ of all triangles T satisfying (5.25) for

some subsequence kj . Since shrink steps cannot occur, a Nelder–Mead iteration on a
given triangle is specified by two values: a distinguished (worst) vertex and a move
type τ , where τ is one of (1, 2, 1

2 ,− 1
2). For each sequence kj satisfying (5.25) with

limit triangle T , there is a sequence of pairs of distinguished vertices and move types
associated with moving from ∆kj to the next simplex ∆kj+1. For any such pair that

PROPERTIES OF NELDER–MEAD 143

occurs infinitely often in the sequence of iterations {kj}, the vertices of ∆kj+1, the
successor simplices, are a continuous function of the vertices of ∆kj . Since all limit
vertex function values are equal to f∗, so that all limit vertices lie on Γ∗, there is a
subsequence {kji} of {kj} such that

lim
i→∞

∆kji+1 → T̃ ∈ T∗.

We conclude that for every triangle T in T∗, there is a Nelder–Mead move which,
applied to T , yields a new triangle T̃ in T∗. A similar argument shows that every
triangle in T∗ is the result of applying a Nelder–Mead move to another triangle in T∗.

Next we consider sequences of possible Nelder–Mead moves among elements of
T∗. Observe first that no move of type −1

2 (inside contraction) can occur, since the
new vertex would lie inside the convex hull of the original three vertices, contradicting
the fact that the original three vertices and the new vertex must lie on Γ∗.

The volumes of triangles in T∗ are bounded above because all vertices of such
triangles lie on the boundary of L∗. Define

V = sup { vol(T) | T ∈ T∗ },(5.26)

where V > 0 because of assumption (5.24), and choose a triangle T ′ in T∗ for which

vol(T ′) > 1
2V.(5.27)

Let V∗ be the volume of the level set L∗, and define the integer h∗ as

h∗ = 1 +
⌈V∗
V

⌉
.(5.28)

Now consider all sequences of h∗ consecutive simplices produced by the Nelder–Mead
algorithm applied to the initial simplex ∆0,

∆r+1,∆r+2, . . . ,∆r+h∗ ,(5.29)

and define a sequence {Ti} of h∗ triangles in T∗, ending with the triangle T ′ of (5.27),
by extracting a subsequence {mj} for which

lim ∆mj+i = Ti for i = 1, . . . , h∗, with Ti ∈ T∗ and Th∗ = T ′.(5.30)

During any sequence of consecutive Nelder–Mead moves of type 1 (reflections),
volume is preserved (see Lemma 3.1) and all triangles are disjoint; no triangle can
be repeated because of the strict decrease requirement on the vertex function values.
Suppose that there is a sequence of consecutive reflections in the set of iterations
mj + 1, . . . , mj + h∗; then the associated limiting triangles have disjoint interiors,
cannot repeat, and lie inside the curve Γ∗. Since the volume enclosed by Γ∗ is V∗,
there can be at most h∗ − 1 consecutive reflections (see (5.28)), and it follows that,
for some i, the move from Ti to Ti+1 is not a reflection.

Consider the first predecessor Ti of Th∗ in the sequence (5.30) for which vol(Ti) 6=
vol(Th∗). The Nelder–Mead move associated with moving from Ti to Ti+1 cannot be
a contraction; if it were, then

vol(Ti) = 2 vol(T ′) > V,

which is impossible by definition of V (5.26) and T ′ (5.27). Thus, in order to satisfy
(5.30), the move from Ti to Ti+1 must be an expansion step, i.e., a move of type 2.

144 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

We now show that this is impossible because of the strict convexity of L∗ and the
logic of the Nelder–Mead algorithm.

For the sequence {mj} of (5.30), the function value at the (accepted) expansion

point must satisfy f(x
(mj+i)
e) ≥ f∗, since the function values at all vertices converge

from above to f∗. The reflection point ri for Ti is outside Ti and lies strictly inside
the triangle Ti+1, all of whose vertices lie on the curve Γ∗. (See Figure 7.) Since the
level set L∗ is strictly convex, f(ri) must be strictly less than f∗, the value of f on
Γ∗, and there must be a small open ball around ri within which the values of f are
strictly less than f∗.

ri

Ti Ti+1

Fig. 7. Position of the reflection point ri when the vertices of Ti and the expansion point (the new
vertex of Ti+1) lie on the boundary of a bounded strictly convex set.

The test reflection points x
(mj+i)
r converge to ri, and hence eventually f(x

(mj+i)
r)

must be strictly less than f∗. It follows that the Nelder–Mead algorithm at step mj+i
could have chosen a new point (the reflection point) with a lower function value than
at the expansion point, but failed to do so; this is impossible, since the Nelder–Mead
method accepts the better of the reflection and expansion points. (Note that this
conclusion would not follow for the Nelder–Mead algorithm in the original paper [6],
where the expansion point could be chosen as the new vertex even if the value of
f at the reflection point were smaller.) Thus we have shown that the assumption
lim supk→∞ vol(∆k) > 0 leads to a contradiction. This gives the desired result that
the Nelder–Mead simplex volumes converge to zero.

Having shown that the simplex volumes converge to zero, we now prove that the
diameters converge to zero, so that the Nelder–Mead simplices collapse to a point.

Theorem 5.2. (Convergence of simplex diameters to zero.) Let f be a strictly
convex function on R2 with bounded level sets. Assume that the Nelder–Mead algo-
rithm with reflection coefficient ρ = 1, expansion coefficient χ = 2, and contraction
coefficient γ = 1

2 is applied to f beginning with a nondegenerate initial simplex ∆0.
Then the simplices {∆k} generated by the algorithm satisfy

lim
k→∞

diam(∆k) = 0.(5.31)

Proof. The proof is by contradiction. Lemma 5.2 shows that vol(∆k)→ 0. Since
reflection preserves volume, infinitely many nonreflection steps must occur.

Suppose that the conclusion of the theorem is not true, i.e., that diam(∆k) does
not converge to zero. Then we can find a infinite subsequence {kj} for which the
associated simplices ∆kj have diameters bounded away from zero, so that

diam(∆kj) ≥ α > 0.(5.32)

PROPERTIES OF NELDER–MEAD 145

For each kj in this subsequence, consider the sequence of iterations kj , kj + 1, . . . ,
and let k′j denote the first iteration in this sequence that immediately precedes a
nonreflection step. Then the simplex ∆k′

j
is congruent to ∆kj , so that diam(∆k′

j
) ≥ α,

and a nonreflection step occurs when moving from ∆k′
j

to ∆k′
j
+1.

Now we define a subsequence k′′j of k′j with the following properties:
1. ∆k′′

j
converges to a fixed line segment [v0,v1], with v0 6= v1 and ‖v1 − v0‖2 ≥ α;

2. each Nelder–Mead step from ∆k′′
j

to ∆k′′
j

+1 has the same combination of dis-

tinguished (worst) vertex and move type among the nine possible pairs of three
vertices and three nonreflection moves.

Note that the vertices of ∆k′′
j

+1 are continuous functions of the vertices of ∆k′′
j

and

that the values of f at all vertices of ∆k′′
j

+1 must converge monotonically from above

to f∗.
The points v0 and v1 must lie on the boundary of the strictly convex level set

L∗ (5.23). If the vertices of ∆k′′
j

converge to three distinct points on the line segment

[v0,v1], strict convexity would imply that the function value at the interior point is
strictly less than f∗, which is impossible. Thus two of the three vertices must converge
to one of v0 and v1, which means that two of the vertices of ∆k′′

j
will eventually lie

close to one of v0 or v1. Without loss of generality we assume that two of the vertices
are near v0 and the remaining vertex is near v1.

To obtain a contradiction, we show that all nonreflection steps are unacceptable.
(i) An inside contraction applied to ∆k′′

j
with distinguished vertex near v0 produces

a (limit) vertex for ∆k′′
j

+1 at 3
4v0 + 1

4v1; an inside contraction with distinguished

vertex near v1 produces a limit vertex at 1
2v0 + 1

2v1. In either case, the limit
vertex for ∆k′′

j
+1 lies strictly between v0 and v1, giving a function value smaller

than f∗, a contradiction.
(ii) An outside contraction applied to ∆k′′

j
with distinguished vertex near v0 produces

a limit vertex for ∆k′′
j

+1 at 1
4v0 + 3

4v1, giving a contradiction as in (i). With

distinguished vertex near v1, an outside contraction produces a limit vertex at
− 1

2v1 + 3
2v0. Since v0 and v1 lie on the boundary of the strictly convex set

L∗, this limit vertex point lies outside the level set and hence has function value
greater than f∗. This contradicts the fact that the associated vertex function
values in ∆k′′

j
+1 must converge to f∗.

(iii) An expansion step with distinguished vertex near v0 produces a limit vertex for
∆k′′

j
+1 at 3v1 − 2v0, and an expansion step with distinguished vertex near v1

produces a limit vertex at 3v0 − 2v1. In both cases, the limit vertex lies outside
L∗. This means that its function value exceeds f∗, giving a contradiction.
Since a contradiction arises from applying every possible non-reflection move to

the simplex ∆k′′
j

, the sequence kj of (5.32) cannot exist. Thus we have shown that

lim diam(∆k) → 0, namely that each Nelder–Mead simplex eventually collapses to a
point.

Note that this theorem does not imply that the sequence of simplices {∆k} con-
verges to a limit point x∗. We do know, however, that all vertices converge to x1 if
this vertex remains constant (see Lemma 5.1); this situation occurs in the McKinnon
examples [5].

6. Conclusions and open questions. In dimension 1, the generic Nelder–
Mead method converges to the minimizer of a strictly convex function with bounded
level sets if and only if the expansion step is a genuine expansion (i.e., if ρχ ≥ 1).

146 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

It is interesting that, apart from this further requirement, the conditions (2.1) given
in the original Nelder–Mead paper suffice to ensure convergence in one dimension.
The behavior of the algorithm in dimension 1 can nonetheless be very complicated;
for example, there can be an infinite number of expansions even when convergence is
M -step linear (Theorem 4.2).

In two dimensions, the behavior of even the standard Nelder–Mead method (with
ρ = 1, χ = 2, and γ = 1

2) is more difficult to analyze for two reasons:
1. The space of simplex shapes is not compact, where the shape of a simplex

is its similarity class; see the discussion at the end of section 2. It appears that the
Nelder–Mead moves are dense in this space, i.e., any simplex can be transformed by
some sequence of Nelder–Mead moves to be arbitrarily close to any other simplex
shape; this property reflects the intent expressed by Nelder and Mead [6] that the
simplex shape should “adapt itself to the local landscape.” This contrasts strongly
with the nature of many pattern search methods [13], in which the simplex shapes
remain constant.

2. The presence of the expansion step means that vol(∆) is not a Lyapunov
function3 for the iteration.

The two-dimensional results proved in section 5 seem very weak but conceivably
represent the limits of what can be proved for arbitrary strictly convex functions.
In particular, Theorem 5.2 leaves open the possibility that the ever-smaller simplices
endlessly “circle” the contour line f(x) = f∗. Since no examples of this behavior
are known, it may be possible to prove the stronger result that the simplices always
converge to a single point x∗.

An obvious question concerns how the Nelder–Mead method can fail to converge
to a minimizer in the two-dimensional case. Further analysis suggests that, for suitable
strictly convex functions (C1 seems to suffice), failure can occur only if the simplices
elongate indefinitely and their shape goes to “infinity” in the space of simplex shapes
(as in the McKinnon counterexample).

An interesting open problem concerns whether there exists any function f(x)
in R2 for which the Nelder–Mead algorithm always converges to a minimizer. The
natural candidate is f(x, y) = x2 + y2, which by affine-invariance is equivalent to
all strictly convex quadratic functions in two dimensions. A complete analysis of
Nelder–Mead for x2 + y2 remains an open problem.

Our general conclusion about the Nelder–Mead algorithm is that the main mys-
tery to be solved is not whether it ultimately converges to a minimizer—for general
(nonconvex) functions, it does not—but rather why it tends to work so well in practice
by producing a rapid initial decrease in function values.

Acknowledgments. The authors greatly appreciate the referee’s detailed and
constructive comments, which helped us to improve the content and presentation of
the paper. We also thank Virginia Torczon for making us aware of the connections
described in section 4.4. Margaret Wright is extremely grateful to Steve Fortune for
many interesting discussions and his consistently enlightening geometric insights.

REFERENCES

[1] J. E. Dennis and V. Torczon, Direct search methods on parallel machines, SIAM J. Optim.,
1 (1991), 448–474.

3See the discussion of Lyapunov functions in, for example, [11, pp. 23–27] in the context of
stability of nonlinear fixed points.

PROPERTIES OF NELDER–MEAD 147

[2] C. T. Kelley, Detection and Remediation of Stagnation in the Nelder-Mead Algorithm Using
a Sufficient Decrease Condition, Technical report, Department of Mathematics, North
Carolina State University, Raleigh, NC, 1997.

[3] J. C. Lagarias, B. Poonen, and M. H. Wright, Convergence of the restricted Nelder-Mead
algorithm in two dimensions, in preparation, 1998.

[4] Math Works, Matlab, The Math Works, Natick, MA, 1994.
[5] K. I. M. McKinnon, Convergence of the Nelder-Mead simplex method to a nonstationary

point, SIAM J. Optim., 9 (1998), 148–158.
[6] J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal

7 (1965), 308–313.
[7] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipes

in C, Cambridge University Press, Cambridge, UK, 1988.
[8] A. Rykov, Simplex direct search algorithms, Automation and Robot Control, 41 (1980), 784–

793.
[9] A. Rykov, Simplex methods of direct search, Engineering Cybernetics, 18 (1980), 12–18.

[10] A. Rykov, Simplex algorithms for unconstrained optimization, Problems of Control and Infor-
mation Theory, 12 (1983), 195–208.

[11] A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge
University Press, New York, 1996.

[12] V. Torczon, Multi-directional Search: A Direct Search Algorithm for Parallel Machines, Ph.D.
thesis, Rice University, Houston, TX, 1989.

[13] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),
1–25.

[14] V. Torczon, Private communication, 1997.
[15] P. Tseng, Fortified-Descent Simplicial Search Method: A General Approach, Technical re-

port, Department of Mathematics, University of Washington, Seattle, WA, 1995; SIAM J.
Optim., submitted.

[16] F. H. Walters, L. R. Parker, S. L. Morgan, and S. N. Deming, Sequential Simplex Opti-
mization, CRC Press, Boca Raton, FL, 1991.

[17] D. J. Woods, An Interactive Approach for Solving Multi-objective Optimization Problems,
Ph.D. thesis, Rice University, Houston, TX, 1985.

[18] M. H. Wright, Direct search methods: Once scorned, now respectable, in Numerical Analysis
1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis, D. F.
Griffiths and G. A. Watson, eds., Addison Wesley Longman, Harlow, UK, 1996, 191–208.

CONVERGENCE OF THE NELDER–MEAD SIMPLEX METHOD TO
A NONSTATIONARY POINT∗

K. I. M. MCKINNON†

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 148–158

Abstract. This paper analyzes the behavior of the Nelder–Mead simplex method for a family
of examples which cause the method to converge to a nonstationary point. All the examples use
continuous functions of two variables. The family of functions contains strictly convex functions
with up to three continuous derivatives. In all the examples the method repeatedly applies the inside
contraction step with the best vertex remaining fixed. The simplices tend to a straight line which is
orthogonal to the steepest descent direction. It is shown that this behavior cannot occur for functions
with more than three continuous derivatives. The stability of the examples is analyzed.

Key words. Nelder–Mead method, direct search, simplex, unconstrained optimization

AMS subject classification. 65K05

PII. S1052623496303482

1. Introduction. Direct search methods are very widely used in chemical en-
gineering, chemistry, and medicine. They are a class of optimization methods which
are easy to program, do not require derivatives, and are often claimed to be robust
for problems with discontinuities or where the function values are noisy. In [12, 13]
Torczon produced convergence results for a class of methods called pattern search
methods. This class includes several well-known direct search methods such as the
two-dimensional case of the Spendley, Hext, and Himsworth simplex method [8] but
does not include the most widely used method, the Nelder–Mead simplex method [4].
In the Nelder–Mead method the simplex can vary in shape from iteration to iteration.
Nelder and Mead introduced this feature to allow the simplex to adapt its shape to
the local contours of the function, and for many problems this is effective. However,
it is this change of shape which excludes the Nelder–Mead method from the class of
methods covered by the convergence results of Torczon [13], which rely on the vertices
of the simplices lying on a lattice of points.

The Nelder–Mead method uses a small number of function evaluations per itera-
tion, and for many functions of low dimension its rules for adapting the simplex shape
lead to low iteration counts. In [11, 1], however, Torczon and Dennis report results
from tests in which the Nelder–Mead method frequently failed to converge to a local
minimum of smooth functions of low dimension: it was observed even for functions
with as few as eight variables. In the cases where failure occurred, the search line
defined by the method became orthogonal to the gradient direction; however, the rea-
sons for this behavior were not fully understood. Some theoretical results about the
convergence of a modified version of the Nelder–Mead method are given by Woods
[15]. In a recent paper, Lagarias et al. [3] derive a range of convergence results which
apply to the original Nelder–Mead method. Among these results is a proof that the
method converges to a minimizer for strictly convex functions of one variable and
also a proof that for strictly convex functions of two variables the simplex diameters
converge to zero. However, it is not yet known even for the function x2 + y2, the sim-

∗Received by the editors May 13, 1996; accepted for publication (in revised form) November 12,
1997; published electronically December 2, 1998.

http://www.siam.org/journals/siopt/9-1/30348.html
†Department of Mathematics and Statistics, The University of Edinburgh, King’s Buildings,

Edinburgh EH9 3JZ, UK (ken@maths.ed.ac.uk).

148

NELDER–MEAD AT A NONSTATIONARY POINT 149

plest strictly convex quadratic functions of two variables, whether the method always
converges to the minimizer, or indeed whether it always converges to a single point.

The current paper presents a family of examples of functions of two variables,
where convergence occurs to a nonstationary point for a range of starting simplices.
Some examples have a discontinuous first derivative and others are strictly convex
with between one and three continuous derivatives. The simplices converge to a line
which is orthogonal to the steepest descent direction and have interior angles which
tend to zero.

We assume that the problem to be solved is

min
v∈R2

f(v).

For functions defined over R2 (i.e., functions of two variables) the Nelder–Mead
method operates with a simplex in R2, which is specified by its three vertices. The
Nelder–Mead method is described below for the two-variable case and without the
termination test. The settings for the parameter ρ in L(ρ) are the most commonly
used values. A fuller description of the method can be found in the papers by Lagarias
et al. [3] and Nelder and Mead [4].

The Nelder–Mead method.

order: Label the three vertices of the current simplex b, s, and w so that their
corresponding function values fb, fs, and fw satisfy fb ≤ fs ≤ fw.
m := (b+ s)/2, {the midpoint of the best and second worst points}.
Let L(ρ) denote the function L(ρ) = m+ ρ(m− w), {L is the search line}.
r := L(1); fr := f(r).
If fr < fb then

e := L(2); fe := f(e).
If fe < fb then accept e {Expand} else accept r {Reflect}.

else {fb ≤ fr} if fr < fs then
Accept r {Reflect}.

else {fs ≤ fr} if fr < fw then
c := L(0.5); fc := f(c).
If fc ≤ fr then accept c {Outside Contract} else → shrink.

else {fw ≤ fr}
c := L(−0.5); fc := f(c).
If fc < fw then accept c {Inside Contract} else → shrink.

Replace w by the accepted point; → order.
shrink: Replace s by (s+ b)/2 and w by (w + b)/2; → order.

The examples in this paper cause the Nelder–Mead method to apply the inside
contraction step repeatedly with the best vertex remaining fixed. This behavior will
be referred to as repeated focused inside contraction (rfic). No other type of step
occurs for these examples, and this greatly simplifies their analysis. The examples are
very simple and highlight a serious deficiency in the method: the simplices collapse
along the steepest descent direction, a direction along which we would like them to
enlarge.

It should be noted that it is now common to use a variant of the original Nelder–
Mead algorithm in which the expand step is accepted if fe < fr, which is a more
restrictive condition. Since the examples in this paper are constructed so that fr > fb,
i.e., the reflected point is never an improvement on the best point, the expand step

150 K. I. M. MCKINNON

is never considered. Hence this common variant of the Nelder–Mead method behaves
in an identical manner to the original algorithm for the examples in this paper.

Other examples are known where the Nelder–Mead method or its variants fail. In
[2], Dennis and Woods give a strictly convex example, where a variant of the Nelder–
Mead method performs an unbroken sequence of shrink steps toward a single point
which is at a discontinuity of the gradient and at which there is no zero subgradient.
In their variant the condition for accepting a contraction step is that fc < fs, which
is more stringent than the original Nelder–Mead method, so more shrink steps are
performed. This behavior cannot occur for the original version of the Nelder–Mead
method as this method never performs shrink steps on strictly convex functions (see
Lagarias et al. [3]). In [15] Woods also gives a sketch of a differentiable nonconvex
function for which the Nelder–Mead method converges to a nonminimizing point by
a sequence of repeated shrinks. However, it can be shown that for this behavior to
occur with the original form of the Nelder–Mead method, the point to which the
simplex shrinks must be a stationary point. It is also possible to construct examples
of nonconvex differentiable functions for which the original form of the Nelder–Mead
method in exact arithmetic converges by repeated contractions to a degenerate simplex
of finite length, none of whose vertices are stationary points [9, 10]. An example of
this case is the function f(x, y) = x2−y(y−2) with initial simplex (1,0), (0,-3), (0,3),
which tends in the limit to (0,0), (0,-3), (0,3). The examples given in this paper are,
however, the first examples known where the Nelder–Mead method fails to converge
to a minimizer of a strictly convex differentiable function.

A wide variety of simplex methods which allow the simplex to vary in shape
in a similar manner to the Nelder–Mead method has been proposed and analyzed
by, among others, Rykov [5, 6, 7] and more recently by Tseng [14]. These methods
accept certain trial steps only if there is a sufficient decrease in an objective function.
In this they differ from the Nelder–Mead method and the methods of Torczon [12]
which require only strict decrease and whose behavior depends only on the order of
the function values at the trial points, not on the actual values. Convergence results
for the methods of Rykov and Tseng rely on this sufficient decrease. One of the
variants of Tseng’s method is the same as the Nelder–Mead method except for the
sufficient decrease condition and a condition which bounds the simplex interior angles
away from zero. Because of this, when Tseng’s variant is applied to the examples
in this paper, it eventually performs shrink steps instead of the inside contraction
steps performed by the original Nelder–Mead method. This allows it to escape from
the nonstationary point which is the focus of the rfic in the original Nelder–Mead
method.

The structure of this paper is as follows. In section 2 the sequence of simplices
is derived corresponding to rfic. In section 3 a family of functions are given which
produce this behavior and result in the method converging to a nonstationary point.
In section 4 the range of functions which can give the rfic behavior is derived.
Section 5 contains an analysis of how perturbations of the initial simplex affect the
rfic behavior of the examples in section 3.

2. Analysis of the repeated inside contraction behavior. Consider a sim-
plex in two dimensions with vertices at 0 (i.e., the origin), v(n+1), and v(n). Assume
that

f(0) < f(v(n+1)) < f(v(n)).(2.1)

NELDER–MEAD AT A NONSTATIONARY POINT 151

After the order step of the algorithm, b = 0, s = v(n+1), and w = v(n). The
Nelder–Mead method calculates m(n) = v(n+1)/2, the midpoint of the line joining the
best and second worst points, and then reflects the worst point, v(n), in m(n) with a
reflection factor of ρ = 1 to give the point

r(n) = m(n) + ρ(m(n) − v(n)) = v(n+1) − v(n).(2.2)

Assume that

f(v(n)) < f(r(n)).(2.3)

In this case the point r(n) is rejected and the point v(n+2) is calculated using a
reflection factor ρ = −0.5 in

v(n+2) = m(n) + ρ(m(n) − v(n)) =
1

4
v(n+1) +

1

2
v(n).

v(n+2) is the midpoint of the line joining m(n) and v(n). Provided f(v(n+2)) <
f(v(n+1)), i.e., (2.1) holds with n replaced by n+1, the Nelder–Mead method does the
inside contraction step rather than a shrink step. The inside contraction step replaces
v(n) with the point v(n+2), so that the new simplex consists of v(n+1), v(n+2), and the
origin. Provided this pattern repeats, the successive simplex vertices will satisfy the
linear recurrence relation

4v(n+2) − v(n+1) − 2v(n) = 0.

This has the general solution

v(n) = A1λ
n
1 +A2λ

n
2 ,(2.4)

where Ai ∈ R2 and

λ1 =
1 +
√

33

8
, λ2 =

1−√33

8
.(2.5)

Hence λ1
∼= 0.84307 and λ2

∼= −0.59307. It follows from (2.2) and (2.4) that

r(n) = −A1λ
n
1 (1− λ1)−A2λ

n
2 (1− λ2).(2.6)

It is this repeated inside contraction toward the same fixed vertex which is being
referred to as repeated focused inside contraction (rfic). In [3] Lagarias et al. formally
prove that no step of the Nelder–Mead method can transform a nondegenerate simplex
to a degenerate simplex. In the two-dimensional case this corresponds to the fact that
the area of the simplex either increases by a factor of 2, stays the same, or decreases
by a factor of 2 or 4. Hence, provided the Nelder–Mead method is started from a
nondegenerate initial simplex, then no later simplex can be degenerate and if rfic
occurs, then the initial simplex for rfic is nondegenerate. This implies that A1 and
A2 in (2.4) are linearly independent.

Consider now the initial simplex with vertices v(0) = (1, 1), v(1) = (λ1, λ2), and
(0, 0). Substituting into (2.4) yields A1 = (1, 0) and A2 = (0, 1). It follows that
the particular solution for these initial conditions is v(n) = (λn1 , λ

n
2). This solution is

152 K. I. M. MCKINNON

x

y v(0)

v
(1)

v
(2)

v
(3)

Fig. 2.1. Successive simplices with rfics.

shown in Figure 2.1. The general form of the three points needed at one step of the
Nelder–Mead method is therefore

v(n) = (λn1 , λ
n
2),(2.7)

v(n+1) = (λn+1
1 , λn+1

2),(2.8)

r(n) = (−λn1 (1− λ1),−λn2 (1− λ2)).(2.9)

Provided (2.1) and (2.3) hold at these points, the simplex method will take the
inside contraction step assumed above.

Note that the x coordinates of v(n) and v(n+1) are positive and the x coordinate
of r(n) is negative.

3. Functions which cause RFIC. Consider the function f(x, y) given by

f(x, y) = θφ|x|τ + y + y2, x ≤ 0,(3.1)

= θxτ + y + y2, x ≥ 0,

where θ and φ are positive constants. Note that (0,-1) is a descent direction from
the origin (0,0) and that f is strictly convex provided τ > 1. f has continuous first
derivatives if τ > 1, continuous second derivatives if τ > 2, and continuous third
derivatives if τ > 3. Figure 2.2 shows the contour plot of this function and the first
two steps of the Nelder–Mead method for the case τ = 2, θ = 6, and φ = 60. Both
steps are inside contractions.

NELDER–MEAD AT A NONSTATIONARY POINT 153

x

y

v(0)

v(1)

v(2)

m(0)

r (0)

m(1)

r (1)

Fig. 2.2. f(x, y) = 360x2 + y + y2 if x ≤ 0 and f(x, y) = 6x2 + y + y2 if x ≥ 0, i.e., function
(3.1) for case τ = 2, θ = 6, φ = 60.

Define τ̂ to be such that

λτ̂1 = |λ2|,(3.2)

so τ̂ is given by

τ̂ =
ln |λ2|
lnλ1

∼= 3.0605.(3.3)

In what follows assume that τ satisfies

0 < τ < τ̂ .(3.4)

Since 0 < λ1 < 1, it therefore follows that

λτ1 > λτ̂1 = |λ2|.(3.5)

Using (2.7) and (2.9) it follows that

f(v(n))= θλτn1 + λn2 + λ2n
2

and f(r(n))= φθ(λτn1 (1− λ1)τ)− λn2 (1− λ2) + λ2n
2 (1− λ2)2.

Hence f(v(n)) > f(v(n+1)) iff

θλτn1 (1− λτ1) > λn2 (λ2 − 1) + λ2n
2 (λ2

2 − 1).

154 K. I. M. MCKINNON

Since λτ1 > |λ2| and λ2
2 − 1 < 0, this is true for all n ≥ 0 if θ is such that

θ(1− λτ1) > |λ2 − 1|.(3.6)

Also f(v(n+1)) > f(0) iff

θλ
τ(n+1)
1 + λn+1

2 + λ
2(n+1)
2 > 0.

Since λτ1 > |λ2|, this is true for all n ≥ 0 if

θ > 1.(3.7)

Also f(r(n)) > f(v(n)) iff

φθ(λτn1 (1− λ1)τ)− λn2 (1− λ2) + λ2n
2 (1− λ2)2 > θλτn1 + λn2 + λ2n

2 ,

⇐⇒ θλτn1 (φ(1− λ1)τ − 1) > λn2 (2− λ2)− λ2n
2 ((1− λ2)2 − 1).

Since λ2 < 0 and λτ1 > |λ2|, this is true for all n ≥ 0 if θ and φ are such that

θ(φ(1− λ1)τ − 1) > (2− λ2).(3.8)

For any τ in the range given by (3.4), θ can be chosen so that (3.6) and (3.7) hold and
then φ can be chosen so that (3.8) holds. It then follows that (2.1) and (2.3) will hold,
so the inside contraction step will be taken at every iteration and the simplices will
be as derived in section 2. The method will therefore converge to the origin, which is
not a stationary point. Examples of values of θ and φ which make (3.6), (3.7), and
(3.8) hold are as follows: for τ = 1, θ = 15 and φ=10; for τ = 2, θ = 6 and φ = 60;
for τ = 3, θ = 6 and φ = 400.

4. Necessary conditions for RFIC to occur. In this section we will derive
necessary conditions for rfic to occur. For notational convenience the results are
given for rfic with the origin as focus, but by change of origin they can be applied
to any point.

It follows from the description of the algorithm that a necessary condition for
rfic to occur is

f0 = f(0) ≤ f(v(n+1)) ≤ f(v(n)) ≤ f(r(n)).(4.1)

(The examples in section 3 satisfy the strict form of the (4.1) relations as given in
(2.1) and (2.3).)

If f is s times differentiable at the origin, then f can be written in the form f(v) =
ps(v) + o(‖v‖s), where ps is a polynomial of degree at most s, and Dif(0) = Dips(0)
for i = 0, ..., s, i.e., the derivatives of f and ps agree. Making a change of variable to
z-space using v = A1z1 +A2z2, f and ps can be viewed as functions of (z1, z2) ∈ R2.
When the necessary derivatives exist, define

f0 = f(0), gi =
∂f

∂zi
(0), h =

1

2

∂2f

∂z2
1

(0), and k =
1

6

∂3f

∂z3
1

(0).

Then (g1, g2) is the gradient of f in z-space, and gi, h, and k are the zi, z
2
1 , and z3

1

coefficients in the Taylor expansion of f in z-space. Since |λ2| < λ1 and (2.4) holds,
‖v(n)‖ = O(λn1), so

f(v(n)) = ps(v
(n)) + o(λsn1).(4.2)

NELDER–MEAD AT A NONSTATIONARY POINT 155

Theorem 4.1. If the origin is the focus of repeated inside contraction starting
from a simplex with limiting direction A1, then

(a) if f is differentiable at the origin, then g1 = 0;
(b) if f is 2 times differentiable at the origin, then h = 0;
(c) if f is 3 times differentiable at the origin, then k = 0.
Proof. (a) From (4.1) it follows that a necessary condition for rfic to occur is

that f0 ≤ f(v(n)) and f0 ≤ f(r(n)). This is true iff

f0 ≤ f0 + g1λ
n
1 + g2λ

n
2 + o(λn1),

and f0 ≤ f0 − g1λ
n
1 (1− λ1)− g2λ

n
2 (1− λ2) + o(λn1).

Since |λ2| < λ1 < 1, this cannot occur for all n unless g1 = 0.
(b) Since f is 2 times differentiable at the origin, part (a) holds, so g1 = 0. Hence

p2(v(n))− (f0 + g2λ
n
2 + hλ2n

1) = O(|λ1λ2|n) = o(λ4n
1), since |λ2| < λ3

1. From this and
(4.2) it follows that

f(v(n)) = f0 + g2λ
n
2 + hλ2n

1 + o(λ2n
1).

From (4.1) it follows that a necessary condition for rfic to occur is that f0 ≤ f(v(n))
and f(v(n)) ≤ f(r(n)). This is true iff

f0 ≤ f0 + g2λ
n
2 + hλ2n

1 + o(λ2n
1)

and 0 ≤ −g2λ
n
2 (2− λ2)− hλ2n+1

1 (2− λ1) + o(λ2n
1).

Since |λ2| < λ2
1 < 1, this cannot occur for all n unless h = 0.

(c) Since f is 3 times differentiable at the origin, parts (a) and (b) hold, so g1 = 0
and h = 0. Hence p3(v(n)) − (f0 + g2λ

n
2 + kλ3n

1) = O(|λ1λ2|n) = o(λ4n
1). From this

and (4.2) it follows that

f(v(n)) = f0 + g2λ
n
2 + kλ3n

1 + o(λ3n
1).

From (4.1) it follows that a necessary condition for rfic to occur is that f0 ≤ f(v(n))
and f0 ≤ f(r(n)). This is true iff

f0 ≤ f0 + g2λ
n
2 + kλ3n

1 + o(λ3n
1)

and f0 ≤ f0 − g2λ
n
2 (1− λ2)− kλ3n

1 (1− λ1)3 + o(λ3n
1).

Since λ3
1 > |λ2|, this cannot occur for all n unless k = 0.

Theorem 4.2. If f has a nonzero gradient at the origin and in a neighborhood
of the origin can be expressed in the form

f(v) = p4(v) + o(‖v‖τ̂),(4.3)

where p4 is at least 4 times differentiable at the origin, and if the initial simplex is
not degenerate, then the origin cannot be the focus of repeated inside contractions.

Proof. Assume that the origin is the focus of repeated contractions.
The first three derivatives of f and p4 at the origin are the same. Theorem 4.1

shows that g1 = h = k = 0. Hence p4(v(n)) − (f0 + g2λ
n
2) = O(|λ1λ2|n) = o(λ4n).

Since τ̂ < 4 and o(‖v(n)‖τ̂) = o(λτ̂n1) and λτ̂1 = |λ2| (by the definition of τ̂), it follows
that

f(v(n)) = f0 + g2λ
n
2 + o(|λ2|n).

156 K. I. M. MCKINNON

From (4.1) it follows that a necessary condition for rfic to occur is that f0 ≤ f(v(n))
and f0 ≤ f(v(n+1)). Since λ2 < 0, this cannot occur for all n unless g2 = 0. However,
since a condition of the theorem is that the gradient is nonzero at the origin and since
g1 = 0, it is not possible that g2 = 0. This contradicts the original assumption and
so proves that the origin cannot be the focus of repeated contractions.

Theorem 4.2 shows that rfic cannot occur for sufficiently smooth functions, the
limit being slightly more than 3 times differentiable. The examples in section 3 show
that if the conditions of Theorem 4.2 do not hold, then rfic is possible.

5. Perturbations of the initial simplex. In this section the behavior of the
examples is analyzed for perturbations of the starting simplex. The perturbed position
for the vertex at the origin must be on the y axis; otherwise the contracting simplex
will eventually lie within a region where all derivatives of the function exist, and
Theorems 4.1 and 4.2 show that a nonstationary point cannot be the focus of rfic
in such a region. Also if τ > 1, the gradient exists where x = 0 and its direction
is parallel to the y axis. It follows from Theorem 4.1 that the only initial simplices
which can yield rfic are those with the dominant eigenvector A1 perpendicular to
the y axis. We therefore consider only perturbations where the vertex at the origin is
perturbed to (0, y0) giving the general form

v(n) =

[
0
y0

]
+

[
x1

y1

]
λn1 +

[
x2

y2

]
λn2 ,(5.1)

and when τ > 1 we take y1 = 0. The reflected point is then given by

r(n) =

[
0
y0

]
−
[
x1

y1

]
λn1 (1− λ1)−

[
x2

y2

]
λn2 (1− λ2).(5.2)

We are considering y0, x1 − 1, y1, x2, and y2 − 1 to be close to zero.
Repeating the analysis of section 3 gives f(v(n)) > f(v(n+1)) iff

θλτn1 xτ1

((
1 +

x2

x1

(
λ2

λ1

)n)τ
−
(

1 +
x2

x1

(
λ2

λ1

)n+1
)τ

λτ1

)
+λn1 (1− λ1)y1(1 + 2y0 + λn1 (1 + λ1)y1 + λn2 (1 + λ2)y2)

> λn2 (1− λ2)y2(1 + 2y0 + λn1 (1 + λ1)y1) + λ2n
2 (λ2

2 − 1)y2
2 .

Also f(v(n)) > f(0, y0) iff

θλ
τ(n+1)
1 xτ1

(
1 +

x2

x1

(
λ2

λ1

)n+1
)τ

+ y1λ
n+1
1 (1 + 2y0 + y1λ

n+1
1 + y2λ

n+1
2)

+y2λ
n+1
2 (1 + 2y0 + y1λ

n+1
1) + y2

2λ
n+1
2 > 0.(5.3)

Note that for x1 − 1 and x2 sufficiently close to zero, the x coordinate of r(n) is
negative, so the negative x case for the form of f holds. Hence f(r(n)) > f(v(n)) iff

θλτn1 xτ1

(
φ

(
1− λ1 − x2

x1

(
λ2

λ1

)n
(1− λ2)

)τ
−
(

1 +
x2

x1

(
λ2

λ1

)n)τ)
−y1λ

n
1 (2− λ1)(1 + 2y0 + y1λ

n+1
1 + y2λ

n+1
2)

> y2λ
n
2 (2− λ2)(1 + 2y0 + y1λ

n+1
1) + y2

2λ
n
2 (2− λ2).

NELDER–MEAD AT A NONSTATIONARY POINT 157

Since the corresponding inequalities are strict in section 3 and all the functions are
continuous, it follows that there exists a symmetric neighborhood of y0 = 0, x1 = 1,
y1 = 0, x2 = 0, and y2 = 1 in which the above three relations hold for n = 0. Since
|λ1| < 1 and |λ2| < 1, it follows that if τ ≤ 1, the inequalities still hold for all n ≥ 0.
If τ > 1, then the rfic behavior will not change in the neighborhood provided y1 = 0.
The set of possible perturbations which maintain the rfic behavior is therefore of
dimension 4 for τ > 1 and of dimension 5 for τ ≤ 1.

Because of this we would expect the behavior of the examples to be stable against
small numerical perturbations caused by rounding error when τ ≤ 1 and not to be
stable when τ > 1. This behavior is confirmed by numerical tests. Rounding error
introduces a component of the larger eigenvector in the y direction and this is enough
to prevent the algorithm converging to the origin when τ > 1, but is not enough to
disturb the convergence to the origin when τ ≤ 1. Note, however, that in the τ > 1
case the behavior is very sensitive to the representation of the problem and to the
details of the implementation of the Nelder–Mead method and of the function. For
example, a translation or rotation of the axes can affect whether or not the method
converges to the minimizer. The example with τ = 1 is not strictly convex; however,
a strictly convex example which is numerically stable can be constructed by taking
the average of examples with τ = 1 and with τ = 2.

6. Conclusions. A family of functions of two variables has been presented which
cause the Nelder–Mead method to converge to a nonstationary point. Members of the
family are strictly convex with up to three continuous derivatives. The examples cause
the Nelder–Mead method to perform the inside contraction step repeatedly with the
best vertex remaining fixed. It has been shown that this behavior cannot occur for
smoother functions. These examples are the best behaved functions currently known
which cause the Nelder–Mead method to converge to a nonstationary point. They
provide a limit to what can be proved about the convergence of the Nelder–Mead
method.

There are six values necessary to specify the initial simplex for functions of two
variables. It has been shown that for examples in the family which have a discon-
tinuous first derivative, there is a neighborhood of the initial simplex of dimension
5 in which all the simplices exhibit the same behavior. These examples appear to
be numerically stable. For those examples in the family where the gradient exists,
the dimension of the neighborhood is only 4. These examples are often numerically
unstable and so are less likely to occur in practice due to rounding errors, even for
starting simplices within the neighborhood. However, even in cases where numerical
errors eventually perturb the simplex enough to escape from the nonstationary focus
point, the method can spend a very large number of steps close to this point before
escaping. These results highlight the need for variants of the original Nelder–Mead
method which have guaranteed convergence properties.

Acknowledgments. The author would like to thank Margaret Wright and Tony
Gilbert for help in clarifying the problem and for valuable suggestions, and a referee
for very detailed and helpful comments.

REFERENCES

[1] J. E. Dennis, jr. and V. Torczon, Direct search methods on parallel machines, SIAM J.
Optim., 1 (1991), pp. 448–474.

158 K. I. M. MCKINNON

[2] J. E. Dennis, jr. and D. J. Woods, Optimization on microcomputers: The Nelder-Mead sim-
plex algorithm, in New Computing Environments: Microcomputers in Large-Scale Com-
puting, A. Wouk, ed., SIAM, Philadelphia, PA, 1987, pp. 116–122.

[3] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of
the Nelder–Mead simplex algorithm in low dimensions, SIAM J. Optim., 9 (1998), pp. 112–
147.

[4] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J., 7
(1965), pp. 308–313.

[5] A. S. Rykov, Simplex direct search algorithms, Automat. Remote Control, 41 (1980), pp. 784–
793.

[6] A. S. Rykov, Simplex methods of direct search, Engrg. Cyber., 18 (1980), pp. 12–18.
[7] A. S. Rykov, Simplex algorithms for unconstrained optimization, Prob. Control Inform. The-

ory, 12 (1983), pp. 195–208.
[8] W. Spendley, G. R. Hext, and F. R. Himsworth, Sequential applications of simplex designs

in optimization and evolutionary operation, Technometrics, 4 (1962), pp. 441–461.
[9] M. Straßer, Übertrangung des Optimierungsverfahrens von Nelder und Mead auf re-

stringierte Probleme, Diploma thesis, Numerical Mathematics Group, Technical University
of Darmstadt, Germany, 1994.

[10] P. D. Surry, Convergence Results for the Nelder–Mead Method, private communication, De-
partment of Mathematics and Statistics, University of Edinburgh, Edinburgh, UK, 1995.

[11] V. J. Torczon, Multi-Directional Search: A Direct Search Algorithm for Parallel Machines,
Ph.D. thesis, Tech. Report TR90-7, Department of Computational and Applied Mathe-
matics, Rice University, Houston, TX, 1990.

[12] V. Torczon, On the convergence of the multidirectional search algorithm, SIAM J. Optim., 1
(1991), pp. 123–145.

[13] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),
pp. 1–25.

[14] P. Tseng, Fortified-descent simplicial search method: A general approach, SIAM J. Optim.,
to appear.

[15] D. J. Woods, An Interactive Approach for Solving Multi-Objective Optimization Problems,
Ph.D. thesis, Tech. Report TR85-5, Department of Computational and Applied Mathe-
matics, Rice University, Houston, TX, 1985.

THREADING HOMOTOPIES AND DC OPERATING POINTS OF
NONLINEAR CIRCUITS∗

ROSS GEOGHEGAN† , JEFFREY C. LAGARIAS‡ , AND ROBERT C. MELVILLE§

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 159–178

Abstract. This paper studies continuation methods for finding isolated zeros of nonlinear func-
tions. Given a nonlinear function F : Rn → Rn, a threading homotopy is a function H(x, λ) : Rn+1 →
Rn with H(x, 0) ≡ F (x), such that the zero set of H is a single connected curve containing all zeros of
F (x). For a C1 function F , a necessary condition for the existence of a nondegenerate C1 threading
homotopy is that the topological degree of F (x) be 1, 0, or −1. For C2 mappings in all dimensions,
except possibly n = 2, this condition is also a sufficient condition for existence of a C2 threading
homotopy which is weakly proper over 0. A homotopy H is weakly proper over 0 if, for every interval
[a, b], the set H−1(0) ∩ (Rn × [a, b]) is compact. This condition rules out any part of the zero set
escaping to infinity at a finite value of the homotopy parameter.

Threading homotopies are potentially applicable in continuation methods for finding all dc op-
erating points of nonlinear circuits. We show that most transistor circuits have dc operating point
equations F (x) = 0 with deg(F) = ±1, so that threading homotopies exist in principle for such
operating point equations. The explicit construction of such threading homotopies remains an open
problem.

Key words. homotopy methods, nonlinear circuits, topological degree

AMS subject classifications. 65H20, 94C05

PII. S1052623496251586

1. Introduction. This paper studies continuation methods for finding all zeros
of a nonlinear function F : Rn→Rn, which has a finite number of isolated zeros. The
continuation approach for finding zeros is to find a function H(x, λ) : Rn × R→Rn
such that H(x, 0) ≡ F (x), while H(x, 1) ≡ G(x) is a function with known zeros,
whose zero set

Γ(H) = {(x, λ) : H(x, λ) = 0}(1.1)

is a union of curves (one-dimensional components), and these curves can be individ-
ually traced from the known zero set

Γ1 = {x : H(x, 1) = 0}

to find all solutions Γ0 of F (x). The function H(x, λ) is called a homotopy, and a ho-
motopy path is a path (x(t), λ(t)) for t ∈ [0, 1] on which H(x, λ) = 0. One method for
finding all the zeros is to choose a homotopy H(x, λ) such that each zero of F (x) is on a
separate connected component of the zero set ofH(x, λ), and separate homotopy paths
are followed to find each zero of F (x); see, for example, Allgower and Georg [1, sec-
tion 6], [2], Chow, Mallet-Paret, and Yorke [8], Drexler [17], and Garcia and Zangwill
[20], [21]. This has the advantage of permitting the use of parallel computation to find

∗Received by the editors March 22, 1996; accepted for publication (in revised form) September
3, 1997; published electronically December 2, 1998. Supported in part by a grant from the National
Science Foundation.

http://www.siam.org/journals/siopt/9-1/25158.html
†Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13902

(ross@math.binghamton.edu).
‡AT&T Labs, Florham Park, NJ 07932-0971 (jcl@research.att.com).
§Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (rcm@research.bell-labs.com).

159

160 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

different zeros. This approach has been proposed in particular to find complex zeros
of univariate polynomials F (z); see Kojima, Nishino, and Arima [33].

In this paper we study the opposite extreme, which are homotopies H(x, λ) :
Rn+1→Rn with H(x,0) ≡ F (x), such that the zero set of H(x, λ) is a single connected
curve. We call a homotopy with this property a threading homotopy for F , because
the zeros of F (x) are threaded along a single curve in the zero set of H(x, λ), which
passes back and forth through the hyperplane λ = 0. More generally we consider
semithreading homotopies, which are homotopies H in which all zeros of F (x) are on
a single connected component of the zero set Γ(H) of H, although Γ(H) may contain
other connected components. Using a semithreading homotopy, all zeros of F (x) can
be located by tracing a single curve.

This study of threading homotopies is motivated by the problem of numerically
computing all dc operating points of nonlinear resistive circuits, e.g., circuits with
transistors. A dc operating point1 for a nonlinear resistive circuit is any solution of a
given system of network equations F (x) = 0 for the circuit. The detection of multiple
operating points is of considerable practical concern in circuit simulation, because
some solutions of the network equations may represent unintended pathological modes
of operation, so that the circuit may fail in the field. To avoid this, one would like to
detect all possible operating points during the circuit-design phase, or at least alert the
designer to the presence of more than one operating point, before a decision is made
to fabricate an integrated circuit. Existing circuit simulators do not guarantee finding
all operating points, and there is now considerable interest in developing methods that
will find all operating points; cf. Mathis and Wettlaufer [34], Trajković, Melville, and
Fang [43], and Melville et al. [36]. The use of continuation methods to find individual
operating points has a long history; see Chao and Saeks [6]. However, the problem of
developing continuation methods guaranteed to find all operating points has received
relatively little study. The idea of finding several zeros of F (x) along one curve was
made in the early 1970s in Branin [5] and Chua and Ushida [12]. In some of their
examples, there are zeros of F (x) on several connected components of Γ(H). It is
natural in pursuing this approach to try to get all zeros on a single component, which
is the threading homotopy problem.

We call a homotopy H(x, λ) weakly proper over 0 if, for every closed interval [a, b],
the restriction H to Rn× [a, b] is proper over 0; i.e., H−1(0)∩ (Rn× [a, b]) is compact.
For such a homotopy, no part of the zero set of H(x, λ) can escape to infinity at a
finite value of λ. We consider the following problem.

Weakly proper threading homotopy problem. Let F : Rn→Rn be a Cr

function (1 ≤ r ≤ ∞) having a finite set of isolated zeros. Construct, if possible, a Cr

homotopy

H(x, λ) : Rn × R→Rn

with the following properties.
(i) H(x, 0) ≡ F (x).
(ii) Nondegeneracy condition. The Jacobian DH(x, λ) has rank n whenever

H(x, λ) = 0.
(iii) Connectedness condition. The zero set Γ(H) = {(x, λ) : H(x, λ) = 0} is

connected.

1Some authors use the term dc equilibrium point for a solution to the network equations F (x) = 0
and reserve the term dc operating point for a linearly stable equilibrium point. We call the latter a
stable dc operating point, as in Green [24] and Green and Willson [26].

THREADING HOMOTOPIES 161

Fig. 1.1. Threading paths.

(b) |Γλ| even(a) |Γλ| odd

λ = 0λ = 0

(iv) Weakly proper over 0 condition. For every closed interval [a, b] ⊆ R, the
restriction

H| : Rn × [a, b]→Rn is proper over 0.

The condition (ii) implies that the zero curves {(x, λ) : H(x, λ) = 0} have no
bifurcations, and with condition (iii) this implies that the set H(x, λ) = 0 is a single
curve containing all the zeros of F (x). As mentioned above, condition (iv) prevents
the zero set from escaping to infinity at any finite value of λ. The conditions (ii)–(iv)
lead to two cases as pictured in Figure 1.1.

Case (a). F (x) = 0 has an odd number of solutions. Then the sets

Γλ = {x ∈ Rn : H(x, λ) = 0}

are nonempty for all λ ∈ R, and |Γλ| = 1 for all |λ| sufficiently large. (Here, |Γλ|
denotes the number of elements in the set Γλ.)

Case (b). F (x) = 0 has an even number of solutions. Then |Γλ| = 0 for all large
λ of one sign, and for large λ of the other sign, |Γλ| = 0 or 2 according to whether
the zero set Γ(H) is bounded or unbounded.

We are particularly interested in Case (a). There, H(x, λ) = 0, for large fixed λ0,
has a single zero xλ0

, which one can use as the starting point for a homotopy method
to find all zeros.

In section 2, we present necessary conditions and sufficient conditions for exis-
tence of threading homotopies. It is clear that, given a finite set of isolated points in
Rn+1, one can always construct a smooth curve in Rn+1 passing through these points.
However, it is sometimes impossible to extend a map F : Rn→Rn to a weakly proper
threading homotopy H : Rn+1→Rn. For a C1 mapping F , a necessary condition for
the existence of a nondegenerate C1 semithreading homotopy is that the topological
degree of F be 0 or ±1 (Theorem 2.1). An immediate consequence is that there exists
no C1 semithreading homotopy for finding all zeros of a complex polynomial p : C→C,
where C is identified with R2, whenever p(z) is nonlinear (Corollary 2.1). We show, for
mappings F that are Cr(2 ≤ r ≤ ∞) with a finite set of isolated nondegenerate zeros,
that the condition deg(F) = 0 or ±1 is necessary and sufficient for Cr weakly proper

162 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

threading homotopies to exist in all dimensions, except possibly dimension n = 2
(Theorem 2.2). We then show, for mappings F that are Cr (1 ≤ r ≤ ∞) with a finite
set of isolated nondegenerate zeros, that the condition deg(F) = 0 or ±1 is necessary
and sufficient for the existence of a weakly proper Cr semithreading homotopy in all
dimensions n ≥ 1 (Theorem 2.3).

To design threading homotopies, it is clearly useful to have criteria which verify
that the threading property holds. Diener [16] gives a (somewhat restrictive) set of
global conditions on a C2 function H : Rn+1→Rn which guarantee that it has the
threading property. Diener’s condition is that there exists some positive K such that

sup{||(DH(x)DH(x)T)−1|| : x ∈ Rn+1} ≤ K <∞,(1.2)

where the Frobenius norm ||M || for the matrix M is ||M ||2 =
∑
i,jM

2
ij . He proves

that, when (1.2) holds, the Newton method flow gives a retraction of Rn+1 onto the
set Γ(H), thus establishing that Γ(H) is a connected set.

In section 3, we return to our motivating problem, which concerns the possible
existence of threading homotopies for finding dc operating points of nonlinear circuits.
We present theoretical results which indicate that threading homotopies exist for a
large class of nonlinear circuits without exhibiting such homotopies explicitly. More
precisely, we show that a large class of circuits can be modeled so as to have operating
point equations F (x) = 0 with deg(F) = ±1. Results showing that deg(F) = 1 for
some classes of circuits were already obtained in the 1970s by Wu [52] and Chua and
Wang [13], and we describe one such result (Theorem 3.1). This result already applies
to a large class of circuits of practical interest. Our main new result of section 3
is a result implying that deg(F) = ±1 for operating point equations of circuits in
the Sandberg–Willson form with nonlinear elements satisfying a suitable passivity
condition (Theorem 3.2). This condition is quite general. It applies to circuits using
bipolar junction transistors and may well hold for all other transistor types. In any
case, it appears that most if not all transistor models can be easily modified outside the
“physically relevant” parameter range to satisfy this passivity condition. The resulting
operating point equations then detect all the “physically relevant” operating points.
Thus we can construct operating point equations for which threading homotopies exist
in principle; the explicit construction of such homotopies remains an open problem.
At the end of section 3 we briefly sketch a class of “circuit deformation” homotopies,
some of which have been used in circuit simulators (see [35], [43]). These homotopies
satisfy a “no-gain” condition which insures properness of the homotopy, as observed
in [36], [42]. It may well be that a subclass of these homotopies have the threading
property.

The problem of explicitly constructing threading homotopies to find dc operating
points seems to warrant further investigation in view of the lack of reasonable alter-
native methods for finding multiple dc operating points for nonlinear circuits. We are
not aware of any existing method that can specify in advance the number of operating
points of a given circuit, and this seems to rule out approaches that follow distinct
paths to find each zero separately. Other zero-finding methods that proceed by a grid
search to find zeros would be prohibitively slow due to the very large dimensionality
of the search space for any reasonably sized circuit. Various algorithms have been
given to find all operating points for piecewise linear models of circuits; see Chua and
Ying [14], Pastore and Premoli [39], and Yamamura [54]. Here the enormous dimen-
sionality of the search space presents difficulties. In contrast, methods that trace a
single connected component can be immediately implemented in any software that

THREADING HOMOTOPIES 163

uses continuation methods. Indeed they are already in use but at present come with
no guarantee of finding all dc operating points (see [35], [36], [43]). Finally we note
a recent approach using multiparameter homotopies proposed by Wolf and Sanders
[51].

This paper presents rigorous results for functions F (x) and homotopies that are
continuously differentiable. Similar questions can be raised for piecewise linear func-
tions F (x) using piecewise linear homotopies. Piecewise linear functions and homo-
topies have been considered in modeling nonlinear circuits; see, for example, Huang
and Liu [30], Ohtsuki, Fujisawa, and Kumagai [38], and Vandenberghe, de Moor, and
Vandewalle [45].

2. Existence of threading homotopies. We derive necessary conditions and
sufficient conditions for the existence of threading homotopies. The basic invariant
used is the topological degree of a mapping. Let F : Rn→Rn be continuous and
suppose that F is proper over 0, i.e., that the zero set Γ(F) is compact. If Γ(F) ⊆
B(0, T) = {x : ||x|| < T} and Sn−1 = {x : ||x|| = 1}, then for R > T the map F
induces a mapping φF,R : Sn−1→Sn−1 given by

φF,R(x) =
F (Rx)

||F (Rx)|| for x ∈ Sn−1.

The homotopy class of φF,R(x) in the homotopy group πn−1(Sn−1) ∼= Z is independent
of R > T and is called the degree of F , denoted deg(F). We identify πn−1(Sn−1) with
Z, using the isomorphism in which the degree of the identity map is 1, and henceforth
view deg(F) as an integer.

Now suppose that the zeros of F are isolated and finite in number. The index
indx0(F) is defined, for any isolated zero x0 of a continuous function F (x), as the
degree of the mapping Fε : Sn−1→Sn−1 given by

Fε(x) :=
F (x0 + εx)

||F (x0 + εx)|| , ||x|| = 1,

for small enough positive ε (see Cronin [9, p. 53]); any integer can occur as a value of
indx0

(F). The degree of F is given in terms of the indexes of the zeros of F by

deg(F) =
∑

F (x0)=0

indx0(F).(2.1)

More generally, for an open set U in Rn whose closure Ū is compact and with F (x) 6= 0
everywhere on its boundary ∂U , we set

deg(F ;U) :=
∑

F (x0)=0

x0∈U

indx0
(F).

Now suppose that F is C1. A zero x0 of F (x) is nondegenerate if det(DF (x0)) 6= 0.
(Nondegenerate zeros are always isolated.) The index of a nondegenerate zero x0 then
satisfies

indx0(F) = sign (det(DF (x0))) = ±1.

The degree is an invariant of homotopies which are weakly proper over 0 in the
following sense. Suppose the Cr function H(x, λ) : Rn × [0, 1]→Rn is proper over 0,

164 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

where r ≥ 1, and set Fλ = H(x, λ). Assume that 0 is a regular value for H, for F0,
and for F1; i.e., all three Jacobians DH, DF0, and DF1 have rank n at all points of
the zero set. Then H−1(0) is a one-dimensional “neat” Cr-submanifold of Rn × [0, 1]
(Hirsch [28, Theorem 1.4.1]). This 1-manifold is compact because H is proper over
0, so the zero set does not “escape to infinity.” Then one has deg(F0) = deg(F1) by
an easy adaptation of the proof of Corollary 5.1.3 of Hirsch [28]. Similarly, if U is
as above and H−1(0) is disjoint from ∂U × [0, 1], then deg(F0;U) = deg(F1;U). The
necessity for the assumption “proper over 0” in such a homotopy is shown (for n = 1)
by

H(x, λ) =
2

π
arctan(x)− λ,

where “escape to infinity” occurs, and deg(F0) 6= deg(F1).

We give a necessary condition for the existence of a semithreading homotopy. Call
a C1 homotopy H nondegenerate if its Jacobian DH(x, λ) has full rank n at every
zero of H(x, λ).

Theorem 2.1. Suppose that the zero set of a C1 mapping F : Rn→Rn consists of
a finite number of isolated nondegenerate zeros. If the C1 function H(x, λ) : Rn+1→Rn
is a nondegenerate semithreading homotopy extending F (x), then the degree of F is
1, 0, or −1.

The simple proof of this result is based on the following well-known fact, which
concerns the index of successive zeros encountered in following a continuation method
path having no bifurcations. It is essentially Corollary 5.1.1 in Hirsch [28], who, how-
ever, assumes all functions are C∞; see also [3, Corollary 11.5.6]. We include a proof
for the reader’s convenience.

Lemma 2.1. Suppose that the C1 mapping F : Rn→Rn has a finite zero set with
all zeros nondegenerate. If H(x, λ) : Rn+1→Rn is a C1 function with H(x, 0) = F (x)
and the Jacobian DH(x, λ) has full rank n at every zero of H, then any two consecutive
zeros x′, x′′ of F (x) found by traversing a solution curve (x(t), λ(t)) of H(x, λ) = 0
have opposite index; i.e.,

det(DF (x′)) det(DF (x′′)) < 0.(2.2)

Proof. By the implicit function theorem, (x(t), λ(t)) is locally defined and C1

in a neighborhood of every zero (x0, λ0) of H(x, λ). When traversing the curve
(x(t), λ(t)), in the zero set Γ(H) from x′ to x′′, the augmented gradient of H =
(H1, . . . , Hn)t is

J :=

DH̃

∂H

∂λ

dx

dt

dλ

dt

 ,

in which DH̃ =
[
∂Hi
∂xj

]
and dx

dt =
(dx1(t)

dt , . . . , dxn(t)
dt

)
. The augmented Jacobian det(J)

is always nonzero, because the tangent vector v =
(
dx
dt ,

dλ(t)
dt

)
to the curve is per-

pendicular to the row space of DH(x(t), λ(t)). Hence det(J) has constant sign; call

THREADING HOMOTOPIES 165

this sign ε̂. In addition this perpendicularity gives
DH̃

∂H

∂λ

dx

dt

dλ

dt

 I ẋT

0
dλ

∂t

 =

 DH̃ 0

dx

dt
1

 ,
because

(
dλ
dt

)2
+
∑n
i=1

(
dxi
dt

)2
= 1, using the arclength parametrization. Taking deter-

minants, we obtain

det(J)
dλ

dt
= det(DH̃).

At a point (x(t′), λ(t′)) = (x′, 0) which gives a zero of F , DH̃(x′) = DF (x′); hence

sign (detDF (x′)) = ε̂ sign

(
dλ

dt

)
.(2.3)

If t′ < t′′ are two consecutive zeros of λ(t) along the curve, then the sign of λ(t) is
constant on the interval (t′, t′′), while

sign

(
dλ

dt
(t′)
)

= − sign

(
dλ

dt
(t′′)

)
.

Then (2.3) shows that detDF (x′) and det(DF (x′′)) have opposite signs, and (2.2)
follows.

Proof of Theorem 2.1. Suppose that x1,x2, . . . ,xm are the zeros of F (x) in the or-
der they are encountered when traversing, in a fixed direction, the curve
{(x(t), λ(t)) : t ∈ R} comprising the connected component of the zero set Γ(H)
that contains the zeros of F (x). By Lemma 2.1,

indxi(F) + indxi+1
(F) = 0.

Applying this in pairs, we have deg(F) = 0 if F (x) has an even number of zeros, and

deg(F) = indxm(F) = ±1

if F (x) has an odd number of zeros.
This degree constraint of Theorem 2.1 is automatically satisfied in dimension

n = 1, and in that case the homotopy

H(x, λ) = F (x)− λ(2.4)

is always a threading homotopy. However, in dimensions n ≥ 2 the degree constraint
is a nontrivial obstruction.

Corollary 2.1. Let p(z) =
∑d
j=0 ajz

j be a polynomial of degree d ≥ 2 with
distinct roots. If p(z) is regarded as a mapping p : C → C, then there exists no
semithreading homotopy H(z, λ) : C× R→C for p.

Proof. The index of each simple zero of a polynomial p(z) is 1. To see this, translate
the zero to z = 0, and, by simplicity of the zero, only linear terms in p(z) contribute
to the index, so without loss of generality suppose that p(z) = αz, with α 6= 0. Write
α = a+ bi and z = x+ yi, and viewing p(z) = (Re(p(z)), Im(p(z))) in R2 one finds

Dp(0) =

[
a −b
b a

]
.

166 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

Hence det(Dp(0)) = a2 + b2 > 0 since α 6= 0. Thus deg(p) is just the algebraic degree
of p(z) and is at least 2 if p(z) is not linear; hence Theorem 2.1 gives the result.

Corollary 2.1 also holds for polynomials p(z) having multiple zeros, using the
general definition of index (cf. Milnor [37, p. 32]), but it does not apply to general
multivariate polynomial maps P : Cn→Cn. For n ≥ 2, such a polynomial map can
have an isolated zero with index −1. However, one can show that if the map P (z) has
real coefficients, then all nondegenerate real zeros of P (z) have index 1; see Cronin
[9, Lemma 9.3.2]. In particular, if such a map has at least two zeros, with all zeros
real and nondegenerate, then deg(P) ≥ 2, so that Theorem 2.1 applies to show that
no threading homotopy exists.

We next establish sufficiency of the condition deg(F) = 0, or ±1 for the existence
of a threading homotopy for C2 mappings in dimensions n 6= 2. For this we introduce
a condition stronger than “weakly proper over 0.” Call a function H(x, λ) R-proper
over 0 if there is a compact set B ⊆ Rn such that H−1(0) ⊆ B × R. This is “weakly
proper over 0” with an additional uniformity condition in the R-direction.

Theorem 2.2. For any n 6= 2, let F : Rn→Rn be a Cr mapping (2 ≤ r ≤ ∞)
whose zero set consists of a finite number of isolated nondegenerate zeros. If deg(F) is
1, 0, or −1, then there exists a nondegenerate threading homotopy H(x, λ) : Rn+1→Rn
for F , such that H is a Cr mapping which is R-proper over 0.

We do not know if Theorem 2.2 is true when n = 2.

The main part of the proof is the following.

Lemma 2.2. Suppose that n ≥ 3 and that F : Rn → Rn is a Cr mapping (2 ≤
r ≤ ∞) which has exactly two zeros x± = (±1, 0, . . . , 0) with indx+(F) = 1 and
indx−(F) = −1. Then there exists a Cr homotopy H(x, λ) : Rn × [0, 1] → Rn with
H(x, 0) = F (x), which is stationary outside a preassigned neighborhood of the line
segment connecting x+ and x−, such that H−1(0) is a Cr-embedded “neat” arc in
Rn × [0, 1].

Here, as in Hirsch [28, p. 30], “neat” means that the arc meets the boundary at
(x+, 0) and at (x−, 0) in a Cr-manner.

Proof. A form of Lemma 2.2 is essentially to be found in Whitney [46]; topologists
call all of its variants “the Whitney lemma.” The condition n ≥ 3 arises from Whit-
ney’s need to approximate a singular disk in R2n by an embedded disk. It is not clear
to us, however, that the proof in [46] avoids introducing extra circle components in
H−1 (0) ∩(Rn × [0, 1]): compare the difference between semithreading and threading
above. However, this problem is avoided in a rather elementary proof of Lemma 2.2
appearing in Jezierski [31, Lemma 2.2]. The proof of Jezierski makes no mention
of embedded disks. Rather, it uses advanced calculus and the fact that spheres of
dimension ≥ 2 are simply connected. Like Whitney’s proof, it is presented for the
C∞-case; however, the proof requires only the hypothesis C2, hence our restriction
r ≥ 2. Jezierski uses n ≥ 3 for the property of (n−1)-spheres mentioned above.

Proof of Theorem 2.2. The necessary degree condition was already shown to be
sufficient in dimension 1 (see (2.4)), so suppose that n ≥ 3. Lemma 2.2 shows how
to “remove” a pair of zeros of opposite degree. Now suppose deg(F) = ±1. Then
one can arrange the zeros in an order x1, x2, . . . , x2m+1 so that consecutive zeros
have opposite degree. One can find arcs connecting them in pairs (xi, xi+1) so that
all tubular neighborhoods of disjoint pairs are disjoint. One can then combine the
homotopies above for the pairs (x1, x2), (x3, x4), . . . , (x2m−1, x2m), with homotopy
parameter 1 ≥ λ ≥ 0 and those for (x2, x3), (x4, x5), . . . , (x2m, x2m+1), with homotopy
parameter 0 ≥ λ ≥ −1, to obtain a threading homotopy, which is R-proper over 0.

THREADING HOMOTOPIES 167

With care, one can ensure that the “combined” homotopy is still Cr; see Jezierski
[31] for a discussion of similar matters. A slight and obvious modification handles the
case deg(F) = 0.

Finally, we establish the sufficiency of the condition deg(F) = 0 or ±1 for the
existence of a semithreading homotopy for C1 mappings in all dimensions n ≥ 1. We
include this result because it is the best we can do when n = 2, and, while it obtains
a weaker conclusion than Theorem 2.2, it has a more elementary proof.

Theorem 2.3. For all n ≥ 1, let F : Rn→Rn be a Cr mapping (1 ≤ r ≤ ∞) whose
zero set consists of a finite number of isolated nondegenerate zeros. If deg(F) = 1, 0,
or −1, then there exists a nondegenerate Cr homotopy H(x, λ) : Rn+1→Rn extending
F , which is weakly proper over 0, such that the following are true.

(i) All zeros of F (x) lie on a single connected component of the zero set of
H(x, λ).

(ii) All other components of the zero set of H(x, λ) are closed loops on which
0 < |λ| < 1.

Proof. The necessary degree condition was already shown to be sufficient in di-
mension 1; see (2.4). For n ≥ 2, we use an approach which starts from the proof of
Lemma 5.2.9 of Hirsch [28]. That lemma essentially shows that, given two zeros of
degree 1 and −1, respectively, together with an arc connecting them, and a tubular
neighborhood U2 of the arc, then there is a continuous function G agreeing with F
outside U2 which has no zeros in U2. That lemma is stated for C∞ maps, but the
cited proof and all other proofs cited below go through without change for Cr maps,
with r ≥ 1.

Now pick a nested collection of tubular neighborhoods U2 ⊂ U1 ⊂ U0 ⊂ U ,
where the closure of each lies in the next; to find these, use the tubular neighborhood
theorem, Theorem 4.5.2 of Hirsch [28]. We have already used U2. Note that G =
F outside U1 so G is Cr outside U1. We use the relative approximation theorem
(Theorem 2.2.5) of Hirsch [28] to obtain a Cr map G̃ agreeing with G ≡ F outside
U1, which is close enough to G inside U2 that it has no zeros there. (To be specific,
use that theorem with Hirsch’s U and K being U0 and with his W being U1.)

Let φ : R→R be a Cr function satisfying 0 ≤ φ(λ) ≤ 1, with φ(λ) = 0 for λ ≤ 0
and φ(λ) = 1 for λ ≥ 1, and define J : Rn × R→Rn by

J(x, λ) = φ(1− λ)F (x) + φ(λ)G̃(x) .

Now J is Cr. Let N = U0 × [0, 1]. N has “corners” at ∂U0 × {0, 1}, so N is a C0

manifold but not a differentiable manifold. The set (J |∂N)−1(0) = {x′,x′′}, where x′

and x′′ are the two zeros of F that we are trying to remove. By “smoothing out the
corners” (see Kirby and Siebenmann [32, pp. 8 and 119]), we can find a differentiable
manifold M lying in the interior of N with respect to Rn × [0,∞)—interior in the
topological sense—such that U1 × {0} ⊆M ; see Figure 2.1.

There is a relative transversality theorem, stated as “Corollary” on p. 73 of
Guillemin and Pollack [27], which says that J |∂M can be extended to a map J̃ : M→Rn
which is transverse to {0}. Extend J̃ to Rn×R so as to be Cr and agree with J outside
M . Then (J̃ |M)−1(0) includes an arc of zeros of the type desired. However, (J̃ |M)−1(0)
may also contain extra components, which are closed loops in the interior of M . If
x 6∈ U0, then J̃(x, λ) = F (x, λ) for all λ ∈ R. Thus we have shown how to connect
and “remove” a pair of zeros of opposite degree.

Now if deg(F) = −1, 0, or 1, one proceeds exactly as in the proof of Theorem 2.2
to thread all the zeros together.

168 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

J̃−1(0)

x′

Rn × [0,∞]

N

Rn

λ

λ = 0

λ = 1

Fig. 2.1. Smoothing out the corners.

U1

U0

M

x′′

3. DC operating points of nonlinear resistive circuits. The theory of dc
operating points of transistor circuits is surveyed in Trajković and Willson [44] and,
for work before 1974, in Willson [48]. In this section we make the theoretical obser-
vation that threading homotopy methods potentially apply to the dc operating point
problem by showing that most circuits can be modeled with operating point equations
F (x) = 0 such that deg(F) = ±1. It follows that there is no topological obstruction
to the existence of threading homotopies for such equations, and they certainly exist
whenever Theorem 2.2 applies, i.e., when F is C2; see also Theorem 2.3.

There is a long history of results on topological degree applied to nonlinear net-
works. These methods were developed to prove the existence of dc operating points,
for which it suffices to prove that deg(F) is odd; see Chua and Wang [13, Property 7].
The original method of Wu [52] uses passivity properties of the circuits to prove
deg(F) = ±1, and we follow this approach here.

We consider nonlinear circuits made up of transistors and nonlinear diodes driven
by active sources which are current sources or voltage sources. A nonlinear resistive
network is passive if

P (v, i) := 〈v, i〉 := v1i1 + v2i2 + · · ·+ vnin ≥ 0(3.1)

for any allowed set of voltages v and currents i. Here P (v, i) measures the power
consumed by the network, and the passivity condition2 asserts that a network never
generates power internally, but it may consume power. Circuits composed solely of
nonlinear passive resistors and transistors with no voltage or current sources are pas-
sive.

For a general circuit we extract a set of n independent variables x = (x1, . . . , xn)
among the 2n variables {v1, . . . , vn, i1, . . . , in}, one from each pair (vj , ij), and solve
for the remaining variables y = (y1, . . . , yn) using Kirchhoff’s voltage and current
laws, to obtain

y = F (x).

That is, the variables y are uniquely determined as functions of x, and we call x
the controlling variables. The simplest case consists of voltage-controlled circuits, in

2More general definitions of passivity are discussed in Chua, Desoer, and Kuh [10] and Wyatt et
al. [53].

THREADING HOMOTOPIES 169

which the controlling variables v = (v1, . . . , vn) are the node voltages, giving poten-
tials measured from a reference node (“ground”) in the network, and the remaining
variables i = (ii, . . . , in) give the currents at each node. (There are no voltage or
current variables for the reference node.) We may force the node voltage at node k
to be vk by attaching a new branch from the reference node to node k which either
contains a voltage source with potential vk or a current source with current ik, with
the branch oriented towards node k. We define the column vector

F (v) := (F1(v), . . . , Fn(v))T ,(3.2)

where ik = Fk(v) denotes the current at node k entering from the branch containing
the voltage source vk. The operating point equations for a voltage-controlled circuit
with offered currents i = (i1, i2, . . . , in) is

F (v) = i.(3.3)

For fixed i ∈ Rn this equation may have zero, one, or many solutions in v. The power
P (v, i) drawn by the circuit from the voltage sources is

P (v, i) := 〈v, i〉 = 〈v, F (v)〉,(3.4)

and the passivity condition asserts that P (v, i) ≥ 0.
The relevance of a passivity condition to the topological degree of F (v)− i is the

following well-known fact.
Lemma 3.1. If a function G : Rn→Rn satisfies a strict coercivity condition

〈x, G(x)〉 > 0 if ||x|| ≥ R,(3.5)

then deg(G) = 1.
Proof. The condition (3.5) shows that all zeros of G(x) lie in the compact set

||x|| ≤ R. The map φG,R(x) = G(Rx)
||G(Rx)|| is homotopic to the identity map on Sn−1

using radial projection of the map

Gλ(x) = λG(Rx) + (1− λ)x, x ∈ Sn−1, 0 ≤ λ ≤ 1,

onto Sn−1, which is well-defined since the strict coercivity condition gives 〈x, Gλ(x)〉 >
0; hence Gλ(x) 6= 0. Now deg(G) = 1 by the invariance of degree for homotopies
proper over 0, as explained in section 2.

If we set

Fi(v) := F (v)− i,(3.6)

then a sufficient condition for Fi(v) to satisfy a strict coercivity condition (3.5) can
be given in terms of the power drawn by the circuit. We say that function F (x) is
eventually strongly passive if there exist c > 0 and R > 0, such that

〈x, F (x)〉 ≥ c||x||2 for ||x|| > R.(3.7)

A positive linear resistor has this property. Eventual strong passivity of F (x) implies
eventual strong passivity of Fc(x) for each c ∈ Rn, since

〈x, Fc(x)〉 = 〈x, F (x)〉 − 〈x, c〉
≥ c||x||2 − ||x|| ||c|| if ||x|| > R,

≥ 1

2
c||x||2 if ||x|| > R′,(3.8)

with R′ = max(2
c‖c‖, R).

170 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

We now present results which show that deg(F) = ±1 for two large classes of
circuit equations. The first class of transistor circuits has dc operating point equations
that are of the form

F̃ (x) + Px = s,(3.9)

where F̃ (x) is a vector of n functions of x describing the effect of nonlinear elements of
the circuit, assumed to be eventually passive (defined below); the conductance matrix
P is assumed to be positive definite but not necessarily symmetric; and s is a constant
describing the active sources in the circuit. Chua and Wang [13, Theorem 2] prove
the following result.

Theorem 3.1. Let F : Rn→Rn be a function

F (x) := F̃ (x) + Px,(3.10)

in which P is a positive definite matrix and F̃ (x) is eventually passive; i.e.,

〈x, F̃ (x)〉 ≥ 0 for all ||x|| ≥ R.(3.11)

Then F (x) is eventually strongly passive; hence if Fc(x) = F (x)−c, then deg(Fc) = 1
for all c ∈ Rn.

Proof. Positive definiteness of P gives

〈x, Px〉 ≥ c||x||2, for all x ∈ Rn,
for some positive constant c. The eventual passivity condition for F̃ (x) yields

〈x, F (x)〉 ≥ 〈x, Px〉 ≥ c||x||2 if ||x|| ≥ R;(3.12)

i.e., F (x) is eventually strongly passive. Now deg(Fc) = 1 follows from (3.8) and
Lemma 3.1.

Theorem 3.1 is readily applicable to a wide class of practical circuits. Consider
for the moment voltage-controlled circuits using bipolar junction transistors. These
circuits are modeled using variants of the Ebers–Moll transistor model as a two-port
in the common base configuration; see Appendix A. The resulting circuit equation
has the form (3.9) except that P is positive semidefinite rather than positive def-
inite. Existing circuit simulators, such as SPICE, add small shunt conductances to
the Ebers–Moll model; see, for example, [4, pp. 14, 44, and 45], where the variable
is denoted GMIN. These conductances are modeled as two resistors with resistances
(GMIN)−1 between the base and the other two nodes of the transistor. If these re-
sistors are migrated to the linear part of the circuit, this will change the matrix P to
P + diag(GMIN), which is positive definite, and Theorem 3.1 applies. Green and
Willson [26] give a detailed description of circuits satisfying Theorem 3.1. This the-
orem may also apply to some circuit equations represented in other forms, such as
those used in Ho, Ruehli, and Brennan [29] and Willson and Wu [50].

We next prove a general result which applies to nonlinear circuits in the Sandberg–
Willson form that separates linear and nonlinear parts of the circuit (see [40], [41], and
[47]) and that assumes a weaker passivity condition than Theorem 3.1. This result
applies to circuits with Ebers–Moll transistors without shunt conductances added.
The nonlinear elements are treated as voltage-controlled, with response function

F (v) = −i , with i =

 i1
...
in

 .(3.13)

THREADING HOMOTOPIES 171

The linear part of the circuit has response

Qi = P (v − c),(3.14)

in which (P,Q) are a passive pair of n× n matrices, i.e.,

Qi = Pv implies 〈v, i〉 = vT i ≥ 0,(3.15)

and c is a vector of constants representing independent sources. Any linear circuit
consisting of positive linear resistors and independent voltage sources can be put
in the form (3.14), as well as many linear circuits containing current sources; see
Sandberg and Willson [41, Theorem 1 ff.]. This set of equations is converted to circuit
equations in Sandberg–Willson form by eliminating the current variables i to obtain
the nonlinear system of equations

QF (v) + P (v − c) = 0.(3.16)

We establish the following result.
Theorem 3.2. Let F : Rn→Rn be a C1 mapping and consider the mapping

G̃ : Rn→Rn given by

G̃(x) := QF (x) + P (x− c),(3.17)

in which (P,Q) is a passive pair of n × n matrices, and c is given. If there exists
R > 0 such that F (x) satisfies

〈x− c, F (x)〉 > 0 for ||x|| > R,(3.18)

then deg(G̃) = ±1.
Remark. The condition (3.18) is a passivity condition that is less stringent than the

eventually strong passivity condition (3.7). Note also that the form of G̃(x) can apply
to operating point equations using any set of controlling variables (hybrid variables)
rather than voltages.

Proof. We first study the 2n× 2n system G = (G1, G2) given by

G1(x,y) := F (x) + y,

G2(x,y) := Qy − P (x− c).

We consider the homotopy H : R2n+1→R2n given by H = (H1, H2) with

H1(x,y, λ) := (1− λ)F (x) + λ(x− c) + y,

H2(x,y, λ) = Qy − P (x− c).(3.19)

We will show that H is a homotopy proper over 0 and that deg(H(x,y; 1)) = ±1.
This will imply that deg(G) = deg(H(x,y, 0)) = ±1 by invariance of degree for proper
homotopies.

To see that H is a proper homotopy, we show that all zeros of H(x,y, λ) for
0 ≤ λ ≤ 1 lie in a compact set. Any such zero satisfies

(1− λ)F (x) + λ(x− c) + y = 0,(3.20)

Qy = P (x− c).

172 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

Now

〈x− c, H1(x,y, λ)〉 = (1− λ)〈x− c, F (x)〉+ λ||x− c||2 + 〈x− c,y〉.
The passive pair condition gives

〈x− c,y〉 ≥ 0,

which, with (3.18), gives for 0 ≤ λ ≤ 1 that

〈x− c, H1(x,y, λ)〉 > 0 if ||x|| > R′,

where we define R′ = max(R, ||c||).
To see that deg(H(x,y, 1)) = ±1, we observe that G∗(x,y) = H(x,y, 1) has

G∗1(x,y) = x− c + y,

G∗2(x,y) = G2(x,y) = Qy − P (x− c).

Thus any zero of G∗ has y = −(x− c), and the equation G∗2(x,y) = 0 becomes

Q(−(x− c)) = P (x− c).

Since (P,Q) is a passive pair, this gives

−(x− c)T (x− c) = −||x− c||2 ≥ 0.

This forces x = c, hence G∗ has a unique zero (c,0). Since G∗ is an affine map that
has a unique zero, it is invertible, hence its Jacobian det(DG∗) does not vanish. Thus

deg(H(x,y, 1)) = deg(G∗) = sgn

(
det

∣∣∣∣ I I
−P Q

∣∣∣∣) = ±1.(3.21)

We have now established that

deg(G) = deg(H(x,y, 0)) = deg(H(x,y, 1)) = ±1.

To complete the proof, we show that |deg(G̃)| = |deg(G)|. Let K : R2n+1 → Rn be
the homotopy K = (K1,K2) with

K1(x,y, λ) := G1(x,y − λF (x)),

K2(x,y, λ) := G2(x, (1− λ)y − λF (x)).

(3.22)

Now K is proper over 0 by an argument similar to that given for H. Also

K(x,y, 0) = G(x,y) and K(x,y, 1) = (y,−G̃(x)),(3.23)

so we have deg(G) = deg(K(x,y, 1)). Interchanging coordinates in K(x,y, 1) and
multiplying by −1 does not change the absolute value of the degree, hence

|deg(G)| = |deg(K(x,y, 1))| = |deg K̃(x,y)|,(3.24)

where

K̃(x,y) = (G̃(x),y) = (G̃× I)(x,y).(3.25)

THREADING HOMOTOPIES 173

Now deg(K̃(x,y)) = deg(G̃(x)), which proves that |deg(G̃)| = |deg(G)| = 1.

Theorem 3.2 applies to nearly all transistor circuits of practical interest. To verify
the passivity condition (3.18), it suffices to check it on each nonlinear circuit ele-
ment separately. For example, it holds for the Ebers–Moll model for bipolar junction
transistors for all c ∈ R2 as is shown in Sandberg and Willson [41, Theorem 5]; see
Theorem A.1 in Appendix A. If there are nonlinear elements for which (3.18) does
not hold, we may modify their responses for large ||x|| to force (3.18) to hold. In
this way we obtain modified operating point equations that detect all the “physically
relevant” dc operating points. We propose such model modifications purely as arti-
ficial adjustments to the transistor model, but actual transistors exhibit breakdown
behavior which is roughly equivalent to a passivity property like (3.18).

The degree results above show that for most circuits there exist network equations
having threading homotopies. Finding explicit threading homotopies for particular
classes of network equations remains an open problem

One of the difficulties in using homotopy methods in circuit simulators to find all
zeros is forcing properness of the homotopy, to prevent zeros “escaping to infinity.”
Trajković, Melville, and Fang [42] and Melville et al. [36] noted that this can be
achieved for various circuits that have the “no-gain” property defined in Willson [49]
and Chua, Lam, and Stromsoe [11]. A circuit has the no-gain property if, for any
set of attached independent sources (either voltage or current sources), the voltage
difference between any two nodes of the circuit does not exceed the absolute values of
voltages across all the independent sources, and the current flowing into any node does
not exceed the sum of the magnitudes of currents flowing through all the independent
sources. In [49] it is shown that all connected networks composed of two-terminal and
three-terminal no-gain elements have the no-gain property, and that linear resistors,
bipolar junction transistors, and MOSFETS all have the no-gain property. Suppose
that one can find a homotopy H(x, λ) for 0 ≤ λ ≤ 1 with the following two properties.

(i) H(x, λ) = Fλ(x), where each Fλ(x) is the operating point equation for a
circuit Cλ that has the no-gain property, for 0 ≤ λ ≤ 1.

(ii) H(x, 0) = F (x), while H(x, 1) = F1(x) corresponds to a circuit with a
unique operating point.

The no-gain property of all circuits Cλ then implies that the homotopy is proper. In
this case it directly follows that deg(F) = 1 from the invariance of degree for proper
homotopies, because degF0(x) = 1 by (ii). Such “no-gain” homotopies can often be
found by varying the parameters of the circuit elements, as described in [36]. The
particular usefulness of such “no-gain” homotopies is to give a priori bounds on a
region containing all zeros of such homotopies; see Trajković, Melville, and Fang [42].
These bounds provide a simple error check on correctness of homotopy computations.

There is a natural class of candidate homotopies to consider for use in circuit
simulators, which we may call sandwich homotopies, that may well include threading
homotopies. These homotopies are constructed using circuit deformation homotopies
{H(x, λ) : 0 ≤ λ ≤ 1}, which deform the circuit parameters of a no-gain circuit to
obtain a circuit having a unique operating point. A sandwich homotopy consists of
combining two circuit deformation homotopies which vary the circuit parameters in
different ways, with one used on 0 ≤ λ ≤ 1, and the other on −1 ≤ λ ≤ 0, and then
we set H(x, λ) ≡ H(x, 1) for λ ≥ 1, and H(x, λ) = H(x,−1) for λ ≤ −1. Some care
is needed to make such a homotopy C2 at the boundary values λ = 1, 0, and −1.

We describe one kind of circuit-deformation homotopy, following the approach of
Melville et al. [36], for circuits consisting of linear resistors and bipolar junction tran-

174 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

sistors. First, the coupling elements in the bipolar junction transistors, the forward
and reverse gains,3 are each reduced monotonically to zero. By results of Willson [49],
the transistors produced during this process retain the no-gain property throughout.
Now one has a network of uncoupled diodes whose v − i curves are eventually mono-
tone; i.e., f ′(x) > 0 for |x| > R. The second part of the homotopy is to deform the
voltage-current curves of the diodes to make them all monotone by a C2 homotopy
applied to each voltage-current curve on a bounded region. (The diode v − i curves
must satisfy some mild conditions for this to be possible. If f ′(x) > 0 for |x| ≥ R then
f(−R) < 0 < f(R) suffices.) The resulting circuit of strictly monotone diodes has a
unique operating point by a well-known result of Duffin [18, Theorem 3]. One wants
such homotopies H(x, λ) to be bifurcation-free, i.e., for the rank n condition (iii) above
to be satisfied. This can be done by allowing a space of small C2 deformations around
the homotopy described above, using the approach of Chow, Mallet-Paret, and Yorke
[7]. These homotopies certify that deg(F0) = 1, because deg(F1) = 1 by the result of
Duffin [18] and the homotopy can be shown to be proper using the no-gain condition.

Sandwich homotopies come with no guarantee of being threading homotopies.
However, they have successfully been used to find more than one operating point;
see Green and Melville [25]. In particular, Melville et al. [36] describe a variable-gain
homotopy which seems to work well in practice and which has been implemented
in Sframe, a circuit simulation platform; see [35]. Some of these homotopies have
been observed empirically to have the threading property. Perhaps a subclass of them
can be proved to have the threading property, using Diener’s condition (1.2) or an
analogous criterion.

Appendix A. Ebers–Moll model for bipolar junction transistors. The
Ebers–Moll large signal model [4], [19], [22] for a bipolar junction transistor is pictured
in Figure A.1. This is the injection version of the Ebers–Moll model given in Getreu
[22, p. 12]. A node in a circuit designates a connected set of points in the circuit which
are all at the same voltage with respect to a reference point, usually called ground.
There are only three nodes in the Ebers–Moll model: collector, base, and emitter. In
Figure A.1 the base node has been drawn as two terminals (b1, b2) in order to treat the
transistor as a two-port; this arrangement is conventionally called the common base
configuration for the Ebers–Moll model. This circuit element contains two nonlinear
diodes with (different) response curves of the form

(A.1) f(v) = m(env − 1),

where m and n are both positive parameters. The exponential diodes (A.1) are some-
times called Ebers–Moll diodes. It also contains two current-controlled current sources
with current gains αF , αR that satisfy 0 ≤ αF , αR < 1. The current flowing through a
current-controlled current source is equal to a fixed current gain α times a controlling
current I flowing on a branch somewhere else in the circuit. Thus a current-controlled
current source is a linear element that produces coupling between different parts of
the circuit. Figure A.1 models specifically an npn transistor; the model for a pnp
transistor is obtained by systematically reversing the current flow throughout this
model.

3These are the gain parameters αF and αR appearing in Appendix A.

THREADING HOMOTOPIES 175

Fig. A.1. Ebers–Moll model (common base configuration).

This two-port can be viewed as a voltage-controlled two-port with the current
responses

(A.2)

[
ic
ie

]
=

[
1 −αF
−αR 1

] [
f1(vbc)
f2(vbe)

]
,

where vbe and vbc are the branch voltages. For example, in Figure A.1 the current ic
flowing out of the two-port into the collector terminal is the sum of two components:
a current f1(vbc) flowing in the same direction as ic and a current αF f2(vbc) flowing
in the opposite direction as ic, in accordance with the minus sign in (A.2).

In (A.2) the exponential diodes are

(A.3) f1(v1) = Ĩcs(e
n1v1 − 1),

and

(A.4) f2(v2) = Ĩes(e
n2v2 − 1),

where Ĩcs is a parameter called the collector-base saturation current, and Ĩes is a
parameter called the emitter-base saturation current. The quantities n1 = q

κT1
and

n2 = q
κT2

, in which q is the electron charge, κ is Boltzmann’s constant, and T1 and
T2 are the temperatures at the collector and emitter nodes, respectively. The temper-
atures are usually equal under normal operating conditions. The power consumed by
the transistor is

(A.5) P = icf1(vbc) + ief2(vbe).

Sufficient conditions for such a transistor to be passive [23] are that

(A.6) αF ≤ Ĩcs

Ĩes
≤ 1

αR
and αF ≤ n1

n2
≤ 1

αR
.

Sufficient conditions for such a transistor to satisfy the no-gain condition [47] are that

(A.7) αF ≤ Ĩcs

Ĩes
≤ 1

αR
and n1 = n2.

176 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

Fig. A.2. Added shunt conductances (resistors).

The conditions (A.7) hold under normal operation.
Sandberg and Willson [41, Theorem 5 and footnote 5] establish the following

passivity property of Ebers–Moll bipolar junction transistors.
Theorem A.1 (Sandberg and Willson). Let 0 < α1 < 1 and 0 < α2 < 1 be given.

Suppose that

(A.8) fk(vk) = mk(exp(nkvk)− 1) for 1 = 1, 2,

with mknk > 0 and with

(A.9) α1 ≤ m1

m2
≤ 1

α2
and α1 ≤ n1

n2
≤ 1

α2
.

Then, for any (c1, c2) ∈ R2, the quantity

(A.10) P (v1, v2) = [v1 v2]

[
1 −α1

−α2 1

] [
f1(v1 + c1)
f2(v2 + c2)

]
satisfies

(A.11) lim
||v||→∞

P (v1, v2) = +∞.

Detailed models for bipolar junction transistors (see [4], [12], [15], [22]) elaborate
on the Ebers–Moll large signal model. In SPICE, additional conductances are added
for stability in solving the algorithms, which amount to adding linear resistors with
large resistances R = (GMIN)−1 as pictured in Figure A.2.

Acknowledgments. We are indebted to M. Green for corrections and improve-
ments to an early draft version of the paper, and to L. Trajković for comments and
references concerning the no-gain condition. We thank S.-C. Fang, L. T. Watson, and
the many referees for helpful comments.

THREADING HOMOTOPIES 177

REFERENCES

[1] E. Allgower and K. Georg, Simplicial and continuation methods for approximating fixed
points and solutions to systems of equations, SIAM Rev., 22 (1980), pp. 28–85.

[2] E. Allgower and K. Georg, Homotopy methods for approximating several solutions to non-
linear systems of equations, in Numerical Solution of Highly Nonlinear Problems, W.
Forster, ed., North-Holland, Amsterdam, 1980, pp. 253–270.

[3] E. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer-
Verlag, New York, 1990.

[4] P. Antognetti and G. Massobrio, eds., Semiconductor Device Modelling with SPICE,
McGraw–Hill, New York, NY, 1988.

[5] F. H. Branin, Widely convergent method for finding multiple solutions of simultaneous non-
linear equations, IBM J. Res. Develop., 16 (1972), pp. 504–522.

[6] K. S. Chao and R. Saeks, Continuation methods in circuit analysis, Proc. IEEE, 65 (1977),
pp. 1187–1194.

[7] S. Chow, J. Mallet-Paret, and J. A. Yorke, Finding zeros of maps: Homotopy methods
that are constructive with probability one, Math. Comp., 32 (1978), pp. 887–899.

[8] S. Chow, J. Mallet-Paret, and J. A. Yorke, A homotopy method for locating all zeros of
a system of polynomials, in Functional Differential Equations and Approximation of Fixed
Points, Lecture Notes in Math. 730, H. O. Peitgen and H. O. Walter, eds., Springer-Verlag,
New York, 1979, pp. 77–88.

[9] J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, American Math. Soci-
ety, Providence, RI, 1964.

[10] L. O. Chua, C. S. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits, McGraw–Hill,
New York, 1987.

[11] L. O. Chua, Y. F. Lam, and K. A. Stromsoe, Qualitative properties of resistive networks
containing multiterminal nonlinear elements: No gain properties, IEEE Trans. Circuits
Systems, 24 (1977), pp. 93–117.

[12] L. O. Chua and A. Ushida, A parameter-switching algorithm for finding multiple solutions of
nonlinear resistive circuits, Internat. J. Circuit Theory Appl., 4 (1976), pp. 215–239.

[13] L. O. Chua and N. N. Wang, On the application of degree theory to the analysis of resistive
nonlinear networks, Internat. J. Circuit Theory Appl., 5 (1977), pp. 35–68.

[14] L. O. Chua and R. L. P. Ying, Finding all solutions and piecewise linear circuits, Internat.
J. Circuit Theory Appl., 10 (1982), pp. 201–229.

[15] H. C. de Graaff and F. M. Klassen, Compact Transistor Modelling for Circuit Design,
Springer-Verlag, New York, 1990.

[16] I. Diener, On the global convergence of path-following methods to determine all solutions of a
system of nonlinear equations, Math. Programming, 39 (1987), pp. 181–188.

[17] F. J. Drexler, A homotopy method for the calculation of all the zeros of zero-dimensional
polynomial ideals, in Continuation Methods, H. Wacker, ed., Academic Press, New York,
1978.

[18] R. L. Duffin, Nonlinear networks IIa, Bull. Amer. Math. Soc., 53 (1947), pp. 963–971.
[19] J. J. Ebers and J. L. Moll, Large-signal behavior of junction transistors, Proc. of the I.R.E.,

42 (1954), pp. 1761–1772.
[20] C. B. Garcia and W. I. Zangwill, Finding all solutions of polynomial systems and other

systems of equations, Math. Programming, 16 (1979), pp. 159–176.
[21] C. B. Garcia and W. I. Zangwill, Pathways to Solutions, Fixed Points and Equilibria,

Prentice–Hall, Englewood Cliffs, NJ, 1981.
[22] I. Getreu, Modelling the Bipolar Transistor, Tektronix Inc., Beaverton, OR, 1976.
[23] B. Gopinath and D. Mitra, When is a transistor passive?, Bell System Tech. J., 50 (1971),

pp. 2835–2847.
[24] M. M. Green, How to identify unstable dc operating points, IEEE Trans. Circuits Systems

I. Fund. Theory Appl., 39 (1992), pp. 820–832.
[25] M. M. Green and R. C. Melville, Sufficient conditions for finding multiple operating points

of dc circuits using continuation methods, in Proc. ISCAS 1995, Seattle, WA, Vol. I, IEEE
Press, Piscataway, NJ, pp. 117–121.

[26] M. M. Green and A. N. Willson, Jr., (Almost) half of any circuit’s operating points
are unstable, IEEE Trans. Circuits Systems I. Fund. Theory Appl., 41 (1994), pp. 286–
293.

[27] V. Guillemin and A. Pollack, Differential Topology, Prentice–Hall, Englewood Cliffs, NJ,
1974.

[28] M. Hirsch, Differential Topology, Springer-Verlag, New York, 1976.

178 R. GEOGHEGAN, J. LAGARIAS, AND R. MELVILLE

[29] C. W. Ho, A. E. Ruehli, and P. A. Brennan, The modified nodal approach to network
analysis, IEEE Trans. Circuits Systems, 22 (1975), pp. 678–687.

[30] Q. Huang and R. W. Liu, A simple algorithm for finding all solutions of piecewise-linear
networks, IEEE Trans. Circuits Systems, 36 (1989), pp. 600–609.

[31] J. Jezierski, One codimensional Wecken type theorems, Forum Math., 5 (1993), pp. 421–439.
[32] R. C. Kirby and L. C. Siebenmann, Foundational Essays on Topological Manifolds, Smooth-

ings and Triangulations, Ann. of Math. Stud. 88, Princeton University Press, Princeton,
NJ, 1977.

[33] M. Kojima, H. Nishino, and N. Arima, A PL homotopy for finding all the roots of a polyno-
mial, Math. Programming, 16 (1979), pp. 37–62.

[34] W. Mathis and G. Wettlaufer, Finding all DC-equilibrium-points of nonlinear circuits,
Proc. 32nd Midwest Sym. on Circuits and Systems, Urbana, IL, Vol. I, IEEE Press, Pis-
cataway, NJ, 1989, pp. 462–465.

[35] R. Melville, S. Moinian, P. Feldmann, and L. Watson, Sframe: An efficient system for
detailed dc simulation of bipolar analog integrated circuits using continuation methods,
Analog Integrated Circuits and Signal Processing, 3 (1993), pp. 163–180.

[36] R. C. Melville, L. Trajković, S.-C. Fang, and L. T. Watson, Artificial parameter conver-
gent homotopy methods for the dc operating point problem, IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 6 (1993), pp. 861–877.

[37] J. W. Milnor, Topology from the Differentiable Viewpoint, The University of Virginia Press,
Charlottesville, VA, 1965.

[38] T. Ohtsuki, T. Fujisawa, and S. Kumagai, Existence theorems and a solution algorithm for
piecewise-linear resistor networks, SIAM J. Math. Anal., 8 (1977), pp. 69–99.

[39] S. Pastore and A. Premoli, Polyhedral elements: A new algorithm for capturing all the equi-
librium points of piecewise-linear circuits, IEEE Trans. Circuits Systems I Fund. Theory
Appl., 40 (1993), pp. 129–132.

[40] I. Sandberg and A. N. Willson, Jr., Some theorems on properties of dc equations of non-
linear networks, Bell System Tech. J., 48 (1969), pp. 1–34.

[41] I. Sandberg and A. N. Willson, Jr., Existence of solution for the equations of transistor-
resistor-voltage source networks, IEEE Trans. Circuit Systems, 18 (1970), pp. 619–625.

[42] L. Trajković, R. C. Melville, and S. C. Fang, Passivity and no gain properties establish
global convergence of a homotopy method for dc operating points, Proc. IEEE Internat.
Sym. Circuits Systems, New Orleans, LA, 1990, pp. 914–917.

[43] L. Trajković, R. C. Melville, and S. C. Fang, Finding dc operating points of transistor
circuits using homotopy methods, Proc. IEEE Internat. Conf. on Circuits and Systems,
Singapore, 1991, pp. 758–761.

[44] L. Trajković and A. N. Willson, Jr., Theory of dc operating points of transistor networks,
Internat. J. Electron. Comm., 46 (1992), pp. 228–241.

[45] L. Vandenberghe, B. L. de Moor, and J. Vandewalle, The generalized linear complemen-
tarity problem applied to the complete analysis of piecewise linear resistive circuits, IEEE
Trans. Circuits Systems, 36 (1989), pp. 1382–1391.

[46] H. Whitney, The self-intersection of a smooth n-manifold in 2n-space, Ann. of Math., 48
(1944), pp. 220–246.

[47] A. N. Willson, Jr., New theorems on the equations of nonlinear dc transistor networks, Bell
System Tech. J., 49 (1970), pp. 1713–1738.

[48] A. N. Willson, Jr., Nonlinear Networks: Theory and Analysis, IEEE Press, New York, 1974.
[49] A. N. Willson, Jr., The no-gain property for networks containing three-terminal elements,

IEEE Trans. Circuits Systems, 22 (1975), pp. 678–687.
[50] A. N. Willson, Jr. and J. Wu, Existence criteria for dc solutions of nonlinear networks which

involve the independent sources, IEEE Trans. Circuits Systems, 31 (1984), pp. 952–959.
[51] D. Wolf and S. Sanders, Multi-parameter homotopy methods for finding dc operating points

of nonlinear circuits, IEEE Trans. Circuits Systems I Fund. Theory Appl., 43 (1996),
pp. 824–838.

[52] F. F. Wu, Existence of an operating point for a nonlinear circuit using the degree of a mapping,
IEEE Trans. Circuits Systems, 21 (1974), pp. 671–677.

[53] J. L. Wyatt, Jr., L. O. Chua, J. W. Gannett, I. C. Göknar, and D. N. Green, Energy
concepts in the state-space theory of nonlinear n-ports: Part I – passivity, IEEE Trans.
Circuits Systems, 28 (1981), pp. 48–61.

[54] K. Yamamura, Finding all solutions of piecewise linear resistive circuits using simple sign
tests, IEEE Trans. Circuits Systems I Fund. Theory Appl., 40 (1993), pp. 546–551.

WEAK SHARP SOLUTIONS OF VARIATIONAL INEQUALITIES∗

PATRICE MARCOTTE† AND DAOLI ZHU‡

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 179–189

Abstract. In this work we give sufficient conditions for the finite convergence of descent algo-
rithms for solving variational inequalities involving generalized monotone mappings.

Key words. sharp solution, variational inequality, descent algorithm, generalized monotonicity

AMS subject classifications. 90C33, 49M99

PII. S1052623496309867

1. Introduction. Recently, Burke and Ferris [5] introduced sufficient conditions
for the finite identification, by iterative algorithms, of local minima associated with
mathematical programs. To this aim, they introduced the notion of a weak sharp
minimum, which extends the notion of a sharp or strongly unique minimum to math-
ematical programs admitting nonisolated local minima. In our work, we extend their
results and those of Al-Khayyal and Kyparisis [1] to generalized monotone varia-
tional inequalities and provide a characterization of their solution sets. Our work is
also closely related to that of Patriksson [14], who analyzed the finite convergence
of approximation algorithms for solving monotone variational inequalities under a
sharpness assumption.

The paper is organized as follows. Section 2 introduces the main definitions.
In section 3, we reformulate the variational inequality problem (VIP) as a convex
program and show that its objective is continuously differentiable at any solution of
the VIP, under a regularity assumption. In section 4 we introduce the notion of weak
sharpness for the VIP and derive a necessary and sufficient condition for a solution
set to be weakly sharp. Finally, section 5 addresses the finite convergence of iterative
algorithms for solving variational inequalities whose solution set is weakly sharp.

2. Notation and definitions. Let X denote a nonempty, closed, and convex
subset of Rn and let F be a mapping from X into Rn. We consider the VIP that
consists of finding a vector x∗ ∈ X that satisfies the variational inequality:

〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ X,(2.1)

where 〈x, y〉 denotes the Euclidean inner product of two vectors in Rn. Throughout
the paper, we will denote by X∗ the set of solutions of the variational inequality (2.1).
If X is a subset of Rn, its polar set X◦ is defined as

X◦ := {y ∈ Rn : 〈y, x〉 ≤ 0 ∀x ∈ X}.

∗Received by the editors September 27, 1996; accepted for publication (in revised form) September
2, 1997; published electronically December 2, 1998. This research was supported by NSERC (Canada)
and FCAR (Québec).

http://www.siam.org/journals/siopt/9-1/30986.html
†DIRO, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, H3C 3J7

Canada (marcotte@iro.umontreal.ca).
‡CRT, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, H3C 3J7

Canada (daoli@crt.umontreal.ca).

179

180 PATRICE MARCOTTE AND DAOLI ZHU

We denote by int(C) the interior of a set C. The projection of a point x ∈ Rn onto
the set X is defined as

projX(x) := arg min
y∈X
‖x− y‖.

If X is a convex set, its normal cone at x is

NX(x) :=

 {y ∈ R
n : 〈y, z − x〉 ≤ 0 ∀z ∈ X} if x ∈ X,

∅ otherwise,
(2.2)

and its tangent cone at x is TX(x) := [NX(x)]◦. Using this notation, a vector x∗ is a
solution of the VIP if and only if

−F (x∗) ∈ NX(x∗)(2.3)

or, equivalently,

projTX(x∗)(−F (x∗)) = 0.(2.4)

A mapping F from a convex set X into Rn is monotone on X if, ∀x, y in X,

〈F (y)− F (x), y − x〉 ≥ 0.(2.5)

It is strongly monotone on X if there exists a positive number α such that, ∀x, y in
X,

〈F (y)− F (x), y − x〉 ≥ α‖y − x‖2.(2.6)

It is pseudomonotone on X if, ∀x, y in X,

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ 0.(2.7)

It is strongly pseudomonotone on X if there exists a positive number β such that, ∀x,
y in X,

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ α‖y − x‖2.(2.8)

It is monotone+ on C if F is monotone and for every pair of points x, y in X,

〈F (y)− F (x), y − x〉 = 0 ⇒ F (y) = F (x).(2.9)

It is pseudomonotone+ on X if F is pseudomonotone and, ∀x, y in X,

〈F (x), y − x〉 ≥ 0 and 〈F (y), y − x〉 = 0 ⇒ F (y) = F (x).(2.10)

It is quasimonotone on X if, ∀x, y in X,

〈F (x), y − x〉 > 0 ⇒ 〈F (y), y − x〉 ≥ 0.(2.11)

Several results concerning mappings satisfying the above monotonicity or generalized
monotonicity conditions can be found in Schaible [15] and Zhu and Marcotte [11, 17].
Finally, a mapping F from the set X into Rn is Lispchitz continuous on X, with
Lipschitz constant L, if, ∀x, y in X,

‖F (x)− F (y)‖ ≤ L‖x− y‖.(2.12)

WEAK SHARP SOLUTIONS OF VARIATIONAL INEQUALITIES 181

3. The dual gap function for the pseudomonotone VIP. If the mapping
F is pseudomonotone, then the solution set of the VIP can be characterized as the
intersection of half-spaces, i.e., x∗ is a solution of the VIP if and only if it satisfies

〈F (x), x− x∗〉 ≥ 0 ∀x ∈ X.(3.1)

It follows that the solution set of the VIP is closed and convex. The proof of this
result is identical to that given in Auslender [2] for monotone variational inequalities.
Note that we cannot substitute quasimonotonicity for pseudomonotonicity in (3.1),
as shown by the VIP involving the quasimonotone function F (x) = x2 and the set
X = R. We define the dual gap function G(x) associated with the VIP as

G(x) = max
z∈X
〈F (z), x− z〉(3.2)

= 〈F (ỹ), x− ỹ〉,
where ỹ is any point in the set Λ(x) := arg maxz∈X〈F (z), x− z〉.

Since the function G is the pointwise supremum of affine functions, it is closed
and convex on X. Moreover, G is nonnegative and achieves its minimum value (zero)
only at points of X that satisfy the original variational inequality. Thus, any solution
of the VIP is a global minimum for the convex optimization program

min
x∈X

G(x).(3.3)

If F is pseudomonotone+, the dual gap function G enjoys the nice properties given in
the theorem below.

Theorem 3.1. Let F be continuous and pseudomonotone+ on X. Then
(i) F is constant over X∗;
(ii) for any x∗ in X∗, F is constant and equal to F (x∗) over Λ(x∗);

(iii) Λ(x∗) = X∗ for any x∗ in X∗;
(iv) if X is compact, then G is continuously differentiable over X∗, and ∇G(x∗) =

F (x∗) ∀x∗ in X∗.
Proof. (i) Let x∗ and x∗∗ be any two solutions of the VIP. It follows from (2.1)

and (3.1) that

〈F (x∗∗), x∗∗ − x∗〉 ≥ 0,

〈F (x∗∗), x∗∗ − x∗〉 ≤ 0,

from which we deduce

〈F (x∗∗), x∗∗ − x∗〉 = 0.

Now, the inequality

〈F (x∗), x∗∗ − x∗〉 ≥ 0,

together with the pseudomonotonicity+ of F , yields F (x∗) = F (x∗∗).
(ii) For every x∗ ∈ X∗ and y∗ in Λ(x∗),

G(x∗) = 〈F (y∗), x∗ − y∗〉 = 0(3.4)

holds. Now, 〈F (x∗), y∗−x∗〉 ≥ 0 (x∗ is a solution of the VIP) and 〈F (y∗), y∗−x∗〉 = 0
imply, by the pseudomonotonicity+ of F , that F (x∗) = F (y∗).

182 PATRICE MARCOTTE AND DAOLI ZHU

(iii) Let x̃ ∈ Λ(x∗). From (ii) we have that F (x∗) = F (x̃) and 〈F (x̃), x∗− x̃〉 = 0.
This implies that, for any y in X,

〈F (x̃), x̃− y〉 = 〈F (x̃), x̃− x∗〉+ 〈F (x̃), x∗ − y〉(3.5)

= 〈F (x∗), x∗ − y〉(3.6)

≤ 0(3.7)

and x̃ is in X∗. Conversely, for any x∗ in X∗,

x̃ ∈ X∗ ⇒ 〈F (x̃), x∗ − x̃〉 = 0(3.8)

⇒ x̃ ∈ Λ(x∗).(3.9)

(iv) From a result of Danskin [4] the derivative of G at x∗ in the direction d is
given by the expression

G′(x∗; d) = max{〈F (y), d〉 : y ∈ Λ(x∗)}
= 〈F (x∗), d〉,

since, by (ii), F is constant and equal to F (x∗) over Λ(x∗). Thus, G is continuously
differentiable at every point x∗ ∈ X∗, with gradient ∇G(x∗) = F (x∗).

4. Sharp solutions of variational inequalities. Recently, in the context of
convex smooth optimization, Burke and Ferris [5] have extended the notion of a
strongly unique solution to optimization problems whose solution set is not necessarily
a singleton. To this aim, they introduced the notion of a weak sharp solution for a
convex minimization problem. We recall that the solution set X∗ is weakly sharp for
the program minx∈X f(x) if there exists a positive number α (modulus of sharpness)
such that

f(x) ≥ f(x∗) + α dist(x,X∗) ∀x∗ ∈ X∗,(4.1)

where dist(x,X∗) := minx∗∈X∗ ‖x− x∗‖. These authors proved that if f is a closed,
proper, and convex function and if the sets X and X∗ are nonempty, closed, and
convex, then the solution set of the convex optimization program (4.1) is weakly
sharp if and only if the geometric condition

−∇f(x∗) ∈ int

(⋂
x∈X∗

[TX(x) ∩NX∗(x)]◦
)

∀x∗ ∈ X∗(4.2)

holds. Since the VIP lacks a “natural” objective function, it is natural to define
weak sharpness of the solution set of a variational inequality with reference to (4.2).
Precisely, following Patriksson [14], we say that the solution set of the VIP is weakly
sharp if we have, for any x∗ in X∗,

−F (x∗) ∈ int

(⋂
x∈X∗

[TX(x) ∩NX∗(x)]◦
)
.(4.3)

Alternatively, one could have defined weak sharpness with respect to an “artificial”
convex programming reformulation of the VIP. If F is pseudomonotone, an obvious
choice for such a reformulation is the one based on the dual gap function defined
earlier (see (3.2) and (3.3)). This would have led to the definition

WEAK SHARP SOLUTIONS OF VARIATIONAL INEQUALITIES 183

G(x) ≥ α dist(x,X∗)(4.4)

∀x in X. If this condition is fulfilled, the function G provides an error bound for the
distance from a feasible point to the set of solutions to the VIP. The constant α is again
called the modulus of sharpness for the solution set X∗. Note that the very evaluation
of G at a point x requires the solution of a possibly nonconvex mathematical program.

From this point on, we will adopt the geometric condition (4.3) as the definition
of weak sharpness and show that both definitions are actually equivalent whenever F
is pseudomonotone+.

Theorem 4.1. Let F be continuous and pseudomonotone+ over the compact set
X. Let the solution set X∗ of the VIP be nonempty. Then X∗ is weakly sharp if and
only if there exists a positive number α such that

G(x) ≥ α dist(x,X∗)

∀x in X.
Proof. Let B denote the unit ball in Rn. We first prove that the inclusion

αB ⊂ F (x∗) + [TX(x∗) ∩NX∗(x∗)]◦(4.5)

holds at x∗ ∈ X∗ if and only if we have

〈F (x∗), z〉 ≥ α‖z‖ ∀z ∈ TX(x∗) ∩NX∗(x∗).(4.6)

Indeed, if (4.5) holds, then for every y ∈ B, we have

αy − F (x∗) ∈ [TX(x∗) ∩NX∗(x∗)]◦.(4.7)

Thus, for every z ∈ [TX(x∗)∩NX∗(x∗)], we have 〈αy−F (x∗), z〉 ≤ 0. Taking y = z/‖z‖
in the above inequality, we obtain (4.6).

Now assume that (4.6) holds. Then there exists a positive number α such that,
for x∗ ∈ X∗, y ∈ B, and z ∈ TX(x∗) ∩NX∗(x∗),

〈−F (x∗) + αy, z〉 = 〈−F (x∗), z〉+ α〈y, z〉
≤ 〈−F (x∗), z〉+ α‖y‖ ‖z‖
≤ 〈−F (x∗), z〉+ α‖z‖
≤ 0 by (4.6).

This implies that (4.5) holds as well.
If −F (x∗) ∈ int (

⋂
x∈X∗ [TX(x) ∩ NX∗(x)]◦) ∀x∗ in X∗, then there must exist a

positive number α such that (4.5) is satisfied for every x∗ ∈ X∗. From the above
derivation, we have that 〈F (x∗), z〉 ≥ α‖z‖ for every z in TX(x∗)∩NX∗(x∗). Now set,
for x in X, x̄ = projX∗(x). Clearly, x− x̄ ∈ TX(x̄) ∩NX∗(x̄) and there follows

〈F (x̄), x− x̄〉 ≥ α‖x− x̄‖ = α dist(x,X∗).

Since G is a convex function, differentiable at x̄ ∈ X∗, we have

G(x) = G(x)−G(x̄)

≥ 〈∇G(x̄), x− x̄〉
= 〈F (x̄), x− x̄〉
≥ α dist(x,X∗).

184 PATRICE MARCOTTE AND DAOLI ZHU

Conversely, let X∗ satisfy (4.4) for some positive number α and let x∗ be a point
in X∗. If TX(x∗) ∩ NX∗(x∗) = {0}, then [TX(x∗) ∩ NX∗(x∗)]◦ = Rn and αB ⊂
F (x∗)+[TX(x∗)∩NX∗(x∗)]◦, trivially. Otherwise, let d be a nonzero vector in TX(x∗)∩
NX∗(x

∗). For any y∗ ∈ X∗, we have

〈d, y∗ − x∗〉 ≥ 0 since d ∈ TX(x∗),
〈d, y∗ − x∗〉 ≤ 0 since d ∈ NX∗(x∗).

Those inequalities imply that 〈d, y∗−x∗〉 = 0, and X∗ is a subset of a hyperplane Hd

orthogonal to d. Let {dk} be a sequence converging to d such that x∗ + tkd
k ∈ X for

some sequence of positive numbers {tk}. We can write

dist(x∗ + tkd
k, X∗) ≥ dist(x∗ + tkd

k, Hd)

=
tk〈d, dk〉
‖d‖ .

Since X∗ satisfies (4.4) with modulus α, we obtain

G(x∗ + tkd
k) ≥ α dist(x∗ + tkd

k, X∗) ≥ αtk 〈d, d
k〉

‖d‖
and

(G(x∗ + tkd
k)−G(x∗))/tk ≥ α 〈d, d

k〉
‖d‖ .

Taking the limit as tk → 0 and dk → d leads to

〈∇G(x∗), d〉 ≥ α‖d‖

∀d in TX(x∗) ∩NX∗(x∗). Therefore, for any w in B,

〈αw − F (x∗), d〉 = 〈αw, d〉 − 〈∇G(x∗), d〉
≤ α‖d‖ − α‖d‖
= 0,

and it follows that αB ⊂ F (x∗) + [TX(x∗)∩NX∗(x∗)]◦. Since F is constant over X∗,
we conclude that (4.3) holds.

We now show, by means of an example, that pseudomonotonicity of F is too weak
a condition for the above result to hold. Indeed, consider the variational inequality
defined by the two-dimensional mapping F (x) = (−x2, 2x1) and the set X = {0 ≤
x1 ≤ 1, 0 ≤ x2 ≤ 1}. One can check that the mapping F is pseudomonotone but not
pseudomonotone+ on X. Indeed, F is not constant over its solution set X∗ = {x ∈
X : x2 = 0}, in contradiction with the first statement of Theorem 3.1. We have

G(x) = max
y∈X

〈(−y2, 2y1), (x1 − y1, x2 − y2)〉
= max

y∈X
−x1y2 − y1y2 + 2x2y1

= 2x2

= 2 dist(x,X∗),

WEAK SHARP SOLUTIONS OF VARIATIONAL INEQUALITIES 185

and X∗ satisfies (4.4) with modulus α = 2. However, for any x∗ in X∗, we have
[TX(x∗) ∩NX∗(x∗)]◦ = {x∗2 ≤ 0}. Consequently −F (x∗) does not lie inside⋂

x∗∈X∗
[TX(x∗) ∩NX∗(x∗)]◦

for any x∗ in the solution set X∗, and the solution set X∗ is not weakly sharp.
Our second characterization of weak sharpness involves the notion of minimum

principle sufficiency introduced by Ferris and Mangasarian [6]. Consider the refor-
mulation of the VIP as the (possibly nonconvex and/or nonsmooth) optimization
problem minx∈X g(x), where the primal gap function g is defined as

g(x) := max
y∈X
〈F (x), x− y〉,(4.8)

and let

Γ(x) := arg max
y∈X
〈F (x), x− y〉

= arg min
y∈X
〈F (x), y〉.

We say that the VIP possesses the minimum principle sufficiency (MPS) property if
Γ(x∗) coincides with the solution set X∗, for every x∗ in X∗.

Theorem 4.2. Assume that F is continuous on X and that the set

K := int

(⋂
x∈X∗

[TX(x) ∩NX∗(x)]◦
)

is nonempty. Then, for each z in K, one has that arg max{〈z, y〉 : y ∈ X} ⊂ X∗.
Moreover, if F is pseudomonotone and −F (x∗) ∈ K for every x∗ ∈ X∗, then the VIP
possesses the MPS property.

Proof. Let x ∈ X, x /∈ X∗, and x̄ = projX∗(x). We have that x − x̄ ∈ TX(x̄) ∩
NX∗(x̄), and, for any given z in K, there exists a positive number δ such that 〈z +
w, x− x̄〉 < 0 ∀w in δB. Thus,

〈z, x〉 < 〈z, x̄〉 − δ‖x− x̄‖;
i.e., x /∈ arg max{〈z, y〉 : y ∈ X}, which brings about the conclusion by contradiction.

Next, let −F (x∗) ∈ K for x∗ ∈ X∗. In the first part of the proof, it has been
established that

arg max{〈−F (x∗), y〉 : y ∈ X} ⊂ X∗.
Let x̂ be in X∗. We have, as before, 〈F (x∗), x̂− x∗〉 = 0. Now, for any y in X,

〈F (x∗), x̂− y〉 = 〈F (x∗), x̂− x∗〉+ 〈F (x∗), x∗ − y〉
≤ 0.

Therefore, x̂ ∈ Γ(x∗) and X∗ ⊂ Γ(x∗). By gathering the two preceding inclusions,
we conclude that arg max{〈−F (x∗), y〉 : y ∈ X} = X∗, as claimed.

Theorem 4.3. Let F be pseudomonotone+ and continuous on the compact poly-
hedral set X. Then the VIP possesses the MPS property if and only if it is weakly
sharp, i.e., X∗ = Γ(x∗) = Λ(x∗).

186 PATRICE MARCOTTE AND DAOLI ZHU

Proof. The “ if ” part of the statement is a consequence of Theorem 4.2. To prove
the converse, first observe that the solution set Γ(x∗) = X∗ of the linear program

min
x∈X
〈F (x∗), x〉

is weakly sharp (see appendix in Mangasarian and Meyer [10], for instance) with
positive modulus α, and that α only depends on the constant vector F (x∗) and X.
We develop

G(x) = maxy∈X〈F (y), x− y〉
≥ 〈F (x∗), x− x∗〉 ∀x∗ ∈ X∗
= 〈F (x∗), x− x̂〉 ∀x̂ ∈ Γ(x∗)
≥ α‖x− projΓ(x∗)(x)‖
= α‖x− projX∗(x)‖
≥ α dist(x,X∗),

and from Theorem 4.1, X∗ is weakly sharp.

5. Finite convergence of algorithms for solving the VIP. In this section
we will derive finite convergence results for classes of algorithms under the condition
that the solution set of the VIP be weakly sharp. The first such result generalizes
a result of Al-Khayyal and Kyparisis [1] to the case where the solution set is not
necessarily a singleton.

Theorem 5.1. Let F be continuous and pseudomonotone+ over the set X, and
let the solution set X∗ of the VIP be weakly sharp. Also let {xk} be a sequence in Rn.
If either

(i) the sequence {dist(xk, X∗)} converges to zero and the mapping F is uniformly
continuous on an open set containing the sequence {xk} and the set X∗, or

(ii) the sequence {xk} converges to some x∗ ∈ X∗,
then there exists a positive integer k0 such that, for any index k ≥ k0, any solution of
the linear program

min
x∈X
〈F (xk), x〉(5.1)

is a solution of the VIP.
Proof. First assume that (i) holds. From Theorem 3.1, −F (x∗) is constant over

X∗ and there must exist a uniform positive constant α such that

−F (x∗) + αB ∈
⋂
x∈X∗

[TX(x) ∩NX∗(x)]◦(5.2)

for every x∗ in X∗. Since F is uniformly continuous and dist(xk, X∗) → 0, there
exists an integer k0 such that

‖F (xk)− F (x∗)‖ < α ∀k ≥ k0,

i.e., −F (xk) ∈ int (
⋂
x∈X∗ [TX(x) ∩NX∗(x)]◦). Therefore, by Theorem 4.2,

arg min
x∈X
〈F (xk), x〉 ⊂ X∗.

Under condition (ii) the result (5.2) is still valid for every x∗ ∈ X∗, and we obtain
the result as a consequence of the convergence of the sequence {‖F (xk) − F (x∗)‖}k
to zero.

WEAK SHARP SOLUTIONS OF VARIATIONAL INEQUALITIES 187

If Ω is a nonempty, closed, and convex subset of X, Burke and Ferris [5] have
proved the inclusion

Ω +
⋂
x∈Ω

[TX(x∗) ∩NΩ(x)]◦ ⊂
⋃
x∈Ω

[x+NX(x)].(5.3)

We will now use this result to provide a geometric characterization of sequences that
achieve the finite identification of a solution to the VIP.

Theorem 5.2. Let F be pseudomonotone+ and continuous over the compact set
X. Let the solution set X∗ of the VIP be weakly sharp. Let {xk} be a subsequence
with elements in X such that the real sequence {dist(xk, X∗)} converges to zero. If F
is uniformly continuous on an open set containing {xk} and X∗, then there exists a
positive integer k0 such that, for any index k ≥ k0, xk is a solution of the VIP if and
only if

lim
k→∞

projTX(xk)(−F (xk)) = 0.(5.4)

Proof. If xk ∈ X∗, then −F (xk) ∈ NX(xk) and (5.4) holds trivially.
Otherwise, assume that (5.4) is satisfied. The Moreau decomposition of −F (xk)

along TX(x) and its polar cone NX(x) yields

−F (xk) = projTX(x)(−F (xk)) + projNX(x)(−F (xk)).

By Theorem 3.1, we have that F is constant over X∗. Thus, for any x∗ ∈ X∗, the
assumptions imply

‖F (x∗) + projNX(x)(−F (xk))‖ → 0,

and so

dist(xk + projNX(xk)(−F (xk)), X∗ − F (x∗))→ 0.

But, from the weak sharpness property, one has

X∗ − F (x∗) ⊂ int

(
X∗ +

⋂
x∈X∗

[TX(x) ∩NX∗(x)]
◦
)
.

Now, for xk close to x∗ in X∗, we have, using (5.3),

xk + projNX(xk)(−F (xk)) ∈ int

(
X∗ +

⋂
x∈X∗

[TX(x) ∩NX∗(x)]◦
)

⊂
⋃
x∈X∗

[x+NX(x)].

Therefore, ∀k sufficiently large,

xk = projX(xk + projNX(xk)(−F (xk)))

∈ projX

(⋃
x∈X∗

[x+NX(x)]

)
⊂
⋃
x∈X∗

{x}

= X∗ .

188 PATRICE MARCOTTE AND DAOLI ZHU

This completes the proof.
Several authors have proposed general iterative frameworks for solving variational

inequalities. For instance, Cohen [3], or Zhu and Marcotte [18] investigated a scheme
in which xk+1 is a solution of the variational inequality

〈σF (xk) +H(xk+1)−H(xk), x− xk+1〉 ≥ 0 ∀x ∈ X,(5.5)

where σ is a positive constant and H is an auxiliary mapping, usually taken to be
strongly monotone. Under suitable assumptions on F (strong monotonicity or co-
coercivity1) and σ, the sequence {xk} is known to converge to a solution of the original
variational inequality. From now on, we restrict our attention to those cases where
the algorithm returns a convergent sequence {xk} whose limiting point is a solution
of the VIP, and provide a sufficient condition for its finite termination.

Lemma 5.1. Let F and H be uniformly continuous on X and {xk} → x∗. Then
the sequence {projTX(xk+1)(−F (xk+1))} converges to zero.

Proof. Since the sequence {xk} is convergent, ‖xk+1 − xk‖ → 0. From (5.5), we
have

−[σF (xk) +H(xk+1)−H(xk)] ∈ NX(xk+1).

The Moreau decomposition technique yields

‖proj−TX(xk+1)(F (xk+1))‖ = min
v∈NX(xk+1)

‖ − (xk+1)− v‖
= min
z∈−F (xk+1)−NX(xk+1)

‖z‖

≤
∥∥∥∥[F (xk+1)− F (xk)] +

1

σ
[H(xk+1)−H(xk)]

∥∥∥∥ .
From the uniform continuity of F and H, the right-hand side of the above inequality
converges to zero, and we obtain that {projTX(xk+1)(−F (xk+1)} converges to zero, as
claimed.

Combining Theorem 5.2 and Lemma 5.1, we obtain the following result.
Theorem 5.3. Under the assumptions of Theorem 5.2 and Lemma 5.1, the

general iterative algorithm for solving the VIP based on the auxiliary problem (5.5)
generates a sequence {xk} such that, for all k sufficiently large, xk is a solution of the
VIP.

Recently, Zhu and Marcotte [18] have proposed a descent framework for the
VIP, based on the auxiliary variational inequality (5.5), that includes as particular
cases Fukushima’s projective method [7] and Taji, Fukushima, and Ibaraki’s Newton
method [16] (see also Fukushima [8] or Larsson and Patriksson [9] for a survey of de-
scent methods for the VIP). Given a mapping H(w, x) defined on X ×X, continuous
and strongly monotone with respect to the variable x and such that H(x, x) coincides
with the values F (x) of the original mapping, a direction dk is specified, at iteration k,
as dk = wk−xk, where wk is the unique solution of the auxiliary variational inequality

〈H(wk, xk)−H(xk, xk), x− xk〉 ≥ 0 ∀x ∈ X.(5.6)

1The mapping F is co-coercive on the set X if there exists a positive number β such that
〈F (x) − F (y), x − y〉 ≥ β‖F (x) − F (y)‖2 for all x, y in X; i.e., its inverse mapping is strongly
monotone.

WEAK SHARP SOLUTIONS OF VARIATIONAL INEQUALITIES 189

The iterate xk+1 is then obtained by minimizing some merit function (related to the
auxiliary mapping H) along the direction dk. Under a suitable assumption, we have
that dk is a descent direction for the merit function at the point xk, and it can be
shown that dk converges to zero, while both wk and xk converge to a solution of the
VIP. If F and H are both uniformly continuous, respectively, on X and X×X, we then
obtain that projTX(wk)(−F (wk)) converges to zero. If, furthermore, the assumptions

of Theorem 5.2 are satisfied, the sequence {xk} converges to x∗ after a finite number
of iterations.

REFERENCES

[1] F. A. Al-Khayyal and J. Kyparisis, Finite convergence of algorithms for nonlinear program-
ming and variational inequalities, J. Optim. Theory Appl., 70 (1991), pp. 319–332.

[2] A. Auslender, Optimisation, Méthodes numériques, Masson, Paris, 1976.
[3] G. Cohen, Auxiliary problem principle extended to variational inequalities, J. Optim. Theory

Appl., 59 (1988), pp. 325–333.
[4] J. M. Danskin, The theory of min-max with applications, SIAM J. Appl. Math., 14 (1966),

pp. 641–664.
[5] J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming, SIAM J.

Control Optim., 31 (1993), pp. 1340–1359.
[6] M. C. Ferris and O. L. Mangasarian, Minimum principle sufficiency, Math. Programming,

57 (1992), pp. 1–14.
[7] M. Fukushima, Equivalent differentiable optimization problems and descent methods for asym-

metric variational inequality problems, Math. Programming, 53 (1992), pp. 99–110.
[8] M. Fukushima, Merit functions for variational inequality and complementarity problems, Non-

linear Optimization and Applications, G. Di Pillo and F. Giannessi, eds., Plenum Press,
1996, pp. 155–179.

[9] T. Larsson and M. Patriksson, A class of gap functions for variational inequalities, Math.
Programming, 64 (1994), pp. 53–80.

[10] O. L. Mangasarian and R. R. Meyer, Nonlinear perturbation of linear programming, SIAM
J. Control Optim., 17 (1979), pp. 745–752.

[11] P. Marcotte and D. L. Zhu, Monotone+ mappings and variational inequalities, in Fifth
International Symposium on Generalized Convexity, Luminy, France, June 1996.

[12] J. J. Moreau, Décomposition orthogonale dans un espace hilbertien selon deux cônes mutuelle-
ment polaires, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences
(Paris), Série A, 255 (1962), pp. 233–240.

[13] S. Nguyen and C. Dupuis, An efficient method for computing traffic equilibria in networks
with asymmetric transportation costs, Transportation Sci., 18 (1984), pp. 185–202.

[14] M. Patriksson, A unified framework of descent algorithms for nonlinear programs and varia-
tional inequalities, Ph.D. thesis, Department of Mathematics, Linköping Institute of Tech-
nology, Linköping, Sweden, 1993.

[15] S. Schaible, Generalized monotonicity, in Proceedings of the 10th International Summer
School on Nonsmooth Optimization, Analysis and Applications, Erice, Italy, 1991, F. Gi-
annessi, ed., Gordon and Breach, Amsterdam, The Netherlands, 1992.

[16] K. Taji, M. Fukushima, and T. Ibaraki, A globally convergent Newton method for solving
strongly monotone variational inequalities, Math. Programming, 58 (1993), pp. 369–383.

[17] D. L. Zhu and P. Marcotte, New classes of generalized monotononicity, J. Optim. Theory.
Appl., 87 (1995), pp. 457–471.

[18] D. L. Zhu and P. Marcotte, An extended descent framework for variational inequalities, J.
Optim. Theory. Appl., 80 (1994), pp. 349–360.

[19] D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes
for solving variational inequalities, SIAM J. Optim., 6 (1996), pp. 714–726.

TOWARDS A PRACTICAL VOLUMETRIC CUTTING PLANE
METHOD FOR CONVEX PROGRAMMING∗

KURT M. ANSTREICHER†

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 190–206

Abstract. We consider the volumetric cutting plane method for finding a point in a convex set
C ⊂ <n that is characterized by a separation oracle. We prove polynomiality of the algorithm with
each added cut placed directly through the current point and show that this “central cut” version of
the method can be implemented using no more than 25n constraints at any time.

Key words. convex programming, cutting plane method, volumetric barrier

AMS subject classification. 90C25

PII. S1052623497318013

1. Introduction. Let C ⊂ <n be a convex set. Given a point x̄ ∈ <n, a separa-
tion oracle for C either reports that x̄ ∈ C or returns a separating hyperplane a ∈ <n
such that aTx > aT x̄ for every x ∈ C. The convex feasibility problem is to use such an
oracle to find a point in C or prove that the volume of C must be less than that of an
n-dimensional sphere of radius 2−L for some given L > 0.

It is well known [9] that a variety of convex optimization problems can be cast as
instances of the convex feasibility problem, and, moreover, the problem plays a funda-
mental role in the complexity analysis of many combinatorial optimization problems.
Algorithms for the convex feasibility problem include the center of gravity method
[12], the ellipsoid method [5], [9], the method of simplices [21], and the inscribed
ellipsoid method [19]. In [20], Vaidya proposed an algorithm for the convex feasibil-
ity problem based on a new barrier for a polyhedral set, the volumetric barrier. On
each iteration k ≥ 0, Vaidya’s algorithm has a point xk ∈ <n and a polyhedral set
Pk = {x |Akx ≥ bk}, where Ak is an mk×n matrix. For each k the set Pk is bounded,
C ⊂ Pk, and xk ∈ Pk is an approximation of the volumetric center of Pk, the mini-
mizer of the volumetric barrier (see section 2). The algorithm then either deletes one
constraint that defines Pk or calls the separation oracle to see if xk ∈ C. If not, the
oracle returns a separating hyperplane which is used to add a constraint to Pk. After
the addition or deletion of a constraint, the algorithm takes a number of Newton, or
Newton-like, steps for the volumetric barrier to obtain a new point xk+1 which is an
approximation of the volumetric center of the new polyhedron Pk+1.

Let T represent the cost, in numerical operations, of a call to the separation ora-
cle. Vaidya’s fundamental result is that the complexity of his volumetric cutting plane
algorithm for the convex feasibility problem is O(nLT + n4L) operations, compared
to O(n2LT + n4L) operations for the ellipsoid algorithm. (In theory, the complexity
of Vaidya’s method can be further reduced through the use of “fast matrix multiplica-
tion,” which cannot be applied to the ellipsoid algorithm.) Although Vaidya’s result
is theoretically significant, the algorithm of [20] does not appear to be very practical. In

∗Received by the editors March 17, 1997; accepted for publication (in revised form) January 30,
1998; published electronically December 2, 1998. This research was conducted while the author was
visiting the Center for Operations Research and Econometrics, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium, supported by a CORE fellowship.

http://www.siam.org/journals/siopt/9-1/31801.html
†Department of Management Sciences, University of Iowa, Iowa City, IA 52242 (kurt-

anstreicher@uiowa.edu).

190

VOLUMETRIC CUTTING PLANE METHOD 191

particular, the analysis of [20] requires that the polyhedral sets Pk have up to 107n
constraints, and the algorithm might require thousands of Newton-like steps following
the addition or deletion of a constraint.

A strengthened version of Vaidya’s volumetric cutting plane algorithm for the
convex feasibility problem is described in [3]. The algorithm of [3] reduces the max-
imum number of constraints to 200n, while requiring no more than 5 Newton steps
following a constraint addition or deletion. Although these figures represent a substan-
tial improvement over [20], the algorithm of [3] is still not fully practical, particularly
in light of the following.

(i) For reasonable n, 200n constraints is still quite large, given that least-squares
systems with this number of rows must be repeatedly solved on each iteration.

(ii) The algorithm of [3] uses true Newton steps, which in practice are expensive
to compute compared to the Newton-like steps used in [20].

(iii) As in [20], the algorithm of [3] cannot place a new constraint directly through
the current point, but must instead “back off” each separating hyperplane to generate
a shallow cut.

Ramaswamy and Mitchell [18] describe a “central cut” version of the volumetric
cutting plane algorithm that allows for the placement of each new constraint through
the current point, and uses Newton-like steps following constraint additions and dele-
tions. (The algorithm of [18] actually solves the problem of minimizing a linear func-
tion over a convex set C using a separation oracle, but most of the analysis is very
similar to that required to solve the convex feasibility problem.) Unfortunately [18],
which uses many results from [20], requires that the algorithm maintain up to 108n
constraints.

The purpose of this paper is to develop a central cut volumetric cutting plane
algorithm that also improves on the 200n constraints required by the algorithm of [3].
As in [18], the algorithm uses an “affine” step to move off of a cut placed through the
current point. The use of such a step in the context of a cutting plane method based
on analytic centers is well known [7]. (See [4], [8], [11], [13], [15], [17], and [22] for
other results on analytic center cutting plane methods.) In fact the affine step we use
is based on that of [7] (see also [14]), rather than the step used in [18]. Our analysis
uses a number of results from [2] and [3] and an improved second-order expansion of
the volumetric barrier to improve upon the analysis of [18]. As in [18], the method
described here requires O(

√
n) Newton-like steps following the addition or deletion of

a constraint compared to O(1) Newton, or Newton-like, steps in [20] and [3]. Although
this is certainly a disadvantage from the standpoint of theoretical complexity, the fact
that the O(

√
n) bound arises from a worst-case analysis of descent in the volumetric

barrier suggests that, in practice, far fewer steps would likely be required. Our final
result is a central cut volumetric cutting plane method that requires no more than
25n constraints at any time.

In Table 1.1 we summarize important attributes of four papers (including this
paper) on volumetric cutting plane methods. These features are the placement of
added cuts (shallow or central), the number of Newton or Newton-like steps required
after a constraint addition or deletion, the maximum number of constraints required,
and the value of a scalar ∆V , defined as the difference between the minimal increase
in the volumetric barrier following a constraint addition, and the maximal decrease
following a constraint deletion (see section 3). For all four algorithms the number of

192 KURT M. ANSTREICHER

Table 1.1
Volumetric cutting plane algorithms.

Reference Placement Steps after Number of ∆V
of cut addition/deletion constraints

Vaidya [20] Shallow O(1) 107n 1.3× 10−7

Anstreicher [3] Shallow O(1) 200n 3.7× 10−4

Ramaswamy and Mitchell [18] Central O(
√
n) 108n 6.8× 10−7

This paper Central O(
√
n) 25n 1.4× 10−3

oracle calls is O(nL), with a constant that is inversely proportional to ∆V (see, for
example, the proof of [3, Theorem 3.2]).

Notation. We use notation consistent with [1], [2], [3], except that here we use H
to denote the Hessian of the logarithmic barrier (as in [20] and [18]) rather than the
Hessian of the volumetric barrier. We use � to denote the semidefinite ordering: if A
and B are symmetric matrices, then A � B ⇐⇒ A−B is positive semidefinite. If B
is semidefinite, then B1/2 denotes the symmetric, semidefinite “square root” of B. For
a positive definite matrix A, we use ‖x‖A =

√
xTAx. We use e to denote a vector of

arbitrary dimension with each component equal to one. For a vector x ∈ <n, diag(x)
is the diagonal matrix whose diagonal components are those of x.

2. The volumetric barrier. In this section we collect a number of properties
of the volumetric barrier V (·) which will be used in the subsequent analysis. To start,
let P = {x ∈ <n |Ax ≥ b}, where A is an m × n matrix with independent columns,
and b ∈ <m. Whenever we refer to P, we are implicitly referring to the constraint
system [A, b] which defines it. The volumetric barrier for P is the function

V (x) =
1

2
ldet(ATS(x)−2A),

where ldet(·) = ln(det(·)), s(x) = Ax−b > 0, and S(x) = diag(s(x)). Let x be a point
having s = s(x) > 0, and let σ = σ(s) denote the vector equal to the diagonal of the
projection matrix P = P (s), where

P (s) = S−1A(ATS−2A)−1ATS−1.

In other words, σi = pii, i = 1, . . . ,m. It is then easy to show (see, for example, the
appendix of [1]) that 0 ≤ σ ≤ e, eTσ = n. The gradient and Hessian of V (·) at x are
given by

g = g(x) = ∇V (x)T = −ATS−1σ,
∇2V (x) = ATS−1(3Σ− 2P (2))S−1A,

(2.1)

where Σ = diag(σ), and P (2) denotes the Schur or Hadamard product of P with

itself: p
(2)
ij = p2

ij . Let Q = Q(x) = ATS−2ΣA. Then Q(x) is a good approximation of

∇2V (x) in that

Q(x) � ∇2V (x) � 3Q(x).(2.2)

See, for example, the appendix of [1] for a derivation of (2.1) and a proof of (2.2); these
and other properties of V (·) are originally from Vaidya [20]. It is worthwhile to note
that an appropriate multiple of V (·) provides an O(

√
mn)-self-concordant barrier for

VOLUMETRIC CUTTING PLANE METHOD 193

P; see [16, Chapter 5.5] or [2, section 5]. However, most of the analysis required here
does not follow from this self-concordancy result, the reason being that (as in [20] and
[3]) we make extensive use of properties of V (·) that depend explicitly on σ.

In the following discussion we will often be interested in the behavior of V (·) for a
step of the form x̄ = x+ξ, where s = s(x) > 0 and ‖S−1Aξ‖∞ = δ < 1. For such an x̄
let s̄ = s(x̄), σ̄ = σ(s̄), Q̄ = Q(x̄). The proof of the following is very straightforward;
see, for example, [20, Lemma 5] or [1, Lemma 2.2].

Proposition 2.1. Let x̄ = x + ξ, where s = s(x) > 0 and ‖S−1Aξ‖∞ ≤ δ < 1.
Then

1− δ ≤ s̄i
si
≤ 1 + δ and

(1− δ)2

(1 + δ)2
≤ σ̄i
σi
≤ (1 + δ)2

(1− δ)2
, i = 1, . . . ,m.

It follows immediately from Proposition 2.1 that if x̄ = x + ξ and ‖S−1Aξ‖∞ =
δ < 1, then

(1− δ)2

(1 + δ)4
Q � Q̄ � (1 + δ)2

(1− δ)4
Q .(2.3)

Using a Taylor series expansion, (2.2), and (2.3), it is then easy to show that

V (x) + gT ξ +
(1− δ)2

2(1 + δ)4
ξTQξ ≤ V (x̄) ≤ V (x) + gT ξ +

3(1 + δ)2

2(1− δ)4
ξTQξ.(2.4)

The bounds in (2.4) have been used in [1], [18], and [20]. The following theorem
provides a strengthening of (2.4) that will be used throughout the paper.

Theorem 2.2. Suppose that x̄ = x + ξ, where s = s(x) > 0 and ‖S−1Aξ‖∞ ≤
δ < 1. Then

V (x) + gT ξ +
1

2(1 + δ)2
ξTQξ ≤ V (x̄) ≤ V (x) + gT ξ +

3 + δ2

2(1− δ)2
ξTQξ.

Proof. We have

V (x̄) = V (x) +

∫ 1

0

ξT g(x+ αξ) dα

= V (x) +

∫ 1

0

ξT
(
g(x) +

∫ α

0

∇2V (x+ βξ)ξ dβ

)
dα

= V (x) + gT ξ +

∫ 1

0

∫ α

0

ξT∇2V (x+ βξ)ξ dβ dα.(2.5)

To prove the theorem we will obtain lower and upper bounds on the final term in
(2.5). We begin with the lower bound. Using (2.2) and (2.3), we have

ξT∇2V (x+ βξ)ξ ≥ (1− βδ)2

(1 + βδ)4
ξTQξ,(2.6)

and therefore

V (x̄) ≥ V (x) + gT ξ + ξTQξ

∫ 1

0

∫ α

0

(1− βδ)2

(1 + βδ)4
dβ dα.(2.7)

194 KURT M. ANSTREICHER

However, it is straightforward to compute that

d

dβ

(
1− βδ
1 + βδ

)3

= −6 δ
(1− βδ)2

(1 + βδ)4
,

and therefore∫ α

0

(1− βδ)2

(1 + βδ)4
dβ =

−1

6δ

((
1− αδ
1 + αδ

)3

− 1

)
=

6αδ + 2α3δ3

6δ(1 + αδ)3
≥ α

(1 + αδ)3
.(2.8)

Substituting (2.8) into (2.7), we obtain

V (x̄) ≥ V (x) + gT ξ + ξTQξ

∫ 1

0

α

(1 + αδ)3
dα.(2.9)

An integration by parts shows that∫ 1

0

α

(1 + αδ)3
dα =

1

2(1 + δ)2
,(2.10)

and substituting (2.10) into (2.9) produces the lower bound of the theorem. The proof
of the upper bound is similar. Again using (2.2) and (2.3), we have

ξT∇2V (x+ βξ)ξ ≤ 3(1 + βδ)2

(1− βδ)4
ξTQξ,

and therefore

V (x̄) ≤ V (x) + gT ξ + 3ξTQξ

∫ 1

0

∫ α

0

(1 + βδ)2

(1− βδ)4
dβ dα.(2.11)

However,

d

dβ

(
1 + βδ

1− βδ
)3

= 6δ
(1 + βδ)2

(1− βδ)4
,

and therefore∫ α

0

(1 + βδ)2

(1− βδ)4
dβ =

1

6δ

((
1 + αδ

1− αδ
)3

− 1

)
=

6αδ + 2α3δ3

6δ(1− αδ)3
≤ α(1 + δ2/3)

(1− αδ)3
.(2.12)

Substituting (2.12) into (2.11), we obtain

V (x̄) ≤ V (x) + gT ξ + ξTQξ(3 + δ2)

∫ 1

0

α

(1− αδ)3
dα.(2.13)

Another integration by parts shows that∫ 1

0

α

(1− αδ)3
dα =

1

2(1− δ)2
,(2.14)

and substituting (2.14) into (2.13) produces the upper bound of the theorem.

VOLUMETRIC CUTTING PLANE METHOD 195

Since the bounds in Theorem 2.2 involve both ‖ξ‖Q =
√
ξTQξ and ‖S−1Aξ‖∞, it

is natural to consider how these two quantities are related. For x with s = s(x) > 0,
σ = σ(s), let σmin = mini{σi}. Note that σmin > 0 under the trivial assumption that
A contains no zero row. Define

µ = µ(x) = (2
√
σmin − σmin)

−1/2
.(2.15)

In the following theorem we give two bounds for ‖S−1Aξ‖∞ in terms of ‖ξ‖Q: one
involving µ, and therefore σmin, and the other independent of σ.

Theorem 2.3. Let x have s = s(x) > 0. Then for any ξ ∈ <n,
1. ‖S−1Aξ‖∞ ≤ µ‖ξ‖Q,
2. ‖S−1Aξ‖∞ ≤ [(1 +

√
m)/2]1/2‖ξ‖Q.

Proof. See [1, Theorem 3.3] for the proof of 2, and [3, Lemma 2.3] for the proof
of 1.

Motivated by Theorem 2.3, we define

µ̂ = µ̂(x) = min{µ(x), [(1 +
√
m)/2]1/2}.(2.16)

It then follows from Theorem 2.3 that

‖S−1Aξ‖∞ ≤ µ̂‖ξ‖Q, ξ ∈ <n.(2.17)

The fundamental proximity criterion that we employ throughout the paper is µ̂‖g‖Q−1 .
When this quantity is “large” (that is, Ω(1)), we will take a damped Newton-like step
in an effort to reduce V (·), and thus move closer to ω, the volumetric center of P.
When µ̂‖g‖Q−1 ≤ O(1), we will be close enough to ω to adequately control the effect
of adding or deleting a constraint, as required. The following theorem and corollary
obtain a simple condition on µ̂‖g‖Q−1 that suffices to demonstrate the boundedness
of P.

Theorem 2.4. Let P = {x |Ax ≥ b}, where the columns of A are independent.
Let x have s = s(x) > 0, and let d = Q−1g. Suppose that ‖S−1Ad‖∞ < 1. Then P is
bounded.

Proof. P is bounded if and only if 6 ∃x 6= 0, Ax ≥ 0. Since the columns of A are
independent,

6 ∃x 6= 0, Ax ≥ 0 ⇐⇒ 6 ∃x, Ax 6= 0, Ax ≥ 0

⇐⇒ 6 ∃x,Ax ≥ 0, eTAx ≥ 1

⇐⇒ ∃u ≥ 0, v > 0, uTA+ veTA = 0

⇐⇒ ∃u > 0, ATu = 0,(2.18)

where the third equivalence uses a standard “theorem of the alternative” for systems
of linear inequalities. However, Q = ATS−2ΣA, so Qd = g is exactly ATS−2ΣAd =
−ATS−1σ, which can be written as

ATS−1Σ(e+ S−1Ad) = 0.

It follows that if ‖S−1Ad‖∞ < 1, then u = S−1Σ(e + S−1Ad) satisfies (2.18), and
therefore P is bounded.

Corollary 2.5. Let P = {x |Ax ≥ b}, where the columns of A are independent.
Let x have s = s(x) > 0, and suppose that µ̂‖g‖Q−1 < 1. Then P is bounded.

Proof. This follows from Theorem 2.4, (2.17), and ‖d‖Q = ‖g‖Q−1 .

196 KURT M. ANSTREICHER

Next we show that if µ̂‖g‖Q−1 is sufficiently small, then we can bound the possible
remaining decrease in V (·). The proximity allowed in Theorem 2.6, µ̂‖g‖Q−1 ≤ 1/6,
is weaker than in previous, similar results in [20], [2], and [3].

Theorem 2.6. Let x have s = s(x) > 0, and µ̂‖g‖Q−1 ≤ γ ≤ 1/6. Then µ̂‖ω −
x‖Q ≤ 1, where ω is the minimizer of V (·), and

V (ω)− V (x) ≥ min
0≤α≤1

1

µ̂2

(
−γα+

α2

2(1 + α)2

)
.

Proof. Assume that µ̂‖ω − x‖Q > 1. Then there is a λ, 0 < λ < 1, so that
x̄ = x+ λ(ω − x) has µ̂‖x̄− x‖Q = 1. Let ξ = x̄− x, and x(α) = x+ αξ, 0 ≤ α ≤ 1.
Since ‖S−1Aξ‖∞ ≤ 1, from (2.17), we have

d

dα
V (x(α)) = g(x+ αξ)T ξ

= ξT
(
g(x) +

∫ α

0

∇2V (x+ βξ)ξ dβ

)
≥ gT ξ + ξTQξ

∫ α

0

(1− β)2

(1 + β)4
dβ

= gT ξ + ξTQξ
6α+ 2α3

6(1 + α)3
,(2.19)

where the inequality uses (2.6), and the final equality uses (2.8), both with δ = 1.
Using the fact that |gT ξ| = |gTQ−1/2Q1/2ξ| ≤ ‖g‖Q−1‖ξ‖Q, we then obtain

d

dα
V (x(α))

∣∣∣∣
α=1−

≥ −‖g‖Q−1‖ξ‖Q +
‖ξ‖2Q

6

=
1

µ̂2

(
− (µ̂‖g‖Q−1)(µ̂‖ξ‖Q) +

µ̂2‖ξ‖2Q
6

)
≥ 0,

where the last inequality uses µ̂‖ξ‖Q = 1, and the assumption that µ̂‖g‖Q−1 ≤ 1/6.
Since V (·) is strictly convex, it follows that V (ω) > V (x̄), which is a contradiction.
Therefore µ̂‖ω − x‖Q ≤ 1, as claimed.

Since µ̂‖x−ω‖Q ≤ 1, we can write ω = x(α) = x+αξ for some ξ with µ̂‖ξ‖Q = 1,
and 0 ≤ α ≤ 1. Then ‖S−1Aξ‖∞ ≤ 1, from (2.17), so Theorem 2.2 implies that

V (x(α)) ≥ V (x)− αgT ξ + α2 ξTQξ

2(1 + α)2

≥ V (x)− α‖g‖Q−1‖ξ‖Q + α2
‖ξ‖2Q

2(1 + α)2

= V (x) +
1

µ̂2

(
−α(µ̂‖g‖Q−1)(µ̂‖ξ‖Q) + α2

µ̂2‖ξ‖2Q
2(1 + α)2

)

≥ V (x) +
1

µ̂2

(
−αγ +

α2

2(1 + α)2

)
,(2.20)

where the second inequality uses |gT ξ| ≤ ‖g‖Q−1‖ξ‖Q, and the final inequality uses
µ̂‖ξ‖Q = 1 and the assumption that µ̂‖g‖Q−1 ≤ γ.

VOLUMETRIC CUTTING PLANE METHOD 197

In the corollary below we use Theorem 2.6 to establish bounds on V (x) − V (ω)
for two values of the parameter γ which are useful in the the analysis to follow.

Corollary 2.7. Let x have s = s(x) > 0. Then µ̂‖g‖Q−1 ≤ 4/27 implies that
V (x)− V (ω) ≤ .0232/µ̂2, and µ̂‖g‖Q−1 ≤ 1/8 implies that V (x)− V (ω) ≤ .0113/µ̂2.

Proof. For γ = 1/8, it is straightforward to show that the minimum in (2.20),
for 0 ≤ α ≤ 1, occurs at α =

√
5 − 2. Substituting this value of α into (2.20) and

simplifying then implies that

V (ω)− V (x) ≥ −5
√

5− 11

16µ̂2
> − .0113

µ̂2
.

It is also easy to show that, for γ ≥ 4/27, the right-hand side in (2.20) is monotonically
decreasing for 0 ≤ α ≤ 1. Substituting γ = 4/27, α = 1 into (2.20) then implies that

V (ω)− V (x) ≥ (−4/27 + 1/8)/µ̂2 > −.0232/µ̂2.

The final topic that we consider in this section is that of reducing V (·) when
µ̂‖g‖Q−1 ≥ Ω(1). To accomplish this we use a Newton-like step of the form

x(α) = x− α Q−1g

µ̂‖g‖Q−1

(2.21)

for some α > 0. When µ̂‖g‖Q−1 ≥ γ, for any γ = Ω(1), it can be shown that α may be
chosen in (2.21) so that an Ω(1/

√
m) reduction is obtained in V (·). In the following

lemma we give a result for a particular value of γ used later in the paper.
Lemma 2.8. Suppose that x has s = s(x) > 0, and µ̂‖g‖Q−1 ≥ .01. Let x(α) be

as in (2.21). Then α = .0033 obtains V (x(α)) ≤ V (x)− (1.65× 10−5)/
√
m.

Proof. Let ξ = −Q−1g/(µ̂‖g‖Q−1). By construction we have µ̂‖ξ‖Q = 1, so
‖S−1Aξ‖∞ ≤ 1 by (2.17). Applying Theorem 2.2, we obtain

V (x(α)) ≤ V (x) + αgT ξ + α2ξTQξ
3 + α2

2(1− α)2

= V (x)− α

µ̂
‖g‖Q−1 +

α2

µ̂2

3 + α2

2(1− α)2

= V (x) +
1

µ̂2

(
−αµ̂‖g‖Q−1 + α2 3 + α2

2(1− α)2

)
.(2.22)

Substituting α = .0033 into (2.22), and using µ̂‖g‖Q−1 ≥ .01, we obtain V (x(α)) ≤
V (x)− (1.65× 10−5)/µ̂2. Finally, from (2.16), µ̂2 ≤ (1 +

√
m)/2 ≤ √m.

3. The algorithm and its complexity. In this section we describe the central
cut volumetric cutting plane method, and establish its complexity using results from
the two following sections. At the start of each iteration k ≥ 0, we have an interior
point xk of a bounded polyhedron Pk ⊃ C, where Pk = {x |Akx ≥ bk}, and Ak is
an mk × n matrix with independent columns. We assume that C is contained in the
hypercube ‖x‖∞ ≤ 1, and set P0 = {x | − e ≤ x ≤ e}, x0 = 0. (It is straightforward
to show that x0 is the volumetric center of P0.) The algorithm to be analyzed is as
follows.

Central cut volumetric cutting plane algorithm.
Step 0. Given x0, P0, 0 < ε < 1, 0 < γ < 1, L ≥ 1. Go to Step 1.
Step 1. If V k(xk) ≥ V kmax, then STOP. Else go to Step 2.

198 KURT M. ANSTREICHER

Step 2. If σkmin ≥ ε, go to Step 3. Else go to Step 4.
Step 3. (Constraint Addition) Call the oracle to see if xk ∈ C. If so, STOP. Oth-

erwise the oracle returns a vector a ∈ <n such that aTx > aTxk for
all x ∈ C. Let (Ak+1, bk+1) be an augmented constraint system having
ak+1
mk+1 = a, bk+1

mk+1 = aTxk. Let sk = Akxk − bk, Sk = diag(sk), and

x̄0 = xk + α(Ak
T

(Sk)−2Ak)−1a, for suitable α > 0. Go to Step 5.
Step 4. (Constraint Deletion) Suppose that σkj = σkmin < ε. Let (Ak+1, bk+1) be the

reduced constraint system obtained by removing the jth row of (Ak, bk),
and let x̄0 = xk. Go to Step 5.

Step 5. (Centering Steps) Take a sequence of damped Newton-like steps of the

form x̄j+1 = x̄j − α(Q̄j)−1ḡj , j ≥ 0, until ˆ̄µ
J‖ḡJ‖(Q̄J)−1 ≤ γ, where

Q̄j = Q(x̄j), ḡj = g(x̄j), ˆ̄µ
J

= µ̂(x̄J). Let xk+1 = x̄J , k = k + 1, and go
to Step 1.

In Step 1 of the algorithm, the value of V kmax is such that V (xk) ≥ V kmax proves that
the volume of Pk, and therefore also C ⊂ Pk, is less than that of an n-dimensional
sphere of radius 2−L. An explicit value for V kmax is given in Lemma 3.1 below. A
suitable steplength α in Step 3 is given in Theorem 4.6. Note that, by construction,
each Pk is bounded by Corollary 2.5, since µ̂k‖gk‖(Qk)−1 ≤ γ < 1 for each k. In

addition, the fact that a constraint is only added if σkmin ≥ ε, and eTσk = n for all
k, implies that mk ≤ n/ε + 1 for every k. For the Newton-like steps in Step 5, we
assume that the steplengths α are chosen so that each step produces an Ω(1/

√
n)

decrease in V k(·). That this is always possible follows from ˆ̄µ
j‖ḡj‖(Q̄j)−1 > γ = Ω(1)

(see, for example, Lemma 2.8) and the fact that mk ≤ n/ε + 1 = O(n). Finally,
if Ak has independent columns and Ak+1 is obtained by adding a constraint, then
trivially the columns of Ak+1 are independent. If Ak+1 is obtained by deleting a
constraint, independence of the columns of Ak+1 follows easily from the dropping rule
σkmin < ε ≤ 1; see [3, section 5].

Lemma 3.1. Consider the volumetric cutting plane algorithm with γ ≤ .03. As-
sume that L ≥ 1, and let V kmax = .7nL+n ln(mk). Then termination in Step 1 proves
that the volume of C is less than that of an n-dimensional sphere of radius 2−L.

Proof. See [3, Lemma 3.1].
Next we consider the issue of how many iterations might be required for the

algorithm to terminate. Assume that each time a constraint is added, the algorithm
achieves

V k+1(xk+1) ≥ V k(xk) + ∆V +,(3.1)

where ∆V + > 0, while each time a constraint is deleted, it is ensured that

V k+1(xk+1) ≥ V k(xk)−∆V −,(3.2)

where 0 ≤ ∆V − < ∆V +. The following theorem provides a complexity result for the
algorithm under simple assumptions regarding ∆V ≡ ∆V + −∆V − and the number
of Newton-like steps taken in Step 5.

Theorem 3.2. Assume that the iterates of the volumetric cutting plane algorithm,
using γ ≤ .03, satisfy (3.1) and (3.2) on iterations where a constraint is added or
deleted, respectively. Assume further that ∆V + is O(1), ∆V = ∆V + − ∆V − > 0
is Ω(1), and the number of Newton-like steps in Step 5 of the algorithm is O(

√
n).

Then, for L = Ω(ln(n)), the algorithm terminates in O(nL) iterations, using a total
of O(nLT + n4.5L) operations, where T is the cost of a call to the separation oracle.

VOLUMETRIC CUTTING PLANE METHOD 199

Proof. See the proof of [3, Theorem 3.2].

Compared to the algorithms of [20] and [3], Theorem 3.2 demonstrates that the
central cut method of this paper has the same order for the number of oracle calls,
O(nL), but performs more non-oracle work, O(n4.5L) versus O(n4L) operations. The
reason for the latter is the larger number of centering steps, O(

√
n) versus O(1),

required after a constraint addition or deletion. Using results from the next two sec-
tions, we now show that the assumptions of Theorem 3.2 hold for certain choices of
the parameters ε and γ.

Theorem 3.3. Let ε = .04, γ = .01. Then the central cut volumetric cutting
plane method satisfies the assumptions of Theorem 3.2, with ∆V = .0014.

Proof. First consider an iteration where a cut is added. In Theorem 4.6, it is shown
that for a particular choice of α in Step 3, it is ensured that

V k+1(x̄0) ≤ V k(xk) + .3‖gk‖(Qk)−1 + 1.78 < V k(xk) + 1.79,(3.3)

where we are using the fact that ‖gk‖(Qk)−1 ≤ µ̂k‖gk‖(Qk)−1 ≤ .01. In addition, in

Theorem 4.5, it is shown that for ‖gk‖(Qk)−1 ≤ .01 and σkmin ≥ .04,

V k+1(ωk+1) ≥ V k(xk) + .0340,(3.4)

where ωk+1 is the volumetric center of Pk+1. Combining (3.3) and (3.4), we obtain

V k+1(x̄0)− V k+1(ωk+1) < 1.76.(3.5)

Next, in Lemma 2.8, it is shown that if ˆ̄µ
j‖ḡj‖(Q̄j)−1 ≥ γ = .01 in Step 5, then a

steplength α may be chosen so that

V k+1(x̄j+1) ≤ V k+1(x̄j)− Ω(1/
√
mk+1).(3.6)

However, mk ≤ n/ε + 1 = O(n) for all k, so (3.5) and (3.6) together imply that

after J = O(
√
n) steps, we must obtain x̄J having ˆ̄µ

J‖ḡJ‖(Q̄J)−1 ≤ γ = .01. Finally,

V k+1(xk+1) = V k+1(x̄J) ≥ V k+1(ωk+1), so (3.4) implies that

V k+1(xk+1)− V k(xk) ≥ ∆V + = .0340.

Next, consider an iteration where a constraint is deleted. In Theorem 5.2 it is
shown that if µ̂k‖gk‖(Qk)−1 ≤ .01 and σki = σkmin ≤ .04, then dropping constraint i to

obtain a new polyhedron Pk+1 results in V k+1(xk) − V k+1(ωk+1) ≤ .0121. Arguing
exactly as above, it follows that after J = O(

√
n) steps in Step 5, we must obtain

x̄J with ˆ̄µ
J‖ḡJ‖(Q̄J)−1 ≤ γ = .01. In addition, in Theorem 5.2 it is shown that

V k+1(ωk+1) ≥ V k(xk) − .0326. Since we must have V k+1(xk+1) ≥ V k+1(ωk+1), it
follows that

V k+1(xk+1)− V k(xk) ≥ −∆V − = −.0326.

The assumptions of Theorem 3.2 thus hold with ∆V = .0340− .0326 = .0014.

The value ∆V = .0014 demonstrated in Theorem 3.3 may seem relatively small,
but it should be noted that this is the largest value of ∆V to date for a volumetric
cutting plane algorithm; see Table 1.1.

200 KURT M. ANSTREICHER

4. Adding a central cut. Let x be an interior point of P. In this section
we consider augmenting the constraint system defining P by imposing a central cut
through x to obtain a new polyhedron P̃ = {x̃ |Ax̃ ≥ b, aT x̃ ≥ aTx}. Let Ṽ (·) be the
volumetric barrier for P̃, and ω̃ be the volumetric center. Note that for any x̄ with
s̄ = s(x̄) > 0, aT x̄ > aTx, we have

Ṽ (x̄) =
1

2
ldet

(
AT S̄−2A+

aaT

(aT x̄− aTx)2

)
=

1

2
ldet

(
AT S̄−2A

(
I +

(AT S̄−2A)−1aaT

(aT x̄− aTx)2

))
= V (x̄) +

1

2
ln

(
1 +

aT (AT S̄−2A)−1a

(aT x̄− aTx)2

)
.(4.1)

We will first use (4.1) to establish a lower bound on Ṽ (ω̃)−V (x) when a cut is added
through x. We will obtain two versions of this result. The first, using x = ω, produces
a relatively simple bound for the fundamental quantity Ṽ (ω̃) − V (ω). Although this
bound may be of some independent interest, in practice it cannot be used since x = ω
is unattainable. Therefore we will also obtain a second lower bound for x in a certain
neighborhood of ω. We begin with a series of lemmas. Throughout we let s = s(x),
σmin = σmin(s), Q = Q(x), g = g(x), µ = µ(x).

Lemma 4.1. Assume that s̄ = s(x̄) > 0, aT x̄ > aTx, and ‖S̄−1A(x̄ − x)‖ ≤ ρ.
Then

aT (AT S̄−2A)−1a

(aT x̄− aTx)2
≥ 1

ρ2
.

Proof. Let H̄ = AT S̄−2A, so ‖x̄ − x‖H̄ = ‖S̄−1A(x̄ − x)‖ ≤ ρ, and ‖a‖2
H̄−1 =

aT (AT S̄−2A)−1a. Then |aT (x̄ − x)| = |aT H̄−1/2H̄1/2(x̄ − x)| ≤ ‖a‖H̄−1‖x̄ − x‖H̄ ,
implying that

‖a‖2
H̄−1

[aT (x− x̄)]2
≥ 1

ρ2
.

Lemma 4.2. Assume that s̄ = s(x̄) > 0, aT x̄ > aTx, ‖x̄− x‖Q ≤ r, and µr ≤ 1.
Then

aT (AT S̄−2A)−1a

(aT x̄− aTx)2
≥ (1− µr)2σmin

r2
.

Proof. Since Q = ATS−2ΣA, ‖x̄− x‖Q ≤ r immediately implies that

‖S−1A(x̄− x)‖ ≤ r√
σmin

(4.2)

and also, from Theorem 2.3, that

‖S−1A(x̄− x)‖∞ ≤ µr.(4.3)

From (4.3) and Proposition 2.1, it follows that

si
s̄i
≤ 1

1− µr , i = 1, . . . ,m.(4.4)

VOLUMETRIC CUTTING PLANE METHOD 201

Then (4.2) and (4.4) together imply that

‖S̄−1A(x̄− x)‖ ≤ r

(1− µr)√σmin
,

and the lemma follows from Lemma 4.1.
Lemma 4.3. Assume that s̄ = s(x̄) > 0, ‖x̄− x‖Q = r, and µr ≤ 1. Then

V (x̄) ≥ V (x) + gT (x̄− x) +
r2

2(1 + µr)2
.

Proof. This follows from (4.3) and the lower bound of Theorem 2.2.
Now let x = ω, the volumetric center of P. We will use Lemmas 4.2 and 4.3 to

establish a lower bound on Ṽ (ω̃)− V (ω) when P̃ is obtained by placing a central cut
through ω.

Theorem 4.4. Suppose that ω is the volumetric center of P, s = s(ω), and
σ = σ(s). Let P̃ = {x̃ |Ax̃ ≥ b, aT x̃ ≥ aTω}. Let Ṽ (·) be the volumetric barrier for
P̃, and ω̃ be the volumetric center. Then Ṽ (ω̃)− V (ω) ≥ (2

√
σmin − σmin)/10.

Proof. Let r = ‖ω̃ − ω‖Q, and assume for the moment that r = δ/µ for some
δ ∈ [0, 1], µ = µ(ω). Using (4.1), Lemmas 4.2 and 4.3, and the fact that g = g(ω) = 0,
we obtain

Ṽ (ω̃)− V (ω) ≥ 1

2
ln

(
1 +

(1− δ)2µ2σmin

δ2

)
+

δ2

2(1 + δ)2µ2
.(4.5)

Next we use the fact that ln(1 + λ) ≥ λ/(1 + λ), for all λ ≥ 0, to obtain

ln

(
1 +

(1− δ)2µ2σmin

δ2

)
≥ (1− δ)2µ2σmin

δ2 + (1− δ)2µ2σmin

≥ (1− δ)2

µ2[4δ2 + (1− δ)2]

≥ (1− δ)2

µ2(1 + δ)2
,(4.6)

where the second inequality uses µ ≥ 1, and

µ4σmin =
σmin

(2
√
σmin − σmin)2

=
1

4− 4
√
σmin + σmin

≥ 1

4
,

and the final inequality uses δ2 ≤ δ. Substituting (4.6) into (4.5) then gives

Ṽ (ω̃)− V (ω) ≥ 1

2µ2

(
(1− δ)2 + δ2

(1 + δ)2

)
.(4.7)

A straightforward differentiation shows that the minimum of the right-hand side of
(4.7), for 0 ≤ δ ≤ 1, occurs at δ = 2/3, with value 1/(10µ2). From (4.7) we then have
V (ω̃)− V (ω) ≥ 1/(10µ2) = (2

√
σmin − σmin)/10.

Next assume that r > 1/µ. Then there is an α ∈ (0, 1) so that x̄ = ω + α(ω̃ − ω)
has ‖x̄− ω‖Q = 1/µ. From the convexity of V (·) and Lemma 4.3, we obtain

V (ω̃) ≥ V (x̄) ≥ V (ω) +
2
√
σmin − σmin

8
,

202 KURT M. ANSTREICHER

and (4.1) certainly implies that Ṽ (ω̃) ≥ V (ω̃). It follows that Ṽ (ω̃) − V (ω) ≥
(2
√
σmin − σmin)/8.
It is worthwhile to mention that the analysis in [18, section 4.1] actually shows

that Ṽ (ω̃)− V (ω) = Ω(
√
σmin), although the authors of [18] do not note this fact. In

practice the added cut aT x̃ ≥ aTx cannot be passed through x = ω as in Theorem
4.4 but rather through a point x which is close to ω in some sense. As a result, the
lower bound of Theorem 4.4 must be modified to account for the use of x 6= ω. In the
next theorem we give a result based on particular parameter choices used throughout
the paper. In the proof of the theorem we numerically evaluate some functions of one
variable, as opposed to using weaker analytical bounds, in order to obtain the best
possible result.

Theorem 4.5. Let x have s = s(x) > 0, ‖g‖Q−1 ≤ .01, and σmin = σmin(s) ≥ .04.

Let P̃ = {x̃ |Ax̃ ≥ b, aT x̃ ≥ aTx}, Ṽ (·) be the volumetric barrier for P̃, and ω̃ be the
volumetric center. Then Ṽ (ω̃)− V (x) ≥ .0340.

Proof. Let r = ‖ω̃−x‖Q, and assume for the moment that r = δ/µ for 0 ≤ δ ≤ 1,
µ = µ(x). Proceeding as in the proof of Theorem 4.4, but including the effect of
g = g(x) 6= 0, we have

Ṽ (ω̃)− V (x) ≥ 1

2
ln

(
1 +

(1− δ)2µ2σmin

δ2

)
+ gT (ω̃ − x) +

δ2

2(1 + δ)2µ2

≥ 1

2
ln

(
1 +

(1− δ)2µ2σmin

δ2

)
− δ‖g‖Q−1

µ
+

δ2

2(1 + δ)2µ2
,(4.8)

where the second inequality uses the fact that |gT (ω̃ − x)| ≤ ‖g‖Q−1‖ω̃ − x‖Q. We
distinguish two cases.

Case 1. σmin ≤ .04725. Note that 1/µ2 = 2
√
σmin − σmin is monotonically in-

creasing in σmin, so σmin ≥ .04 implies that 1/µ2 ≥ 2
√
.04 − .04 = .36. In addition,

µ2σmin = σmin/(2
√
σmin − σmin) is monotonically increasing in σmin, so σmin ≥ .04

also implies that µ2σmin ≥ .04/.36 = 1/9. Finally, σmin ≤ .04725 implies that
µ ≥ (2

√
.04725 − .04725)−1/2 > 1.606. Using these facts in (4.8) and the assump-

tion that ‖g‖Q−1 ≤ .01, we obtain

Ṽ (ω̃)− V (x) ≥ 1

2
ln

(
1 +

(1− δ)2

9δ2

)
− .01δ

1.606
+

.18δ2

(1 + δ)2
.(4.9)

It can be verified numerically that the minimum of the right-hand side in (4.9), for
δ ∈ [0, 1], occurs at approximately δ = .8, with value greater than .0340. (See Figure
4.1, Case 1, for a plot of the right-hand side of (4.9) for δ ∈ [.78, .83].)

Case 2. σmin ≥ .04725. In this case we have 1/µ2 ≥ 2
√
.04725 − .04725 > .3874,

σminµ
2 ≥ .04725/(2

√
.04725− .04725) > .1219. Using these facts in (4.8), with µ ≥ 1

and the assumption that ‖g‖Q−1 ≤ .01, we obtain

Ṽ (ω̃)− V (x) ≥ 1

2
ln

(
1 +

.1219(1− δ)2

δ2

)
− .01δ +

.1937δ2

(1 + δ)2
.(4.10)

It can be verified numerically that the minimum of the right-hand side in (4.10), for
δ ∈ [0, 1], occurs at approximately δ = .81, with value greater than .0340. (See Figure
4.1, Case 2, for a plot of the right-hand side of (4.9) for δ ∈ [.78, .83].)

This completes the proof under the assumption that r ≤ 1/µ. However, arguing
as at the end of Theorem 4.4, it is easy to show that if ‖ω̃ − x‖Q > 1/µ, then

Ṽ (ω̃)− V (x) ≥ −‖g‖Q−1

µ
+

1

8µ2
≥ −.01 +

.36

8
= .035.

VOLUMETRIC CUTTING PLANE METHOD 203

0.0339

0.0340

0.0341

0.0342

0.0343

0.78 0.79 0.8 0.81 0.82 0.83

delta

Case 1

Case 2

Fig. 4.1. Lower bound on Ṽ (ω̃)− V (x) versus δ.

For the final topic of the section, we consider moving off of the cut aT x̃ ≥ aTx
to a new point x̄ having aT x̄ > aTx. Our goal is to obtain an upper bound for the
quantity Ṽ (x̄)− V (x). For 0 < δ ≤ 1, consider a point of the form

x̄ = x+ δ
(ATS−2A)−1a√
aT (ATS−2A)−1a

.(4.11)

Theorem 4.6. Suppose that x has s = s(x) > 0. Let P̃ = {x̃ |Ax̃ ≥ b, aT x̃ ≥
aTx}, and let Ṽ (·) be the volumetric barrier for P̃. Then using δ = .3 in (4.11)
produces x̄ having Ṽ (x̄) ≤ V (x) + .3‖g‖Q−1 + 1.78.

Proof. Let H = ATS−2A, H̄ = AT S̄−2A. By construction we then have aT x̄ −
aTx = δ‖a‖H−1 , and also

‖S−1A(x̄− x)‖ = δ.(4.12)

It follows that

aT (AT S̄−2A)−1a

(aT x̄− aTx)2
=

aT (AT S̄−2A)−1a

δ2aT (ATS−2A)−1a
≤ (1 + δ)2

δ2
,(4.13)

where the last inequality uses (4.12), Proposition 2.1, and the fact that H � (1 +
δ)2H̄ ⇒ H̄−1 � (1 + δ)2H−1 (see, for example, [10, Corollary 7.7.4]). Let ξ = x̄− x.
Then from (4.12) and Theorem 2.2, we have

V (x̄) ≤ V (x) + gT ξ + ξTQξ
3 + δ2

2(1− δ)2

≤ V (x) + ‖g‖Q−1‖ξ‖Q + ‖ξ‖2Q
3 + δ2

2(1− δ)2

≤ V (x) + δ‖g‖Q−1 +
δ2(3 + δ2)

2(1− δ)2
,(4.14)

204 KURT M. ANSTREICHER

where the last inequality uses the facts that Q � H and ‖ξ‖H = δ2 from (4.12).
Combining (4.1), (4.13), and (4.14), we obtain

Ṽ (x̄)− V (x) ≤ δ‖g‖Q−1 +
δ2(3 + δ2)

2(1− δ)2
+

1

2
ln

(
1 +

(1 + δ)2

δ2

)
.(4.15)

The proof is completed by substituting δ = .3 into (4.15).
Note that x̄ in (4.11) is based on H = ATS−2A, the Hessian of the logarithmic

barrier at x, and not Q, as used in [18, section 4.1.2]. However, we must have Q �
H � (1/ε)Q since σmin ≥ ε whenever a constraint is added, and therefore a step
based on Q can also be analyzed using methods similar to those employed here. The
advantage of our approach, using H, is that we obtain a result which is independent
of ε.

5. Dropping a constraint. In this section we consider the effect of dropping a
constraint, as in Step 4 of the algorithm. For simplicity we assume that σm = σmin,
and let P̃ be the new constraint system obtained by deleting the mth constraint in the
original system [A, b] defining P. Throughout we use the tilde (̃) notation to denote
quantities related to the reduced constraint system [Ã, b̃].

Theorem 5.1. Suppose that x has s = s(x) > 0, σm = σmin, and P̃ is obtained
by deleting the mth constraint defining P. Then

1. Ṽ (x) = V (x) + (1/2) ln(1− σmin),
2. σi ≤ σ̃i ≤ σi/(1− σmin), i = 1, . . . ,m− 1,

3. ‖g̃‖Q̃−1 ≤ 1√
1−σmin

(
‖g‖Q−1 + σmin

(
1 + 1√

1−σmin

))
.

Proof. See [3, Lemma 5.1, Lemma 5.2, and Theorem 5.3].
We will use Theorem 5.1 to bound the change in our fundamental proximity

measure µ̂‖g‖Q−1 following the deletion of a constraint. We use ˆ̃µ = ˆ̃µ(x) to denote

the value of µ̂ with respect to the reduced constraint system [Ã, b̃].
Theorem 5.2. Assume that x has s = s(x) > 0, µ̂‖g‖Q−1 ≤ .01, and σm =

σmin ≤ .04. Let P̃ be obtained by deleting the mth constraint defining P. Then P̃ is
bounded, Ṽ (ω̃) ≥ Ṽ (x)− .0121, and Ṽ (ω̃) ≥ V (x)− .0326, where ω̃ is the volumetric
center of P̃.

Proof. Note that ˆ̃µ ≤ µ̂ ≤ µ, from part 2 of Theorem 5.1, and the fact that
m̃ = m− 1. Applying part 3 of Theorem 5.1, we obtain

ˆ̃µ‖g̃‖Q̃−1 ≤ 1√
1− σmin

(
µ̂‖g‖Q−1 + σminµ

(ˆ̃µ

µ

)(
1 +

1√
1− σmin

))

≤ 1√
1− σmin

(
.01 +

σ
3/4
min

(2−√σmin)1/2

(ˆ̃µ

µ

)(
1 +

1√
1− σmin

))
,(5.1)

where the second inequality uses the assumption that µ̂‖g‖Q−1 ≤ .01. It is clear that
the right-hand side of (5.1) is increasing in σmin, and substituting σmin = .04 into
(5.1) results in

ˆ̃µ‖g̃‖Q̃−1 ≤ .0103 + .1375
ˆ̃µ

µ
.(5.2)

Assume for the moment that ˆ̃µ ≤ .833µ. Then (5.2) implies that ˆ̃µ‖g̃‖Q̃−1 ≤ .125, so

Ṽ (ω̃)− Ṽ (x) ≥ − .0113

ˆ̃µ
2 ≥ −.0113

VOLUMETRIC CUTTING PLANE METHOD 205

from Corollary 2.7. Alternatively, assume that ˆ̃µ ≥ .833µ. Since in any case ˆ̃µ ≤ µ,
(5.2) implies that ˆ̃µ‖g̃‖Q̃−1 ≤ .1478 < 4/27. In addition, σmin ≤ .04 implies µ ≥
(2
√
.04− .04)−1/2 = 5/3, and therefore ˆ̃µ ≥ .833(5/3) > 1.388. From Corollary 2.7 we

then have

Ṽ (ω̃)− Ṽ (x) ≥ − .0232

1.3882
≥ −.0121,

so in all cases Ṽ (ω̃)− Ṽ (x) ≥ −.0121, as claimed. In addition, we have

Ṽ (ω̃) = V (x) + [Ṽ (x)− V (x)] + [Ṽ (ω̃)− Ṽ (x)],(5.3)

and part 1 of Theorem 5.1 gives

Ṽ (x)− V (x) =
1

2
ln(1− σmin) ≥ 1

2
ln(.96) ≥ −.0205.(5.4)

Then Ṽ (ω̃) ≥ V (x)− .0326 follows from (5.3), (5.4), and Ṽ (ω̃)− Ṽ (x) ≥ −.0121.

6. Conclusion. From a practical standpoint, this paper gives the best result
to date for a cutting plane method for the convex feasibility problem based on the
volumetric barrier. From the standpoint of theoretical complexity, the most interesting
open problem is how to use central cuts with the volumetric barrier, while requiring
only O(1) Newton (or Newton-like) steps following the introduction of a cut, as is
possible when shallow cuts are employed [20], [3]. Although the affine step (4.11) is
sufficient to obtain an O(1) bound on Ṽ (x̄) − V (x), as in Theorem 4.6, this bound
is too weak relative to σ̄min to show that O(1) steps suffice to return to a suitable
proximity of the new volumetric center ω̃. As a result, it becomes necessary to use
a proximity measure based on µ̂ in place of µ, leading to a worst-case decrease of
Ω(1/

√
n) instead of Ω(1) in the steps on Step 5 of the algorithm. In practice the

algorithm might of course do much better than these worst-case bounds indicate, but
serious computational work using the volumetric barrier has not yet been conducted.

For the analytic center cutting plane method it is relatively easy to show that O(1)
steps suffice to return to a suitable proximity of the new analytic center following the
addition of a central cut [7]. The complexity analysis for the analytic center cutting
plane method can also be extended to multiple cuts [13], [17], [22], and deep cuts
[6], [8]. (It should be noted that most versions of the analytic center cutting plane
method are not polynomial-time algorithms, but the analysis in [17] can be applied
to the polynomial-time version of Atkinson and Vaidya [4].) Similar results for the
volumetric cutting plane method would be desirable. In [18] a result allowing multiple
cuts is developed, but in addition to the very small constants required throughout
[18], the multiple cut result requires a “selective orthonormalization” procedure that
weakens the original cuts in the interest of constructing a feasible affine step.

REFERENCES

[1] K. M. Anstreicher, Large step volumetric potential reduction algorithms for linear program-
ming, Ann. Oper. Res., 62 (1996), pp. 521–538.

[2] K. M. Anstreicher, Volumetric path following algorithms for linear programming, Math.
Programming, 76 (1997), pp. 245–263.

[3] K. M. Anstreicher, On Vaidya’s volumetric cutting plane method for convex programming,
Math. Oper. Res., 22 (1997), pp. 63–89.

[4] D. S. Atkinson and P. M. Vaidya, A cutting plane algorithm for convex programming that
uses analytic centers, Math. Programming, 69 (1995), pp. 1–43.

206 KURT M. ANSTREICHER

[5] R. G. Bland, D. Goldfarb, and M. J. Todd, The ellipsoid method: A survey, Oper. Res.,
29 (1981), pp. 1039–1091.

[6] J.-L. Goffin, Using the Primal Dual Infeasible Newton Method in the Analytic Center Method
for Problems Defined by Deep Cutting Planes, Tech. report, Faculty of Management, McGill
University, Montreal, Canada, 1994.

[7] J.-L. Goffin, Z.-Q. Luo, and Y. Ye, Complexity analysis of an interior cutting plane method
for convex feasibility problems, SIAM J. Optim., 6 (1996), pp. 638–652.

[8] J.-L. Goffin and J.-Ph. Vial, Shallow, Deep, and Very Deep Cuts in the Analytic Center
Cutting Plane Method, Logilab Tech. report 96.1, Dept. of Management Studies, University
of Geneva, Switzerland, 1996.

[9] M. Grötschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

[10] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
1985.

[11] K. C. Kiwiel, Complexity of some cutting plane methods that use analytic centers, Math.
Programming, 74 (1996), pp. 47–54.

[12] A. Y. Levin, On an algorithm for minimizing a convex function, Soviet Math. Dokl., 6 (1965),
pp. 286–290.

[13] Z.-Q. Luo, Analysis of a cutting plane method that uses weighted analytic center and multiple
cuts, SIAM J. Optim., 7 (1997), pp. 697–716.

[14] J. E. Mitchell and M. J. Todd, Solving combinatorial optimization problems using Kar-
markar’s algorithm, Math. Programming, 56 (1992), pp. 245–284.

[15] Y. Nesterov, Complexity estimates of some cutting plane methods based on analytical barrier,
Math. Programming, 69 (1995), pp. 149–176.

[16] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming, SIAM, Philadelphia, PA, 1994.

[17] S. Ramaswamy and J. E. Mitchell, On Updating the Analytic Center after the Addition of
Multiple Cuts, Tech. report 37-94-423, Decision Sciences and Engineering Systems Dept.,
Rensselaer Polytechnic Institute, Troy, NY, 1994.

[18] S. Ramaswamy and J. E. Mitchell, A Long Step Cutting Plane Algorithm that Uses the Vol-
umetric Barrier, Tech. report, Dept. of Math. Sciences, Rensselaer Polytechnic Institute,
Troy, NY, 1995.

[19] S. P. Tarasov, L. G. Khachiyan, and I. I. Erlich, The method of inscribed ellipsoids, Soviet
Math. Dokl., 37 (1988), pp. 226–230.

[20] P. M. Vaidya, A new algorithm for minimizing convex functions over convex sets, Math.
Programming, 73 (1996), pp. 291–341.

[21] B. Yamnitsky and L. A. Levin, An old linear programming algorithm runs in polynomial
time, in Proceedings of the 23rd Annual Symposium on Foundations of Computer Science,
IEEE, New York, 1982, pp. 327–328.

[22] Y. Ye, Complexity analysis of the analytic center cutting plane method that uses multiple cuts,
Math. Programming, 78 (1997), pp. 85–104.

ON THE DIMENSION OF THE SET OF RIM PERTURBATIONS
FOR OPTIMAL PARTITION INVARIANCE∗

HARVEY J. GREENBERG† , ALLEN G. HOLDER† , KEES ROOS‡ , AND

TAMÁS TERLAKY‡

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 207–216

Abstract. Two new dimension results are presented. For linear programs, it is shown that
the sum of the dimension of the optimal set and the dimension of the set of objective perturbations
for which the optimal partition is invariant equals the number of variables. A decoupling principle
shows that the primal and dual results are additive. The main result is then extended to convex
quadratic programs, but the dimension relationships are no longer dependent only on problem size.
Furthermore, although the decoupling principle does not extend completely, the dimensions are
additive, as in the linear case.

Key words. linear programming, optimal partition, polyhedron, polyhedral combinatorics,
quadratic programming, computational economics

AMS subject classification. 90C05

PII. S1052623497316798

1. Introduction and background. Consider the primal-dual linear programs
(LPs)

min{cx : x ≥ 0, Ax = b}, max{yb : s ≥ 0, yA+ s = c},

where c is a row vector in Rn, called objective coefficients; x is a column vector in Rn,
called levels; b is a column vector in Rm, called right-hand sides; y is a row vector in
Rm called prices; and A is an m× n matrix with rank m.

Let P and D denote the primal and dual polyhedra, respectively, and let P ∗ and
D∗ denote their optimality regions, which we assume to be nonempty. Let (x∗, y∗, s∗)
be a strictly complementary optimal solution, and let the optimal partition be denoted
by (B|N), where

B = σ(x∗) ≡ {j : x∗j > 0} and N = σ(s∗) ≡ {j : s∗j > 0}.

(For background, see [6].)

This paper first presents a result concerning the dimension of P ∗ (D∗) in connec-
tion with the set of direction vectors in Rn (respectively, Rm) for which the optimal
partition does not change when the objective coefficients (respectively, right-hand
sides) are perturbed in that direction. After establishing fundamental relations for
LPs, we consider extensions to convex quadratic programs. The technical terms used
throughout this paper are defined in the Mathematical Programming Glossary [2].

∗Received by the editors February 10, 1997; accepted for publication (in revised form) February
9, 1998; published electronically December 2, 1998.

http://www.siam.org/journals/siopt/9-1/31679.html
†University of Colorado at Denver, Mathematics Department, P.O. Box 173364, Den-

ver, CO 80217-3364 (hgreenbe@carbon.cudenver.edu, http://www-math.cudenver.edu/∼hgreenbe;
agholder@tiger.cudenver.edu, http://www-math.cudenver.edu/∼agholder).
‡Faculty of Technical Mathematics and Informatics, Delft University of Technology,

Delft, The Netherlands (c.roos@twi.tudelft.nl; t.terlaky@twi.tudelft.nl, http://www.twi.tudelft.nl/
People/Staf/T.Terlaky.html).

207

208 H. J. GREENBERG, A. G. HOLDER, K. ROOS, AND T. TERLAKY

2. Linear programs. Following Greenberg [3], let r = (b, c) denote the rim
data, and let H denote the set of rim direction vectors, h = (δb, δc), for which the
optimal partition does not change on the interval [r, r + θ h] for some θ > 0, i.e.,

H = {(δb, δc) : there is x ≥ 0, y ≥ 0, θ > 0 such that

Ax = b+ θ δb, xB > 0, xN = 0;

yA+ s = c+ θ δc, sB = 0, sN > 0}.

Here we follow the notation in [1, 6], where a subscript on a vector means it is the
subvector restricted to the indexes in the subscript. For example, xB is the vector of
positive levels. This notation extends to matrices: A partitions into [AB AN].

Let Hc denote the projection of H onto Rn for changing only c:

Hc ≡ {δc : (0, δc) ∈ H}.

Similarly, let Hb denote the projection of H onto Rm for changing only b:

Hb ≡ {δb : (δb, 0) ∈ H}.

Greenberg [3] showed that H is a convex cone that satisfies a decoupling principle:
H = Hb ×Hc.

To help build intuition, notice first that if the dimension of the primal optimality
region, dim(P ∗), is zero, this means it is an extreme point. In that case, every vector in
Rn can be used to change c without changing the optimal partition, so dim(Hc) = n.
At the other extreme, suppose dim(P ∗) = n−m, such as when c = 0, so every feasible
solution is optimal in the primal LP. In that case, Hc consists of change vectors that
maintain equal net effects among the positive variables, so dim(Hc) = m. This latter
case can be illustrated with the following.

Example. min{∑j 0xj :
∑
j xj = 1, x ≥ 0}.

In this case, B = {1, . . . , n}. In order for this partition not to change
for the LP: min{∑j δcjxj :

∑
j xj = 1, x ≥ 0}, it is necessary and

sufficient that δcj = δc1 for all j. Thus, dim(Hc) = 1.
In both cases, we see that dim(P ∗) + dim(Hc) = n. This is what we shall prove

in general along with related results.
Theorem 2.1. The following equations hold for any LP whose primal and dual

sets have nonempty strict interiors.
1. dim(P ∗) + dim(Hc) = n.
2. dim(D∗) + dim(Hb) = m.
3. dim(P ∗ ×D∗) + dim(H) = n+m.

Proof. From Lemma IV.44 in [6], we have dim(P ∗) = |B| − rank(AB). The
conditions for δc ∈ Hc are

yAB = cB + θ δcB and yAN < cN + θ δcN

for some θ > 0. Thus, δcN can be arbitrary, so

dim(Hc) = |N |+ dim({δcB : ∃δy ∈ Rm 3 δyAB = δcB})
= |N |+ rank(AB).

This implies dim(P ∗) + dim(Hc) = |B|+ |N | = n.

RIM PERTURBATIONS FOR OPTIMAL PARTITION INVARIANCE 209

The second statement has a similar argument. From Lemma IV.44 in [6], dim(D∗) =
m− rank(AB). The conditions for δb ∈ Hb are

ABxB = b+ θ δb and xB > 0.

Thus, dim(Hb) = rank(AB), so dim(D∗) + dim(Hb) = m. The last statement follows
from the decoupling principle, upon adding the first two equations H = Hb ×Hc ⇒
dim(H) = dim(Hb) + dim(Hc).

We now consider some corollaries whose proofs follow directly from the theorem
but whose meanings lend insight into how perturbation relates to the dimensions of
the primal and dual optimality regions.

The dimension of a set is sometimes called the degrees of freedom. If there are n
variables and no constraints on their values, the set has the full degrees of freedom,
which is n; i.e., each variable can vary independently. When the set is defined by
a system of m independent equations, as in our case, we sometimes refer to m as
the degrees of freedom lost. Because we assume that there exists a strict interior
solution (x > 0), there are no implied equalities among the nonnegativity constraints,
so dim(P) = n−m. Thus, the feasibility region has m degrees of freedom lost due to
the equations that relate the variables.

A meaningful special case is when there is an excess number of columns, say
|B| = m + k, and there is enough linear independence retained in the columns so
that rank(AB) = m (recall that we assume rank(A) = m). Then, dim(P ∗) = k, so
dim(Hc) = n−k. Expressed in words, the degrees of freedom lost in varying objective
coefficients equals the number of excess columns over those of a basic optimal solution.
Furthermore, rank(AB) = m is equivalent to dim(D∗) = 0 (i.e., unique dual solution),
so we can say the following.

Corollary 2.2. The following are equivalent.
1. The dual solution is unique.
2. dim(Hc) = n+m− |B|.
3. dim(Hb) = m.

Another special case arises when the LP is a conversion from the inequality con-
straints, A′x ≥ b, where A′ is m× n′, and rank(A′) = m. In that case, A = [A′ −I],
and n = n′ + m. Suppose x∗ > 0, so B includes all of the structural variables and
some of the surplus variables, say |B| = n′ + k. Then, dim(P ∗) = k, and Theorem
2.1 implies dim(Hc) = n′ + m − k. Since we do not allow the costs of the surplus
variables to be nonzero, we can reduce this by m, giving dim(Hc′) = n′ − k. Ex-
pressed in words, this says that the degrees of freedom lost in varying (structural)
cost coefficients equals the number of positive surplus variables.

A similar result follows for the primal. The next corollary says, in part, that
dim(P ∗) = 0 if and only if dim(Hc) = n. Expressed in words, this says that the
primal solution is unique if and only if every objective coefficient can be perturbed
independently without changing the optimal partition. The last equivalence includes
the special case of a nondegenerate basic solution, in which case |B| = m, so every
right-hand side can be perturbed without changing the optimal partition.

Corollary 2.3. The following are equivalent.
1. The primal solution is unique.
2. dim(Hc) = n.
3. dim(Hb) = |B|.

These corollaries combine into the following, which is the familiar case of a unique
strictly complementary optimum (which is basic).

Corollary 2.4. The following are equivalent.

210 H. J. GREENBERG, A. G. HOLDER, K. ROOS, AND T. TERLAKY

1. The primal-dual solution is unique.
2. dim(Hc) = n and dim(Hb) = m.
3. dim(H) = m+ n.

The following corollary says that dim(Hc) ≥ m, and it follows from the main
theorem since the maximum dimension of P ∗ is n − m. (The analogous bound for
dim(Hb) is merely that it is nonnegative since the maximum dimension of D∗ is m.)

Corollary 2.5. There are at least m degrees of freedom to vary the objective
coefficients without changing the optimal partition.

In the next section, we extend Theorem 2.1 to convex quadratic programs, and
note that care must be taken when specializing it to an LP.

3. Quadratic programs. We now extend Theorem 2.1 to the convex quadratic
program

min{cx+ 1
2
xTQx : Ax = b, x ≥ 0},

where Q is symmetric and positive semidefinite. We use the Wolfe dual [2]

max{yb− 1
2
uTQu : yA+ s− uTQ = c, s ≥ 0}.

Let QP and QD denote primal and dual feasibility regions, respectively. Let us
introduce the following notation:

QP ∗ = {x : x ∈ QP , and x is primal optimal},
QD∗ = {(y, s) : (y, s, u) ∈ QD and (y, s, u) is dual optimal},
QD∗ = {(y, s, u) : (y, s, u) ∈ QD and (y, s, u) is dual optimal}.

Here QP ∗ and QD∗ denote their optimality regions, except that we define QD∗

exclusive of the u-variables, while QD∗ denotes the full dual optimality region to
distinguish it from QD∗ . We shall explain this shortly.

Following Jansen [4] and Berkelaar, Roos, and Terlaky [1], an optimal partition
is defined by three sets (B|T |N), where

B = {j : xj > 0 for some x ∈ QP ∗ },
N = {j : sj > 0 for some (y, s) ∈ QD∗ }, and

T = {1, . . . , n} \ (B ∪N).

We assume that the solution obtained is maximal [1]:

xj > 0⇐⇒ j ∈ B and sj > 0⇐⇒ j ∈ N.

Güler and Ye [5] show that many interior point algorithms converge to a solution
whose support sets comprise the maximal partition: B = σ(x), N = σ(s), and T =
{1, . . . , n} \ (B ∪N).

Unlike linear programming, there is no guarantee of a strictly complementary
optimal solution, so T need not be empty. For this and other reasons, there are some
important differences (see [1, 4] for details) that affect our extension of Theorem 2.1.
In particular, the decoupling principle does not apply since a change in c affects both
primal and dual optimality conditions.

RIM PERTURBATIONS FOR OPTIMAL PARTITION INVARIANCE 211

We begin our extension with the following lemma. In the proof we use the fol-
lowing notation:

col(G) = column space of G = {u : u = Gx for some x ∈ Rn},
N (G) = null space of G = {x : Gx = 0}.

Lemma 3.1. Let F and G be m×n and g×n matrices, respectively, and consider

the set: S = {v : v = Fu for some u 3 Gu = 0}. Then, dim(S) = rank
(
F
G

)
− rank(G).

Proof. Without loss in generality assume G has full row rank, and let {u1, . . . , ug}
be a basis for col(G). Let {v1, . . . , vs} be a basis for S (where dim(S) = s), and

consider the following set in col
(
F
G

)
:{(

w1

u1

)
. . .

(
wg
ug

) (
v1

0

)
. . .

(
vs
0

)}
,

where wi ≡ FGT [GGT]−1ui. Once we prove that this is a basis for col
(
F
G

)
, we have

that g + s = rank
(
F
G

)
, which implies the desired result.

First, we shall prove that these vectors are linearly independent. Suppose∑
i

αi

(
wi
ui

)
+
∑
j

βj

(
vj
0

)
= 0.

Since {u1, . . . , ug} is a basis, α = 0, which then implies β = 0, because {v1, . . . , vs}
are also linearly independent.

Second, we shall prove that these vectors span col
(
F
G

)
. Let

(
v
u

)
=
(
F
G

)
x for some

x ∈ Rn. Decompose x = y + z, where y ∈ col(GT) and z ∈ N (G). Then, Gx = Gy =
GGTλ, where y = GTλ, and Fx = Fy + Fz. Since Fz ∈ S, Fx = FGTλ +

∑
j βjvj .

We thus have u = Gx = GGTλ, but since u ∈ col(G), GGTλ =
∑
i αiui. This implies

λ =
∑
i αi[GG

T]−1ui, so

Fx = FGT
∑
i αi[GG

T]−1ui +
∑
j βjvj

=
∑
i αiFG

T [GGT]−1ui +
∑
j βjvj .

By the definition of w, we have derived α, β such that(
v
u

)
=
∑
i αi

(
wi
ui

)
+
∑
j βj

(
vj
0

)
.

To prove the main theorem, we use the following dimension results of Berkelaar,
Roos, and Terlaky [1]:

dim(QP) = |B| − rank

(
AB
QBB

)
,(3.1)

dim(QD∗) = m− rank(AB AT) + n− rank(Q).(3.2)

The last portion, n−rank(Q), accounts for the u-variables because the dual conditions
can use xTQ in place of uTQ, leaving u to appear only in the equation Qu = Qx. For

212 H. J. GREENBERG, A. G. HOLDER, K. ROOS, AND T. TERLAKY

our purposes it is not necessary (or desirable) to include this, so we define the dual
optimality region exclusive of the u-variables:

QD∗ = {(y, s) : (y, s, x) ∈ QD∗ for some x ∈ QP ∗}.
Then, (3.2) yields the dimension of the dual optimality region that we shall use:

dim(QD∗) = m− rank(AB AT).(3.3)

As in the linear case, sN > 0 implies that each component of cN can vary inde-
pendently, so dim(H) is the sum of |N | and the dimension of the set of other possible
changes. Keeping xN∪T = 0 and sB∪T = 0, the partition does not change if and only
if there exists (δy, δu, δxB) to satisfy the following primal-dual conditions:

ATB −QB• 0
ATT −QT• 0
0 0 AB
0 −Q Q•B

 δy

δu
δxB

 =

δcB
δcT
δb
0

 .(3.4)

Here we follow the notation in [1]:

QI• = rows of Q associated with index set I,
Q•J = columns of Q associated with index set J,
QIJ = submatrix of Q associated with index sets I and J.

The quadratic extensions rely on the fact that the rank of the matrix in (3.4)
is related to the rank of the matrices found in statements (3.1) and (3.3). These
relations are formalized in the following lemma.

Lemma 3.2. The following relations hold for Q positive semidefinite:

rank(AB AT) + rank

(
AB
QBB

)
= rank

ATB −QB• 0
ATT −QT• 0
0 0 AB
0 −Q Q•B

− rank(Q)(3.5)

= rank

(
AB AT
QBB QBT

)
+ rank(AB).(3.6)

Proof. To prove (3.5), performing elementary row and column operations on the
large matrix (first on the right) produces the following matrix of the same rank:

ATB 0 −QBB
ATT 0 −QTB
0 0 AB

0 Q 0

 .

So,

rank

ATB −QB• 0

ATT −QT• 0

0 0 AB

0 −Q Q•B

 = rank

ATB −QBB
ATT −QTB
0 AB

+ rank(Q).

RIM PERTURBATIONS FOR OPTIMAL PARTITION INVARIANCE 213

The positive semidefiniteness of Q implies that QTB is linearly dependent on QBB
[1]. Hence,

ATB −QBB
ATT −QTB
0 AB

 ⇒

ÃTB ∗ 0 0

0 0 0 Q̃BB

0 ÃTT 0 0

0 0 ÃB ∗
0 0 0 0

⇒

ÃTB ∗ 0 0

0 ÃTT 0 0

0 0 ÃB ∗
0 0 0 Q̃BB

0 0 0 0

,

where ⇒ is used to represent a series of row and column operations that preserve
rank, and ∗ represents an arbitrary matrix of appropriate size. Hence,

rank

ATB −QB• 0

ATT −QT• 0

0 0 AB

0 −Q Q•B

 = rank(Q)

+ rank

(
ÃTB ∗
0 ÃTT

)
+ rank

(
ÃB ∗
0 Q̃BB

)

= rank(Q) + rank

(
ATB

ATT

)
+ rank

(
AB

QBB

)
,

which yields the result.

The proof of (3.6) is similar, using the positive semidefiniteness property of Q in
reducing the large matrix to row echelon form.

We now have what we need to prove the following extension of Theorem 2.1.

Theorem 3.3. The following equations hold for any convex quadratic program
whose primal and dual sets are not empty.

1. dim(QP ∗) + dim(Hc) = n− |T |+ rank(AB AT)− rank(AB).
2. dim(QD∗) + dim(Hb) = m− rank(AB AT) + rank(AB).
3. dim(QP ∗ ×QD∗) + dim(H) = n+m− |T |.

Proof. To prove 1, we set δb = 0 in (3.4), and apply Lemmas 3.1 and 3.2 to

214 H. J. GREENBERG, A. G. HOLDER, K. ROOS, AND T. TERLAKY

produce the following:

dim(Hc) = |N |+ rank

ATB −QB• 0

ATT −QT• 0

0 0 AB

0 −Q Q•B

− rank

(
0 −Q Q•B
0 0 AB

)

= |N |+ rank(AB AT) + rank

(
AB

QBB

)

+ rank(Q)− rank(Q)− rank(AB)

= |N |+ rank(AB AT)− rank

(
AB

QBB

)
− rank(AB).

Adding (3.1) to the last statement and substituting n− |T | = |B|+ |N | gives the first
result. Similarly, to prove 2, set δcB = 0 and δcT = 0 in (3.4). Then, Lemma 3.1
implies the equation

dim(Hb) = rank

ATB −QB• 0

ATT −QT• 0

0 0 AB

0 −Q Q•B

− rank

ATB −QB• 0

ATT −QT• 0

0 −Q Q•B

 .

Using row and column operations on the matrix in the last term together with
Lemma 3.2 we obtain the dimension of Hb:

dim(Hb) = rank

(
ATB

ATT

)
+ rank

(
AB

QBB

)
− rank

(
ATB QBB

ATT QTB

)

= rank(AB),

where the last equation follows from (3.6). Adding this to (3.3) yields the second
result.

The third result does not follow from a decoupling principle, as in the linear case
(where H = Hb ×Hc). Rather, it needs a development similar to the first two parts
just obtained. Using Lemmas 3.1 and 3.2 yields the following equations

RIM PERTURBATIONS FOR OPTIMAL PARTITION INVARIANCE 215

dim(H) = |N |+ rank

ATB −QB• 0

ATT −QT• 0

0 0 AB

0 −Q Q•B

− rank
(

0 −Q Q•B
)

= |N |+ rank

(
ATB

ATT

)
+ rank

(
AB

QBB

)
.

The sum of the last statement with (3.1) and (3.3), plus substituting n − |T | =
|B|+ |N |, implies the third result.

Notice that the statements in Theorem 3.3 reduce to the corresponding statements
in Theorem 2.1 when T = ∅ and Q = 0, which is the case for an LP. (This reduction
occurs because we eliminated the u-variables.) In fact, the statements in the theorem
imply each of the following.

dim(QP ∗) + dim(Hc) ≤ n with equality if T = ∅.
dim(QD∗) + dim(Hb) ≤ m with equality if T = ∅.

dim(QP ∗ ×QD∗) + dim(H) ≤ m+ n with equality if T = ∅.

The reduction of QD∗ also enables us to have the following extension of Corollary
2.2. (In fact, u is unique if and only if Q is positive definite because it can be any
solution to Qu = Qx for any x ∈ QP ∗.)

Corollary 3.4. The following are equivalent.
1. The dual solution is unique.
2. dim(Hc) = n+m− |T | − rank(AB) + rank(ATB QBB).
3. dim(Hb) = m+ rank(AB)− rank(AB AT).

The above cases reduce to the corresponding LP cases in Corollary 2.2, where
Q = 0 and T = ∅, as does the following extension of Corollary 2.3.

Corollary 3.5. The following are equivalent.
1. The primal solution is unique.
2. dim(Hc) = n− |T |+ rank(AB AT)− rank(AB).
3. dim(Hb) = |B| − rank(ATB QBB) + rank(AB).

Combining these, despite the absence of a decoupling principle, the dimensions
are additive, so we also obtain the following extension of Corollary 2.4.

Corollary 3.6. The following are equivalent.
1. The primal-dual solution is unique.
2. dim(Hc) = n− |T | and dim(Hb) = m.
3. dim(H) = m+ n− |T |.

Unlike the LP case, this shows that we lose |T | degrees of freedom in varying the
cost coefficients. For example, if δcj > 0 for j ∈ T , the partition immediately changes
since sj = δcj is optimal for the perturbed quadratic program. This loss appears in
the last extension, which follows.

Corollary 3.7. There are at least m− |T |+ rank(AB AT)− rank(AB) degrees
of freedom to vary the rim data without a change in the optimal partition.

This lower bound on dim(Hc) follows in the same way as in Corollary 2.5, and it
is m when T = ∅. More generally, we see that the bound is at most m, which reflects
the fact that we can lose some degrees of freedom by lacking strict complementarity.

216 H. J. GREENBERG, A. G. HOLDER, K. ROOS, AND T. TERLAKY

4. Concluding comments. For LPs, the dimension of the cone of rim direction
vectors for which the optimal partition does not change has an Eulerian property
with the dimension of the optimality region: they sum to the number of variables
and equations. This decouples into Eulerian properties for varying the primal and
dual right-hand sides separately: cost coefficients change with lost degrees of freedom
equal to the dimension of primal space; right-hand sides change with lost degrees of
freedom equal to the dimension of dual space. The comparable equation for quadratic
programs is not Eulerian in that the sum of dimensions depends on the partition—
notably on the number of complementary coordinate pairs that are both zero.

REFERENCES

[1] A. Berkelaar, C. Roos, and T. Terlaky, The optimal set and optimal partition approach
to linear and quadratic programming, in Advances in Sensitivity Analysis and Parametric
Programming, T. Gal and H. Greenberg, eds., Kluwer Academic Publishers, Boston, MA,
1997, Chapter 6.

[2] H. Greenberg, Mathematical Programming Glossary, http://www-math.cudenver.edu/
˜hgreenbe/glossary/glossary.html, 1996.

[3] H. Greenberg, Rim Sensitivity Analysis from an Interior Solution, Technical report CCM 86,
Center for Computational Mathematics, Mathematics Department, University of Colorado
at Denver, Denver, CO, 1996.

[4] B. Jansen, Interior Point Techniques in Optimization: Complexity, Sensitivity, and Algorithms,
Kluwer Academic Publishers, Boston, MA, 1997.

[5] O. Güler and Y. Ye, Convergence behavior of interior-point algorithms, Math. Programming,
60 (1993), pp. 215–228.

[6] C. Roos, T. Terlaky, and J.-P. Vial, Theory and Algorithms for Linear Optimization: An
Interior Point Approach, John Wiley and Sons, Chichester, UK, 1997.

AN ANALYTIC CENTER BASED COLUMN
GENERATION ALGORITHM FOR CONVEX

QUADRATIC FEASIBILITY PROBLEMS∗

ZHI-QUAN LUO† AND JIE SUN‡

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 217–235

Abstract. We consider the analytic center based column generation algorithm for the problem
of finding a feasible point in a set defined by a finite number of convex quadratic inequalities. At each
iteration the algorithm computes an approximate analytic center of the set defined by the intersection
of quadratic inequalities generated in the previous iterations. If this approximate analytic center is
a solution, then the algorithm terminates; otherwise a quadratic inequality violated at the current
center is selected and a new quadratic cut (defined by a convex quadratic inequality) is placed
near the approximate center. As the number of cuts increases, the set defined by their intersection
shrinks and the algorithm eventually finds a solution to the problem. Previously, similar analytic
center based column generation algorithms were studied first for the linear feasibility problem and
later for the general convex feasibility problem. Our method differs from these early methods in
that we use “quadratic cuts” in the computation instead of linear cuts. Moreover, our method has a
polynomial worst case complexity of O(n ln 1

ε
) on the total number of cuts to be used, where n is the

number of convex quadratic polynomial inequalities in the problem and ε is the radius of the largest
ball contained in the feasible set. In contrast, the early column generation methods using linear cuts
can only solve the convex quadratic feasibility problem in pseudopolynomial time.

Key words. convex quadratic feasibility problem, analytic center, potential reduction, column
generation

AMS subject classifications. 90C25, 90C26, 90C60

PII. S1052623495294943

1. Introduction. Consider the problem of finding a feasible point in a convex
body Γ, where Γ ⊂ Rm is defined by the intersection of a finite number of convex
quadratic inequalities; that is,

Γ =

{
y ∈ Rm : cj − 〈aj , y〉 − 1

2
〈y,Qjy〉 ≥ 0, j = 1, . . . , n

}
,(1.1)

where, for each j = 1, . . . , n, Qj is a symmetric positive semidefinite matrix, aj is
an m-vector, cj is a scalar, and 〈·, ·〉 denotes the usual Euclidean inner product. The
convex quadratic feasibility problem is quite general as it includes as special cases the
linear programming problem, the linear feasibility problem, and the convex quadratic
programming problem with quadratic constraints. The latter problem has previously
been studied using conventional interior point methods (see [9, 11, 12]).

In this paper we consider the column generation algorithm for solving the above
convex quadratic feasibility problem. At each iteration, the algorithm computes an
approximate analytic center of the set defined by the intersection of quadratic in-
equalities generated in the previous iterations. If this approximate analytic center is

∗Received by the editors November 20, 1995; accepted for publication (in revised form) February
9, 1998; published electronically December 2, 1998.

http://www.siam.org/journals/siopt/9-1/29494.html
†Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario,

L8S 4L7, Canada (luozq@mcmail.cis.mcmaster.ca). The research of this author was supported by
the Natural Sciences and Engineering Research Council of Canada grant OPG0090391.
‡Department of Decision Sciences, National University of Singapore, Singapore 119260 (jsun@

nus.edu.sg). The research of this author was supported by National University of Singapore grant
RP930033.

217

218 ZHI-QUAN LUO AND JIE SUN

a solution, then the algorithm terminates; otherwise a quadratic inequality violated at
the current approximate center is selected and a new quadratic cut (defined by a con-
vex quadratic inequality) is placed near the center. As the number of cuts increases,
the set defined by their intersection shrinks and the algorithm eventually finds a so-
lution to the problem. Previously, similar analytic center based column generation
algorithms were studied first for the linear feasibility problem [16] and later for the
general convex feasibility problem [1, 2, 3, 7, 8, 13]. Recently, these methods were
further extended to allow multiple cuts and weighted analytic centers [10, 17]. Our
method differs from these early methods in that we use “quadratic cuts” in the com-
putation instead of linear cuts. Moreover, our method has a polynomial worst case
complexity of O(n ln 1

ε) on the total number of cuts to be used, where n is the number
of convex quadratic polynomial inequalities in the problem and ε is the radius of the
largest ball contained in the feasible set. In contrast, the early methods using lin-
ear cuts can only solve the convex quadratic feasibility problem in pseudopolynomial
time.

It is possible to formulate the convex quadratic feasibility problem in terms of a
linear minimization problem over the positive semidefinite cone [14] and solve it in
O(
√
n ln 1

ε) Newton iterations. While the column generation algorithm considered in
this paper has a less favorable complexity bound, it nevertheless does provide several
advantages. Specifically, the column generation algorithm permits a high degree of
flexibility, since it does not require the full knowledge of all the constraints in Γ
and allows the inequalities to be generated dynamically. In this sense, it is well
suited for problems with a large number of constraints. Algorithms similar to the one
considered here (e.g., the analytic center based cutting plane algorithm, the Dantzig–
Wolfe decomposition method) have been very successful in solving large scale linear
multicommodity flow problems and stochastic linear programs [4, 5].

We shall adopt the standard notation used in the interior point method literature.
For example, for any generic vector x, xT will denote the vector transpose, and the
corresponding capital letter X will denote the diagonal matrix whose (i, i)th entry is
given by the ith component of x. For any twice continuously differentiable function
f : Rm → R we use ∇f and ∇2f to represent the gradient vector and the Hessian
matrix of f, respectively. Also, we shall use the letter e to stand for the vector of
ones (in an appropriate Euclidean space). For any two square matrices A, B we write
A ≥ B to mean that A−B is a positive semidefinite matrix.

2. Preliminaries. Let Ω be a bounded set in Rm defined by n (> m) convex
quadratic inequalities, i.e.,

Ω =

{
y ∈ Rm : cj − 〈aj , y〉 − 1

2
〈y,Qjy〉 ≥ 0, j = 1, . . . , n

}
.(2.1)

Suppose that Ω has a nonempty interior which we denote by int Ω. We define the
potential function of Ω as

φ(y) := −
n∑
j=1

ln sj ,(2.2)

where

sj := cj − 〈aj , y〉 − 1

2
〈y,Qjy〉

ANALYTIC CENTER BASED QUADRATIC CUT ALGORITHM 219

is the residual for the jth inequality. It can be seen that φ(·) is a smooth strictly
convex function defined over the interior of Ω (see [11] for a proof). The gradient and
the Hessian of φ(·) at y ∈ int Ω are given by

g(y) := ∇φ(y) =

n∑
j=1

aj +Qjy

sj

and

H(y) := ∇2φ(y) =
n∑
j=1

[
(aj +Qjy)(aj +Qjy)T

s2
j

+
Qj
sj

]
.

The potential of Ω is defined as

P (Ω) := min
y∈int Ω

φ(y).(2.3)

Since Ω is bounded, φ(·) is strictly convex and approaches infinity near the boundary
of Ω; the minimum value P (Ω) exists and is attained at a unique point. This mini-
mum point is defined (see [15]) as the analytic center of Ω. It should be noted that
the analytic center of Ω depends not only on the set Ω but also on its algebraic rep-
resentation. Different forms of representation of the same geometric set Ω may give
rise to different analytic centers. In this regard, analytic centers are not “geometric”
quantities.

Let ya denote the analytic center of Ω. Then

g(ya) = ∇φ(ya) =
n∑
j=1

aj +Qjy
a

saj
= 0,

where saj := cj−〈aj , ya〉− 1
2 〈ya, Qjya〉, holds. In this paper we often need to measure

the “proximity” between the analytic center ya and an arbitrary vector y in the interior
of Ω. One commonly used proximity measure is the norm of the scaled gradient vector:

δ(y; Ω) :=
〈
g(y), H−1(y)g(y)

〉1/2
.(2.4)

Clearly, δ(ya; Ω) = 0. Another commonly used proximity measure is the “gap”
φ(y) − φ(ya). We summarize some well-known properties of φ and of these prox-
imity measures below. These results will be used later in the analysis of the column
generation algorithm.

Lemma 2.1. If x, y ∈ int Ω are such that 〈y − x,H(x)(y − x)〉 < 1, then∣∣∣∣φ(y)− φ(x)− 〈∇φ(x), y − x〉 − 1

2
〈y − x,H(x)(y − x)〉

∣∣∣∣
≤ 〈y − x,H(x)(y − x)〉3/2

3
[
1− 〈y − x,H(x)(y − x)〉1/2

] .
Lemma 2.2. Let y ∈ int Ω be a vector such that δ(y; Ω) < 1/8. Then

φ(y)− φ(ya) ≤ 4δ(y; Ω)2.

220 ZHI-QUAN LUO AND JIE SUN

Lemma 2.1 first appeared in [11] and was later strengthened in [6]. Lemma 2.2 is
taken from [6] (see Lemma 5.5 therein). Next we shall use Lemma 2.1 to establish a
relation that is in some sense a reverse of Lemma 2.2.

Lemma 2.3. For any y ∈ Ω with φ(y)− φ(ya) ≤ 0.04,

δ(y; Ω)2 ≤ 0.14

holds.
Proof. Suppose the contrary so that δ(y; Ω)2 > 0.14. Consider the vector yτ =

ya + τ(y − ya), where τ ∈ (0, 1) is the smallest positive number such that

δ(yτ ; Ω)2 =
〈
g(yτ), H−1(yτ)g(yτ)

〉
= 0.14.

By the convexity of the potential function φ,

φ(yτ) ≤ τφ(y) + (1− τ)φ(ya) ≤ φ(y)

holds. Consider the Newton procedure

y+
τ = yτ −H−1(yτ)g(yτ).

We have 〈
y+
τ − yτ , H(yτ)(y+

τ − yτ)
〉

=
〈
g(yτ), H−1(yτ)g(yτ)

〉
= 0.14 < 1.

Then it follows from Lemma 2.1 that

φ(yτ)− φ(y+
τ) ≥ 〈g(yτ), H−1(yτ)g(yτ)

〉− 1

2

〈
g(yτ), H−1(yτ)g(yτ)

〉
−

〈
g(yτ), H−1(yτ)g(yτ)

〉3/2
3
[
1− 〈g(yτ), H−1(yτ)g(yτ)〉1/2

]
≥ 0.295

〈
g(yτ), H−1(yτ)g(yτ)

〉
> 0.04.

This shows that

φ(y)− φ(ya) ≥ φ(yτ)− φ(ya) ≥ φ(yτ)− φ(y+
τ) > 0.04,

which contradicts the assumption on y.
The next lemma from to Nesterov [13].
Lemma 2.4. Suppose γ ∈ [0, (

√
2− 1)2] and y ∈ int Ω are such that

δ(y; Ω) ≤ γ.
Then

〈y − ya, H(y)(y − ya)〉1/2 ≤ γ

2−√2
.

Lemma 2.4 was established in [13] for the class of so-called strictly self-concordant
functions (see [14] for the definition); this class of functions is very broad and certainly
includes the function φ(·) considered in this paper.

ANALYTIC CENTER BASED QUADRATIC CUT ALGORITHM 221

Next we present an error bound to be used in section 5 to upper bound the
potential function.

Lemma 2.5. Let Q ∈ Rm×m be a symmetric positive semidefinite matrix and let
a ∈ Rm and c ∈ R. Assume

max{‖a‖, ‖Q‖} = 1.

Denote

S :=

{
y ∈ Rm : c− 〈a, y〉 − 1

2
〈y,Qy〉 ≥ 0

}
and suppose that S contains an ε-ball centered at y∗. Then

c− 〈a, y∗〉 − 1

2
〈y∗, Qy∗〉 ≥ min

{
ε,
ε2

2

}
.

Proof. By a translation and an orthonormal transformation if necessary, we
may assume, without loss of generality, that y∗ = 0 and Q is diagonal. Denote
Q = diag(λ1, λ2 . . . , λm) and a = (a1, . . . , am)T . Since orthonormal transformation
preserves the Euclidean norm, it follows that λi ≤ 1 and ‖a‖2 =

∑
i a

2
i ≤ 1. We

consider two cases. In the first case, λi = 1 for some i. Let the vector y(t) be defined
by

yj(t) =

{
0 if j 6= i
t if j = i.

Notice that

c− 〈a, y(t)〉 − 1

2
〈y(t), Qy(t)〉 = c− ait− 1

2
t2.

As a function in t, the above quadratic polynomial has two roots, say t1 and t2. It is
easily seen that t1t2 = 2c. By assumption, y(t1) and y(t2) are at least a distance of ε
away from the origin. This implies |t1| ≥ ε, |t2| ≥ ε. Therefore c ≥ ε2/2.

In the second case, λi < 1 for all i. Then it follows that ‖a‖ = 1. Consider the
vector ȳ = εa which is a distance of ε away from the origin. By assumption we have

c− 〈a, ȳ〉 − 1

2
〈ȳ, Qȳ〉 ≥ 0.

Since Q ≥ 0, this implies

c ≥ 〈a, ȳ〉 = ε‖a‖2 = ε.

Now we can combine the estimates in both cases to obtain the desired bound.
We close this section by stating a useful result from linear algebra.
Lemma 2.6. Let ρ be a positive constant. Then〈

a, (ρI + aaT)−1a
〉

=
‖a‖2

ρ+ ‖a‖2 , for all a ∈ Rn.

Proof. By the Sherman–Morrison formula[
I +

aaT

ρ

]−1

= I − aaT

ρ+ ‖a‖2 ,

222 ZHI-QUAN LUO AND JIE SUN

we have 〈
a, (ρI + aaT)−1a

〉
=

1

ρ

〈
a,
(
I − aaT /(ρ+ ‖a‖2)

)
a
〉

=
1

ρ

[‖a‖2 − ‖a‖4/(ρ+ ‖a‖2)
]

=
‖a‖2

ρ+ ‖a‖2 .

3. Potential increase. In this section we analyze how the potential P (Ω) (cf.
(2.3)) changes as the set Ω (cf. (2.1)) is modified in some controlled ways. We consider
two ways in which the set Ω is modified; the first is by translating an existing quadratic
inequality of Ω and the second is by introducing a new convex quadratic inequality
to Ω.

For ease of reference, we write below the representation of Ω again:

Ω =

{
y ∈ Rm : cj − 〈aj , y〉 − 1

2
〈y,Qjy〉 ≥ 0, j = 1, . . . , n

}
.(3.1)

Let ya denote its analytic center. Suppose that yb is an approximate center in the
sense that δ(yb; Ω) ≤ 1 − β ≤ (

√
2 − 1)2. Consider the following set Ωβ obtained by

translating the last inequality of Ω:

Ωβ =

{
y : cj − 〈aj , y〉 − 1

2
〈y,Qjy〉 ≥ 0, j = 1, . . . , n− 1,

βsbn +
〈
an, y

b
〉

+
1

2

〈
yb, Qny

b
〉− 〈an, y〉 − 1

2
〈y,Qny〉 ≥ 0

}
,

(3.2)

where β ∈ [0, 1] is some constant and sbn := cn−
〈
an, y

b
〉− 1

2

〈
yb, Qny

b
〉
. Let ȳa denote

the analytic center of Ωβ . Notice that if β = 0, the last inequality of Ωβ is placed
through the approximate analytic center yb of Ω. With β > 0, the translation of the
last inequality of Ω does not go all the way to yb; the approximate analytic center yb

is kept inside Ωβ . The following lemma estimates the increase of the potential P (Ω)
as the last inequality of Ω is translated.

Lemma 3.1. Let Ω and Ωβ be given as above and let β ∈ [1− (
√

2−1)2, 1]. Then

P (Ωβ) ≥ P (Ω) +
1− β

1 + 3(1− β)
.

Proof. Since δ(yb; Ω) ≤ 1− β ≤ (
√

2− 1)2, by Nesterov’s lemma (Lemma 2.4) we
have 〈

ya − yb, H(yb)(ya − yb)〉1/2 ≤ 1− β
2−√2

.

Note that

(Qny
b + an)(Qny

b + an)T

(cn − 〈an, yb〉 − 1
2 〈yb, Qnyb〉)2

+
Qn

cn − 〈an, yb〉 − 1
2 〈yb, Qnyb〉

≤ H(yb).

Multiplying left and right, respectively, by ya − yb and (ya − yb)T and using the
preceding inequality, we obtain∣∣∣∣∣

〈
Qny

b + an, y
b − ya〉

cn − 〈an, yb〉 − 1
2 〈yb, Qnyb〉

∣∣∣∣∣ ≤ 1− β
2−√2

ANALYTIC CENTER BASED QUADRATIC CUT ALGORITHM 223

and 〈
yb − ya, Qn(yb − ya)

〉
cn − 〈an, yb〉 − 1

2 〈yb, Qnyb〉
≤
(

1− β
2−√2

)2

≤ 1− β
2−√2

.

Therefore ∣∣∣∣cn − 〈an, ya〉 − 1
2 〈ya, Qnya〉

cn − 〈an, yb〉 − 1
2 〈yb, Qnyb〉

− 1

∣∣∣∣
=

∣∣∣∣∣ 〈Qnyb + an, y
a − yb〉+ 1

2 〈ya − yb, Qn(ya − yb)〉
cn − 〈an, yb〉 − 1

2 〈yb, Qnyb〉

∣∣∣∣∣
≤
∣∣∣∣∣

〈
Qny

b + an, y
b − ya〉

cn − 〈an, yb〉 − 1
2 〈yb, Qnyb〉

∣∣∣∣∣
+

1

2

〈
ya − yb, Qn(yb − ya)

〉
cn − 〈an, yb〉 − 1

2 〈yb, Qnyb〉
≤ 3

2

1− β
2−√2

≤ 3(1− β).

From this we get

cn −
〈
an, y

b
〉− 1

2

〈
yb, Qny

b
〉

cn − 〈an, ya〉 − 1
2 〈ya, Qnya〉

≥ 1

1 + 3(1− β)
.

Since ya is the analytic center of Ω,

0 = ∇φ(ya) =
n∑
j=1

aj +Qjy
a

saj
,

where

saj := cj − 〈aj , ya〉 − 1

2
〈ya, Qjya〉 ,

holds. Let xaj := (saj)−1, for j = 1, . . . , n. Also, we denote the analytic center of Ωβ
by ȳa and denote the “slacks” by

s̄aj := cj − 〈aj , ȳa〉 − 1
2 〈ȳa, Qj ȳa〉 , j = 1, . . . , n− 1,

s̄an := βsbn +
〈
an, y

b
〉

+ 1
2

〈
yb, Qny

b
〉− 〈an, ȳa〉 − 1

2 〈ȳa, Qnȳa〉 .

Consider the following:

〈e,Xas̄a〉 =

n∑
j=1

xaj s̄
a
j

=
n−1∑
j=1

xaj

(
cj − 〈aj , ȳa〉 − 1

2
〈ȳa, Qj ȳa〉

)

+xan

(
βsbn +

〈
an, y

b
〉

+
1

2

〈
yb, Qny

b
〉− 〈an, ȳa〉 − 1

2
〈ȳa, Qnȳa〉

)

224 ZHI-QUAN LUO AND JIE SUN

=
n−1∑
j=1

xaj

(
cj − 〈aj , ȳa〉 − 1

2
〈ȳa, Qj ȳa〉

)

−(1− β)xans
b
n + xan

(
cn − 〈an, ȳa〉 − 1

2
〈ȳa, Qnȳa〉

)
≤

n∑
j=1

xaj

(
cj − 〈aj , ȳa〉 − 1

2
〈ȳa, Qj ȳa〉

)

− 1− β
1 + 3(1− β)

xan

(
cn − 〈an, ya〉 − 1

2
〈ya, Qnya〉

)
=

n∑
j=1

xaj

(
cj − 〈aj , ȳa〉 − 1

2
〈ȳa, Qj ȳa〉

)
− 1− β

1 + 3(1− β)
,

where the second step follows from the definition of san and the last step is due to
xans

a
n = 1. Next we use the Taylor expansion of cj − 〈aj , ȳa〉 − 1

2 〈ȳa, Qj ȳa〉 at ya to
obtain

〈e,Xas̄a〉 =
n∑
j=1

xaj

(
cj − 〈aj , ya〉 − 1

2
〈ya, Qjya〉

)

−
n∑
j=1

xaj 〈aj +Qjy
a, ȳa − ya〉 −

n∑
j=1

xaj ·
1

2
〈ȳa − ya, Qj(ȳa − ya)〉

− 1− β
1 + 3(1− β)

= n−
n∑
j=1

xaj ·
1

2
〈ȳa − ya, Qj(ȳa − ya)〉 − 1− β

1 + 3(1− β)

≤ n− 1− β
1 + 3(1− β)

,(3.3)

where the second equality follows from

xaj

(
cj − 〈aj , ya〉 − 1

2
〈ya, Qjya〉

)
= xaj s

a
j = 1, j = 1, . . . , n

and

0 = ∇φ(ya) =
n∑
j=1

aj +Qjy
a

saj
=

n∑
j=1

xaj (aj +Qjy
a);

the last step is due to the fact that each Qj is positive semidefinite. Now we can use
(3.3) to finish the proof as follows:

exp P (Ω)

exp P (Ω+
β)

=
n∏
j=1

s̄aj
saj

=

n∏
j=1

xaj s̄
a
j

≤
 1

n

n∑
j=1

xaj s̄
a
j

n

≤
[

1

n

(
n− 1− β

1 + 3(1− β)

)]n
≤ exp

β − 1

1 + 3(1− β)
,

ANALYTIC CENTER BASED QUADRATIC CUT ALGORITHM 225

where in the fourth step we have used (3.3). Now taking the logarithm on both sides
yields the desired inequality.

Next we consider the case where a new inequality is added to Ω. Let

Ω+
β :=

{
y : cj − 〈aj , y〉 − 1

2
〈y,Qjy〉 ≥ 0, j = 1, . . . , n,

βr +
〈
an+1, y

b
〉

+
1

2

〈
yb, Qn+1y

b
〉− 〈an+1, y〉 − 1

2
〈y,Qn+1y〉 ≥ 0

}
,

(3.4)

where yb is an approximate center of Ω satisfying δ(yb; Ω) ≤ 1/β, β ≥ 2(
√

2 + 1)2,

r :=
〈
h,H−1(yb)h

〉1/2
, H(yb) := ∇2φ(yb), h := an+1 +Qn+1y

b,

and φ is given by (2.2).
Lemma 3.2. Let Ω, Ω+

β , and r be defined as above. Suppose β ≥ 2(
√

2 + 1)2.
Then

P (Ω+
β) ≥ P (Ω)− ln r − ln

[
β +

2

β(2−√2)

]
.

Proof. As in Lemma 3.1, we use ya, ȳa to denote the analytic centers of Ω
and Ω+

β , respectively. Also, we let φ(·) and φ+(·) denote the potential functions of

Ω and Ω+
β , respectively. The gradient and the Hessian of φ(·) (respectively, φ+(·))

are denoted by g(·), H(·) (respectively, g+(·), H+(·)). We start by first estimating〈
g+(yb), H+(yb)−1g+(yb)

〉1/2
. Since Qn+1 ≥ 0, it follows that

H+(yb) = H(yb) +
1

β2r2
(an+1 +Qn+1y

b)(an+1 +Qn+1y
b)T +

Qn+1

βr
≥ H(yb).

Using this and the fact that

g+(yb) = g(yb) +
an+1 +Qn+1y

b

βr + 〈an+1, yb〉+ 1
2 〈yb, Qn+1yb〉 − 〈an+1, yb〉 − 1

2 〈yb, Qn+1yb〉
= g(yb) +

h

βr
,

we obtain〈
g+(yb), H+(yb)−1g+(yb)

〉1/2 ≤ 〈g(yb) +
h

βr
,H−1(yb)

(
g(yb) +

h

βr

)〉1/2

≤ 〈g(yb), H(yb)−1g(yb)
〉1/2

+

〈
h

βr
,H−1(yb)

h

βr

〉1/2

≤ 1

β
+

1

β
≤ (
√

2− 1)2,

where the second inequality is due to the triangle inequality and we used the definitions
of δ(yb; Ω) and r in the third inequality. The last step follows from the fact that
β ≥ 2(

√
2+1)2. By the above inequality, we can invoke Nesterov’s lemma (Lemma 2.4)

to conclude that 〈
yb − ȳa, H+(yb)(yb − ȳa)

〉 ≤ 2

β(2−√2)
.(3.5)

226 ZHI-QUAN LUO AND JIE SUN

Next we estimate s̄an+1:

s̄an+1 = βr +
〈
an+1, y

b
〉

+
1

2

〈
yb, Qn+1y

b
〉− 〈an+1, ȳ

a〉 − 1

2
〈ȳa, Qn+1ȳ

a〉

=
〈
an+1 +Qn+1y

b, yb − ȳa〉− 1

2
〈ya − ȳa, Qn+1(ya − ȳa)〉+ βr

≤ 〈an+1 +Qn+1y
b, yb − ȳa〉+ βr

=
〈
h, yb − ȳa〉+ βr

=
〈
H−1/2(yb)h,H1/2(yb)(yb − ȳa)

〉
+ βr

≤ 〈h,H−1(yb)h
〉1/2 · 〈ya − ȳa, H(yb)(ya − ȳa)

〉1/2
+ βr,

where the last step is due to the Cauchy–Schwarz inequality. By the definition of r
and the estimate (3.5), we further obtain

s̄an+1 ≤ r
〈
yb − ȳa, H+(yb)(yb − ȳa)

〉1/2
+ βr

≤
[

2

β(2−√2)
+ β

]
r.(3.6)

In addition, we can show, by an argument similar to the one used for establishing
(3.3), that

n∑
j=1

xaj s̄
a
j ≤ n.

Using this and the inequality (3.6), we have

exp P (Ω)

exp P (Ω+
β)

= s̄an+1

n∏
j=1

s̄aj
saj
≤ s̄an+1

n∏
j=1

xaj s̄
a
j

≤ s̄an+1

 1

n

n∑
j=1

xaj s̄
a
j

n

≤ s̄an+1

(
1

n
· n
)n

= r

[
2

β(2−√2)
+ β

]
,

where in the second step we have used (3.6). Now taking the logarithm on both sides
yields the desired inequality.

4. The column generation algorithm. The column generation algorithm for
finding a feasible point in Γ can be informally described as follows. Essentially, the
algorithm iteratively generates a sequence of sets

Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωk ⊃ · · · ⊃ Γ,

each of which is defined by some convex quadratic inequalities. At each iteration k the
algorithm finds an approximate analytic center yk of Ωk. If yk is in Γ, the algorithm

ANALYTIC CENTER BASED QUADRATIC CUT ALGORITHM 227

terminates; otherwise a new set Ωk+1 ⊂ Ωk is generated by either translating an
existing inequality of Ωk or adding a new inequality to Ωk. Then the algorithm
attempts to find a new approximate center yk+1 of Ωk+1 and the iteration continues.

For convenience we assume that the vectors aj and the matrices Qj are normalized
so that

max{‖aj‖, ‖Qj‖} = 1, for all j = 1, . . . , n.(4.1)

We also assume that the solution set Γ is contained in the Euclidean unit ball B(0, 1) :=
{y ∈ Rm : ‖y‖2 ≤ 1}. The analytic center based column generation algorithm is as
follows.

The column generation algorithm.
Step 0. Ω0 is defined by a total of ρ ≥ 1 quadratic inequalities of the form ‖y‖2 ≤ 1.

In other words, the inequality ‖y‖2 ≤ 1 is repeated ρ times in the definition of Ω0.
(This is necessary to ensure that the subsequent technical analysis can go through,
and it also provides a convenient analytical center for Ω0.) Formally, let

Ω0 = {y : 1− ‖y‖2 ≥ 0, 1− ‖y‖2 ≥ 0, . . . , 1− ‖y‖2 ≥ 0}
and let

y0 = 0 ∈ Rm and δ(y0; Ω0) = 0.

Clearly, we have

s0 = e ∈ Rρ.
Also, it can be seen that φ0(y) = −ρ ln(1− ‖y‖2). Thus, we have

H0(y) = ∇2φ0(y) =
2ρ

1− ‖y‖2 I +
4ρyyT

(1− ‖y‖2)2
≥ 2ρI for all y ∈ Ω0.(4.2)

Step 1. Let

Ωk =

{
y ∈ Rm : ckj −

〈
akj , y

〉− 1

2

〈
y,Qkj y

〉 ≥ 0, j = 1, . . . , nk

}
and let yk be an approximate analytic center of Ωk such that δ(yk; Ωk) ≤ 1/20. Check
whether or not yk satisfies all the quadratic inequalities in Γ. If yes, stop; otherwise
choose an index i such that ci −

〈
ai, y

k
〉 − 1

2

〈
yk, Qiy

k
〉
< 0. There are two cases

depending on whether or not this ith inequality has been previously considered in Ωk.
Case 1. The ith inequality of Γ has already been violated in the previous iterations.

In this case there is a 0 < ` ≤ nk, such that Qk` = Qi, a
k
` = ai. We translate

the `th inequality of Ωk to obtain

Ωk+1 :=

{
y : ckj −

〈
akj , y

〉− 1

2

〈
y,Qkj y

〉 ≥ 0, 0 ≤ j ≤ nk, j 6= `

βsk` +
〈
a`, y

k
〉

+
1

2

〈
yk, Q`y

k
〉− 〈a`, y〉 − 1

2
〈y,Q`y〉 ≥ 0

}
,

(4.3)

where β = 19/20 and sk` := c` −
〈
a`, y

k
〉− 1

2

〈
yk, Q`y

k
〉
. Set

Qk+1
j =

{
Qkj if j 6= `
Qi if j = `

, ak+1
j =

{
akj if j 6= `
ai if j = `

228 ZHI-QUAN LUO AND JIE SUN

and

ck+1
j =

{
ckj if j 6= `
βsk` +

〈
a`, y

k
〉

+ 1
2

〈
yk, Q`y

k
〉

if j = `
, nk+1 = nk.

Case 2. The ith inequality of Γ has never been violated in the previous iterations. In
this case we add a new inequality to Ωk to obtain

Ωk+1 :=

{
y :ckj −

〈
akj , y

〉− 1

2

〈
y,Qkj y

〉 ≥ 0, 0 ≤ j ≤ nk,

βrk +
〈
ai, y

k
〉

+
1

2

〈
yk, Qiy

k
〉− 〈ai, y〉 − 1

2
〈y,Qiy〉 ≥ 0

}
,

(4.4)

where β = 20,

rk :=
〈
h,H−1(yk)h

〉1/2
, H(yk) := ∇2φk(yk), h := ai +Qiy

k,

and φk(·) is the potential function for the set Ωk. Set

Qk+1
j =

{
Qkj if 0 ≤ j ≤ nk
Qi if j = nk + 1

, ak+1
j =

{
akj if 0 ≤ j ≤ nk
ai if j = nk + 1

and

ck+1
j =

{
ckj if 0 ≤ j ≤ nk
βrk +

〈
ai, y

k
〉

+ 1
2

〈
yk, Qiy

k
〉

if j = nk + 1
, nk+1 = nk + 1.

Step 2. Let φk+1(·) be the potential function of Ωk+1. Take the following Newton
iterations

ynew := y − (∇2φk+1(y))−1∇φk+1(y),(4.5)

starting from yk, until a new approximate analytic center yk+1 of Ωk+1 has been
obtained with δ(yk+1; Ωk+1) ≤ 1/20. Set k := k + 1 and return to Step 1.

Notice that in Step 2, we did not specify how many Newton iterations must be
performed. It will be shown in section 6 that only a constant number (no more than
55) of Newton iterations are needed to generate the next iterate yk+1.

We close this section by making some easy observations about the column genera-
tion algorithm. First of all, the total number of inequalities in Ωk is at most ρ+n for all
k, where n is the total number of inequalities in Γ. Second, since ‖yk‖ ≤ 1, ‖ai‖ ≤ 1,
and ‖Qi‖ ≤ 1 (the normalization assumption), it follows that ‖h‖ := ‖ai+Qiy

k‖ ≤ 2.
Thus, we have

rk =
〈
h,∇2φk(yk)−1h

〉1/2
≤ 〈h,H0(yk)−1h

〉1/2
≤ 1√

2ρ
‖h‖

≤
√

2

ρ
, for all k,(4.6)

where the second and third inequalities follow from the fact that (see (4.2))

∇2φk(yk) ≥ H0(yk) ≥ 2ρI.(4.7)

Third, obviously we have

Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωk ⊃ · · · ⊃ Γ.

ANALYTIC CENTER BASED QUADRATIC CUT ALGORITHM 229

5. Convergence analysis. In this section we shall analyze the convergence of
the column generation algorithm. The basic idea is to show that the potential P (Ωk)
of the set Ωk is increased by a constant amount each time when either an existing
inequality is translated or a new inequality is added to Ωk. This, coupled with the
fact that the potential P (Ωk) is bounded from above, makes it possible to estimate
the total number of iterations required to find a feasible point of Γ.

We start by upper bounding the potential P (Ωk) of the set Ωk.
Lemma 5.1. Assume that Γ is given by

Γ =

{
y ∈ Rm : cj − 〈aj , y〉 − 1

2
〈y,Qjy〉 ≥ 0, j = 1, . . . , n

}
,

with aj, Qj, j = 1, . . . , n normalized as (4.1). Suppose that Γ contains an ε-ball
(ε ≤ 1). Then we have

P (Ωk) ≤ 2(n+ ρ) ln
1

ε
+ (n+ ρ) ln 2,(5.1)

for all k ≥ 0.
Proof. Suppose the ε-ball is centered at y∗. Since Γ ⊆ Ωk, it follows that this

ε-ball is contained in Ωk. Since ε ≤ 1, we have ε > ε2/2. It follows from Lemma 2.5
that

cj − 〈aj , y∗〉 − 1

2
〈y∗, Qjy∗〉 ≥ ε2

2
,

for all j = 1, . . . , nk. Then we have

P (Ωk) = min
y∈Ωk

−
nk∑
j=1

ln

(
ckj −

〈
akj , y

〉− 1

2

〈
y,Qkj y

〉)

≤
nk∑
j=1

− ln

(
ckj −

〈
akj , y

∗〉− 1

2

〈
y∗, Qkj y

∗〉)
≤ nk ln

2

ε2

≤ (n+ ρ) ln
2

ε2
,

where the first inequality is due to y∗ ∈ Ωk. The proof is complete.
We now use this bound to establish the following convergence theorem.
Theorem 5.2. Assume Γ is defined by n convex quadratic inequalities and con-

tains a ball of radius ε. Then the column generation algorithm will find a feasible
point in Γ in O(n ln 1

ε) iterations.
Proof. There are two cases in the algorithm. In the first case Ωk+1 is obtained

by translating an existing inequality of Ωk. Since we have 1 − β = 1/20 in this case
it follows from Lemma 3.1 that

P (Ωk+1) ≥ P (Ωk) +

(
1 +

3

20

)−1
1

20
= P (Ωk) +

1

23
.

In the second case we add a new inequality to Ωk and have β = 20. It follows from
Lemma 3.2 that

P (Ωk+1) ≥ P (Ωk)− ln rk − ln

[
20 +

2

20(2−√2)

]
.

230 ZHI-QUAN LUO AND JIE SUN

By the bound (4.6), we have

P (Ωk+1) ≥ P (Ωk)− ln

√
2

ρ
− ln

[
20 +

2

20(2−√2)

]
≥ P (Ωk)−

∣∣∣∣ln√2

ρ

∣∣∣∣− ln

[
20 +

2

20(2−√2)

]
.

Note that the second case can happen at most n times. Thus, after k iterations the
potential is increased by

P (Ωk)− P (Ω0) ≥ k − n
23

− n
∣∣∣∣ln√2

ρ

∣∣∣∣− n ln

[
20 +

2

20(2−√2)

]
.

On the other hand, it follows from P (Ω0) = 0 and (5.1) that

k ≤ n
{

1 + 23

[∣∣∣∣ln√2

ρ

∣∣∣∣+ ln

(
20 +

2

20(2−√2)

)]}
+ 23(n+ ρ) ln

2

ε2
,

which shows that the algorithm terminates in at most O(n ln 1
ε) iterations.

We point out that the values of the potential P (Ωk) and the exact analytic centers
are not needed in the column generation algorithm; they are needed only in the proof
of Theorem 5.2. Also, note that Theorem 5.2 only gives the estimate of the total
number of iterations required to solve the convex quadratic feasibility problem; it
does not estimate the amount of work required to update the center yk to the new
center yk+1. We shall provide such an estimate in the next section.

6. Updating to a new center. In each step of the analytic center column
generation algorithm we need to compute an approximate analytic center yk+1 of
Ωk+1. In this section, we show that yk+1 can be computed by the Newton procedure
(4.5) starting from yk in a constant number of iterations.

Throughout this section all the slacks are evaluated at yk, and therefore for sim-
plicity, we shall drop the superscripts k and k+1 in our notation, and denote yk, yk+1,
akj , Qkj , sk+1(yk), and sk(yk) by y, y+, aj , Qj , s

+, and s, respectively. We assume
for convenience that the translated inequality is labelled nk in Case 1. Clearly, we
have sj = s+

j , for j = 1, . . . , nk− 1. We also let n denote nk. Furthermore, we denote

the Hessians ∇2φk+1(yk), ∇2φk(yk) and the gradients ∇φk+1(yk), ∇φk(yk) by H+,
H, and g+, g, respectively. With this simplified notation, we have, for the iteration
given by Case 1 of the column generation algorithm,

H+ :=
n∑
j=1

[
(aj +Qjy)(aj +Qjy)T

(s+
j)2

+
Qj

s+
j

]

=

n−1∑
j=1

[
(aj +Qjy)(aj +Qjy)T

(sj)2
+
Qj
sj

]
(6.1)

+

[
(an +Qny)(an +Qny)T

β2(sn)2
+
Qn
βsn

]
,

H :=

n∑
j=1

[
(aj +Qjy)(aj +Qjy)T

(sj)2
+
Qj
sj

]

ANALYTIC CENTER BASED QUADRATIC CUT ALGORITHM 231

and

g+ :=
n∑
j=1

aj +Qjy

s+
j

=

n−1∑
j=1

aj +Qjy

sj
+
an +Qny

βsn
,(6.2)

g :=

n∑
j=1

aj +Qjy

sj
;

while for Case 2, with Ωk+1 updated by (4.4), we have

H+ :=
n+1∑
j=1

[
(aj +Qjy)(aj +Qjy)T

(s+
j)2

+
Qj

s+
j

]

=

n∑
j=1

[
(aj +Qjy)(aj +Qjy)T

(sj)2
+
Qj
sj

]
(6.3)

+

[
(an+1 +Qn+1y)(an+1 +Qn+1y)T

β2r2
+
Qn+1

βr

]
,

H =
n∑
j=1

[
(aj +Qjy)(aj +Qjy)T

(sj)2
+
Qj
sj

]
(6.4)

and

g+ :=
n+1∑
j=1

aj +Qjy

s+
j

=
n∑
j=1

aj +Qjy

sj
+
an+1 +Qn+1y

βr
,(6.5)

g :=

n∑
j=1

aj +Qjy

sj
.

Lemma 6.1. Consider Case 1 of the column generation algorithm whereby the
iteration (4.3) is performed. Let H+, H, g+, and g be given by (6.1) and (6.2). Then〈

g+, H
−1
+ g+

〉1/2 ≤ (1− β) +
〈
g,H−1g

〉1/2
.

Proof. By (6.2) we have

g+ = g −
(

1− 1

β

)
an +Qny

sn
,

232 ZHI-QUAN LUO AND JIE SUN

and by (6.1) we have

H+ =
n−1∑
j=1

[
(aj+Qjy)(aj+Qjy)T

(sj)2
+
Qj
sj

]
+

[
(an+Qny)(an+Qny)T

β2(sn)2
+
Qn
βsn

]

≥ 2ρI +

[
(an +Qny)(an +Qny)T

β2(sn)2
+
Qn
βsn

]

≥ 2ρI +
(an +Qny)(an +Qny)T

β2(sn)2
,(6.6)

where ρ is the constant given in the initialization of the column algorithm (see (4.7)).
Note that the last step is due to the fact that Qn is positive semidefinite. Moreover,
since β ∈ [0, 1], it follows that H+ ≥ H, implying that H−1

+ ≤ H−1. Now we can use
(6.6) to obtain

〈
g+, H

−1
+ g+

〉1/2
=

〈
g −

(
1− 1

β

)
an +Qny

sn
, H−1

+

[
g −

(
1− 1

β

)
an +Qny

sn

]〉1/2

≤ 〈g,H−1
+ g

〉1/2
+

(
1

β
− 1

)〈
an +Qny

sn
, H−1

+

(
an +Qny

sn

)〉1/2

≤ 〈g,H−1g
〉1/2

+ (1− β)

〈(
an +Qny

βsn

)
,[

2ρI +
(an +Qny)(an +Qny)T

β2(sn)2

]−1(
an +Qny

βsn

)〉1/2

=
〈
g,H−1g

〉1/2
+ (1− β)

‖an +Qny‖√
2ρβ2(sn)2 + ‖an +Qny‖2

≤ 〈g,H−1g
〉1/2

+ (1− β),

where the first inequality is due to the triangular inequality and the last equality
follows from Lemma 2.6.

In section 4, we chose β = 19/20 in the case of translation of an existing inequality.

Since we have δ(yk; Ωk) =
〈
g,H−1g

〉1/2 ≤ 1/20, it follows from Lemma 6.1 that
δ(yk; Ωk+1) ≤ 1/20 + (1 − 19/20) = 1/10, implying that yk is “relatively close” to
the analytic center of Ωk+1. This makes it possible for the Newton procedure (4.5) to
pull yk even closer to the analytic center of Ωk+1.

The next lemma considers Case 2 of the column generation algorithm whereby a
new inequality is added to Ωk.

Lemma 6.2. Let H+, H, g+, and g be given by (6.3)–(6.5). Then

〈
g+, H

−1
+ g+

〉1/2 ≤ 1

β
+
〈
g,H−1g

〉1/2
.

Proof. Recall that

r =
〈
h,H−1h

〉1/2
, where h := an+1 +Qn+1y.

ANALYTIC CENTER BASED QUADRATIC CUT ALGORITHM 233

It follows from (6.5) and (6.3) that

g+ = g +
h

βr
and H−1

+ ≤ H−1.

By using these relations and the triangular inequality, we have〈
g+, H

−1
+ g+

〉
=

〈
g +

h

βr
,H−1

+

(
g +

h

βr

)〉1/2

≤ 〈g,H−1
+ g

〉1/2
+

1

βr

〈
h,H−1h

〉1/2
=
〈
g,H−1

+ g
〉1/2

+
1

β

≤ 〈g,H−1g
〉1/2

+
1

β
,

where the second equality follows from the definition of r.
Recall from section 4 that we chose β = 20 in Case 2 when a new inequality

is added to Ωk. Since the algorithm always maintains δ(yk; Ωk) ≤ 1/20, it follows
from Lemma 6.2 that δ(yk; Ωk+1) ≤ 1/20 + 1/20 = 1/10. In other words, after
either a translation of an existing inequality or an addition of a new inequality, the
current iterate yk still remains “relatively close” to the analytic center of the new
system Ωk+1 in the sense that δ(yk; Ωk+1) ≤ 1/10. Once Ωk+1 is defined, the column
generation algorithm goes on to find a new approximate center for Ωk+1 by performing
a sequence of Newton iterations starting from yk. The following theorem estimates
the total number of Newton iterations needed to generate a new iterate yk+1 such
that δ(yk+1; Ωk+1) ≤ 1/20.

Theorem 6.3. Let φk+1(·) denote the potential function for Ωk+1. Suppose that
the following Newton iteration is initialized at yk:

ynew := y − (∇2φk+1(y)
)−1∇φk+1(y).(6.7)

Then, after a constant number of iterations, we shall obtain an iterate yk+1 with

δ(yk+1; Ωk+1) ≤ 1

20
,

where δ(· ; ·) is the proximity measure (2.4).
Proof. Let ȳ0, ȳ1, . . . denote the sequence of Newton iterates generated by (6.7).

Thus, ȳ0 := yk. Let ya denote the analytic center of Ωk+1. By the discussion fol-
lowing Lemma 6.2 we have δ(ȳ0; Ωk+1) = δ(yk; Ωk+1) ≤ 1/10. Then it follows from
Lemma 2.2 that

φk+1(ȳ0)− φk+1(ya) ≤ 4(1/10)2 = 0.04.(6.8)

By Lemma 2.3, we obtain〈
g+(ȳ0), H−1

+ (ȳ0)g+(ȳ0)
〉

= δ(ȳ0; Ωk+1)2 ≤ 0.14,

where g+(·), H+(·) denote the gradient and the Hessian of φk+1. This implies that〈
ȳ1 − ȳ0, H+(ȳ0)(ȳ1 − ȳ0)

〉
=
〈
g+(ȳ0), H−1

+ (ȳ0)g+(ȳ0)
〉

≤ 0.14 < 1.

234 ZHI-QUAN LUO AND JIE SUN

Thus, Lemma 2.1 can be applied to the points x = ȳ0, y = ȳ1 by identifying φ(·) :=
φk+1(·), and Ω := Ωk+1. Consequently, we have for t = 0

φk+1(ȳt)− φk+1(ȳt+1) ≥ 〈g+(ȳt), H−1
+ (ȳt)g+(ȳt)

〉− 1

2

〈
g+(ȳt), H−1

+ (ȳt)g+(ȳt)
〉

−
〈
g+(ȳt), H−1

+ (ȳt)g+(ȳt)
〉3/2

3
[
1− 〈g+(ȳt), H−1

+ (ȳt)g+(ȳt)
〉1/2]

≥ 0.295
〈
g+(ȳt), H−1

+ (ȳt)g+(ȳt)
〉
.(6.9)

As a by-product, we get φk+1(ȳ0) ≥ φk+1(ȳ1). Therefore (6.8) is still valid if we
replace ȳ0 with ȳ1. Repeating the entire argument from (6.8) to (6.9) for t = 1, 2, · · ·,
we conclude that

φk+1(ȳt)− φk+1(ȳt+1) ≥ 0.295
〈
g+(ȳt), H−1

+ (ȳt)g+(ȳt)
〉

for all t = 0, 1, · · · .
Suppose τ is the largest integer such that δ(ȳt; Ωk+1) > 1/20 for all t = 0, . . . , τ .

Then for each iteration t ≤ τ , we have

φk+1(ȳt)− φk+1(ȳt+1) ≥ 0.295

(
1

20

)2

.

Thus,

φk+1(ȳt+1)− φk+1(ya) ≤ (φk+1(ȳ0)− φk+1(ya)
)− τ × 0.295

(
1

20

)2

=
(
φk+1(yk)− φk+1(ya)

)− τ × 0.295

(
1

20

)2

≤ 4

(
1

10

)2

− τ × 0.295

(
1

20

)2

,

where in the last step we have used (6.8). Since φk+1(ȳt+1) ≥ φk+1(ya), it follows
that

τ ≤ 4× 202

0.295× 102
< 55.

Thus, after no more than 55 Newton iterations (6.7) we shall have an iterate ȳτ+1

with the property δ(ȳτ+1; Ωk+1) ≤ 1/20.
Since we have not optimized the choice of the various constants, the number of

Newton iterations in Theorem 6.3 seems high. We expect this number to be small in
the practical implementations of the column generation algorithm.

Combining Theorem 6.3 with Theorem 5.2 yields the following polynomial com-
plexity result.

Theorem 6.4. Suppose that Γ is defined by n convex quadratic inequalities and
contains an ε-ball. Then the column generation algorithm can find a feasible point in
Γ in at most O(n ln 1

ε) Newton iterations.
When all the data describing Γ (i.e., the vectors aj , the matrices Qj , and the

scalars cj) are rational and their total length in binary coding is L, then it can be

ANALYTIC CENTER BASED QUADRATIC CUT ALGORITHM 235

shown that the set Γ, if nonempty, always contains a ball of size O(2−L). Thus,
Theorem 6.4 shows that the convex quadratic feasibility problem can be solved by the
column generation algorithm in O(nL) Newton iterations.

REFERENCES

[1] A. Altman and K. C. Kiwiel, A note on some analytic center cutting plane methods for
convex feasibility and minimization problems, Comput. Optim. Appl., 5 (1996), pp. 175–
180.

[2] D. S. Atkinson, Scaling and Interior Point Methods in Optimization, Ph.D. thesis, Co-
ordinated Science Laboratory, College of Engineering, University of Illinois at Urbana-
Champaign, 1992.

[3] D. S. Atkinson and P. M. Vaidya, A cutting plane algorithm for convex programming that
uses analytic centers, Math. Programming, 69 (1995), pp. 1–44.

[4] O. Bahn, O. Du Merle, J.-L. Goffin, and J.-P. Vial, Experimental behavior of an inte-
rior point cutting plane algorithm for convex programming: An application to geometric
programming, Discrete Appl. Math., 49 (1994), pp. 3–23.

[5] O. Bahn, O. Du Merle, J.-L. Goffin, and J.-P. Vial, A cutting plane method from analytic
centers for stochastic programming, Math. Programming, 69 (1995), pp. 45–74.

[6] D. den Hertog, C. Roos, and T. Terlaky, On the classical logarithmic barrier function
method for a class of smooth convex programming problems, J. Optim. Theory Appl., 73
(1992), pp. 1–25.

[7] J.-L. Goffin, Z.-Q. Luo, and Y. Ye, Complexity analysis of an interior cutting plane method
for convex feasibility problems, SIAM J. Optim., 6 (1996), pp. 638–652.

[8] J.-L. Goffin, Z.-Q. Luo, and Y. Ye, On the complexity of a column generation algorithm
for convex or quasiconvex feasibility problems, in Large Scale Optimization: State of the
Art, W. W. Hager, D. W. Hearn, and P. M. Pardalos, eds., Kluwer Academic Publishers,
Norwell, MA, 1994, pp. 182–189.

[9] F. Jarre, On the convergence of the method of analytic centers when applied to convex
quadratic programs, Math. Programming, 49 (1991), pp. 341–358.

[10] Z.-Q. Luo, Analysis of a cutting plane method that uses weighted analytic center and multiple
cuts, SIAM J. Optim., 7 (1997), pp. 697–716.

[11] S. Mehrotra and J. Sun, A method of analytic centers for quadratically constrained convex
quadratic programs, SIAM J. Numer. Anal., 28 (1991), pp. 529–544.

[12] S. Mehrotra and J. Sun, On computing the center of a convex quadratically constrained set,
Math. Programming, 50 (1991), pp. 81–89.

[13] Y. Nesterov, Cutting plane algorithms from analytic centers: Efficiency estimates, Math.
Programming, 69 (1995), pp. 149–176.

[14] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms in Convex Program-
ming, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, 1994.

[15] G. Sonnevend, New algorithms in convex programming based on a notion of “centre” (for
systems of analytic inequalities) and on rational extrapolation, Trends in Mathematical
Optimization: Proceedings of the 4th French-German Conference on Optimization in Irsee,
West Germany, 1986, Internat. Schriftenreiche Numer. Math. 84, K. H. Hoffmann, J.-B.
Hiriart-Urruty, C. Lemarechal, and J. Zowe, eds., Birkhäuser, Boston, pp. 311–326.

[16] Y. Ye, A Potential reduction algorithm allowing column generation, SIAM J. Optim., 2 (1992),
pp. 7–20.

[17] Y. Ye, Complexity analysis of the analytic center cutting plane method that uses multiple cuts,
Math. Programming, 78 (1997), pp. 85–104.

DECOMPOSING MATRICES INTO BLOCKS∗

RALF BORNDÖRFER† , CARLOS E. FERREIRA‡ , AND ALEXANDER MARTIN†

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 236–269

Abstract. In this paper we investigate whether matrices arising from linear or integer program-
ming problems can be decomposed into so-called bordered block diagonal form. More precisely, given
some matrix A, we try to assign as many rows as possible to some number β of blocks of size κ
such that no two rows assigned to different blocks intersect in a common column. Bordered block
diagonal form is desirable because it can guide and speed up the solution process for linear and
integer programming problems. We show that various matrices from the linear programming and
mixed integer programming libraries Netlib and Miplib can indeed be decomposed into this form by
computing optimal decompositions or decompositions with proven quality. These computations are
done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decompo-
sition problem. In practice, however, one would use heuristics to find a good decomposition. We
present several heuristic ideas and test their performance. Finally, we investigate the usefulness of
optimal matrix decompositions into bordered block diagonal form for integer programming by us-
ing such decompositions to guide the branching process in a branch-and-cut code for general mixed
integer programs.

Key words. block structure of a sparse matrix, matrix decomposition, integer programming,
polyhedral combinatorics, cutting planes

AMS subject classifications. 90C10, 65F50

PII. S1052623497318682

1. Introduction. In this paper we consider the following matrix decomposition
problem. Given some matrix A, some number β of blocks (sets of rows), and some
capacity κ (maximum block-size), try to assign as many rows as possible to the blocks
such that (i) each row is assigned to at most one block, (ii) each block contains at
most κ rows, and (iii) no two rows in different blocks have a common nonzero entry
in a column. The set of rows that are not assigned to any block is called the border.

An equivalent statement of the problem in matrix terminology is as follows: Try
to decompose the matrix into bordered block diagonal form with β blocks of capacity
at most κ. The smaller the number of rows in the border, the better the decomposition
is considered; in the best case the border will be empty and the matrix decomposes
into block diagonal form. The left side of Figure 1.1 shows the structure of a 55× 55
nonsymmetric matrix, namely, an optimal basis matrix of the Netlib problem recipe.
The right side of Figure 1.1 shows an optimal decomposition of this matrix into four
blocks of capacity d55/4e = 14. To make the block structure of the decomposition
visible, we have permuted not only the rows (such that those assigned to the same
block appear consecutively) but also the columns. In this case, the blocks turn out to
be almost square with sizes 13× 13, 13× 13, 14× 14, and 14× 15, but in general this
does not need to be the case. The border consists of only one row that could not be

∗Received by the editors March 24, 1997; accepted for publication (in revised form) October
27, 1997; published electronically December 2, 1998. This work was supported by the Fundação
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) and the German Academic
Exchange Service (DAAD), program PROBRAL.

http://www.siam.org/journals/siopt/9-1/31868.html
†Konrad-Zuse-Zentrum Berlin, Takustraße 7, 14195 Berlin, Germany (borndoerfer@zib.de, martin

@zib.de).
‡Universidade de São Paulo, Rua do Matão, 1010, 05508-970 São Paulo, SP, Brazil (cef@

ime.usp.br).

236

DECOMPOSING MATRICES INTO BLOCKS 237

Fig. 1.1. Decomposing a matrix into bordered block diagonal form.

assigned to any block.
The matrix decomposition problem fits into the general context of reordering

matrices to special forms. Special forms are well studied in the literature because
they can be exploited by solution methods for linear equation systems, for example
by LU- or Cholesky factorization, or by conjugate gradient methods. The two main
points of interest are that special forms allow (i) the control of fill-in (bordered block
diagonal form, in particular, restricts fill-in to the blocks and the border) and (ii)
independent processing of individual blocks by parallel algorithms.

Methods to obtain special forms, including (bordered) block diagonal form, are
widely discussed in the literature of computational linear algebra; see, for instance,
Duff, Erisman, and Reid [5], Kumar et al. [19], or Gallivan et al. [10]. The matri-
ces studied in this context mainly arise from the discretization of partial differential
equations. Some newer publications deal with matrices that appear in interior point
algorithms for linear programs; see Gupta [15] and Rothberg and Hendrickson [26].

The applications we have in mind are different. We are interested in matrices
arising from (mixed) integer programs (MIPs). Such matrices often have potential for
decomposition into bordered block diagonal form for two reasons. First, such matri-
ces are sparse and generally have a small number of nonzero entries in each column.
Second, bordered block diagonal form comes up in a natural way in many real-world
MIPs. The problems are often composed of small blocks to model decisions in a di-
vision of a company, in a technical unit, or in a time period. These individual blocks
are linked by a couple of constraints that model possible interactions to yield an ap-
propriate model that covers the whole company, technical process, or time horizon.
Examples of this type are production planning problems like the unit commitment
problem in power generation, where the blocks correspond to single unit subprob-
lems and the border is given by load balance and reserve constraints (see Sheble and
Fahd [28] for a literature synopsis and Dentcheva et al. [4] for a recent application);
multicommodity flow problems that come up, for example, in vehicle scheduling (see
Löbel [21]); classes of combinatorial programs like the Steiner-tree packing problem
(see Grötschel, Martin, and Weismantel [14]); or, recently, scenario decompositions of
stochastic MIPs (see Carøe and Schultz [2]).

Bordered block diagonal form helps to accelerate the solution process of integer
programs in several ways. The first is to solve the LP-relaxation of an integer program;

238 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

here bordered block diagonal form can speed up the required linear algebra (both if
a simplex-type method or if an interior point method is used). Second, it can be
used to improve the polyhedral description of the set of feasible points of an MIP. For
example, given a block decomposition, taking one constraint from each block plus an
according number from the border results in the structure of a generalized assignment
or multiple knapsack problem (see Gottlieb and Rao [12] and Ferreira, Martin, and
Weismantel [8]) whose facets are valid inequalities for the MIP under consideration.
Third, block decomposition can be used in a branch-and-bound or -cut algorithm to
guide branching decisions: Decomposing the transposed constraint matrix AT will
identify the columns in the border as linking columns that are interesting candidates
for branching.

In this paper we develop a branch-and-cut algorithm for solving the matrix de-
composition problem. Of course the expected running time of such an algorithm will
not permit its usage within a parallel LU-factorization or within a branch-and-cut
algorithm for general MIPs. Our aim is rather to have a tool at hand that in principle
obtains an optimal bordered block diagonal form. We can then evaluate whether this
special matrix structure indeed helps in solving general integer programs, and we can
evaluate the success of decomposition heuristics that try to obtain (bordered) block
diagonal form and that could be used, for instance, within a parallel LU-factorization
framework.

The paper is organized as follows. In section 2 we formulate the matrix decomposi-
tion problem as a 0/1 linear program and discuss connections to related combinatorial
optimization problems, namely, node separation problems in graphs, the set packing,
and the set covering problem. Section 3 is devoted to a polyhedral investigation of the
matrix decomposition problem and presents (new) valid and facet defining inequali-
ties. In the branch-and-cut section 4 we present our matrix decomposition algorithm,
including separation routines, primal heuristics, preprocessing, and other aspects of
the implementation. We use this code in section 5 to decompose optimal basis ma-
trices of linear programs taken from the Netlib (available by anonymous ftp from
ftp://netlib2.cs.utk.edu), to decompose matrices arising from general MIPs from the
Miplib (available from the URL http://www.caam.rice.edu:80/∼bixby/miplib/miplib.
html), and to solve some equipartition problems investigated by Nicoloso and No-
bili [22].

2. Integer programming formulation and related problems. Consider an
instance (A, β, κ) of the matrix decomposition problem where A ∈ Rm×n is some real
matrix, β ∈ N is the number of blocks, and κ ∈ N is the block capacity. We introduce
for each row i = 1, . . . ,m and block b = 1, . . . , β a binary variable xbi that has value
1 if row i is assigned to block b and 0 otherwise. Then the matrix decomposition
problem (A, β, κ) can be formulated as the 0/1 linear program (IP) that is stated on
the facing page.

Inequalities (i) guarantee that each row is assigned to at most one block. Con-
straints (ii) ensure that the number of rows assigned to a particular block b does not
exceed its capacity. Finally, (iii) expresses that two rows i and j must not be assigned
to different blocks if both have a nonzero entry in some common column. These three
sets of inequalities plus the bounds (iv) and the integrality constraints (v) establish
a one-to-one correspondence between feasible solutions of (IP) and block decomposi-
tions of the matrix A into β blocks of capacity κ. In the following discussion we will
also call a vector x ∈ Rm×β a block decomposition if it is feasible for (IP). Note that
formulation (IP) as it stands is not polynomial, since the number of variables mβ is

DECOMPOSING MATRICES INTO BLOCKS 239

not polynomial in the encoding length of β. However, we may assume without loss
of generality that β ≤ m, because no more than m rows will be assigned. We also
assume that the block capacity is at least one (κ ≥ 1) and that we have at least two
blocks (β ≥ 2):

(IP)

max

m∑
i=1

β∑
b=1

xbi

(i)

β∑
b=1

xbi ≤ 1 for i = 1, . . . ,m;

(ii)

m∑
i=1

xbi ≤ κ for b = 1, . . . , β;

(iii) xbi + xb
′
j ≤ 1 for b, b′ = 1, . . . , β, b 6= b′, and

for i, j = 1, . . . ,m, i 6= j, such that
aik 6= 0 6= ajk for some k ∈ {1, . . . , n};

(iv) 0 ≤ xbi ≤ 1 for i = 1, . . . ,m, b = 1, . . . , β;

(v) xbi integer for i = 1, . . . ,m, b = 1, . . . , β.

A first observation about (IP) is that different matrices A can give rise to the same
integer program or, in other words, different matrices can be decomposed in exactly
the same way. In fact, such matrices form equivalence classes as can be seen by
considering the (column) intersection graph G(A) of an m×n-matrix A as introduced
by Padberg [24]. G(A) has the set {1, . . . , n} of column indices of A as its node set,
and there is an edge ij between two columns i and j if they have a common nonzero
entry in some row. Applying this concept to the transposed matrix AT , we obtain the
row intersection graph G(AT) of A where two rows i and j are joined by an edge ij
if and only if they have nonzero entries in a common column. But then the edges
of G(AT) give rise to the inequalities (IP) (iii) and we have that, for fixed β and
κ, two matrices A and A′ have the same row intersection graph if and only if the
corresponding integer programs (IP) are equal.

The matrix decomposition problem is related to several other combinatorial opti-
mization problems. First, the problem can be interpreted in terms of the row intersec-
tion graph as a node separator problem. To see this, let G(AT) = (V,E) and consider

some block decomposition x. The set S := {i ∈ V :
∑β
b=1 x

b
i = 0} of rows in the bor-

der is a node separator in G(AT) such that the graph obtained by deleting all nodes
in S and their adjacent edges decomposes into at most β parts, each of cardinality
of at most κ. Conversely, each node separator in G(AT) with these properties gives
rise to a block decomposition for (A, β, κ). Various node separator problems have
been studied in the literature. Lengauer [20] gives a survey and discusses applications
in VLSI design, and Duff, Erisman, and Reid [5] and Gallivan et al. [10] emphasize
heuristic methods for use in computational linear algebra. Lower bounds on the size
of a node separator in a general graph are rather rare. The only results we are aware
of are from Pothen, Simon, and Liou [25] and Helmberg et al. [16], who use eigenvalue
methods to derive nontrivial lower bounds on the size of a node separator for β = 2
if lower bounds on the size of the blocks are imposed.

A second connection exists to set packing, and this relationship is twofold. On
the one hand, matrix decomposition is a generalization of set packing, because fea-
sible solutions (stable sets) of some set packing problem max{1lTx : Ax ≤ 1l, x ∈

240 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

{0, 1}n}, A ∈ {0, 1}m×n correspond to solutions of the matrix decomposition prob-
lem (AT ,m, 1) of the same objective value, and vice versa. This shows that the
matrix decomposition problem is NP-hard. On the other hand, we obtain a set pack-
ing relaxation of the matrix decomposition problem by deleting the block capacity
constraints (ii) from the formulation (IP). All inequalities that are valid for this re-
laxation are also valid for the matrix decomposition problem, and we will use some of
them (namely clique- and cycle-inequalities) as cutting planes in our branch-and-cut
algorithm. Note, however, that the set packing relaxation allows assignment of all
rows to any single block, and our computational experiments seem to indicate that
these cuts are rather weak.

A close connection exists also to set covering via complementing variables. To see
this we rewrite (IP), substituting each capacity constraint (ii) with

(
m
κ+1

)
inequalities

that sum over all subsets of cardinality κ+1 of variables {xb1, . . . , xbm} for some block b,
and each constraint in (i) with

(
κ
2

)
inequalities that sum over all pairs of variables

in {x1
i , . . . , x

β
i }. Replacing all variables xbi with 1 − ybi , one obtains the following set

covering problem:

(IPc)

min
m∑
i=1

β∑
b=1

ybi

(i) ybi + yb
′
i ≥ 1 for b, b′ = 1, . . . , β, b 6= b′, and

for i = 1, . . . ,m;

(ii)
∑
i∈I

ybi ≥ 1 for b = 1, . . . , β and

for I ⊆ {1, . . . ,m} with |I| = κ+ 1;

(iii) ybi + yb
′
j ≥ 1 for b, b′ = 1, . . . , β, b 6= b′, and

for i, j = 1, . . . ,m, i 6= j, such that
aik 6= 0 6= ajk for some k ∈ {1, . . . , n};

(iv) 0 ≤ ybi ≤ 1 for i = 1, . . . ,m, b = 1, . . . , β;

(v) ybi integer for i = 1, . . . ,m, b = 1, . . . , β.

This shows that the matrix decomposition problem is a (special) set covering problem.
For the case of two blocks, this formulation has been used by Nicoloso and Nobili [22]
for the solution of the matrix equipartition problem. The matrix equipartition problem
is the matrix decomposition problem for β = 2 and κ = bm/2c, plus the additional
equipartition constraint

m∑
i=1

x1
i =

m∑
i=1

x2
i or, in complemented variables,

m∑
i=1

y1
i =

m∑
i=1

y2
i ,

which states that the two blocks of the decomposition must have equal size.

3. Polyhedral investigations. Associated with the IP-formulation (IP) of the
matrix decomposition problem is the polytope

P (A, β, κ) := conv {x ∈ Rm×β : x satisfies (IP) (i)–(v)},(3.1)

given by the convex hull of all block decompositions. In this section we study the
structure of P (A, β, κ) to derive classes of valid and facet defining inequalities for
later use as cutting planes. We start by determining its dimension.

DECOMPOSING MATRICES INTO BLOCKS 241

Proposition 3.1 (dimension). P (A, β, κ) is full dimensional.
Proof. The vector 0 and all unit vectors ebi ∈ Rm×β are feasible, i.e., are in

P (A, β, κ), and affinely independent.
This means that the facets of P (A, β, κ) are uniquely determined up to a scalar

factor (see Schrijver [27]). Two further easy observations are gathered in the following
remark.

Remark 3.1.
(i) The nonnegativity inequalities xbi ≥ 0 are facet defining for all i = 1, . . . ,m

and all b = 1, . . . , β.
(ii) All facet defining inequalities aTx ≤ α that are not nonnegativity constraints

satisfy a ≥ 0 and α > 0.
Remark 3.1 (i) is proven in the same way as Proposition 3.1, and Remark 3.1 (ii)

is a consequence of the down monotonicity of P (A, β, κ).
Facet defining inequalities have another interesting property. Consider some vec-

tor x ∈ Rm×β and some permutation σ of the blocks {1, . . . , β}, and define the vector
x̄ ∈ Rm×β by

x̄bi := x
σ(b)
i

for i = 1, . . . ,m, b = 1, . . . , β. In the following discussion we will use the symbol
σ(x) to denote the vector x̄ that arises from x by applying the block permutation
σ. Then σ(x) = x̄ is a feasible block decomposition if and only if x is. This simple
observation has two consequences. First, it implies that aTx ≤ b is a facet of P (A, β, κ)
if and only if its blockwise permutation σ(a)Tx ≤ b is a facet of P (A, β, κ). Facets
arising from each other via block permutations can thus be viewed as forming a single
class that can be represented by a single member, or, to put it in a more negative
way, each facet can and will be “blown up” by block permutations to a whole set
of combinatorially essentially identical conditions. Second, the objective function of
the matrix decomposition problem is invariant under block permutation, and thus
the matrix decomposition problem is dual degenerate (has multiple optima). Both
dual degeneracy and the large number of permutable facets cause difficulties in our
branch-and-cut algorithm, and we will have to control the number of cuts generated
and handle stalling of the objective value.

The next two subsections list the results of our polyhedral investigations in the
form of valid and facet defining inequalities. We distinguish between inequalities
aTx ≤ b that are invariant under block permutations or, equivalently, have the same
coefficients abi = ab

′
i for all blocks b 6= b′ and row indices i, and block-discernible

inequalities that do not have this property and distinguish different blocks. It will
turn out that most of the block-discernible inequalities will be inherited from the
stable set relaxation of the matrix decomposition problem, while the block-invariant
constraints are related to an “aggregated” version of the problem. In both subsections
we want to assume κ ≥ 2, because otherwise the matrix decomposition problem is a
(special) set packing problem.

3.1. Block-discernible inequalities. We saw in section 2 that we obtain a
set packing relaxation of the matrix decomposition problem by dropping the block
capacity constraints (ii) from the integer program (IP). The column intersection graph
associated with the matrix IP(i),(iii) formed by the left-hand sides of the constraints
(IP) (i) and (iii) has the set of possible row assignments {1, . . . ,m}×{1, . . . , β} as its
node set. A (conflict) edge exists between two assignments (i, b) and (j, b′) if rows i
and j cannot be simultaneously assigned to the blocks b and b′, i.e., if either i = j

242 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

and b 6= b′ or if i 6= j, b 6= b′, and rows i and j have a common nonzero entry in
some column of A. We want to call this graph the conflict graph associated with
the matrix decomposition problem (A, β, κ) and denote it by Gc(A, β). In formulas,
Gc(A, β) = G(IP(i),(iii)). This graph allows us to interpret the inequality classes (i)
and (iii) of (IP) as clique inequalities of the set packing relaxation corresponding to
the matrix decomposition problem as also introduced by Padberg [24].

Theorem 3.2 (clique). Let Gc(A, β) = (V,E) and Q ⊆ V . The inequality∑
(i,b)∈Q

xbi ≤ 1

is valid for P (A, β, κ) if and only if Q is a clique in Gc(A, β). It is facet defining if
and only if Q is a maximal clique in Gc(A, β).

Proof. The validity part is obvious. It remains to show that it is facet defining if
and only if Q is a maximal clique.

Suppose first that Q is not maximal but contained in a larger clique Q′. But then∑
(i,b)∈Q x

b
i ≤ 1 is the sum of the inequality

∑
(i,b)∈Q′ x

b
i ≤ 1 and the nonnegativity

constraints xbi ≥ 0 for (i, b) ∈ Q′ \Q and cannot be facet defining.
Assume now that Q is maximal. We will construct a set of mβ affinely inde-

pendent block decompositions for which the inequality is tight. |Q| such affinely
independent vectors are the unit vectors ebi with (i, b) ∈ Q. For each other assignment
(j, b′) 6∈ Q there exists some assignment (i, b) in Q that is not in conflict with (j, b′),
since Q is a maximal clique. Thus, the vector eb

′
j + ebi is the incidence vector of a

feasible block decomposition for which the inequality is tight. (Note that we assumed
κ ≥ 2 at the beginning of this section for the case b = b′.) The resulting mβ − |Q|
characteristic vectors obtained in this way plus the |Q| vectors constructed in the
beginning are affinely independent.

In the spirit of Theorem 3.2, (IP) (i) and (iii) are both clique inequalities and do
not represent two different types of inequalities. The separation problem for clique
inequalities is a maximum-weight clique problem and thus NP-hard; see Garey and
Johnson [11]. However, some subclasses can be separated efficiently. One such class
that we use in our implementation are the two-partition inequalities∑

b∈B
xbi +

∑
b′ 6∈B

xb
′
j ≤ 1,

which are defined for all sets of blocks B ⊆ {1, . . . , β} and all pairs of nondisjoint rows
i, j. Polynomial separation of this class is by inspection: Given i and j, we examine
for each block b the variables xbi and xbj . If xbi > xbj , we add b to the set B; otherwise
we add it to its complement. Note that for the case of two blocks (β = 2), the
two-partition inequalities are exactly the inequalities (IP) (i) and (iii) and, moreover,
these are already all clique inequalities. In particular, separation of clique inequalities
is polynomial for β = 2. In general, maximal cliques in Gc(A, β) are of the form
{(i1, b1), . . . , (iβ , bβ)}, where the blocks bk, k = 1, . . . , β, are mutually different and
the set of rows {i1, . . . , iβ} forms a clique in G(AT). Thus all maximal cliques in
Gc(A, β) are of size β.

Another class inherited from the set packing relaxation are the cycle inequalities.
Theorem 3.3 (odd cycle). If C is an odd cycle in Gc(A, β), then the cycle

inequality ∑
(i,b)∈C

xbi ≤ b|C|/2c

DECOMPOSING MATRICES INTO BLOCKS 243

is valid for P (A, β, κ).
Analogously to the set packing case (see again Padberg [24]), the odd cycle in-

equality is facet defining for its support if C is an odd hole (has no chords) and
|C|/2 ≤ κ. These conditions are, however, not necessary. Cycle inequalities can
be separated in polynomial time using the algorithm of Lemma 9.1.11 in Grötschel,
Lovász, and Schrijver [13].

Along the same lines as for the clique and cycle inequalities, the matrix decom-
position polytope clearly also inherits all other packing inequalities. However, not
only set packing but also set covering inequalities for (IPc) can be applied (note that
complementing variables preserves validity and dimension of the induced face); see
Nobili and Sassano [23]. We do not use any of them for our computations, however.

We close this section investigating the block capacity constraints (IP) (ii) which
are not inherited from the set packing polytope or the set covering polytope.

Theorem 3.4 (block capacity). The block capacity constraint

m∑
i=1

xbi ≤ κ

is facet defining for P (A, β, κ) if and only if |γ(i)| ≤ m − κ holds for every row i
(where γ(i) denotes all nodes adjacent to i in G(AT)).

Proof. We first show that the inequality is facet defining if the above mentioned
condition holds. To this purpose, let aTx ≤ α be a valid inequality that induces a
facet such that {x ∈ P (A, β, κ)|∑m

i=1 x
b
i = κ} ⊆ {x ∈ P (A, β, κ)|aTx = α}. We

will show that the two inequalities are the same up to a positive scalar multiplicative
factor.

Define x by

xb
′
i =

{
1 if 1 ≤ i ≤ κ, b′ = b,
0 otherwise.

x is a feasible block decomposition that assigns the first κ rows to block b. x satisfies
the block capacity constraint with equality and thus aTx = α. Now observe that, for
all 1 ≤ i ≤ κ < j ≤ m, the vector x− ebi + ebj is also a feasible assignment that is tight

for the block capacity inequality. It follows that abi = abj for all 1 ≤ i, j ≤ m.
Now consider assigning some row j to a block b′ 6= b. By the assumption

|γ(j)| ≤ m − κ, there is a set R(j) of κ rows not adjacent to j, but then
∑
i∈R(j) e

b
i

and
∑
i∈R(j) e

b
i + eb

′
j are both feasible decompositions that satisfy the block capacity

constraint with equality, and thus ab
′
j = 0, completing the first part of the proof.

It remains to prove the converse direction. If there is some row j with |γ(j)| >
m− κ, the inequality

∑m
i=1 x

b
i +

∑
b′ 6=b x

b′
j ≤ κ is valid. But then the block capacity

constraint can be obtained by summing up this inequality with
∑
b′ 6=b x

b′
j ≥ 0, and

therefore it cannot be facet defining.

3.2. Block-invariant inequalities. In this section we investigate inequalities
for the matrix decomposition polytope that are invariant under block permutation.
Consider for each block decomposition x the “aggregated” vector

z(x) :=

(
β∑
b=1

xb1, . . . ,

β∑
b=1

xbm

)
∈ Rm.

244 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

z(x) records only whether the matrix rows are assigned to some block or not, but it
no longer records to which block they are assigned. From a polyhedral point of view,
the aggregated block decompositions give rise to an “aggregated” version of the block
decomposition polytope

Pz(A, β, κ) := conv {z ∈ Rm : there is x ∈ P (A, β, κ) with z = z(x)}.
The aggregated polytope is interesting because any valid inequality

∑m
i=1 aizi ≤ α

for Pz(A, β, κ) can be “expanded” into an inequality
∑m
i=1 ai

∑β
b=1 x

b
i ≤ α that is

valid for P (A, β, κ). All inequalities in this subsection are of this type. Obviously,
the expansion process yields inequalities that are invariant under block permutations,
hence the name.

From a computational point of view, block-invariant inequalities are promising
cutting planes, because the objective of the matrix decomposition problem can be
written in terms of aggregated z-variables as 1lTx = 1lT z(x). Thus, a complete de-
scription of Pz(A, β, κ) would already allow us to determine the correct objective
function value of the matrix decomposition problem and z-cuts will help to raise the
lower bound of an LP-relaxation.

The aggregated polytope Pz(A, β, κ) provides a model of the matrix decompo-
sition problem that rules out degeneracy due to block permutations. While this is
a very desirable property of the aggregated z-formulation, its drawback is that it is
already NP-complete to decide whether a given vector z ∈ {0, 1}m is an aggregated
block decomposition or not. (It can be shown that this is a bin-packing problem.) Our
choice to use z-cuts within the x-model tries to circumvent this difficulty and com-
bines the strengths of both formulations. We remark that degeneracy problems of this
type arise also in block-indexed formulations of grouping problems in cellular manu-
facturing, where the difficulty can be resolved by means of alternative formulations;
see Crama and Oosten [3].

We already know one example of an expanded aggregated constraint: Expanding
the inequality zi ≤ 1 for the aggregated block decomposition polytope yields the block
assignment constraint (IP) (i)

∑β
b=1 x

b
i ≤ 1 that we have analyzed in the previous

subsection. More inequalities are derived from the observation that adjacent rows
(with respect to G(AT)) can only be assigned to the same block. A first example of
this sort of inequalities are the z-cover inequalities.

Theorem 3.5 (z-cover). Let G(AT) = (V,E) and let W ⊆ V be a set of rows of
cardinality κ+ 1. Then the z-cover inequality∑

i∈W

β∑
b=1

xbi ≤ κ

is valid for P (A, β, κ) if and only if (W,E(W)) is connected (where E(W) denotes all
edges with both endpoints in W). It is facet defining for P (A, β, κ) if and only if, for
each row i 6∈ W , the graph (W ∪ {i}, E(W ∪ {i})) has an articulation point different
from i.

Proof. The validity part is easy. Since |W | = κ+1, not all rows can be assigned to
the same block. If some rows of W are assigned to different blocks, there must be at
least one row in W that is not assigned because (W,E(W)) is connected. Conversely,
if W is not connected, one easily finds a partition of W into two subsets that can be
assigned to different blocks.

The proof that this inequality is facet defining if and only if, for each row i 6∈W ,
the graph (W ∪{i}, E(W ∪{i})) has an articulation point different from i is analogous

DECOMPOSING MATRICES INTO BLOCKS 245

to the proof of Theorem 3.4. The condition guarantees that if row i is assigned to
some block, the assignment can be extended in such a way that κ rows from W can
be assigned to at least two blocks. On the other hand, if the condition is not satisfied
for some j /∈W , the inequality

∑
i∈W∪{j}

∑β
b=1 x

b
i ≤ κ is valid, and thus the z-cover

inequality cannot be facet defining.
In the set covering model, z-cover inequalities correspond to constraints of the

form
∑
i∈W

∑β
b=1 y

b
i ≥ 1 that have been used by Nicoloso and Nobili [22] for their

computations. The separation problem is to find a tree of size κ+1 of maximum node
weight. This problem has been studied by Ehrgott [6] and was shown to be NP-hard
using a reduction to the node-weighted Steiner-tree problem.

The z-cover inequalities are induced by trees, but it is possible to generalize them
for subgraphs of higher connectivity.

Theorem 3.6 (generalized z-cover). Let G(AT) = (V,E) and let W ⊆ V be a
set of rows of cardinality κ+ k with k ≥ 1. Then the (generalized) z-cover inequality

∑
i∈W

β∑
b=1

xbi ≤ κ

is valid for P (A, β, κ) if and only if (W,E(W)) is k-node connected. It is facet defining
for P (A, β, κ) if and only if, for each row i 6∈ W , there exists some node cut N in
(W ∪ {i}, E(W ∪ {i})) of cardinality k with i /∈ N .

The proof of this generalization follows exactly the lines of the proof of Theo-
rem 3.5. In our branch-and-cut algorithm we restrict attention to the cases k = 1 and
k = 2.

Closely related to the z-cover inequality is the z-clique inequality. Here, we con-
sider some node set W that not only is k-node connected for some fixed k but induces a
complete subgraph. In this case the condition for being facet defining slightly changes.

Theorem 3.7 (z-clique). If Q is a clique in G(AT), then the z-clique inequality

∑
i∈Q

β∑
b=1

xbi ≤ κ

is valid for P (A, β, κ). It is facet defining if and only if |Q| ≥ κ+ 1 and, for each row
i 6∈ Q, there exists a set of rows R(i) ⊆ Q, |R(i)| = κ, such that i is not adjacent in
G(AT) to any node in R(i).

Proof. The inequality is clearly valid. To show that it is facet defining given the
mentioned conditions, let aTx ≤ α define a facet such thatx ∈ P (A, β, κ)|

∑
i∈Q

β∑
b=1

xbi = κ

 ⊆ {x ∈ P (A, β, κ)|aTx = α}.

We will show that the two inequalities are the same up to a positive scalar multi-
plicative factor. To this purpose, consider any κ rows of Q. The block decomposition
obtained by assigning these rows to some block b is feasible and tight for the z-clique
inequality. Since |Q| ≥ κ+ 1, we can use these solutions to show that abi = ab

′
j for all

i, j ∈ Q and for all blocks b, b′ ∈ {1, . . . , β}. Assuming that for each row i /∈ Q there
exists a set of nodes R(i) ⊆ Q, |R(i)| = κ, that are not adjacent to i, we observe that
for all b′ 6= b, the vectors

∑
j∈R(i) e

b
j and

∑
j∈R(i) e

b
j + eb

′
i are valid block decomposi-

tions that satisfy the z-clique inequality with equality. It follows that ab
′
i = 0 for all

246 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

i 6∈ Q, for all b′ 6= b, and even for all blocks b′, since b was arbitrary. This completes
the first part of the proof.

If, on the other hand, Q has size less than or equal to κ, we obtain from (IP) (i)
that the left-hand side of the inequality is at most |Q|. Thus, the inequality is redun-
dant and cannot define a facet. Now suppose the second condition is not satisfied,
i.e., there is some j /∈ Q such that j is incident to at least |Q| − κ + 1 nodes in Q.
This implies that Q∪{j} is at least (|Q|−κ+ 1)-node connected. Theorem 3.6 states

that
∑
i∈Q∪{j}

∑β
b=1 x

b
i ≤ κ is valid and this implies that the z-clique inequality is

redundant.
The z-clique separation problem is again a max-clique problem and thus is NP-

hard. In our implementation we check easily detectable special cases like the so-called
big-edge inequalities

∑
i∈supp(A·j)

β∑
b=1

xbi ≤ κ

for all columns j, where A·j denotes the jth column of A and supp(A·j) denotes its
nonzero row indices. These inequalities can be separated by inspection.

Another way to generalize the z-cover inequalities is by looking at node induced
subgraphs that consist of several components. This idea, which gives rise to the
class of bin-packing inequalities, came up in our computational experiments. The
starting point is again a set of rows W that induces a subgraph of G(AT) = (V,E).
Suppose (W,E(W)) consists of l connected components of sizes (in terms of nodes)
a1, . . . , al. We can then associate a bin-packing problem with (W,E(W)), β, and κ in
the following way: There are l items of sizes a1, . . . , al, and β bins of capacity κ each.
The problem is to put all the items into the bins such that no bin holds items of a
total size that exceeds the capacity κ. If this is not possible, we can derive a valid
inequality for P (A, β, κ).

Theorem 3.8. Let G(AT) = (V,E) and W ⊆ V be some subset of rows. If
the bin-packing problem associated with (W,E(W)), β, and κ has no solution, the
bin-packing inequality

∑
i∈W

β∑
b=1

xbi ≤ |W | − 1

is valid for P (A, β, κ).
Proof. Consider some block decomposition x. If at least one row in W is not

assigned to some block, the inequality is obviously satisfied. Otherwise all rows that
belong to the same (connected) component of (W,E(W)) must be assigned to the same
block. This yields a solution to the bin-packing problem associated with (W,E(W)),
β, and κ, a contradiction.

We do not know any reasonable conditions that characterize when the bin packing
inequalities are facet defining. Bin-packing separation is NP-hard; see Garey and
Johnson [11].

Next we give another class of z-cycle inequalities that generalize the cycle in-
equalities of the set packing polytope.

Theorem 3.9 (z-cycle). Let G(AT) = (V,E) and C ⊆ V be a cycle in G(AT) of

DECOMPOSING MATRICES INTO BLOCKS 247

cardinality at least κ+ 1. Then the z-cycle inequality

∑
i∈C

β∑
b=1

xbi ≤ |C| −
⌈ |C|
κ+ 1

⌉

is valid for P (A, β, κ).
The z-cycle inequality is valid because at least every (κ + 1)st node cannot be

assigned to a block. One can also show that the inequality is facet defining for its
support under certain rather restrictive conditions—for example, if C is an odd hole,
|C| 6= 0 mod (κ+ 1), and the right-hand side is less than βκ. z-Cycle separation can
be reduced to the TSP and is thus NP-hard.

Our next class of inequalities comes up in several instances in our test set.
Theorem 3.10 (composition of cliques (COQ)). Let G(AT) = (V,E) and con-

sider p mutually disjoint cliques Q1, . . . , Qp ⊆ V of size q, and q mutually disjoint
cliques P1, . . . , Pq ⊆ V of size p, such that |Pi ∩Qj | = 1 for all i, j. Let W = ∪pi=1Qi.
Then the following inequality is valid for P (A, β, κ):

∑
i∈W

β∑
b=1

xbi ≤ max{
r∈Nβ,s∈Nβ :∑
rb=p,

∑
sb=q

}
β∑
b=1

min{κ, rbsb} =: α(p, q, β, κ).(3.2)

Proof. Consider a block decomposition x and let

rb :=

∣∣∣∣∣∣
j :

∑
i∈Qj

xbi ≥ 1, j ∈ {1, . . . , p}

∣∣∣∣∣∣ ,

sb :=

∣∣∣∣∣∣
j :

∑
i∈Pj

xbi ≥ 1, j ∈ {1, . . . , q}

∣∣∣∣∣∣

for b = 1, . . . , β. Because Qj and Pj are all cliques, we have that
∑β
b=1 rb ≤ p and∑β

b=1 sb ≤ q. Since |Pi ∩Qj | = 1 for all i, j it follows that
∑
i∈W xbi ≤ rbsb. Thus,

∑
i∈W

β∑
b=1

xbi =

β∑
b=1

∑
i∈W

xbi

≤
β∑
b=1

min{κ, rbsb}

≤ max{
r∈Nβ,s∈Nβ :∑
rb≤p,

∑
sb≤q

}
β∑
b=1

min{κ, rbsb}

= max{
r∈Nβ,s∈Nβ :∑
rb=p,

∑
sb=q

}
β∑
b=1

min{κ, rbsb},

showing the statement.

248 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

The right-hand side of (3.2) is quite complicated, and we do not even know
whether it can be computed in polynomial time. For β = 2 the right-hand side
looks more tractable:∑

i∈W

β∑
b=1

xbi ≤ max
r=0,...,p
s=0,...,q

(min{κ, rs}+ min{κ, (p− r)(q − s)}) .(3.3)

However, we do not know a closed formula in this case either. An interesting special
case is p = 2. Here the graph (W,E(W)) consists of two disjoint cliques that are joint
by a perfect matching. Suppose further that q < κ < 2q. Then the right-hand side of
(3.3) reads

max{0, max
s=0,...,q

(min{κ, s}+ min{κ, q − s}),min{κ, 2q}}
= max{0, q, κ} = κ.

In this case (3.2) turns out to be even facet defining if we require in addition that
each node i /∈W has at most 2q − κ neighbors in W , i.e., |γ(i) ∩W | ≤ 2q − κ.

The development of our heuristic separation routine for COQ inequalities resulted
in a slight generalization of this class. The support graphs of the left-hand sides of
these extended composition of clique inequalities are COQs where some nodes have
been deleted; the right-hand sides are left unchanged.

Theorem 3.11 (extended composition of cliques (xCOQ)). Let G(AT) = (V,E),
and consider p mutually disjoint nonempty cliques Q1, . . . , Qp ⊆ V of size at most q,
and q mutually disjoint nonempty cliques P1, . . . , Pq ⊆ V of size at most p, such that

(i) |Pi ∩Qj | ≤ 1 for all i, j, and
(ii)

∑q
i=1

∑p
j=1 |Pi ∩Qj | =

∑q
i=1 |Pi| =

∑p
j=1 |Qj |;

i.e., every element in one of the sets Pi appears in exactly one of the sets Qj, and
vice versa. Let W = ∪pi=1Qi. Then the following inequality is valid for P (A, β, κ):

∑
i∈W

β∑
b=1

xbi ≤ α(p, q, β, κ).(3.4)

Proof. The proof works by turning P1, . . . , Pq and Q1, . . . , Qp into a proper COQ
by adding some nodes that correspond to “artificial rows” and projecting the resulting
inequality down to the original space of variables.

Let

δ :=

q∑
i=1

p∑
j=1

(1− |Pi ∩Qj |)

be the number of nodes that “miss” to turn P1, . . . , Pq and Q1, . . . , Qp into a COQ

and add a row 1lT of all ones to A for each of them to obtain a matrix Ā such that

Āi· = Ai·, i = 1, . . . ,m and Āi· = 1lT , i = m+ 1, . . . ,m+ δ.

Consider the matrix decomposition problem (Ā, β, κ). Its row intersection graph
G(ĀT) contains G(AT) as a subgraph, and the additional artificial nodes in G(ĀT)
are incident to every node of G(ĀT) that corresponds to a row that is not all zero
(except itself).

The sets P1, . . . , Pq and Q1, . . . , Qp are again cliques in G(ĀT). Associating each
of the artificial nodes i = m + 1, . . . ,m + δ with a different index pair ij such that

DECOMPOSING MATRICES INTO BLOCKS 249

|Pi ∩Qj | = 0 and adding this node to both Pi and Qj , we can extend P1, . . . , Pq and
Q1, . . . , Qp to a COQ P 1, . . . , P q and Q1, . . . , Qp in G(ĀT) with W := ∪pj=1Qj =
W ∪ {m+ 1, . . . ,m+ δ}. Then the COQ inequality

∑
i∈W

β∑
b=1

xbi ≤ α(p, q, β, κ)(3.5)

is valid for P (Ā, β, κ) and, of course, also for

P (Ā, β, κ) ∩ {xbi = 0 : i = m+ 1, . . . ,m+ δ, b = 1, . . . , β}.
Since the artificial variables in this polytope attain only values of zero, this remains
true if one sets their coefficients in (3.5) also to zero, but as this results in the desired
extended COQ inequality (3.4) and

P (Ā, β, κ) ∩ {xbi = 0 : i = m+ 1, . . . ,m+ δ, b = 1, . . . , β} = P (A, β, κ)× {0}δ×β ,
the theorem follows by a projection on the space of the original variables.

The last star inequality that we present in this section is special in the sense that
it is the only one with non-0/1 coefficients. It was designed to deal with rows with
many neighbors.

Theorem 3.12 (star). Let G(AT) = (V,E) and consider some row i ∈ V with
|γ(i)| > κ. Then the star inequality

(|γ(i)| − κ+ 1)

β∑
b=1

xbi +
∑
j∈γ(i)

β∑
b=1

xbj ≤ |γ(i)|

is valid for P (A, β, κ).
Proof. If i is assigned to some block b, then all rows in γ(i) can be assigned only

to b, but at most κ− 1 of them. The case where i is not assigned is trivial.
The star inequality can be viewed as a lifting of the (redundant) inequality

∑
j∈γ(i)

β∑
b=1

xbj ≤ |γ(i)|,

and we want to close this section with another simple lifting theorem for block-
invariant inequalities with 0/1 coefficients.

Theorem 3.13 (strengthening). Let G(AT) = (V,E), W be a subset of V , and∑
i∈W

∑β
b=1 x

b
i ≤ α be a valid inequality for P (A, β, κ). If, for some row j 6∈ W , the

condition

|W \ γ(j)|+ κ ≤ α
holds, then

∑
i∈W∪{j}

∑β
b=1 x

b
i ≤ α is also valid for P (A, β, κ).

Proof. If j is assigned to some block b, the rows in {j} ∪ γ(j) can be assigned
only to b, but at most κ of them.

4. A branch-and-cut algorithm. The polyhedral investigations of the last
section form the basis for the implementation of a branch-and-cut algorithm for the
solution of the matrix decomposition problem. This section describes the four main
ingredients of this code: separation and LP-management, heuristics, problem reduc-
tion, and searchtree management.

250 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

4.1. Separation and LP-management. We use all of the inequalities de-
scribed in section 3 as cutting planes in our algorithm. It will turn out that some of
them appear in large numbers. We thus opted for the following separation strategy:
We try to identify many inequalities using fast heuristics but add only selected ones
to the LP. More expensive separation methods are used depending on their success.

We classify our separation routines according to their basic algorithmic princi-
ples: inspection (enumeration), greedy heuristics, other heuristics, exact polynomial
methods, and “hybrid” methods (combinations of exact and heuristic methods).

The most simple methods are used for big-edge, two-partition, and star inequali-
ties. These classes can be separated by simple inspection; the details for two-partition
inequalities were already described in section 3.

Clique, z-clique, and z-cover inequalities are separated using greedy heuristics.
In the last two cases, these methods start by sorting the rows of A with respect to
increasing z-value, i.e., such that z(x)i1 ≥ z(x)i2 ≥ · · · ≥ z(x)im . Then the greedy
heuristic is called m times, once for each row ij . In each call, ij is used to initialize
a clique/tree with respect to G(AT) that is iteratively extended greedily in the order
of the z-sorting of the rows until zij becomes zero and the growing procedure stops.
There is also a second variant for z-cliques that is an adaptation of a similar routine
by Hoffman and Padberg [17]. Here we call the greedy heuristic once for each column
of A and initialize the clique with the support of this column. Having detected a
violated clique inequality in one of these ways, we lift randomly determined additional
rows with zero z-value sequentially into the inequality. This is done by applying the
strengthening procedure of Theorem 3.13, which in this case amounts to a further
growth of the clique by randomly determined rows of zero z-value. We tried to
strengthen cover inequalities, but the computational effort was not justified by the
one or two coefficients that were usually lifted, but, as was already mentioned in
section 3, we (heuristically) keep track of the connectivity of the growing graph. If
the connectivity is 2 after the graph reached size κ+1, we add another two-connected
node if possible. Figure 4.1 gives more detailed pseudocode for z-cover separation.
Separation of clique inequalities is done using exactly the same routine as for z-cliques
but applied to Gc(A, β) with node weights given by the x-variables.

z-Cycle inequalities are separated in the following heuristic way. We look at some
path P with end-nodes u and v, where initially u and v coincide. In each iteration we
extend the path at one of its end-nodes by a neighbor w with maximal z(x)w-value.
Let jw be a column of A that connects w to the path P . Since jw forms a clique in
G(AT), there are additional nodes that can be potentially added to the path if the
support of jw is greater than two, i.e., | supp(A·jw)| > 2. We store these additional
nodes in a buffer which will be exploited later in the heuristic. Now we test whether
the new path P extended by w can be closed to a cycle C that satisfies |C| > κ and
|C| 6= 0 mod (κ+ 1). This is done by looking for a column j of A that contains both
end-nodes of P (one of them w). supp(A·j) again forms a clique, and the additional
nodes in this clique, together with the nodes in the buffer, give the flexibility to add
further nodes to the cycle. This freedom is exploited in our routine. We try the
procedure for several starting nodes u = v, whose number depends on the success of
the heuristic.

Separation of the composition of clique inequalities is not easy: We do not even
know a way to compute the right-hand side α(p, q, β, κ) in polynomial time! But
there are problems in our test set, e.g., pipex (see section 5.2), where compositions
of cliques occur and there seems to be no way to solve this (small!) problem without

DECOMPOSING MATRICES INTO BLOCKS 251

z-cover separation
Input: z(x) ∈ Rm, G(AT)
Output: Node set T of a one- or two-connected subgraph of G(AT)

begin
sort z(x) such that z(x)i1 ≥ z(x)i2 ≥ · · · ≥ z(x)im ;
for k := 1 to m

T ← {ik};
connectivity ← 2;
for j := 1 to m

if j = k or γ(ij) ∩ T = ∅ continue;
if |T | = κ+ 1 and |γ(ij) ∩ T | = 1 continue;
if |T | ≥ 2 and |γ(ij) ∩ T | = 1 connectivity ← 1;
T ← T ∪ {ij};
if |T | ≥ κ+ connectivity break;

endfor;
endfor;
return T and connectivity;

end;

Fig. 4.1. Separating z-cover inequalities with a greedy heuristic.

them. Our heuristic was developed to capture these cases. It led to the development
of the more general class of extended COQ inequalities, which are easier to find. The
idea is as follows.

Let us start with a composition of cliques Q1, . . . , Qp and P1, . . . , Pq as stated in
Theorem 3.10. Suppose that these cliques are contained in the columns 1, . . . , p, p +
1, . . . , p+ q of the matrix A, i.e., supp(A·i) ⊇ Qi, i = 1, . . . , p, and supp(A·i+p) ⊇ Pi,
i = 1, . . . , q. Consider a column/column-incidence matrix S of A defined by

sij =

{
k for k ∈ {l : ali 6= 0 6= alj} arbitrary, but fixed,
0 if AT·iA·j = 0,

i.e., sij = k 6= 0 if and only if columns i and j intersect in some row k, and in case
there is no unique k we pick an arbitrary but fixed one. Suppose for the moment
that all entries in the submatrix S{1,...,p}×{p+1,...,p+q} of S are mutually different;
that is, there is no row index k that appears more than once. Then the composition
of cliques corresponds to the rectangle submatrix S{1,...,p}×{p+1,...,p+q} of S that is
completely filled with nonzeros: The rows that appear on the left-hand side of the
COQ inequality (3.2) are exactly those appearing in the matrix S{1,...,p}×{p+1,...,p+q}.
In other words, the node set W in (3.2) is W = {sij : i = 1, . . . , p, j = p +
1, . . . , p + q}. Thus, given some vector x ∈ Rm×β , the left-hand side of (3.2) is∑p
i=1

∑p+q
j=p+1

∑β
b=1 x

b
sij and a final calculation of the right-hand side allows one to

check for a possible violation of the inequality.
Our heuristic tries to go in the reverse direction: It identifies large filled rectangles

in S and derives COQ and xCOQ inequalities from them. There are three difficulties.
First, a clique in a composition can be not only a subset of a column of A but any
clique in G(AT). However, we have not incorporated this generality in our heuristic,

252 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

because we do not know how to select a promising set of cliques in G(AT). Second,
columns in A that form a composition of cliques may not appear in the right order:
The rectangle identifies itself only after a suitable permutation of S. In this case, we
have to reorder the columns and rows of S. We obtain a filled rectangle submatrix
SI×J of S by starting with each of column j of S once, extend this 1 × | supp(A·j)|
rectangle submatrix by columns that fit best in a greedy way, sort its rows lexicograph-
ically, and consider all maximal filled submatrices in the upper left corner as potential
COQ-rectangles. A third serious problem arises when two columns of A intersect in
more than one row. In this case the entries of the matrix S are no longer uniquely
determined, and it can happen that the entries of the rectangular submatrix SI×J un-
der consideration are no longer mutually different. Then SI×J corresponds no longer

to a composition of cliques, and the inequality
∑
ij∈I×J

∑β
b=1 x

b
sij ≤ α

(|I|, |J |, β, κ)
is in general not valid. However, one can set duplicate entries in S to zero until, for
every row k, there is only one representative sij = k left; denote the resulting matrix
by S′. Then the sets

Qi := {s′ij : s′ij 6= 0, j ∈ J}, i ∈ I and P j := {s′ij : s′ij 6= 0, i ∈ I}, j ∈ J,
of nonzero entries in the rows and columns of S′ form an extended composition of
cliques, and the corresponding xCOQ inequality

∑
k∈imSI×J

β∑
b=1

xbk ≤ α(|I|, |J |, β, κ)

is valid for P (A, β, κ), where imSI×J = {sij : ij ∈ I × J} denotes the set of row
indices that appear in the submatrix SI×J . The interesting feature of separating
extended COQ inequalities instead of COQs is that the generalization gives us the
algorithmic freedom to handle multiple occurrences of rows in filled rectangles of S,
and this is the key to a successful heuristic separation of an otherwise rigid structure.
The price for this, of course, is a reduced support in the left-hand side. To pay this
price only when necessary, we heuristically determine a column/column-intersection
matrix S with a large variety of rows in imS. The right-hand side itself is computed
in amortized (pseudopolynomial) time of O(βκn2) steps by a dynamic program (for
our tests β ≤ 4 and κ = O(n), and thus this effectively amounts to O(n3)).

The reader might have noticed that several degrees of freedom in this separation
routine can be used to search for rectangles with large z-value, and this is what we
would like to find. However, the running time of the method is too large to apply it
after each LP, and when we did, we did not find additional cuts. We thus call the
routine only once, determine some promising COQs by combinatorial criteria, store
them in memory, and separate them by inspection.

To separate clique inequalities (for β > 2), we use an exact branch-and-bound
algorithm for the maximum weight clique problem. Although in principle exponen-
tial, this algorithm works fast for the separation problems coming up in our matrix
decomposition instances because the maximum clique size is bounded by β. We have
also tried to separate z-cliques exactly, but we never observed that additional cuts
were found: In the small examples, the greedy heuristic is good enough, while in
the larger ones with high capacities, cliques of size κ don’t seem to exist. Another
exact, but this time polynomial, algorithm is used to separate cycle inequalities: We
apply the odd-cycle algorithm described in Lemma 9.1.11 in Grötschel, Lovász, and
Schrijver [13].

DECOMPOSING MATRICES INTO BLOCKS 253

Finally, a mixture of exact and heuristic ideas is used in a hybrid algorithm to
separate the bin-packing inequalities. We start by determining a node set W that can
result in a violated inequality. A necessary condition for this is∑

i∈W
z(x)i > |W | − 1 ⇐⇒ 1 >

∑
i∈W

(1− z(x)i),

and it is reasonable to construct W by iteratively adding rows that have a z-value
close to one. We thus sort the nodes with respect to increasing z-value and add them
to W in this order as long as the condition stated above is satisfied. This node set W
induces a subgraph (W,E(W)) of G(AT), and we determine the components of this
subgraph. The resulting bin-packing problem (see above Theorem 3.8) is solved using
an exact dynamic programming algorithm (with a time bound).

In addition to these classical types of cutting planes we also use a number of
“tie-breaking” inequalities to cut off decompositions that are identical up to block
permutations or give rise to multiple optima for other reasons as a means to counter
dual degeneracy and stalling. These inequalities are in general not valid for P (A, β, κ)
but are valid for at least one optimal solution. The simplest kind of these cuts are
the permutation inequalities

m∑
i=1

xbi ≤
m∑
i=1

xb+1
i , b = 1, . . . , β − 1,

stating that blocks with higher indices are of larger size. To break further ties, we
supplement them with inequalities stipulating that, in case of equal sized blocks, the
row with the smallest index will be assigned to the block with smaller index. These
strengthened permutation inequalities read

xb+1
k +

m∑
i=1

xbi −
m∑
i=1

xb+1
i ≤

k−1∑
i=0

xbi , b = 1, . . . , β − 1, k = 2, . . . ,m− 1.

If
∑m
i=1 x

b
i −

∑m
i=1 x

b+1
i < 0, the inequality is redundant, but in case of equality, the

row with the smallest index in blocks b and b+1 must be in block b. The case k = m is
left out because it yields a redundant inequality. Both permutation and strengthened
permutation inequalities can be separated by inspection.

Another idea that we use to eliminate multiple optima is based on the concept of
row preference. We say that row i is preferred to row j or, in symbols, i ≺ j, if

γ(i) ⊆ γ(j)

with respect to the row intersection graph G(AT). In this situation we may not know
whether or not row i or j can be assigned to a block in some optimal solution, but we
can say that for any decomposition x with z(x)j = 1 (say, xbj = 1) either z(x)i = 1

or we can get a feasible decomposition x′ = x − ebj + ebi with the same number of
rows assigned. In this sense, row i is more attractive than row j. If we break ties
on row preference by indices (i.e., i ≺ j ⇐⇒ γ(i) $ γ(j) ∨ (γ(i) = γ(j) ∧ i < j)),
row preferences induce a partial order that we represent in a transitive and acyclic
digraph

D(A) := (V, {(i, j) : i ≺ j}) .

254 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

Since the number of row preferences tends to be quadratic in the number of rows, we
thin out this digraph by removing all transitive (or implied) preferences. The remain-
ing row preferences are forced in our code by adding the row preference inequalities

β∑
b=1

xbi ≥
β∑
b=1

xbj for (i, j) with i ≺ j.

These can sometimes be strengthened to

xbi ≥ xbj for all b = 1, . . . , β

if we can be sure that rows i and j cannot be assigned to different blocks in any
decomposition. This will be the case, for example, if i and j are adjacent in G(AT) =
(V,E) or if both i and j are adjacent to some third row k preferable to both of them
(i.e., i ≺ j, k ≺ i, k ≺ j, ik ∈ E and jk ∈ E). Once D(A) is set up, row preference
inequalities can be separated by inspection.

Our last separation routine uses a cut pool that stores all inequalities found by the
hitherto explained algorithms: The pool separation routine just checks all inequalities
in the pool for possible violation.

The separation algorithms described in the previous paragraphs turned out to
be very successful: Not only block-discernible (permutable) inequalities like two-
partitions are found in large numbers but also block-invariant cuts like z-covers occur
in abundance. Controlling the growth of the LP-relaxation is thus the main goal of
our separation and LP-maintenance strategy. We start with a minimal LP-relaxation
containing (besides the bounds) only the block assignment and block capacity con-
straints plus the β − 1 permutation inequalities. The cuts that are separated by
inspection, i.e., big-edge inequalities, star inequalities, tie-breaking inequalities, and
composition of clique inequalities are placed in a cut pool; they will be found by pool
separation. The separation algorithms are called dynamically throughout the course
of the branch-and-cut algorithm. After an LP is solved, we call the pool separation
routine, followed by two-partition inequality separation and a couple of heuristics:
The z-cover heuristic is called as it is, but application of the more expensive z-clique
and z-cycle algorithms is controlled by a simple time- and success-evaluation. This
control mechanism is motivated by the observation that our test set fell into two
groups of examples, where one of these routines either was indispensable or essen-
tially did not find a single cut. We empirically try to adapt to these situations by
calling the separation routines only if their past success is proportional to the running
time or, more precisely, if after the first call

of successful calls + 1

of calls
>

time spent in routine

total time spent in separation
.

A call is counted as successful if a violated cut is found. If β > 2, there can be
clique inequalities that are not two-partition constraints, and in this case we next
call the exact clique separation routine that returns at most one cut. The branch-
and-bound algorithm used there turned out to be fast enough to be called without
any further considerations. Finally, we separate bin-packing inequalities. To avoid
excessive running times due to the dynamic program, the routine is called with a
time limit: The dynamic program will be stopped if the time spent in bin-packing
separation exceeds the cumulated separation time of all other separation routines.

DECOMPOSING MATRICES INTO BLOCKS 255

All violated cuts determined in this separation process are not added directly to
the LP-relaxation but stored in a cut buffer first. This buffer is saved to the pool,
and then a couple of promising cuts are selected to strengthen the LP-relaxation. Our
criteria here have an eye on the amount of violation and on the variety of the cuts.
Since inequalities of one particular type tend to have similar support, we restrict the
number of cuts per type and prefer to add inequalities of other types, even if they are
not among the most violated. To accomplish this we add the

of cuts in cut buffer

number of types of cuts

most violated cuts of each type to the LP-relaxation. We also delete cuts from the
LP-relaxation if they become nonbinding by a slack of at least 10−3, but we keep
them in the cut pool for a possible later pool separation.

Another feature of our code that aims for small LPs is to locally set up the LP-
relaxation prior to computation at any node of the searchtree. This means that when
branching on some node v, we store at each of its sons a description of the last LP
solved at v and of the optimal basis obtained. When we start to process v’s sons, we
set up this LP from scratch and load the associated (dual feasible) basis. In this way,
we continue the computation exactly at the point where it stopped, and the LP will
be the result of a contiguous process independent of the node selection strategy. We
have compared this approach to one where the start-LP at each newly selected node
is just the last LP in memory, and this leads to larger LPs and larger running times.

While these strategies were sufficient to keep the size of the LP-relaxation under
control, explosive growth of the cut pool was a serious problem in our computations
until we implemented the following cut pool management. We distinguish between
disposable and indisposable cuts in the pool. Indisposable cuts are inequalities that are
needed to set up the LP-relaxation at some node in the searchtree yet to be processed
and all big-edge, star, and tie-breaking inequalities. All other cuts are disposable
and can potentially be deleted from the cut pool, possibly having to be recomputed
later. In order to control the pool size we restrict the number of disposable cuts in
the pool by eliminating cuts that have not been in any LP for a certain number of
iterations. This number depends on the size of the pool and the ratio of disposable
to indisposable cuts.

The LPs themselves are solved with the CPLEX 4.0 dual simplex algorithm using
steepest edge pricing; see the CPLEX documentation [18].

4.2. Heuristics. Raising the lower bound using cutting planes is one important
aspect in a branch-and-cut algorithm; finding good feasible solutions early to enable
fathoming of branches of the searchtree is another, and we have implemented several
primal heuristics for our matrix decomposition code. Since different nodes in a branch-
and-bound tree correspond to different fixings of variables to zero or one, the heuristics
should respect these fixings to increase the probability of finding different solutions.
Applied at the root node where (at least initially) no variables are fixed, our methods
can be seen as LP-based or pure combinatorial heuristics for the matrix decomposition
problem.

Our heuristics fall into three groups: “primal” methods that iteratively fix block
assignments, “dual” methods that iteratively exclude assignments until decisions be-
come mandatory due to a lack of alternatives, and an improvement method that
is applied as an “afterburner” to enhance the quality of the two groups of opening
heuristics.

256 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

The primal methods consist of a greedy algorithm and a bin-packing heuristic;
both are LP-based. The greedy algorithm starts by ordering the xbi variables. With
probability 1

2 , a random ordering is chosen; otherwise a sorting according to increasing
x-value is used. The rows are assigned greedily to the blocks in this order. This
heuristic is similar in spirit to the popular “LP-plunging” method, i.e., the iterative
rounding of some fractional LP-value to an integer followed by an LP-reoptimization,
but much faster. We have also tried LP-plunging, but for the matrix decomposition
problem the results were not better than with the simple greedy method, while the
running time was much larger. The bin-packing heuristic starts by determining a set
of nodes W that will be assigned to the blocks and used to set up a corresponding
bin-packing problem. In order to find a better decomposition than the currently best
known with, say, z? rows assigned, W should be of cardinality at least z? + 1, and
therefore we take the z? + 1 rows with the largest z(x)-values to be the members
of W . The corresponding bin-packing problem is set up and solved with the same
dynamic program that we used for the separation of the bin-packing inequalities; it is
also called with a time limit, namely, 10 times as much as all other primal heuristics
(which are very fast) together. Clearly, we also watch out for better solutions that
might be detected in bin-packing separation.

The dual methods also respect variable fixings but are not LP-based. The idea
behind them is not to assign rows to blocks but to iteratively eliminate assignments
of “bad” rows. Suppose that a decision was made to assign certain rows (assigned
rows) to certain blocks and to exclude other rows from assignment (unassigned rows),
while for the remaining rows a decision has yet to be made (free rows). Removing
the unassigned nodes from the row intersection graph G(AT) leaves us with a number
of connected components, some of them larger than the maximum block capacity κ,
some smaller. Both variants of the dual method will break up the components that
are larger than the block capacity κ by unassigning free rows until no more such
components exist. At this point, a simple first-fit decreasing heuristic is called to
solve the corresponding bin-packing problem. The two variants differ in the choice of
the next bad row to remove. Variant I chooses the free row in some component of
size larger than κ with the largest degree with respect to the row intersection graph
G(AT); variant II excludes assignment of a free row of some component with size
larger than κ with the largest indegree with respect to D(A), or, in other words,
the least preferable row. We have also tried to use a dynamic program to solve the
bin-packing problems, but it did not provide better results in our tests.

Our improvement heuristic is a variation of a local search technique presented by
Fiduccia and Mattheyses [9]. Given some block decomposition, it performs a sequence
of local exchange steps each of the following type. Some assigned row is chosen to be
made unassigned, opening up possibilities to assign its unassigned neighbors. These
assignments are checked and feasible assignments are executed. The details are as
follows. The heuristic performs a number of passes (10 in our implementation). At
the beginning of each pass, all rows are eligible for unassignment in the basic exchange
step. Each row may be selected only once for unassignment in each pass and will
then be “locked.” Candidates for becoming unassigned are all currently assigned and
unlocked rows. These candidates are rated according to the number of possible new
assignments (computed heuristically) and we choose the one that is best with respect
to this rating. As a special annealing-like feature, the algorithm will also perform
the exchange step if it leads to a change of the current solution to the worse. If no
exchange step is possible because all assigned rows are already locked, the pass ends

DECOMPOSING MATRICES INTO BLOCKS 257

and the next pass is started.
The strategy to call the heuristics is as follows. The primal methods are called

after each individual LP, whereas the dual heuristics are called only once at each
node in the branch-and-bound tree, because they behave in a different way only due
to changes in the variable fixings.

4.3. Problem reduction. We use a couple of problem reduction techniques to
eliminate redundant data. First we apply an initial preprocessing to the matrix A
before the branch-and-cut algorithm is initiated. The purpose of this preprocessing
step is to eliminate columns from the matrix A without changing the row intersection
graph. We first perform a couple of straightforward tests to identify columns that
are contained in other columns and can thus be deleted: We remove empty columns,
then unit columns, duplicate columns, and finally, by enumeration, columns that are
contained in others.

These simple initial preprocessing steps are amazingly effective, as we will see in
the section on computational results. In principle, the number of rows can be reduced
also. For example, empty rows could be eliminated and later used to fill excess
capacity in any block, and duplicate rows or rows with just one nonzero entry could
be eliminated by increasing the capacity requirements of one of its adjacent rows.
These reductions, however, led to changes in the IP model and affect all separation
routines discussed so far, so that we refrained from implementing them.

In addition to this initial preprocessing we do local fixings at the individual nodes
of the branch-and-bound searchtree after each call to the LP-solver. Apart from
reduced cost fixing and fixing by logical implication (i.e., if xbi is fixed to one, xb

′
i will

be fixed to zero for all blocks b′ 6= b), we try to identify rows that cannot be assigned to
any block given the current state of fixings. To this purpose we look at all rows W that
are currently fixed for assignment to some block. We then check for each unassigned
row i whether the subgraph (W ∪ {i}, E(W ∪ {i})) of G(AT) = (V,E) contains a
component with more than κ rows. If so, row i can be fixed to be unassigned.

4.4. Searchtree management. Despite our efforts to understand the polyhe-
dral combinatorics of the matrix decomposition problem, we do not have a strong
grip on the corresponding polytope, and after an initial phase of rapid growth of the
lower bound, stalling occurs in the presence of significant duality gaps. We believe
that—up to a certain point—it is favorable in this situation to resort to branching
early, even if there is still slow progress in the cutting plane loop. In fact, we apply
a rather “aggressive” branching strategy, splitting the currently processed node if the
duality gap could not be reduced by at least 10% in any 4 consecutive LPs. On the
other hand, we pause a node (put it back into the list of nodes yet to be processed)
if the local lower bound exceeds the global lower bound by at least 10%.

Branching itself is guided by the fractional LP-values. We first look for a most
fractional z(x)-value. If, e.g., z(x)i is closest to 0.5 (breaking ties arbitrarily), we
create β + 1 new nodes corresponding to the variable fixings

x1
i = 1, x2

i = 1, . . . , xβi = 1, and

β∑
b=1

xbi = 0.

In other words, we branch on the block assignment constraint corresponding to row i.
The advantage of this scheme is that it leads to only β + 1 new nodes instead of
2β-nodes in an equivalent binary searchtree. If all z(x)-values are integral, we identify
a row with a most fractional x-variable and perform the same branching step. We

258 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

have also tried other branching rules by taking, for instance, the degree of a row in
G(AT) into account, but the performance was inferior to the current scheme.

5. Computational results. In this section we report on computational expe-
riences with our branch-and-cut algorithm for the solution of matrix decomposition
problems arising in linear and integer programming problems. Our aim is to find
answers to two complexes of questions. First, we would like to evaluate our branch-
and-cut approach: What are the limits in terms of the size of the matrices that we
can solve with our algorithm? What is the quality of the cuts, do they provide a rea-
sonable solution guarantee? Second, we want to discuss our concept of decomposition
into bordered block diagonal form: Do the test instances have this structure or are
most integer programming matrices not decomposable in this way? Does knowledge
of the decomposition help to solve them? And do our heuristics provide reasonable
decompositions that could be used within a parallel LU-factorization framework or
an integer programming code?

Our test set consists of matrices from real-world linear programs from the Netlib
and integer programming matrices from the Miplib. In addition, we consider two
sets of problems with “extreme” characteristics as benchmark problems: some small
matrices arising from Steiner-tree packing problems (see Grötschel, Martin, and Weis-
mantel [14]) and equipartition problems introduced in Nicoloso and Nobili [22]. The
Steiner-tree problems are known to be in bordered block diagonal form, and we wanted
to see whether our code is able to discover this structure. The equipartition prob-
lems, on the other hand, are randomly generated. Our complete test data are available
via anonymous ftp from ftp.zib.de at /pub/Packages/mp-testdata/madlib and at the
URL ftp://ftp.zib.de/pub/Packages/mp-testdata/madlib/index.html.

In the following subsections, we report the results of our computations on the
different sets of problems. Our algorithm is implemented in C and consists of about
36,000 lines of code. The test runs were performed on a Sun Ultra Sparc 1 Model 170E
and we used a time limit of 1, 800 CPU seconds. The format of the upcoming tables
is as follows: Column 1 provides the name of the problem, and Columns 2–4 contain
the number of rows, columns, and nonzeros of the matrix to be decomposed. The
two succeeding columns give the number of columns and nonzeros after presolve.
Comparing Column 3 with 5 and 4 with 6 shows the performance of our preprocessing.
The succeeding five columns give statistics about the number of cuts generated by
our code. There are, from left to right, the number of initial cuts (Init) including
block assignment, block capacity, big-edge, star, and tie-breaking inequalities (but not
composition of clique inequalities, although they are also separated from the pool); the
number of z-cover (Cov); the number of two-partition (2part); the sum of the number
of bin-packing, cycle, z-cycle, clique, z-clique, and composition of clique inequalities
(BCC); and finally the number of violated inequalities separated from the pool (pool).
The following two columns (Columns 12 and 13) show the number of branch-and-
bound nodes (Nod) and the number of LPs (Iter) solved by the algorithm. The second
part of the tables starts again with the name of the problem. The next eight columns
give solution values. We do not report the number of assigned rows but the number of
rows in the border, because it is easier to see whether the matrix could be decomposed
into block diagonal form (in this case the value is zero) or close to this form (then the
value is a small positive integer). Lb gives the global lower bound provided by the
algorithm. It coincides with the value of the upper bound Ub (next column) when the
problem is solved to proven optimality. Skipping two columns for a moment, the next
four columns refer to the heuristics. G, D1, D2, and B stand for the greedy, the dual

DECOMPOSING MATRICES INTO BLOCKS 259

(variant I and II), and the bin-packing heuristic. The corresponding columns show
the best solutions obtained by these heuristics throughout the computations at the
root node. If this value coincides with the number of rows of the matrix, all rows are
in the border and the heuristic failed. The two (skipped) columns right after Ub show
which heuristic He found the best solution after No many branch-and-bound nodes (1
means it was found in the root node; 0 means that preprocessing solved the problem).
The additional letter I indicates that the value was obtained by a succeeding call to
the improvement heuristic. BS means that the bin-packing separation routine found
the best solution, an asterisk ∗ shows that the LP solution provided an optimal block
decomposition. The remaining five columns show timings. The last of these columns
Tot gives the total running time measured in CPU seconds. The first four columns
show the percentage of the total time spent in cut-management (Cm), i.e., local setup,
LP-, cut-buffer, and pool-management, the time to solve the linear programs (LP),
the time of the separation algorithms (Sep), and the time for the heuristics (Heu).

5.1. The Netlib problems. The first test set that we are going to consider con-
sists of matrices that arise from linear programming problems taken from the Netlib.1

We investigated whether basis matrices corresponding to optimal solutions of these
linear programs can be decomposed into (bordered) block diagonal form. These bases
were taken from the dual simplex algorithm of CPLEX [18]. Analyzing the decom-
posibility of such matrices gives insight into the potential usefulness of parallel LU-
factorization methods within a simplex-type solver. In this context β reflects the
number of processors that are available. We have chosen β = 4, since this is some-
how the first interesting case where parallelization might pay. As a heuristic means
for good load balancing we aim at equal-sized blocks and have set the capacity to
κ := #rows

4 rounded up. We tested all instances with up to 1,000 rows.
Table 5.1 shows the results of these experiments. The problems up to 100 rows

are easy. The range of 100–200 rows is where the limits of our code become visible,
and this is the most interesting “hot area” of our table: The problems here are already
difficult, but because of the combinatorial structure and not because of sheer size. The
results for the problems with more than 200 rows are of limited significance, because
these matrix decomposition problems are large-scale and the algorithm solves too few
LPs within the given time limit. We can solve only a couple of readily decomposable
large instances, but it is worth noticing that a significant number of such instances
exists: The difficulty of matrix decomposition problems depends as much on the
structure of the matrix as on the number of rows, columns, or nonzeros.

Let us first investigate the “dual side” of the results. We observe that we solve
very few problems at the root node (only 9 out of 77), and that the number of cuts is
very large, in particular in the hot area of the table. The reason for this is basically
the symmetry of the problem, as can be seen from the pool separation column (Pool)
that counts, in particular, all violated tie-breaking cuts. Unfortunately, we don’t see
a way to get around this phenomenon, but we believe that the symmetry mainly
prevents us from solving difficult instances of larger size. The quality of the cuts is
in our opinion reasonable, as can be seen from the size of the branch-and-bound tree
and the number of LPs solved. It is true, however, that the lower bound improves
fast at first while stalling occurs in later stages of the computation although still large
numbers of cuts are found and the problem is finished by branch-and-bound. The
same behavior has been reported for similar problems like the node capacitated graph

1Available by anonymous ftp from ftp://netlib2.cs.utk.edu/lp/data.

260 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

Table 5.1
Decomposing LP-basis matrices (part I).

Name Original Presolved Cuts B&B
rows col nz col nz Init Cov 2part BCC Pool Nod Iter

seba 2 2 2 0 0 0 0 0 0 0 1 0
afiro 20 20 34 10 24 106 12 6 5 2 1 2
fit1d 24 24 178 9 126 298 97 38 265 105 6 18
fit2d 25 25 264 11 147 379 549 458 1504 892 41 99
sc50b 28 28 84 27 82 124 2304 1291 152 5452 56 182
sc50a 29 29 88 24 77 137 1062 654 53 1487 26 79
kb2 39 39 213 16 164 328 38 21 2 8 1 3
vtpbase 51 51 198 27 149 415 9130 4796 407 32630 561 1025
bore3d 52 52 311 29 262 579 2241 1025 2333 2706 51 116
adlittle 53 53 203 35 167 454 818 244 20 515 11 31
blend 54 54 313 28 274 547 3357 1553 2757 6143 61 166
recipe 55 55 100 24 69 317 0 14 3 2 1 3
scagr7 58 58 242 34 210 439 770 331 718 468 16 30
sc105 59 59 220 48 203 318 6200 3415 151 19447 66 207
stocfor1 62 62 180 25 143 497 2395 801 55 2977 21 65
scsd1 77 77 215 70 207 500 4264 1570 60 6331 21 74
beaconfd 90 90 618 48 576 1626 4618 1403 3231 6296 121 263
share2b 93 93 482 37 340 825 7335 4636 212 14713 626 860
share1b 102 102 485 56 364 721 3769 2135 294 8204 806 1142
forplan 104 104 575 70 535 815 43011 16754 4783 145556 316 681
scorpion 105 105 383 46 300 812 48144 12649 1178 113261 1206 2485
sc205 113 113 691 104 676 561 24727 15842 272 116813 136 299
brandy 113 113 874 83 774 1270 33012 13041 5037 107955 271 664
lotfi 122 122 349 60 267 1026 85763 17243 1110 203255 1076 2217
boeing2 122 122 435 70 383 1038 18823 5794 200 41101 71 237
tuff 137 137 820 84 748 1795 17387 4823 200 32293 116 306
grow7 140 140 1660 51 243 948 33529 12866 320 182151 206 424
scsd6 147 147 383 138 373 804 41055 12440 297 116468 111 331
e226 148 148 954 88 807 1469 33011 14063 272 112223 206 355
israel 163 163 1321 37 1014 2217 537 289 2115 237 11 25
agg 164 164 669 52 551 1492 37378 12257 325 174665 341 539
capri 166 166 826 102 718 1625 9291 4015 396 9008 71 94
wood1p 171 171 2393 55 1340 1650 6253 2457 56 7758 46 94
bandm 180 180 1064 90 815 1690 11854 6042 405 31838 66 96
scrs8 181 181 887 110 675 1400 11399 5375 72 30637 56 85
ship04s 213 213 573 176 536 1530 1084 72 7 190 1 7
scagr25 221 221 1627 91 1470 1831 14509 8239 6884 23224 121 261
scfxm1 242 242 1064 154 922 2182 16607 3887 68 38232 31 80
stair 246 246 3402 216 3154 1552 7192 3058 33 1005 51 44
shell 252 252 493 235 476 1495 14086 1311 85 5878 46 101
standata 258 258 513 109 364 1733 0 0 0 0 1 1
sctap1 269 269 640 77 373 1957 25028 4187 110 37924 61 143
agg2 280 280 1468 109 1275 2270 9856 4124 34 13961 31 45
agg3 282 282 1444 99 1162 2259 9572 4674 32 13575 26 43
ship08s 284 284 699 201 616 1909 7352 480 33 3403 11 35
boeing1 284 284 1384 174 1271 2670 13291 4198 48 22032 31 56
grow15 300 300 3680 102 489 2044 17134 5225 72 28665 21 77
fffff800 306 306 1382 182 1237 3045 9590 3320 30 15509 36 51
etamacro 307 307 1005 215 907 1824 8431 3985 33 10512 16 36
ship04l 313 313 868 274 829 2321 4387 520 125 1918 356 491
gfrdpnc 322 322 623 276 576 1569 13308 2328 53 4899 31 59
ship12s 344 344 858 247 761 2313 1676 108 7 62 6 8
finnis 350 350 831 178 653 2371 13570 3020 55 17997 26 61
pilot4 352 352 3157 265 2988 3014 8563 4104 25 13824 16 29
standmps 360 360 836 217 691 2785 32633 4731 183 37695 71 210
degen2 382 382 2440 262 2230 2717 6922 1959 16 2396 26 25
scsd8 397 397 1113 394 1109 1755 9128 4799 24 14671 6 25
grow22 440 440 5272 161 732 2984 10976 1880 26 10062 11 28
bnl1 448 448 1656 307 1481 3788 6984 1623 16 6521 11 19
czprob 475 475 939 464 928 3640 1227 25 4 9 1 4
scfxm2 485 485 2179 313 1906 4317 7582 1712 17 10240 6 18
perold 500 500 3277 424 3077 3448 5983 3669 13 6810 6 14
ship08l 520 520 1404 436 1320 3767 11855 703 76 4080 71 129
maros 545 545 2637 301 2323 4384 7750 2718 15 2539 11 18
ganges 576 576 3002 466 2892 4098 19490 2429 40 10251 16 42
pilotwe 613 613 2982 561 2833 3804 5489 4184 10 4238 6 11
nesm 622 622 1925 419 1461 3720 5929 3407 11 4785 6 12
fit1p 627 627 4992 1 627 5013 0 0 0 0 1 1
25fv47 677 677 3750 442 3278 5699 4644 1315 7 482 6 9
ship12l 686 686 1883 589 1786 5026 3212 127 6 74 1 6
woodw 711 711 3044 528 2849 4517 3736 2395 6 399 11 9
scfxm3 728 728 3285 469 2876 6411 4969 1203 8 3541 6 9
pilotja 745 745 4738 548 4121 5708 4462 2129 7 670 6 8
pilotnov 783 783 4428 498 3606 5479 3859 2466 6 1159 6 7
bnl2 940 940 3284 489 2509 6981 4930 880 7 634 6 8
sctap2 977 977 1491 161 642 5506 1256 0 0 156 6 6
truss 1000 1000 3564 986 3540 4792 4999 4137 6 1810 6 7∑

22911 22911 108546 14614 82679 169450 867384 285672 37498 1909629 8022 15550

partitioning problem discussed in Ferreira et al. [7].
Investigating the “primal side,” we see that the greedy heuristic seems to be most

reliable. The two dual methods perform exactly the same and yield solutions of the
same quality as the greedy. Bin-packing is either very good (a rather rare event) or
a catastrophe, but it complements the other heuristics. If we look at the quality of

DECOMPOSING MATRICES INTO BLOCKS 261

Table 5.1
Decomposing LP-basis matrices (part II).

Name Best Solutions Heuristics at Root Time
Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

seba 0 0 - 0 - - - - 0% 0% 0% 0% 0.0
afiro 2 2 B 1 3 3 3 2 0% 40% 10% 0% 0.1
fit1d 16 16 B 1 16 17 17 16 6% 50% 25% 6% 0.7
fit2d 18 18 D1 1 20 18 18 25 12% 54% 22% 5% 5.5
sc50b 11 11 IG 1 11 11 11 28 6% 71% 12% 4% 12.7
sc50a 8 8 ID1 1 8 8 8 29 3% 78% 11% 2% 6.8
kb2 14 14 IG 1 14 14 14 39 4% 69% 14% 2% 0.5
vtpbase 14 14 IG 1 14 17 17 15 7% 57% 20% 8% 94.6
bore3d 23 23 D1 9 24 24 24 52 7% 69% 17% 2% 24.0
adlittle 10 10 D1 1 10 10 10 53 6% 72% 15% 2% 5.0
blend 20 20 IG 2 21 25 25 21 6% 66% 20% 3% 35.9
recipe 1 1 IB 1 3 4 4 1 0% 51% 18% 10% 0.4
scagr7 21 21 B 4 25 25 25 58 6% 46% 32% 10% 5.2
sc105 16 16 B 20 17 17 17 59 4% 82% 9% 2% 85.1
stocfor1 10 10 B 7 12 12 12 62 6% 68% 17% 4% 15.2
scsd1 8 8 IB 5 10 10 10 77 3% 81% 10% 3% 53.1
beaconfd 26 26 D1 21 28 28 28 90 4% 67% 21% 4% 115.7
share2b 9 9 ID1 5 10 10 10 93 4% 77% 8% 6% 282.5
share1b 7 7 B 4 8 8 8 102 5% 65% 13% 9% 203.6
forplan 31 36 ID1 18 39 44 44 104 2% 85% 8% 3% 1801.1
scorpion 11 11 B 7 14 14 14 105 4% 67% 14% 9% 940.7
sc205 28 39 IG 9 45 45 45 113 1% 92% 4% 1% 1806.6
brandy 34 34 * 214 51 51 51 113 2% 82% 11% 2% 1200.7
lotfi 19 19 B 279 23 23 23 122 4% 76% 12% 4% 1643.3
boeing2 19 19 B 33 31 32 32 122 2% 84% 7% 3% 411.9
tuff 26 26 B 43 28 35 35 137 2% 85% 7% 3% 635.3
grow7 10 18 IG 9 22 22 22 140 3% 80% 9% 6% 1801.2
scsd6 10 22 IG 4 23 23 23 147 1% 87% 5% 4% 1805.1
e226 22 30 IG 15 44 44 44 148 1% 84% 7% 5% 1800.5
israel 98 98 IG 2 101 119 118 163 4% 32% 51% 10% 42.1
agg 19 24 IG 56 43 43 43 164 3% 81% 9% 5% 1802.3
capri 23 53 D1 7 59 64 64 166 0% 90% 4% 3% 1801.8
wood1p 28 28 B 29 32 32 32 171 2% 73% 15% 7% 277.6
bandm 19 43 IG 11 58 58 58 180 1% 93% 4% 1% 1835.0
scrs8 17 43 IG 9 56 56 56 181 0% 92% 3% 2% 1802.1
ship04s 4 4 IB 1 8 8 8 4 5% 55% 31% 2% 10.8
scagr25 62 69 B 53 81 81 81 221 1% 52% 21% 23% 1814.7
scfxm1 10 30 IG 7 50 50 50 242 1% 87% 5% 5% 1803.7
stair 58 122 IG 3 123 133 133 246 0% 83% 10% 5% 1914.6
shell 4 4 B 17 8 8 8 252 3% 58% 16% 18% 187.8
standata 1 1 D1 1 17 1 1 258 0% 52% 35% 3% 5.3
sctap1 9 19 D1 13 20 20 20 269 1% 86% 6% 5% 1801.2
agg2 13 78 IG 5 110 112 112 280 0% 89% 5% 3% 1810.8
agg3 12 79 IG 6 92 116 116 282 0% 91% 4% 2% 1808.6
ship08s 4 4 B 3 10 10 10 284 3% 76% 14% 4% 144.0
boeing1 12 55 IG 2 56 56 56 284 1% 91% 3% 4% 1812.6
grow15 7 20 ID1 1 20 20 20 300 1% 84% 5% 8% 1817.1
fffff800 12 52 IG 6 79 104 104 306 0% 89% 5% 3% 1820.2
etamacro 6 83 IG 3 91 91 91 307 0% 93% 2% 2% 1832.6
ship04l 5 5 B 14 8 8 8 313 1% 66% 3% 25% 1727.2
gfrdpnc 4 4 BS 7 8 8 8 322 2% 65% 9% 21% 398.4
ship12s 3 3 IB 2 10 10 10 344 4% 61% 24% 6% 35.4
finnis 7 27 B 4 31 31 31 350 1% 90% 4% 3% 1842.8
pilot4 6 106 IG 1 106 109 109 352 0% 87% 6% 4% 1881.6
standmps 7 10 D1 4 11 11 11 360 2% 79% 9% 7% 1802.0
degen2 12 114 ID1 1 114 114 114 382 0% 92% 3% 2% 1922.1
scsd8 4 63 IG 2 85 98 89 397 1% 90% 2% 5% 1912.1
grow22 4 24 ID1 3 25 31 25 440 1% 83% 4% 11% 1808.9
bnl1 6 68 D1 1 68 68 68 448 0% 93% 2% 3% 2046.8
czprob 3 3 D1 1 3 3 3 475 4% 53% 35% 1% 42.0
scfxm2 5 65 IG 2 113 120 115 485 1% 80% 4% 13% 1849.6
perold 5 166 D1 1 166 166 166 500 0% 90% 3% 4% 2079.5
ship08l 4 5 D1 9 12 12 12 520 1% 48% 7% 40% 1807.1
maros 8 103 D1 1 103 103 103 545 1% 85% 4% 8% 1832.8
ganges 6 15 IB 3 36 39 39 576 2% 65% 10% 21% 1805.4
pilotwe 3 181 IG 2 182 186 182 613 0% 83% 3% 11% 1911.8
nesm 3 151 D1 2 152 152 152 622 1% 86% 4% 7% 1803.8
fit1p 470 470 IG 1 470 470 470 627 0% 92% 5% 0% 726.4
25fv47 4 190 IG 1 190 195 195 677 0% 90% 3% 5% 2102.4
ship12l 3 3 B 1 4 18 18 3 3% 57% 27% 8% 169.8
woodw 5 184 IG 2 186 187 187 711 0% 89% 4% 5% 2069.4
scfxm3 3 104 D1 2 105 105 105 728 0% 90% 3% 4% 1924.6
pilotja 3 226 ID1 1 226 226 226 745 0% 88% 4% 6% 1989.3
pilotnov 3 250 D1 1 250 250 250 783 0% 85% 3% 9% 1855.4
bnl2 3 199 D1 1 199 199 199 940 0% 81% 4% 11% 2051.2
sctap2 1 1 D1 2 2 4 4 2 0% 8% 16% 73% 834.5
truss 3 286 ID1 2 288 288 288 1000 0% 70% 4% 23% 2347.0∑

1455 4423 1026 4841 4987 4962 20893 1% 82% 6% 8% 85517.1

the solutions found at the root node as a measure of the method as a stand-alone
decomposition heuristic, the table shows pretty good results for the small problems.
For the larger instances the situation is a bit different. We detect larger gaps; see,
for instance, scfxm1 or ship12s. In fact, we have often observed in longer runs on
larger examples that the best solution could steadily be improved and the optimal

262 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

solution was found late. A reason might be that the heuristics are closely linked to the
LP-fixings and essentially always find the same solutions until the branching process
forces them strongly into another direction. We believe (and for some we know) that
many of the larger problems can be decomposed much better than the Ub-column
indicates and that there might be potential to further improve stand-alone primal
heuristics.

The answer to the final question of whether LP basis matrices are decomposable
into four blocks is both yes and no. Some like recipe or standata are decomposable
(only one row is in the border), but others are not; for example, israel: 98 out of 163
are in the border. However, the results leave the possibility that larger LP-matrices,
which are generally sparser than small ones, can be decomposed better so that we
cannot give a final answer to this question.

5.2. The Miplib problems. In this test series we examine whether matrices
arising from integer programs can be decomposed into (bordered) block diagonal form.
There are two applications here.

First, decomposing the original constraint matrix A of some general integer pro-
gram can be useful to tighten its LP-relaxations within a branch-and-cut algorithm.
The structure of the decomposed matrix is that of a multiple knapsack or general
assignment problem, and inequalities known for the associated polytopes (see Got-
tlieb and Rao [12], Ferreira, Martin, and Weismantel [8]) are valid for the MIP under
consideration. The first interesting case in this context involves two blocks, and we

set β := 2. We used κ := (#rows)·1.05
2 rounded up as the block capacity, which allows

a deviation of 10% of the actual block sizes in the decomposition.
Table 5.2 shows the results that we obtained for matrices of mixed integer pro-

grams taken from the Miplib2 and preprocessed with the presolver of the general
purpose MIP-solver SIP that is currently under development at the Konrad-Zuse-
Zentrum. We again considered all instances with up to 1,000 rows.

The picture here is a bit different from the one for the linear programming prob-
lems. Since the number of blocks is β = 2 instead of β = 4, the IP-formulation is
much smaller: The number of variables is only one half, the number of conflicting
assignments for two adjacent rows is only 4 instead of 12. In addition, there is much
less symmetry in the problem. Consequently, the number of cuts does not increase to
the same extent; the LPs are smaller and easier to solve (the percentage of LP-time in
column LP decreases). We can solve instances up to 200 rows and many of the small
ones within seconds. Note that β = 2, on the other hand, leads to doubled block
capacities. This means that it becomes much more difficult to separate inequalities
that have this number as their right-hand side and have a large or combinatorially
restrictive support like z-clique, bin-packing, or composition of clique inequalities; see
column BCC.

On the primal side the results are similar to the Netlib instances, but the heuristics
seem to perform a little better for two blocks than for four.

How decomposable are the MIP matrices? We see that not all, but many, of the
larger problems can be brought into bordered block diagonal form (the small ones
cannot). Of course, there are also exceptions like the air-problems which were ex-
pected to be not decomposable. Anyway, there seems to be potential for the multiple-
knapsack approach and further research in this direction, especially because there are
only very few classes of cutting planes known for general MIPs.

2Available from the URL http://www.caam.rice.edu:80/∼bixby/miplib/miplib.html.

DECOMPOSING MATRICES INTO BLOCKS 263

Table 5.2
Decomposing matrices of MIPs (part I).

Name Original Presolved Cuts B&B
rows col nz col nz Init Cov 2part BCC Pool Nod Iter

mod008 6 319 1243 1 6 23 0 0 0 0 1 1
stein9 13 9 45 9 45 50 115 64 1 23 16 34
p0040 13 40 70 30 60 16 0 0 0 0 1 1
p0033 15 32 97 11 41 41 23 3 0 1 1 3
gt1 15 46 92 46 92 19 262 87 0 61 13 33
flugpl 16 16 40 6 21 46 16 0 1 0 1 2
bm23 20 27 478 1 20 79 0 0 0 0 1 1
enigma 21 100 289 99 287 40 922 216 0 315 28 83
air01 23 771 4215 18 125 88 0 0 0 0 1 1
rgn 24 180 460 33 102 64 724 163 1 324 13 47
pipex 25 48 192 48 192 46 421 180 0 201 13 33
lseu 28 88 308 50 185 68 98 43 0 19 1 5
gt2 28 173 346 173 346 39 1333 340 0 290 28 86
sentoy 30 60 1800 1 30 119 0 0 0 0 1 1
stein15 36 15 120 15 120 142 17654 13145 0 26682 5458 7595
misc02 43 55 405 46 368 153 2455 1065 0 1612 34 110
sample2 45 64 140 55 131 81 976 171 1 331 7 29
air02 50 6774 61555 76 897 270 4 0 34 0 1 3
misc01 54 79 729 66 678 218 4556 2762 0 4861 367 581
mod013 62 96 192 48 144 254 1810 108 1 722 13 43
mod014 74 86 172 43 129 246 148 0 1 9 1 3
lp4l 85 1086 4677 791 3462 277 23233 16941 0 45877 1129 1779
bell5 87 101 257 73 215 171 2418 473 1 800 13 38
p0291 92 103 373 63 279 365 2943 366 0 757 19 54
misc03 96 154 2023 133 1934 360 50431 32949 1 85357 12745 15609
l152lav 97 1989 9922 695 3712 308 32271 23459 0 71535 1525 2276
khb05250 100 1299 2598 1275 2574 196 12634 1917 1 3421 73 227
harp2 100 1373 2598 1225 2450 116 250 158 0 3 1 4
bell4 101 114 293 84 248 191 7162 1041 1 2157 49 145
bell3a 107 121 311 89 263 203 2718 492 1 802 10 32
bell3b 107 121 311 89 263 203 2718 492 1 802 10 32
p0201 113 195 1677 177 1527 200 9230 2390 1 5757 46 128
stein27 118 27 378 27 378 353 280101 82635 3 382512 1753 3874
air03 124 10757 91028 656 5878 830 21108 9064 0 24479 130 377
p0808a 136 240 480 120 304 392 14298 1463 1 4711 49 175
mod010 146 2655 11203 1973 8404 453 53084 33036 1 118368 727 1170
blend2 169 319 1279 88 1039 515 0 0 0 0 4 4
noswot 182 127 732 50 455 745 84957 34285 2 533391 1006 1646
10teams 210 1600 9600 1600 9600 210 67719 25710 1 127827 130 418
misc07 224 254 8589 229 8474 894 10476 8516 0 13110 118 119
vpm1 234 378 749 203 574 906 18959 446 1 4060 34 117
vpm2 234 378 917 203 574 906 18959 446 1 4060 34 117
p0808acuts 246 240 839 230 828 612 15096 1731 1 3058 22 84
p0548 257 477 1522 250 1009 523 94934 20509 1 94842 175 462
misc05 266 131 2873 129 2869 581 16094 4604 0 5545 43 80
modglob 289 420 966 356 902 865 75843 1685 1 29153 148 422
gams 291 556 2431 540 2400 1622 41190 11 0 6897 169 295
fiber 297 1232 2644 418 1254 593 32222 7410 1 19253 31 123
p0282 305 202 1428 168 841 609 56425 17488 1 52114 91 252
stein45 331 45 1034 45 1034 992 25305 11011 0 22779 28 88
qnet1 o 369 1454 4040 837 2474 699 34759 9401 1 19450 37 111
qnet1 407 1454 4405 924 2843 653 24614 8345 1 16223 22 69
air05 408 7195 50762 3104 23458 600 5677 1286 0 207 13 19
fixnet3 478 878 1756 498 1374 1990 23068 145 1 959 34 83
fixnet4 478 878 1756 498 1374 1990 26165 192 1 1860 34 97
set1ch 477 697 1382 445 1130 1437 36069 2756 1 9871 25 89
fast0507 484 63001 406865 4927 31419 659 9549 4335 0 2135 10 24
set1al 492 712 1412 460 1160 1452 27188 2041 1 5790 22 65
set1cl 492 712 1412 460 1160 1452 26700 2001 1 5711 22 64
gen 622 797 2064 360 1303 2076 15337 304 1 3914 13 30
mod015 622 797 2064 360 1303 2076 14722 299 1 3398 13 28
danoint 664 521 3232 521 3232 1016 13895 5307 1 4119 7 24
misc06 696 1572 5126 949 3106 1298 15987 3428 1 4911 13 28
air06 763 8572 67571 4092 34800 1145 7622 3531 1 732 4 12
air04 782 8904 70189 4154 35000 1052 6242 3243 1 434 4 10
adrud 795 998 15876 495 8479 6342 3955 287 0 209 25 32∑

14814 134914 876632 35938 221378 43230 1395844 405976 75 1778801 26610 39627

The second application of matrix decomposition to integer programming is a new
branching rule. Decomposing the transposed constraint matrix will identify the vari-
ables in the border as linking variables that are interesting candidates for branching.
Since most MIP-codes create a binary searchtree, we try to decompose these matrices

into β := 2 blocks. As block capacity we use κ := (#rows)·1.05
2 rounded up to obtain

two subproblems of roughly the same size. The test set consists of all problems with
up to 1,000 rows (1,000 columns in the original problem).

Table 5.3 shows the results of our computations. Surprisingly, the performance
of our algorithm not only is similar to the “primal” case but in fact is even better!
We can solve almost all problems with up to 400 rows. One reason for this is that

264 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

Table 5.2
Decomposing matrices of MIPs (part II).

Name Best Solutions Heuristics at Root Time
Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

mod008 3 3 IG 1 3 3 3 6 0% 6% 6% 0% 0.1
stein9 7 7 IG 1 7 7 7 13 6% 34% 24% 6% 0.3
p0040 3 3 * 1 13 13 13 13 0% 0% 40% 0% 0.1
p0033 4 4 D1 1 4 4 4 15 0% 50% 16% 0% 0.1
gt1 6 6 D1 1 6 6 6 15 4% 47% 26% 4% 0.4
flugpl 1 1 ID2 1 3 3 1 16 0% 25% 0% 0% 0.0
bm23 10 10 IG 1 10 10 10 20 0% 22% 0% 11% 0.1
enigma 10 10 IG 1 10 10 10 21 7% 41% 28% 14% 2.0
air01 3 3 IG 1 3 3 3 23 0% 7% 0% 0% 0.4
rgn 5 5 IG 1 5 5 5 24 12% 48% 18% 10% 1.2
pipex 9 9 IG 1 9 9 9 25 12% 42% 23% 7% 0.8
lseu 7 7 D1 1 7 7 7 28 8% 30% 43% 4% 0.2
gt2 11 11 IG 1 11 11 11 28 8% 46% 28% 8% 2.8
sentoy 15 15 IG 1 15 15 15 30 0% 18% 12% 0% 0.2
stein15 18 18 IG 1 18 18 18 36 18% 27% 22% 16% 90.1
misc02 15 15 IG 9 17 21 21 43 6% 59% 18% 11% 9.2
sample2 4 4 D1 1 4 4 4 45 6% 61% 21% 6% 2.0
air02 22 22 IG 1 22 24 24 50 0% 6% 18% 0% 6.0
misc01 24 24 IG 17 25 26 26 54 7% 42% 29% 14% 31.4
mod013 6 6 D1 1 6 6 6 62 6% 68% 17% 3% 5.1
mod014 2 2 D1 1 2 2 2 74 5% 32% 35% 8% 0.3
lp4l 35 35 IG 487 39 41 41 85 4% 13% 27% 52% 481.2
bell5 4 4 ID1 4 6 7 7 87 5% 67% 15% 9% 10.6
p0291 7 7 D1 1 7 7 7 92 7% 52% 21% 15% 10.7
misc03 43 44 IG 9 46 46 46 96 5% 11% 39% 38% 1800.0
l152lav 36 36 IG 1102 43 43 43 97 3% 16% 24% 53% 754.5
khb05250 25 25 IG 1 25 25 25 100 3% 25% 42% 25% 89.0
harp2 17 17 D1 1 17 17 17 100 0% 2% 94% 0% 20.4
bell4 5 5 IB 4 11 11 11 101 6% 55% 17% 17% 31.7
bell3a 4 4 B 6 13 13 13 107 5% 63% 16% 12% 14.5
bell3b 4 4 B 6 13 13 13 107 5% 63% 15% 13% 14.6
p0201 21 21 IG 24 30 30 30 113 3% 64% 12% 19% 125.4
stein27 32 56 IG 1 56 56 56 118 12% 44% 34% 6% 1800.1
air03 49 49 IG 13 58 59 58 124 1% 57% 27% 12% 1146.7
p0808a 8 8 D1 1 8 8 8 136 6% 62% 16% 13% 83.2
mod010 47 59 IG 28 61 66 66 146 2% 24% 25% 46% 1802.5
blend2 10 10 IG 1 10 10 10 169 2% 57% 22% 1% 1.7
noswot 10 15 IG 10 37 42 42 182 10% 47% 33% 6% 1800.4
10teams 43 90 D1 1 90 90 90 210 3% 58% 30% 6% 1804.0
misc07 57 93 IG 11 101 107 107 224 0% 23% 22% 52% 1836.5
vpm1 7 7 IG 1 7 14 14 234 3% 80% 9% 5% 322.7
vpm2 7 7 IG 1 7 14 14 234 3% 79% 9% 6% 317.4
p0808acuts 8 8 D1 1 8 8 8 246 4% 65% 12% 17% 231.7
p0548 25 49 IG 35 68 68 68 257 5% 69% 12% 12% 1800.1
misc05 28 116 IG 13 120 126 126 266 1% 89% 5% 3% 1835.0
modglob 8 8 IG 18 12 12 12 289 3% 74% 11% 9% 1512.6
gams 15 21 B 12 36 36 36 291 1% 84% 9% 3% 1801.1
fiber 9 22 ID1 3 38 38 38 297 2% 86% 4% 6% 1807.5
p0282 23 36 D1 1 36 36 36 305 3% 71% 9% 14% 1803.2
stein45 11 154 IG 2 157 157 157 331 1% 89% 5% 2% 1820.3
qnet1 o 12 28 D1 1 28 28 28 369 2% 74% 6% 15% 1812.7
qnet1 8 35 D1 1 35 35 35 407 2% 77% 5% 14% 1801.5
air05 19 189 IG 1 189 194 194 408 0% 67% 20% 10% 1868.9
fixnet3 12 13 D1 1 13 13 13 478 1% 88% 4% 4% 1809.4
fixnet4 13 13 D1 1 13 13 13 478 1% 85% 5% 6% 1789.9
set1ch 7 12 D1 1 12 12 12 477 3% 72% 7% 16% 1804.4
fast0507 5 183 IG 3 217 217 217 484 1% 51% 15% 26% 1800.1
set1al 6 12 D1 1 12 12 12 492 2% 78% 5% 13% 1816.9
set1cl 6 12 D1 1 12 12 12 492 2% 77% 5% 14% 1805.3
gen 5 19 ID1 1 19 19 19 622 1% 68% 5% 24% 1809.8
mod015 5 19 ID1 1 19 19 19 622 1% 68% 4% 24% 1807.0
danoint 4 188 ID1 2 189 189 189 664 1% 77% 6% 14% 1861.4
misc06 4 70 ID1 1 70 70 70 696 2% 62% 7% 27% 1835.3
air06 3 354 IG 2 356 363 362 763 1% 43% 35% 18% 1934.3
air04 3 355 IG 1 355 355 355 782 0% 34% 26% 37% 1913.6
adrud 10 32 D1 1 32 32 32 795 0% 77% 10% 10% 1835.6∑

905 2729 1863 2931 2990 2986 14814 2% 63% 15% 17% 56337.8

MIPs tend to have sparse columns but not necessarily sparse rows. Dense columns
in the transposed matrices (dense rows in the original ones) leave less freedom for
row assignments; there are fewer possibilities for good decompositions, and the LP-
relaxations are tighter than in the primal case.

For the reason just mentioned we expected that the transposed problems would be
less decomposable than the originals, and it came as a surprise to us that the “dual”
problems decompose nearly as well as the primal ones. The transposed matrices have
on average about 60 rows in the border, in comparison to only 40 for the originals.
However, the percentage of rows in the border (i.e., the sum of the Ub column divided
by the sum of the rows column) is 18.4% (12.8%) in the primal and 20.6% (25.3%)

DECOMPOSING MATRICES INTO BLOCKS 265

Table 5.3
Decomposing transposed matrices of MIPs (part I).

Name Original Presolved Cuts B&B
rows col nz col nz Init Cov 2part BCC Pool Nod Iter

stein9 9 13 45 1 9 35 0 0 0 0 1 1
stein15 15 36 120 1 15 59 0 0 0 0 1 1
flugpl 16 16 40 11 30 36 16 2 1 0 1 2
bm23 27 20 478 3 78 109 0 0 0 0 1 1
stein27 27 118 378 1 27 107 0 0 0 0 1 1
p0033 32 15 97 9 59 120 205 51 0 31 7 16
p0040 40 13 70 13 70 100 47609 7530 10 27421 1522 3361
stein45 45 331 1034 1 45 179 0 0 0 0 1 1
gt1 46 15 92 15 92 46 119471 29195 15 71563 4924 8786
pipex 48 25 192 19 96 48 142 76 16 0 4 7
misc02 55 43 405 18 229 279 547 517 0 562 25 60
sentoy 60 30 1800 1 60 239 0 0 0 0 1 1
sample2 64 45 140 45 140 82 2223 638 1 1308 13 45
misc01 79 54 729 23 359 435 2138 1121 0 1229 28 79
mod014 86 74 172 74 172 172 6137 697 1 1927 28 109
lseu 88 28 308 20 198 332 10336 3532 0 8335 76 216
mod013 96 62 192 62 192 192 448495 45097 11 171613 4711 8604
enigma 100 21 289 12 199 375 3695 1802 0 1575 40 110
bell5 101 87 257 87 257 185 5598 969 1 1645 40 108
p0291 103 92 373 65 319 261 7980 2306 0 3581 61 170
bell4 114 101 293 101 293 204 11829 2005 1 3979 109 277
bell3a 121 107 311 107 311 217 4322 942 1 1294 10 46
bell3b 121 107 311 107 311 217 4322 942 1 1294 10 46
noswot 127 182 732 103 531 427 55038 4869 1 12790 778 1605
misc05 131 266 2873 79 535 289 255523 30000 0 124752 2236 3462
misc03 154 96 2023 39 769 840 3666 4828 0 8008 328 565
gt2 173 28 346 28 346 173 173371 81355 37 280323 1807 2468
rgn 180 24 460 24 460 730 38963 6126 1 22421 112 347
p0201 195 113 1677 77 699 579 181201 53287 74 223647 625 1295
p0282 202 305 1428 189 1196 407 4311 1449 0 479 13 36
p0808a 240 136 480 136 480 480 106598 14308 1 70632 151 507
p0808acuts 240 246 839 191 729 674 107094 7435 1 58191 202 525
misc07 254 224 8589 53 1367 1456 11803 14984 0 28234 757 1117
blend2 319 169 1279 160 478 955 103558 8951 1 21986 226 680
vpm1 378 234 749 234 749 784 37116 4150 1 14141 37 136
vpm2 378 234 917 66 581 1072 25484 2483 1 6355 19 87
modglob 420 289 966 289 966 1014 42137 6770 1 19025 40 116
p0548 477 257 1522 153 823 1525 36798 3048 1 8883 46 96
danoint 521 664 3232 544 2336 649 21785 10004 1 12677 13 47
gams 556 291 2431 91 1096 4003 14962 2869 0 4200 19 35
set1ch 697 477 1382 477 1382 1657 20852 1581 1 2680 10 34
set1al 712 492 1412 492 1412 1672 16354 1713 1 2886 7 26
set1cl 712 492 1412 492 1412 1672 16354 1713 1 2886 7 26
air01 771 23 4215 22 4185 7186 0 0 0 0 4 2
gen 797 622 2064 298 1416 2113 16984 1847 1 2813 10 26
mod015 797 622 2064 298 1416 2113 16984 1847 1 2813 10 26
fixnet3 878 478 1756 478 1756 1638 13145 3715 1 1757 7 18
fixnet4 878 478 1756 478 1756 1638 13130 3611 1 2272 7 18
fixnet6 878 478 1756 478 1756 1638 10505 2989 1 901 7 15
adrud 998 795 15876 1 998 3991 0 0 0 0 1 1∑

14556 10168 72362 6766 35191 45404 2018781 373354 188 1233109 19094 35364

in the dual case (the values in parentheses count only instances that were solved
to optimality). Note, however, that the dual values are biased heavily by the (not
decomposable) adrud instance. An explanation may be that many of these problems
contain a few important global variables that migrate into the border.

We used optimal decompositions of transposed MIP matrices to test our idea to
branch on variables in the border first. The computations were performed using the
above mentioned MIP-solver SIP. As our test set we selected all problems that are not
extremely easy (less than 10 CPU seconds for SIP) and that decompose into bordered
block diagonal form with a “relatively small” border: mod014, bell3a, bell3b, bell4,
bell5, noswot, blend2, vpm1, vpm2, set1ch, set1al, and set1cl. Unfortunately, and
contrary to what we had expected, it turned out that mod014, blend2, vpm1, vpm2,
set1ch, set1al, and set1cl have only continuous variables in the border that do not
qualify for branching variables! All border variables in noswot are integer variables;
in the bell-examples 1 (2) out of 5 (6) are integer variables. We tried to extend
the test set by decomposing only the integer part of all these matrices but it failed,
because the integer parts turned out to have block diagonal form, i.e., no variables in
the border.

For the remaining four bell* and the noswot example, we performed the follow-
ing tests. The MIPs were solved with SIP using four different branching strategies.

266 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

Table 5.3
Decomposing transposed matrices of MIPs (part II).

Name Best Solutions Heuristics at Root Time
Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

stein9 5 5 IG 1 5 5 5 9 0% 9% 0% 0% 0.1
stein15 8 8 IG 1 8 8 8 15 0% 18% 0% 0% 0.2
flugpl 1 1 IG 1 1 1 1 16 0% 8% 8% 0% 0.1
bm23 13 13 IG 1 13 13 13 27 0% 25% 5% 5% 0.2
stein27 13 13 IG 1 13 13 13 27 0% 23% 4% 0% 0.2
p0033 6 6 IG 1 6 6 6 32 9% 46% 16% 5% 0.5
p0040 13 13 IG 1 13 14 14 40 18% 38% 27% 8% 90.5
stein45 22 22 IG 1 22 22 22 45 2% 27% 8% 0% 0.4
gt1 16 16 IG 20 18 22 22 46 20% 30% 33% 8% 283.8
pipex 20 20 IG 2 21 22 22 48 2% 22% 33% 8% 0.4
misc02 27 27 D1 1 27 27 27 55 7% 43% 27% 10% 3.8
sentoy 29 29 IG 1 29 29 29 60 1% 33% 9% 1% 0.5
sample2 4 4 * 9 6 6 6 64 7% 63% 18% 6% 6.6
misc01 38 38 IG 1 38 38 38 79 7% 44% 32% 10% 10.3
mod014 8 8 ID2 1 8 9 8 86 9% 52% 23% 11% 16.7
lseu 26 26 * 71 36 42 39 88 7% 64% 15% 10% 65.4
mod013 14 20 B 32 23 23 23 96 14% 25% 47% 9% 1800.2
enigma 44 44 IG 12 46 48 48 100 6% 40% 37% 11% 19.4
bell5 5 5 IG 4 9 9 9 101 7% 56% 21% 12% 21.5
p0291 21 21 IG 5 24 29 29 103 4% 70% 11% 12% 78.6
bell4 6 6 IG 6 9 9 9 114 6% 58% 17% 15% 64.5
bell3a 5 5 ID1 1 5 5 5 121 5% 63% 17% 11% 23.8
bell3b 5 5 ID1 1 5 5 5 121 5% 64% 17% 10% 23.7
noswot 15 15 IG 2 19 19 19 127 6% 40% 21% 28% 337.5
misc05 35 49 IG 64 53 58 58 131 8% 38% 30% 19% 1800.0
misc03 73 73 IG 3 74 74 74 154 3% 28% 38% 19% 159.2
gt2 57 67 IG 158 76 83 83 173 7% 56% 23% 10% 1800.2
rgn 20 20 IG 1 20 78 42 180 5% 67% 14% 11% 474.6
p0201 42 76 IG 192 86 93 93 195 8% 54% 26% 8% 1800.0
p0282 20 20 ID1 1 20 20 20 202 2% 74% 9% 13% 122.7
p0808a 11 18 IG 12 32 36 32 240 5% 76% 12% 5% 1802.1
p0808acuts 12 17 ID2 28 36 36 36 240 5% 69% 12% 11% 1800.7
misc07 119 119 IG 1 119 121 121 254 2% 18% 40% 29% 939.8
blend2 38 38 D1 1 38 38 38 319 8% 33% 32% 22% 753.6
vpm1 7 7 IG 8 51 61 61 378 3% 80% 7% 7% 1402.3
vpm2 7 7 IG 3 21 69 69 378 3% 76% 8% 11% 982.0
modglob 9 29 IG 12 39 56 39 420 3% 79% 7% 8% 1807.3
p0548 29 49 IG 10 79 116 116 477 3% 48% 9% 39% 1803.7
danoint 6 210 IG 4 219 238 219 521 2% 79% 8% 9% 1808.8
gams 47 170 IG 1 170 170 170 556 2% 65% 12% 19% 1800.8
set1ch 4 33 IG 4 42 91 91 697 2% 68% 6% 22% 1843.7
set1al 3 40 IG 2 64 101 101 712 2% 76% 5% 15% 1813.6
set1cl 3 40 IG 2 64 101 101 712 2% 76% 5% 15% 1800.2
air01 184 367 IG 1 367 367 367 771 0% 95% 1% 1% 1893.0
gen 4 70 ID2 1 70 84 70 797 2% 70% 7% 19% 1821.7
mod015 4 70 ID2 1 70 84 70 797 2% 70% 7% 19% 1853.2
fixnet3 3 190 IG 1 190 221 209 878 2% 72% 6% 17% 1850.5
fixnet4 3 197 IG 2 209 221 209 878 2% 77% 6% 13% 1873.8
fixnet6 3 186 IG 2 209 221 209 878 1% 80% 5% 12% 2087.3
adrud 475 475 IG 1 475 475 475 998 0% 75% 17% 0% 750.9∑

1582 3007 693 3297 3737 3593 14556 4% 66% 13% 14% 41494.7

Table 5.4
Comparing integer programming branching rules.

Name SIP without MAD SIP with MAD CPLEX
Gap Nodes Time Gap Nodes Time Gap Nodes Time

bell3a 96.6% 100000 236.0 67.9% 100000 288.2 0.0% 42446 54.9
bell3b - 100000 142.1 - 100000 120.3 3.8% 100000 120.6
bell4 - 100000 137.4 2.1% 100000 164.5 3.2% 100000 119.0
bell5 6.3% 100000 184.0 2.7% 100000 153.6 6.1% 100000 113.6
noswot - 100000 219.8 - 100000 195.2 10.3% 100000 228.1

Maximum infeasibility branching

bell3a 0.0% 33350 92.1 0.0% 55763 221.4 0.0% 19100 108.9
bell3b 0.0% 25909 308.4 0.0% 25706 301.4 0.0% 6537 70.8
bell4 1.5% 91240 1800.0 2.2% 96628 1800.0 0.0% 47001 710.5
bell5 0.1% 100000 806.4 0.1% 100000 824.0 0.1% 100000 586.9
noswot 27.9% 63474 1800.0 20.9% 90743 1800.0 7.5% 43038 1800.1

Strong branching

Maximum infeasibility branching (i.e., branching on a variable that is closest to 0.5)
and strong branching (cf. [1]) are two standard branching strategies for solving mixed
integer programs. The other two branching rules result from extending these two
methods by our idea of branching on a variable that belongs to the border first. The
limit of the computation was 1,800 CPU seconds or 100,000 branch-and-bound nodes,
whatever came first.

Table 5.4 summarizes our results. The version without MAD (MAD stands for

DECOMPOSING MATRICES INTO BLOCKS 267

Table 5.5
Decomposing Steiner-tree packing problems.

Name Original Presolved Cuts B&B
rows col nz col nz Init Cov 2part BCC Pool Nod Iter

g353 81 48 276 48 276 336 19768 6311 240 32467 121 385
g444 114 39 253 37 251 756 11324 4251 156 22828 56 195
d677 324 183 984 174 975 3533 13005 7370 56 54768 25 59
d688 383 230 1350 223 1341 4506 10719 6871 37 32015 19 40∑

902 500 2863 482 2843 9131 54816 24803 489 142078 221 679

Name Best Solutions Heuristics at Root Time
Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

g353 16 16 IG 4 23 23 23 81 5% 77% 11% 3% 180.7
g444 13 13 B 36 22 22 22 114 3% 80% 11% 3% 186.9
d677 7 79 IG 2 98 98 98 324 0% 97% 1% 0% 11168.4
d688 7 108 IG 3 134 140 134 383 0% 97% 1% 0% 10901.3∑

43 216 45 277 283 277 902 0% 97% 1% 0% 22437.2

the MAtrix Decomposition) uses the original SIP-code and the original branching
rules; the MAD version branches on a variable from the border first. For comparison,
we also list the results that can be obtained using CPLEX. The column labeled gap
reports the duality gap on termination (- means that no feasible solution was found).

The results are mixed. When strong branching is used, CPLEX is best overall and
SIP with MAD is basically always worst (note that for example noswot, the value of
the LP-relaxation already provides the value of the optimal integer solution, and so
the main difficulty here is to find a good feasible solution). If we branch on a most
infeasible variable the situation changes a bit in favor of SIP with MAD. In fact, there
are two examples where this strategy performs best in terms of the gap. Of course,
our limited tests cannot provide a definite evaluation of our idea to branch on border
variables, but we think that the results show that this idea might have the potential
to become a good branching strategy for certain MIP problems.

5.3. The Steiner-tree packing problems. We also tested some problem in-
stances for which we know in advance that they have bordered block diagonal from.
The problems are integer programming formulations for Steiner-tree packing prob-
lems, a problem where, in some given graph, edge sets (so-called Steiner-trees), each
spanning some given subset of the node set, have to be simultaneously packed in the
graph under capacity restrictions on the edges, see Grötschel, Martin, and Weisman-
tel [14]. Unfortunately, our branch-and-cut algorithm performs very badly on these
examples, although we extended the time limit to 10,800 CPU seconds; see Table 5.5.
One reason for that might be that the rows that are supposed to be in the border have
less nonzero entries than those that are expected to be in the blocks. The heuristics
and the LP solutions, however, tend to put the rows into the border that have the
most nonzeros entries. The “natural decompositions” result in borders of sizes 22, 24,
71, and 82 for problems g353, g444, d677, and d688, respectively.

5.4. The equipartition problems. Our last test set consists of equipartition
problems introduced by Nicoloso and Nobili [22]. These have been generated ran-
domly prescribing a certain matrix density. We have modified our code to handle the
additional equipartition constraint. The results are given in Table 5.6: We can solve
all problems within 10 CPU seconds, and as was already known from Nicoloso and
Nobili [22], random matrices of this type do not decompose well.

6. Summary and conclusions. We have shown in this paper that it is possible
to decompose typical linear and integer programming matrices with up to 200 and
more rows to proven optimality using a cutting plane approach based on polyhedral

268 R. BORNDÖRFER, C. E. FERREIRA, AND A. MARTIN

Table 5.6
Equipartitioning matrices.

Name Original Presolved Cuts B&B
rows col nz col nz Init Cov 2part BCC Pool Nod Iter

m22 9 6 21 6 21 30 37 19 0 12 16 31
m25 9 6 23 5 22 44 6 20 0 18 13 24
m33 14 9 40 8 37 38 210 90 0 68 13 33
m34 14 9 41 9 41 53 181 111 0 69 22 53
m41 18 9 43 9 43 41 654 241 1 253 28 76
m44 18 9 55 8 51 89 333 122 0 133 25 56
m51 21 14 61 12 58 52 977 349 1 441 52 143
m54 21 14 90 12 83 93 424 211 0 278 34 77
m61 21 17 69 15 65 52 742 204 0 245 28 73
m64 21 17 108 15 100 106 417 285 0 376 40 89
m71 28 15 71 14 69 64 2353 713 0 1171 76 196
m74 28 15 128 14 122 135 823 575 0 714 88 171
m81 28 21 86 20 85 74 3169 979 0 1717 268 476
m84 28 21 177 19 167 172 475 392 617 347 49 116∑

278 182 1013 166 964 1043 10801 4311 619 5842 752 1614

Name Best Solutions Heuristics at Root Time
Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

m22 5 5 G 1 5 9 9 5 6% 46% 20% 6% 0.1
m25 7 7 G 2 9 9 9 9 16% 33% 8% 8% 0.1
m33 6 6 G 4 8 10 10 8 8% 40% 17% 20% 0.3
m34 8 8 G 1 8 10 10 8 23% 28% 21% 4% 0.5
m41 8 8 G 1 8 14 14 10 10% 57% 12% 6% 0.9
m44 10 10 G 1 10 10 10 10 11% 35% 35% 5% 0.6
m51 11 11 G 11 15 15 15 15 9% 53% 18% 8% 2.1
m54 13 13 G 6 15 15 15 15 8% 40% 23% 17% 1.3
m61 9 9 G 4 11 11 11 11 14% 49% 22% 4% 1.3
m64 15 15 G 5 17 17 17 17 10% 33% 23% 22% 1.6
m71 12 12 G 5 16 16 16 16 13% 54% 17% 7% 5.0
m74 20 20 G 1 20 22 22 20 8% 33% 14% 35% 4.2
m81 14 14 IG 3 16 16 16 16 12% 47% 18% 10% 7.7
m84 22 22 * 18 28 28 28 28 7% 28% 23% 35% 3.4∑

160 160 63 186 202 202 188 11% 43% 19% 16% 29.2

investigations of the matrix decomposition problem. It turned out that a substantial
number of, but not all, LPs decompose well into four blocks, while even many MIPs,
as well as some of their transposes, can be brought into bordered block diagonal form
with two blocks. We think that these results show a significant potential for methods
that can exploit this structure to solve general MIPs. Our decomposition heuristics
work well for small instances, but there is room for improvement for problems of large
scale, in particular, if more than two blocks are considered.

Acknowledgments. We are grateful to the Fundação Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (CAPES) and the German Academic Ex-
change Service (DAAD) for supporting this work. We enjoyed the cooperation a lot
and intend to continue. We want to thank Robert E. Bixby and CPLEX Optimiza-
tion, Inc., who made the newest β-versions of CPLEX and the CPLEX Callable Library
available to us, and Paolo Nobili for sending a collection of his equipartition problems.

REFERENCES

[1] R. E. Bixby, private communication.
[2] C. C. Carøe and R. Schultz, Dual Decomposition in Stochastic Integer Programming,

Preprint SC 96-46, Konrad Zuse Zentrum für Informationstechnik Berlin, 1996; also avail-
able online from http://www.zib.de/ZIBbib/Publications; Oper. Res. Lett., submitted.

[3] Y. Crama and M. Oosten, Models for machine-part grouping in cellular manufacturing,
Internat. J. Prod. Res., 34 (1996), pp. 1693–1713.

[4] D. Dentcheva, R. Gollmer, A. Möller, W. Römisch, and R. Schultz, Solving the unit
commitment problem in power generation by primal and dual methods, in Proc. 9th Conf.
of the European Consortium for Math. in Industry (ECMI), Copenhagen, 1996, M. Bendsøe
and M. Sørensen, eds., Teubner Verlag, Stuttgart, 1997.

[5] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, Oxford Univ. Press,
Oxford, UK, 1986.

DECOMPOSING MATRICES INTO BLOCKS 269

[6] M. Ehrgott, Optimierungsprobleme in Graphen unter Kardinalitätsrestriktionen, Master’s
thesis, Dept. of Mathematics, Univ. Kaiserslautern, Kaiserslautern, Germany, 1992.

[7] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey, The node
capacitated graph partitioning problem: A computational study, Math. Programming, 81
(1998), pp. 229–256.

[8] C. E. Ferreira, A. Martin, and R. Weismantel, Solving multiple knapsack problems by
cutting planes, SIAM J. Optim., 6 (1996), pp. 858–877.

[9] C. Fiduccia and R. Mattheyses, A linear-time heuristic for improving network partitions,
Proc. 19th IEEE Design Automation Conference, Las Vegas, NV, 1982, pp. 175–181.

[10] K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, B. W. Peyton, R. J. Plemmons, C. H.
Romine, A. H. Sameh, and R. G. Voigt, Parallel Algorithms for Matrix Computations,
SIAM, Philadelphia, 1990.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, 1979.

[12] E. Gottlieb and M. Rao, The generalized assignment problem: Valid inequalities and facets,
Math. Programming, 46 (1990), pp. 31–52.

[13] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

[14] M. Grötschel, A. Martin, and R. Weismantel, Packing Steiner trees: A cutting plane
algorithm and computational results, Math. Programming, 72 (1996), pp. 125–145.

[15] A. Gupta, Fast and Effective Algorithms for Graph Partitioning and Sparse Matrix Ordering,
Tech. report RC 20496, IBM T. J. Watson Res. Center, Yorktown Heights, NY, 1996.

[16] C. Helmberg, B. Mohar, S. Poljak, and F. Rendl, A spectral approach to bandwidth and
separator problems in graphs, Linear and Multilinear Algebra, 39 (1995), pp. 73–90.

[17] K. L. Hoffman and M. W. Padberg, Solving airline crew-scheduling problems by branch-
and-cut, Mgmt. Sci., 39 (1993), pp. 657–682.

[18] ILOG CPLEX Division, Using the CPLEX Callable Library, Incline Village, NV, 1997. Infor-
mation available online from http://www.cplex.com.

[19] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing,
Benjamin-Cummings, Menlo Park, CA, 1994.

[20] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, B.G. Teubner,
Stuttgart, and John Wiley & Sons, Chichester, 1990.

[21] A. Löbel, Optimal Vehicle Scheduling in Public Transit, Shaker Verlag, Aachen, 1998.
[22] S. Nicoloso and P. Nobili, A set covering formulation of the matrix equipartition problem,

in System Modelling and Optimization, Proc. 15th IFIP Conf., Zürich, Sept. 1991, P. Kall,
ed., Springer-Verlag, Berlin, Heidelberg, New York, 1992, pp. 189–198.

[23] P. Nobili and A. Sassano, Facets and lifting procedures for the set covering polytope, Math.
Programming, 45 (1989), pp. 111–137.

[24] M. W. Padberg, On the facial structure of set packing polyhedra, Math. Programming, 5
(1973), pp. 199–215.

[25] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of
graphs, SIAM J. Matrix Anal., 11 (1990), pp. 430–452.

[26] E. Rothberg and B. Hendrickson, Sparse Matrix Ordering Methods for Interior Point Linear
Programming, Tech. report SAND96-0475J, Sandia National Laboratories, Albuquerque,
NM, 1996.

[27] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, Chichester,
1986.

[28] G. Sheble and G. Fahd, Unit commitment literature synopsis, IEEE Trans. Power Systems,
9 (1994), pp. 128–135.

SEQUENTIAL STOPPING RULES FOR RANDOM OPTIMIZATION
METHODS WITH APPLICATIONS TO

MULTISTART LOCAL SEARCH∗

WILLIAM E. HART†

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 270–290

Abstract. Sequential stopping rules are described for several stochastic algorithms that estimate
the global minimum of a function. Stopping rules are described for pure random search and stratified
random search. These stopping rules use an estimate of the probability measure of the ε-close points to
terminate these algorithms when a specified confidence has been achieved. Numerical results indicate
that these stopping rules require fewer samples and are more reliable than the previous stopping rules
for these algorithms. These stopping rules can also be applied to multistart local search and stratified
multistart local search. Numerical results on a standard test set show that these stopping rules can
perform as well as Bayesian stopping rules for multistart local search.

Key words. optimization, pure random search, stratified random search, stopping rules, multi-
start

AMS subject classifications. 65K10, 60F99, 62L15

PII. S1052623494277317

1. Introduction. Consider the global optimization problem in which we search
for

y∗ = min
x∈Ω

f(x),

where f : Ω → R satisfies some regularity conditions and the global minimum y∗ is
assumed to be finite. In practice, we often need to account for the fact that numerical
procedures can only produce approximate answers. Hence we consider the problem
solved if, given ε > 0, we find a solution x ∈ Ωε, where

Ωε = {x | x ∈ Ω, f(x) ≤ y∗ + ε}.

Törn and Žilinskas [18] describe a variety of methods that have been used to gen-
erate sequential stopping rules for stochastic global optimization algorithms, particu-
larly pure random search (PRS) and multistart local search (MS). PRS selects points
(ξ1, . . . , ξn) from a common distribution in the domain Ω and estimates the global
optimum with Yn = min{f(ξ1), . . . , f(ξn)}. Only mild assumptions need to be made

about f and Ω to ensure that Yn
a.s.→ y∗. MS selects points (ξ1, . . . , ξn) from a common

distribution and estimates the global optimum with Yn = min{f(L(ξ1)), . . . , f(L(ξn))},
where L : Ω → Ω is a local search method that finds a local minimum given a point
in the search domain.

Using ideas introduced by Zieliński [21], Boender and Rinnooy Kan [4] present a
Bayesian decision-theoretic framework that is used to define stopping rules for MS.
This approach assumes that the number of local minima and relative proportions

∗Received by the editors November 14, 1994; accepted for publication (in revised form) August
19, 1997; published electronically December 23, 1998. This work was supported by the Applied
Mathematical Sciences program, U.S. Department of Energy, Office of Energy Research, and was
performed at Sandia National Laboratories, operated for the U.S. Department of Energy under
contract DE-AC04-94AL85000.

http://www.siam.org/journals/siopt/9-1/27731.html
†Sandia National Labs, P.O. Box 5800, Albuquerque, NM 87185-1110 (wehart@cs.sandia.gov).

270

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 271

of the local minima are random variables for which an a priori distribution can be
specified. A uniform prior distribution is chosen for these random variables, which is
appropriate when the user knows little or nothing about the values of the random
variables [4]. This framework uses a cost structure that associates a penalty for not
sampling before all local optima have been sampled. Extensions proposed by Piccioni
and Ramponi [15] and Boender and Rinnooy Kan [5] take into account the values
of the objective function at the local optima. Betrò and Schoen [1, 2, 3] propose a
related framework that models the function to be optimized as a stochastic process.

An alternative approach used to design stopping rules for stochastic optimization
algorithms are asymptotic analyses of sampling statistics. The analysis of these rules
assumes that a large number of samples have been collected, which may affect their
empirical performance. However, these stopping rules do not need to make assump-
tions about the a priori distributions of parameters of the objective function.

Sequential stopping rules for PRS have been defined using statistics of extreme
values to construct a posteriori confidence intervals for the estimate of the global
optimum, which are used to stop the search [6, 7, 9, 10, 19]. These methods require
only that f be properly regularized, but most are applicable only when there is a
unique global optimum. Dorea [11] develops stopping rules for PRS using estimates
of pε, the probability that the search procedure samples a point in Ωε in a single step.
This estimator of pε is more conservative than the standard estimator p̄ε, the fraction
of points for which Yi ≤ Yn + ε. Thus Dorea’s stopping rules require more samples to
terminate than those based on p̄ε. However, the estimator proposed by Dorea is much
easier to compute; to update p̄ε all points for which Yi ≤ Yn+ε must be maintained in
a sorted order, while updating Dorea’s estimator, requires only maintaining a subset
of these points in the order in which they are sampled (so no ordering is required).
Dorea’s stopping rules require no assumptions about f beyond the conditions required
to insure that Yn

a.s.→ y∗.
In this paper we use asymptotic analyses of sampling statistics to derive stop-

ping rules that are closely related to those described by Dorea [11]. We describe an
alternative method to approximate pε that is nearly as inexpensive as the method
described by Dorea. Further, we propose modified stopping rules that insure that n
is large enough for the estimate of pε to be accurate. These modifications overcome
a number of weaknesses of Dorea’s stopping rules, including the failure to reliably
terminate for certain functions even if p̄ε is used to estimate pε.

We then generalize these modified stopping rules to the stratified random search
algorithm described by Ermakov, Zhigyavskii, and Kondratovich [12]. Stratified ran-
dom search (SRS) partitions the search domain Ω into a finite set of subdomains, and
samples are selected from every subdomain according to a fixed distribution. A com-
parison between the stopping rules for PRS and SRS describes conditions for which
SRS terminates before PRS. Finally, we describe how these stopping rules can be used
for MS and the stratified multistart algorithm (SMS) [20, 14]. Like SRS, SMS applies
local search to points that are selected using partitioned random search.

2. PRS.

2.1. Review. Dorea [11] considers the following variant of PRS.
Algorithm A. Let ξ1, ξ2, . . . be i.i.d. random vectors with a common distribution

G on Ω. Let (X1, Y1), (X2, Y2), . . . be defined by
Step 1. X1 = ξ1 and Y1 = f(X1)
Step k+1. if f(ξk+1) ≤ Yk then Xk+1 = ξk+1 and Yk+1 = f(Xk+1)

else Xk+1 = Xk and Yk+1 = Yk

272 WILLIAM E. HART

Dorea describes stopping rules for Algorithm A that depend on pε = G(Ωε). This
value can be estimated by the fraction of samples that are within ε of the best function
value sampled. Dorea’s stopping rules use a lower bound on this fraction that is easily
computed, ρn(ε)/n. Formally,

ρn(ε) = sup{k | τk > 0, Yτk ≤ Yn + ε},
and for j = 1, . . . , n− 1, we define

τj+1 = τj+1(n) = sup{k | 1 ≤ k < τj , Yk 6= Yτj}
= 0 if sup{k | 1 ≤ k < τj , Yk 6= Yτj} = ∅

with τ1(n) = n. The τi(n) are indices that indicate the samples just before a sample
with lower function value occurred. That is, Yτi+1(n) > Yτi+1(n)+1 = · · · = Yτi(n)−1 =
Yτi(n).

Because ρn(ε) is defined in terms of an index of τi, it may underestimate the
number of samples that are within ε of the best. For example, suppose that samples
are chosen with values 4,2,3 and 1. Then τ1 = 4, τ2 = 2, and τ3 = 1. Thus ρn(2) = 2,
although the number of samples within two of the best samples is three.

Dorea defines the following stopping rules for Algorithm A. Let ε be the desired
accuracy of the best solution found and let 1−β be the required probability of success.

Stopping rule 1. For given ε > 0 and β ∈]0, 1[, terminate Algorithm A
1a) for n ≥ 2 such that

1−
(

1− ρn(ε)

n

)n
≥ 1− β;

1b) for n ≥ 2 whenever a value Yn−m has been repeated for m steps, so
Yn−m = Yn−m+j , j = 1, . . . ,m, and

1−
(

1− ρn−m(ε)

n−m
)n
≥ 1− β.

Dorea shows that if rule 1a is applied then

P (Yn − y∗ ≤ ε) >∼ 1− β,
and if rule 1b is applied then

P (Yn − y∗ ≤ ε | Yn−m = Yn−m+j , j = 1, . . . ,m) >∼ 1− β.
Dorea justifies these stopping rules by showing that for sufficiently large n, ρn(ε)/n is
less than pε with high probability. Table 1 shows the performance of PRS for stopping
rules 1a and 1b when applied to f(x) = x. If these stopping rules worked perfectly,
then the percentage of sequences that were terminated would equal β in each column
of Table 1.

Unfortunately, these empirical results do not generally confirm this prediction.
Only rule 1a comes close when ε is very small. There are several reasons for this.
First, ρn(ε)/n may severely underestimate pε, thereby forcing PRS to search much
longer than necessary to find an ε-close point. For example, consider f(x) and suppose
ξ1 = ε. For small ε, the probability of sampling a point less than ξ1 is small. However,
for small β rule 1a will not terminate until at least one other point less than ξ1 is

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 273

Table 1
Performance of PRS with stopping rules 1a and 1b on f(x) = x for different values of ε and

β. Results are averages for 1000 random sequences of samples, showing average number of samples
until termination and percentage of sequences which were terminated with Yn ≤ y∗ + ε.

Rule 1a Rule 1b
β: 0.025 0.05 0.10 0.025 0.05 0.10

ε: 0.01 35962 (0.98) 12045 (0.90) 11978 (0.87) 19 (0.10) 11 (0.07) 5 (0.05)

0.02 13605 (0.98) 2353 (0.90) 2170 (0.84) 13 (0.16) 8 (0.12) 5 (0.08)

0.05 5112 (0.94) 1023 (0.85) 992 (0.77) 9 (0.27) 6 (0.22) 4 (0.18)
0.1 2483 (0.88) 528 (0.80) 500 (0.70) 6 (0.36) 4 (0.32) 3 (0.29)

sampled. The expected number of iterations until a point less than ξ1 is sampled is
d1/εe. As a result, the “luckier” the sampling is in earlier iterations, the greater the
number of iterations the algorithm requires.

Also, ρn(ε)/n may be larger than pε for small n. This can cause these stopping
rules to terminate prematurely. For example, consider f(x) = x on Ω = [0, 1]. If
|ξ2 − ξ1| ≤ ε and ξ2 6= ξ1, then rule 1a will terminate. If ε ∈ [0, 1/2], then the
probability that ξ1 > ε, ξ2 > ε, and |ξ2 − ξ1| ≤ ε is ε(2 − 3ε), which can be as
high as 1/3 when ε = 1/3. Note that in this example ρ2(ε)/2 = p̄ε, so this weakness
of this stopping rule exists even when the more accurate estimator p̄ε is used!

Finally, note that rule 1b is much less reliable than rule 1a. This can be attributed
to the fact that rule 1b estimates pε with ρn−m(ε)/(n−m). For small n, this may be
quite different from ρn(ε)/n, which is used by rule 1a to estimate pε.

2.2. Modified stopping rules. To account for the two problems described in
the previous section, we propose stopping rules for Algorithm A that differ from
rules 1a and 1b in two ways. First, they estimate pε with ρ̂n(ε)/n, which includes the
number of points Yi that are within ε of Yn for i > τ2. Formally, ρ̂n(ε) = ρn(ε)+Γn(ε),

Γn(ε) =

{ |{Yi | Yi ≤ Yn + ε, i = τ2 + 1, . . . , n− 1}| if τ2 + 1 < n,
0 otherwise.

This estimate of pε is more accurate than ρn(ε)/n and should therefore improve the
performance of these stopping rules. Furthermore, ρ̂n(ε) requires only a small amount
of additional computation and no additional memory requirements.

Second, these stopping rules include an additional term that ensures that n is
sufficiently large for pε to be reliably estimated. The additional term ensures that
P (|ρ̂n(ε)/n− pε| ≤ δ) is large. Consequently, these rules have an additional parameter
δ that reflects how confident our estimate of pε must be before we terminate. This
analysis applies equally well when p̄ε is used to estimate pε, so this additional term
should allow a stopping rule that uses p̄ε to terminate reliably.

Let Φ(x) be the standard normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2dy.

Consider the following stopping rules for Algorithm A.
Stopping rule 2. For given ε > 0, δ > 0 and β ∈]0, 1[, terminate Algorithm A

274 WILLIAM E. HART

2a) for n ≥ 2 such that

Φ(2δ
√
n)− Φ(−2δ

√
n)− (1− ρ̂n(ε)/n)n ≥ 1− β;

2b) for n ≥ 2 whenever a value Yn has been repeated for m steps, so Yn = Yn−j ,
j = 1, . . . ,m, and

Φ(2δ
√
n)− Φ(−2δ

√
n)− (1− ρ̂n(ε)/n)n+m ≥ 1− β;

2c) for n ≥ 2 such that

Φ(2δ
√
n)− Φ(−2δ

√
n)− (1− p̄ε)n ≥ 1− β.

The analysis in section 2.2.1 justifies the application of these rules. In section
2.2.2, we discuss the relative merits of rules 1 and 2.

2.2.1. Analysis. Let Zj = f(ξj) for j = 1, . . . , n. The Zj ’s are i.i.d. random
variables with a common distribution

F (x) = P (Z1 ≤ x) = P (f(ξ1) ≤ x) =

∫
{u|f(u)≤x}

dG(u).

Let (Z(1,n), . . . , Z(n,n)) be the order statistics of (Z1, . . . , Zn). Thus Z(j,n) is the
j th smallest element in (Z1, . . . , Zn), so Z(1,n) = min{Z1, . . . , Zn} and Z(n,n) =
max{Z1, . . . , Zn}. For ε ≥ 0, let

γn(ε) = sup{k | Z(k,n) ≤ y∗ + ε}
= 0 if sup{k | Z(k,n) ≤ y∗ + ε} = ∅.

Since the Zj are i.i.d. random variables and P (Z1 ≤ y∗ + ε) = pε, γn(ε) is binomially
distributed with parameters n and pε.

We first show how to use rule 2a to bound P (Yn − y∗ ≤ ε, |γn(ε)/n− pε| ≤ δ)
from below. This bound ensures that our estimate of pε is sufficiently large, as well as
ensuring that the sample we terminate with is likely to be in Ωε. Note that

P (Yn − y∗ ≤ ε, |γn(ε)/n− pε| ≤ δ)
= 1− P (Yn − y∗ > ε or |γn(ε)/n− pε| > δ)

= 1− P (Yn − y∗ > ε)− P (|γn(ε)/n− pε| > δ)

+P (Yn − y∗ > ε, |γn(ε)/n− pε| > δ)

≥ 1− P (Yn − y∗ > ε)− P (|γn(ε)/n− pε| > δ)

= 1− (1− pε)n − P (|γn(ε)/n− pε| > δ).

Since γn(ε) is binomially distributed, we can apply the DeMoivre–Laplace limit the-
orem [13] to get

P (|γn(ε)/n− pε| ≤ δ) ≈ Φ

(
δ
√
n√

pε(1− pε)

)
− Φ

(
−δ√n√
pε(1− pε)

)
(1)

≥ Φ(2δ
√
n)− Φ(−2δ

√
n).

Thus

P (|γn(ε)/n− pε| > δ) = 1− P (|γn(ε)/n− pε| ≤ δ) <∼ 1− (Φ(2δ
√
n)− Φ(−2δ

√
n)
)
.

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 275

If we use ρ̂n(ε)/n to approximate pε, then we have

P (Yn − y∗ ≤ ε, |γn(ε)/n− pε| ≤ δ) >∼ Φ(2δ
√
n)− Φ(−2δ

√
n)− (1− ρ̂n(ε)/n)n.

Rule 2a guarantees that this is greater than 1−β. Similarly, if we use p̄ε to approximate
pε, then rule 2c guarantees that

P (Yn − y∗ ≤ ε, |γn(ε)/n− pε| ≤ δ) >∼ (1− (1− p̄ε)n)
(
Φ(2δ

√
n)− Φ(−2δ

√
n)
)
.

The derivations of rule 2b is similar. When this rule is applied,

P (Yn − y∗ ≤ ε | Yn = Yn−j , j = 1, . . . ,m, and |γn(ε)/n− pε| ≤ δ) >∼ 1− β.
To derive this rule, we use the following result from Dorea [11],

P (Yn − y∗ ≤ ε | Yn−m = Yn−m+j , j = 1, . . . ,m) = 1− (1− pε)n+m,(2)

and observe that

P (Yn − y∗ ≤ ε | Yn−m = Yn−m+j , j = 1, . . . ,m);

= P (Yn − y∗ ≤ ε | Yn = Yn−j , j = 1, . . . ,m).

Rules 2a and 2b bound P (|γn(ε)/n− pε| ≤ δ) and not P (|ρ̂n(ε)/n− pε| ≤ δ),
although ρ̂n(ε)/n is actually used in the stopping rules. The bound on γn(ε)/n is
used because γn(ε) is binomially distributed, which makes a simple bound easy to
establish. In practice, these stopping rules should be reasonable since ρ̂n(ε)/n is an
approximation of γn(ε)/n. The following proposition justifies the use of ρ̂n(ε)/n to
approximate pε. This proposition is an extension of the proposition in Dorea [11]
because this proposition applies when F (f(x) ≤ y∗) > 0. The proof of this proposition
is in Appendix A.

Proposition 1. Let β ∈]0, 1[. Assume that for all ε > 0, pε = P (f(x) ≤ y∗+ε) >
0. Then for small ε > 0 we have

lim
η↓0

lim
n→∞P

(
ρ̂n(ε)

n
≤ pε + η

)
= 1(3)

and

lim
η↓0

lim
n→∞P

(
Yn − y∗ ≤ ε, δn(ε) ≥ δ̂η(ε)

)
= 1,(4)

where

δn(ε) =
log β

log (1− ρ̂n(ε)/n)
and δ̂η(ε) =

log β

log (1− (pε + η))
.

2.2.2. Comparison of rules for PRS. In this section we discuss the relative
merits of rules 1 and 2. We delay an empirical comparison of these rules until section
4. Here we discuss properties of these rules that are raised by the derivations in the
previous section.

Rule 2b differs from rule 1b in the manner in which (2) is interpreted. Dorea [11]
uses (2) to create rule 1b by approximating pε with ρn−m(ε)/(n−m) = ρτ2+1(ε)/(τ2 +
1). The advantage of this interpretation is that this value needs to be calculated only

276 WILLIAM E. HART

when a different value of Yn is found. Our interpretation approximates pε with ρ̂n(ε)/n.
This value needs to be calculated at every iteration, but this interpretation allows us
to combine Γn(ε) with the calculation of ρn(ε).

As we noted at the start of section 2.2, the use of ρ̂n(ε)/n to approximate pε
should improve the performance of rule 2 over rule 1 simply because it is a better
estimate of pε than ρn(ε)/n. In addition, this approximation avoids certain worst case
scenarios in the application of rule 1. For example, on a constant function, rule 1a fails
to terminate if β < 1/4. After n ≥ 2 samples, τ1 = n and τ2 = 0, so ρn(ε)/n = 1/n
for all ε > 0. Rule 1a terminates if 1 − (1 − 1/n)n ≥ 1 − β. Now 1 − (1 − 1/n)n

monotonically increases to 1− 1/e beginning at 3/4 for n = 2. Thus if β < 1/4, then
1− (1−1/n)n < 1−β for all n ≥ 2. Rule 1b avoids this difficulty by using the number
of repetitions to terminate. For constant functions, ρ̂n(ε)/n = 1 = pε, so rule 2 also
terminates successfully. More generally, the estimators used by rule 2 are guaranteed
to have a nonzero probability of terminating because they take into consideration the
number of samples that are within ε of the best point sampled so far; the difference
between the estimators used is how they update their estimate of pε when a new best
point is sampled.

The previous example also serves to illustrate the need for the confidence factor δ.
If the confidence factor was not added to rule 2, then it might be misled into thinking
that a function is constant after only two samples. In fact, this can happen to rule 1b
because it does not include this confidence factor even if p̄ε was used to estimate pε.

This example also points to a strength of rule 2b relative to rule 2a. For small
pε, it is not uncommon that a sample in Ωε occurs very infrequently. Consequently,
the sampling procedure is likely to sample for a very long time before sampling twice
in Ωε. In this case, rule 2b can use the number of repetitions after the first sample
from Ωε to terminate. By contrast, the values for rule 2a converge to a constant that
is likely to be smaller than 1− β during the interval between samples from Ωε. Thus,
it may take many samples from Ωε before rule 2a terminates.

Finally, note that the lower bound for P (|γn(ε)/n− pε| ≤ δ) defined in (1) is
conservative, so rule 2 may run longer than necessary, especially when pε is far from
1/2. The bound

P (|γn(ε)/n− pε| ≤ δ) ≥ Φ

(
δ
√
n√

p′n(1− p′n)

)
− Φ

(
−δ√n.√
p′n(1− p′n)

)
,(5)

where

p′n =
1

2n
+

(
1− 1

n

)
ρ̂n(ε),

is less conservative. This lower bound allows the current estimate of pε to modify the
stopping rule, which allows the stopping rule to terminate PRS earlier. This may, how-
ever, affect the reliability of the stopping rules when ρ̂n(ε)/n is a poor approximation
to pε, so the more conservative approximation was chosen for rule 2.

3. SRS. The following algorithm is a variant of the SRS algorithm considered
by Ermakov, Zhigyavskii, and Kondratovich [12].

Algorithm B. Let Ω =
⋃K
i=1 Ωi such that Ωi ∩ Ωj = ∅ if j 6= i. Let ξij be

i.i.d. random vectors with a common distribution G on Ω such that ξij ∈ Ωi. Let
(Xi

1, Y
i
1), (Xi

2, Y
i
2), . . . for i = 1, . . . ,K, and (X1, Y1), (X2, Y2), . . . be defined by the

following.

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 277

Step 1.
for i in 1 : K
Xi

1 = ξi1 and Y i1 = f(Xi
1)

endfor
X1 = arg mini=1,... ,K f(ξi1) and Y1 = f(X1)

Step k + 1.
for i in 1 : K

if f(ξik+1) ≤ Y ik then Xi
k+1 = ξik+1 and Y ik+1 = f(Xi

k+1)
else Xi

k+1 = Xi
k and Y ik+1 = Y ik

endfor
Xk+1 = arg mini=1,... ,K f(Xi

k+1) and Yk+1 = f(Xk+1)

Ermakov, Zhigyavskii, and Kondratovich [12] analyze Algorithm B when G is the
uniform distribution and µ(Ω1) = · · · = µ(ΩK), where µ is the Lebesgue measure on
Ω. Their analysis compares the performance of SRS to PRS. Using a simple extension
of their analysis, it can be shown that SRS is probabilistically more powerful than
PRS. Specifically, they prove the following proposition.

Proposition 2. Let An and Bn be the solutions generated by Algorithm A
and Algorithm B, respectively, after n iterations. If G(Ω1) = · · · = G(ΩK), then
P (An − y∗ ≤ ε) ≤ P (Bn − y∗ ≤ ε).

3.1. Stopping rules. Let piε = G(Ωi ∩ Ωε)/G(Ωi). To approximate piε after n
iterations, we use p̄iε, the fraction of samples in partition i for which Y ij ≤ Y in + ε, and

ρ̂in(ε)/n, where ρ̂in(ε) = ρin(ε) + Γin(ε),

ρin(ε) =

{
0 if sup{k | τ ik > 0, Y i

τ ik
≤ Yn + ε} = ∅,

sup{k | τ ik > 0, Y i
τ ik
≤ Yn + ε} otherwise,

Γin(ε) =

{ ∣∣{Y ij | Y ij ≤ Yn + ε, j = τ i2 + 1, . . . , n− 1}∣∣ if τ i2 + 1 < n,
0 otherwise,

and for j = 1, . . . , n− 1, we define

τ ij+1 = τ ij+1(n) = sup{k | 1 ≤ k < τ ij , Y
i
k 6= Y iτ ij

}
= 0 if sup{k | 1 ≤ k < τ ij , Y

i
k 6= Y iτ ij

} = ∅

with τ i1(n) = n.

Consider the following stopping rules for Algorithm B.
Stopping rule 3. For given ε > 0, δ > 0 and β ∈]0, 1[, terminate Algorithm B
3a) for n ≥ 2 such that

(
Φ(2δ

√
n)− Φ(−2δ

√
n)
)K − K∏

i=1

(1− ρ̂in(ε)/n)n ≥ 1− β;

3b) for n ≥ 2 whenever a value of Yn has been repeated for m steps, so Yn =
Yn−j , j = 1, . . . ,m, and

(
Φ(2δ

√
n)− Φ(−2δ

√
n)
)K − K∏

i=1

(1− ρ̂in(ε)/n)n+m ≥ 1− β;

278 WILLIAM E. HART

3c) for n ≥ 2 such that

(
Φ(2δ

√
n)− Φ(−2δ

√
n)
)K − K∏

i=1

(1− p̄iε)n ≥ 1− β.

Numerical comparisons of these rules are deferred until section 4. The remainder of
this section presents the derivation of these rules.

Let Zij = f(ξij) for j = 1, . . . , n and i = 1, . . . ,K. Note that Y in = min{Zi1, . . . , Zin}.
The Zij are i.i.d. random variables with a common distribution given by

Fi(x) = P (Zi1 ≤ x) = G(Ωx−y∗ ∩ Ωi)/G(Ωi),

where

G(Θ) =

∫
{u∈Θ}

dG(u).

For ε ≥ 0, let

γin(ε) = sup{k | Zi(k,n) ≤ y∗ + ε}
= 0 if {k | Zi(k,n) ≤ y∗ + ε} = ∅,

since the Zij are i.i.d. random variables, and P (Zi1 ≤ y∗ + ε) = piε, γ
i
n(ε) is binomially

distributed with parameters n and piε.
We first show how to use rule 3a to bound

P
(
Yn − y∗ ≤ ε and

∣∣γin(ε)/n− piε
∣∣ ≤ δ, i = 1, . . . ,K

)
.

Note that

P
(
Yn − y∗ ≤ ε and

∣∣γin(ε)/n− piε
∣∣ ≤ δ, i = 1, . . . ,K

)
≥ 1− P (Yn − y∗ > ε)− (1− P (∣∣γin(ε)/n− piε

∣∣ ≤ δ, i = 1, . . . ,K
))

≈ (Φ(2δ
√
n)− Φ(−2δ

√
n)
)K − K∏

i=1

(1− ρ̂in(ε)/n)n.

Rule 3a guarantees that this is greater than 1−β. Similarly, if p̄iε is used to approximate
piε, then rule 3c guarantees that

P
(
Yn − y∗ ≤ ε and

∣∣γin(ε)/n− piε
∣∣ ≤ δ, i = 1, . . . ,K

)
>∼
(
Φ(2δ

√
n)− Φ(−2δ

√
n)
)K − K∏

i=1

(1− p̄iε)n.

The derivation of rule 3b is similar. When this rule is applied,

P
(
Yn − y∗ ≤ ε | Yn = Yn−j , j = 1, . . . ,m and

∣∣γin(ε)/n− piε
∣∣ ≤ δ, i = 1, . . . ,K

)
>∼ 1− β.

The derivation of rule 3b uses the following lemma, whose proof is in Appendix B.
Lemma 3.1.

P (Yn − y∗ ≤ ε | Yn = Yn−j , j = 1, . . . ,m) = 1−
K∏
i=1

(1− piε)m+n.

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 279

Note that we could use γin(ε) to estimate piε. Recall that γin(ε) is binomially
distributed with parameters n and piε. It follows from the strong law of large num-

bers that γin(ε)/n
a.s.→ piε. Since y∗ is unknown and the Zi(k,n)’s are not recorded, we

approximate y∗ by Yn and Zi(k,n) by Yτ ik and Γn(ε). Thus, we approximate γin(ε)/n

by ρ̂in(ε)/n. The following proposition verifies that this approximation is reasonable
when n is large.

Proposition 3. Let β ∈]0, 1[. Assume that for all ε > 0, pε = P (f(x) ≤ y∗+ε) >
0. Then for i = 1, . . . ,K and for small ε, we have

lim
η↓0

lim
n→∞P

(
ρ̂in(ε)

n
≤ piε + η

)
= 1,(6)

lim
η↓0

lim
n→∞P

(
δn(ε) ≥ δ̂η(ε)

)
= 1,(7)

and

lim
η↓0

lim
n→∞P

(
Yn − y∗ ≤ ε, δn(ε) ≥ δ̂η(ε)

)
= 1,(8)

where

δn(ε) =
log β∑K

i=1 log (1− ρ̂in(ε)/n)
and δ̂η(ε) =

log β∑K
i=1 log (1− (piε + η))

.

Proof. Let y∗i = minx∈Ωi f(x). If y∗i = y∗ for a given i, then (6) follows from
Proposition 1. Now suppose y∗i > y∗. If Yn < y∗i , then ρ̂in(ε) = 0. Consequently

P

(
ρ̂in(ε)

n
≤ piε+η

)
≥ P (Yn < y∗i) = P (Yn − y∗ < η1),

where η1 = y∗i − y∗ > 0. Thus (6) follows from Yn
a.s.→ y∗. From the definitions of δn(ε)

and δ̂η(ε), we have (7) and (8) by using (6) and the fact that Yn
a.s.→ y∗.

3.2. Comparison with PRS. Let nA be the number of steps specified by stop-
ping rule 2a for Algorithm A, and let nB be the number of steps specified by stopping
rule 3a for Algorithm B. If G(Ω1) = · · · = G(ΩK), then the following argument shows
that nA ≥ KnB .

Suppose that ρ̂n(ε)/n = pε, ρ̂
i
n(ε)/n = piε and n is sufficiently large that Φ(2δ

√
n)−

Φ(−2δ
√
n) ≈ 1. Then nA ≥ KnB if

log β

log(1− pε) ≥ K
log β∑K

i=1 log(1− piε)
,

which is true if

K∑
i=1

log(1− piε) ≤ K log(1− pε).

Exponentiating both sides gives us

K∏
i=1

(1− piε) ≤ (1− pε)K .

280 WILLIAM E. HART

Recall that

1− piε = 1− G(Ωε ∩ Ωi)

G(Ωi)
and 1− pε = 1−G(Ωε) = 1−

K∑
i=1

G(Ωε ∩ Ωi).

Thus we have

K∏
i=1

[
1− G(Ωε ∩ Ωi)

G(Ωi)

]1/K

≤ 1−
K∑
i=1

G(Ωε ∩ Ωi).

If G(Ωi) = G(Ωj) for all i, j = 1, . . . ,K, then we have

K∏
i=1

[1−KG(Ωε ∩ Ωi)]
1/K ≤ 1−

K∑
i=1

G(Ωε ∩ Ωi)

K∏
i=1

[
1

K
−G(Ωε ∩ Ωi)

]1/K

≤ 1

K

K∑
i=1

[
1

K
−G(Ωε ∩ Ωi)

]
,

which is true because of the arithmetic-geometric mean inequality.
Note that equality is only achieved when p1

ε = · · · = pKε . Also, if G(Ωi) 6= G(Ωj)
for some i, j ∈ {1, . . . ,K}, then this inequality may not hold. For example, sup-
pose Ω = Ω1 ∪ Ω2 and G(Ωε ∩ Ω1) = G(Ωε ∩ Ω2) > 0. If G(Ω1)/G(Ω) = λ, then
G(Ω2)/G(Ω) = 1− λ. Some simple algebra shows that for all λ ∈]0, 1[(

1− G(Ωε ∩ Ωi)

λ

)1/2(
1− G(Ωε ∩ Ωi)

1− λ
)1/2

> 1−
2∑
i=1

G(Ωε ∩ Ωi) = 1− 2G(Ωε ∩ Ω1).

which implies that KnB > nA.

4. Numerical evaluation of rules for random search. In this section we
numerically compare the performance of the stopping rules that we have described for
PRS and SRS. Our experiments compare PRS and SRS on the three functions f1(x) =
x4, f2(x) = x, and f3(x) = 1− (1−x)4 over the interval [0, 1]. The stopping rules that
we have defined only utilize information about the distribution F (x) = P (Z1 ≤ x).
Consequently, these test functions can be used to make general predictions about
the utility of these stopping rules. The function f1(x) is related to functions that
have many solutions with values very near that of the global optimum. The function
f3(x) is related to functions that have very few solutions with values very near that
of the global optimum. The function f2(x) represents an intermediate between these
extremes.

For rules 2 and 3, the value of δ chosen affects both the performance of the stop-
ping rule (in terms of percentage of trials that successfully find an ε-optimal solution)
as well as the number of samples used before terminating. Consequently, comparisons
between these rules are affected by the particular values of δ chosen for the compar-
ison. To make a fair comparison of the stopping rules, we performed repeated trials
with each stopping rule using values of δ from {0.025, 0.05, 0.1, 0.15, . . . , 0.7}. For a
given value of ε and β, 1000 trials were executed for each value of δ, giving a curve
that marks the average probability that the stopping rule successfully terminates.

Figure 1 compares the average performance of rules 2a and 2b on the test functions
when β = 0.025; qualitatively similar results were observed when these experiments

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 281

101 102 1030.975

0.980

0.985

0.990

0.995

1.000

P
er

ce
n

ta
g

e

Num Samples

Rule 2a pε=0.01

Rule 2b pε=0.01

Rule 2c pε=0.01

Rule 2a pε=0.1

Rule 2b pε=0.1

Rule 2c pε=0.1

(a)

101 102 103

0.60

0.70

0.80

0.90

1.00

Log Num Samples

P
er

ce
n

ta
g

e

Rule 2a pε=0.01

Rule 2b pε=0.01

Rule 2c pε=0.01

Rule 2a pε=0.1

101 102 103

0.60

0.70

0.80

0.90

1.00

P
er

ce
n

ta
g

e

Num Samples

Rule 2a pε=0.01

Rule 2b pε=0.01

Rule 2c pε=0.01

Rule 2a pε=0.1

Rule 2b pε=0.1

Rule 2c pε=0.1

(b)

101 102 1030.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

Num Samples

Rule 2a pε=0.01

Rule 2b pε=0.01

Rule 2c pε=0.01

Rule 2a pε=0.1

Rule 2b pε=0.1

Rule 2c pε=0.1

(c)

Fig. 1. Summary of performance results for PRS: (a) f1, (b) f2, and (c) f3. Curves represent
differences as δ varies in the number of samples until termination and the average percentage of
sequences that successfully terminated.

282 WILLIAM E. HART

Table 2
Performance of PRS with stopping rules 1a and 1b on the three test functions for different

values of ε and with β = 0.025. Results are averages for 1000 random sequences of samples, showing
average number of samples until termination and percentage of sequences which were terminated
with Yn ≤ y∗ + ε.

Rule 1a Rule 1b

f1(x) f2(x) f3(x) f1(x) f2(x) f3(x)

ε: 0.01 36833 (1.00) 35692 (0.98) 31121 (0.85) 33 (0.14) 19 (0.10) 12 (0.07)
0.1 2773 (1.00) 2483 (0.88) 2041 (0.61) 10 (0.46) 6 (0.36) 3 (0.23)

were replicated for larger values of β. To allow comparisons between functions, we
selected values of ε such that pε was the same for each of the functions (either 0.1
or 0.01). These graphs compare the logarithm of the number of samples with the
percentage of trials that were terminated with Yn ≤ y∗ + ε. For each curve in the
graphs, percentages closer to 1 correspond to values of δ closer to zero.

When comparing rules for a given value of pε, note that performance for a rule is
better if its curve is left and above the curve of another rule. A careful inspection of
this data shows that for small values of δ, rule 2b is better than rule 2a for f2(x) and
f3(x), while for f1(x) rule 2a is better. However, as δ increases, Figure 1 clearly shows
that the performance of rule 2b declines more quickly than the other rules. Since it
may be difficult to determine a good value of δ a priori, this suggests that rule 2a and
rule 2c are more robust in practice. Rule 2c is uniformly better than rule 2a and it is
better than rule 2b when δ is small.

Figure 2 compares the performance of rules 3 on the test functions when β =
0.025. These results are qualitatively similar to those for rules 2. For small values of δ,
rule 3b is better than rule 3a for all functions (including f1(x)). When pε is small, as
δ increases, the performance of rule 3b declines more quickly than rule 3a. However,
for larger values of pε rule 3b remains better for all values of δ on functions f2(x) and
f3(x). While rule 3b may perform better in certain contexts, the difference between
rule 3a and 3b remains relatively small. Thus these experiments suggest that rule 3a
is more robust than rule 3b. Finally, rule 3c is again uniformly better than rule 3a
and is better than rule 3b when δ is small.

Figure 3 compares the performance of rules 2a and 3a for the three test functions.
Figures 3a and 3c show that rule 3a has better performance than rule 2a on f2(x) and
f3(x). Furthermore, rule 3a is more robust when pε is small on these functions. On
f1(x), the performance of these stopping rules is roughly the same, though for large
pε it appears that rule 2a is slightly better than rule 3a.

These observations confirm our analysis showing that SRS is more powerful than
PRS. They also show that the reliability of the stopping rules decreases as the fraction
of solutions with values near that of the global optimum decreases. These experiments
show that the stopping rules are less reliable to changes in δ on function f3(x) than
on function f1(x). One property of the experiments that the figures do not express is
that bottom of the curves for rules 2a, 2c, 3a, and 3c represent the performance for a
variety of values of δ. This confirms our intuitive argument that even modest efforts
to ensure the reliability of the estimate for pε are valuable in avoiding premature
termination of the stopping rules.

Finally, Table 2 shows the performance of rules 1a and 1b on the test functions.
These results show that the performance of rules 2 and 3 is clearly superior to that
of rules 1a and 1b.

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 283

101 102 1030.975

0.980

0.985

0.990

0.995

1.000

P
er

ce
n

ta
g

e

Num Samples

Rule 3a pε=0.01

Rule 3b pε=0.01

Rule 3c pε=0.01

Rule 3a pε=0.1

Rule 3b pε=0.1

Rule 3c pε=0.1

(a)

101 102 103

0.60

0.70

0.80

0.90

1.00

P
er

fo
rm

an
ce

Num Samples

Rule 3a pε=0.01

Rule 3b pε=0.01

Rule 3c pε=0.01

Rule 3a pε=0.1

Rule 3b pε=0.1

Rule 3c pε=0.1

(b)

101 102 1030.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

Num Samples

Rule 3a pε=0.01

Rule 3b pε=0.01

Rule 3c pε=0.01

Rule 3a pε=0.1

Rule 3b pε=0.1

Rule 3c pε=0.1

(c)

Fig. 2. Summary of performance results for SRS: (a) f1, (b) f2, and (c) f3. Curves represent
differences as δ varies in the number of samples until termination and the average percentage of
sequences that successfully terminated.

284 WILLIAM E. HART

101 102 1030.975

0.980

0.985

0.990

0.995

1.000

P
er

ce
nt

ag
e

Num Samples

Rule 2a pε=0.01

Rule 2a pε=0.1

Rule 3a pε=0.01

Rule 3a pε=0.1

(a)

101 102 103

0.60

0.70

0.80

0.90

1.00

P
er

ce
nt

ag
e

Num Samples

Rule 2a pε=0.01

Rule 2a pε=0.1

Rule 3a pε=0.01

Rule 3a pε=0.1

(b)

101 102 1030.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

Num Samples

Rule 2a pε=0.01

Rule 2a pε=0.1

Rule 3a pε=0.01

Rule 3a pε=0.1

(c)

Fig. 3. A comparison of the performance of PRS and SRS: (a) f1, (b) f2, and (c) f3. Curves
represent differences as δ varies in the number of samples until termination and the average per-
centage of sequences that successfully terminated.

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 285

5. MS. We now describe how stopping rules for PRS and SRS can be applied
to multistart algorithms. MS algorithms iteratively apply a local search method to
randomly selected samples in a domain. Let L : Ω → Ω be a local search algorithm
which takes a sample in Ω and finds a sample that is a local minimum of f . The (pure)
multistart algorithm (MS) can be defined as follows.

Algorithm C. Let ξ1, ξ2, . . . be i.i.d. random vectors with a common distribution
G on Ω. Let (X1, Y1), (X2, Y2), . . . be defined by

Step 1. X1 = L(ξ1) and Y1 = f(X1)
Step k+1.

if f(L(ξk+1)) ≤ Yk then Xk+1 = L(ξk+1) and Yk+1 = f(Xk+1)
else Xk+1 = Xk and Yk+1 = Yk

If we define h = f ◦L, then it becomes apparent that Algorithm C can be equated
with the PRS algorithm applied to a modified function h. Consequently, stopping
rules 2 and 3 can be used with Algorithm C.

Similarly, consider the SMS described by Morris and Wong [20, 14].

Algorithm D. Let Ω =
⋃K
i=1 Ωi such that Ωi ∩ Ωj = ∅ if j 6= i. Let ξij be

i.i.d. random vectors with a common distribution G on Ω such that ξij ∈ Ωi. Let
(Xi

1, Y
i
1), (Xi

2, Y
i
2), . . . for i = 1, . . . ,K, and (X1, Y1), (X2, Y2), . . . be defined by

Step 1.
for i in 1 : K
Xi

1 = L(ξi1) and Y i1 = f(ξi1)
endfor
X1 = arg mini=1,... ,K f(ξi1) and Y1 = f(X1)

Step k + 1.
for i in 1 : K

if f(L(ξik+1)) ≤ Y ik then Xi
k+1 = L(ξik+1) and Y ik+1 = f(Xi

k+1)
else Xi

k+1 = Xi
k and Y ik+1 = Y ik

endfor
Xk+1 = arg mini=1,... ,K f(Xi

k+1) and Yk+1 = f(Xk+1).

Morris and Wong [20, 14] analyze Algorithm D. Using a proof technique analogous
to the proof in Ermakov, Zhigyavskii, and Kondratovich [12], they show that SMS
is probabilistically more powerful than MS. Like MS, SMS can be equated with SRS
applied to a modified function h. Consequently, stopping rule 3 can be used with
Algorithm D.

To illustrate the application of these stopping rules to MS and SMS, we optimized
the standard global optimization test functions described by Dixon and Szegö [8, 18],
which have previously been used to measure the performance of stopping rules for
MS [1, 4, 5, 15]. This test set includes the following functions:

Description # dimensions # minima
1 Goldstein–Price 2 4
2 Branin 2 3
3 Hartman-3 3 3
4 Hartman-6 6 2
5 Shekel-5 4 5
6 Shekel-7 4 7
7 Shekel-10 4 10

Tables 3 and 4 show the performance of rules 2 and 3 on these functions. Since
these are multidimensional functions, SRS partitioned the first dimension into four
partitions. Results from Betrò and Schoen [1] are provided for comparison. The results

286 WILLIAM E. HART

Table 3
Performance of MS with stopping rule 2 and Betrò and Schoen’s Bayesian rule. Rules 2 used

values β = 0.025, ε = 0.01, and δ = 0.4. Results are averages for 1000 random sequences of samples
(100 for the Bayesian stopping rule), showing average number of samples until termination and
percentage of sequences for which were terminated with Yn ≤ y∗ + ε.

Func MS
Rule 2a Rule 2b Rule 2c Bayesian

1 10.1 (1.00) 9.0 (1.00) 9.29 (1.00) 12.4 (1.00)
2 8.9 (1.00) 8.5 (1.00) 8.38 (1.00) 11.0 (1.00)

3 8.6 (1.00) 8.4 (1.00) 8.14 (1.00) 10.0 (1.00)
4 8.8 (1.00) 8.5 (1.00) 8.27 (1.00) 10.0 (1.00)

5 11.7 (0.99) 9.7 (0.99) 10.84 (0.99) 6.7 (0.97)

6 11.1 (1.00) 9.6 (1.00) 10.12 (1.00) 6.1 (0.99)
7 12.6 (1.00) 10.4 (1.00) 11.48 (1.00) 7.0 (0.96)

Table 4
Performance of SMS with stopping rule 3, using β = 0.025, ε = 0.01, and δ = 1.0. Results

are averages for 1000 random sequences of samples, showing average number of samples until ter-
mination summed over all partitions and percentage of sequences for which were terminated with
Yn ≤ y∗ + ε.

Func SMS

Rule 3a Rule 3b Rule 3c

1 9.7 (0.99) 9.3 (0.99) 9.59 (0.99)

2 8.0 (1.00) 8.0 (1.00) 8.00 (1.00)
3 8.1 (1.00) 8.1 (1.00) 8.00 (1.00)
4 8.0 (1.00) 8.0 (1.00) 8.00 (1.00)

5 8.0 (1.00) 8.0 (1.00) 8.00 (1.00)

6 8.9 (0.99) 8.7 (0.99) 9.03 (0.99)
7 8.9 (0.99) 8.7 (0.99) 9.03 (0.99)

included here are for 1-sla with a = 0, b = 5, and c = 0.5; this configuration of their
stopping rule had the best overall performance on the test set. The results in Betrò
and Schoen [1] indicate that MS requires very few function evaluations to find the
global optima, so high values of δ were chosen for MS and SMS.

All of the stopping rules had high reliability, and in all cases MS and SMS ter-
minated within an average of 12 local searches. These results do not confirm the
analysis of Morris and Wong [20, 14], which predicts that SMS will perform better
than MS, though there may be little difference in the performance of these algorithms
on functions for which so few local searches are needed. Also, these results do not
clearly recommend rules 2 or 3 over the rule proposed by Betrò and Schoen. They do,
however, suggest that these stopping rules can perform as well as Bayesian stopping
rules.

6. Discussion. The stopping rules for PRS and SRS described in sections 2.2
and 3.1 retain the computational simplicity of the rules described by Dorea [11] while
providing considerably better performance in both the number of samples required
and the reliability of the final answer. Stopping rules for SRS have not been examined
before. The experimental results confirm that the stopping rules for SRS can terminate
more quickly than PRS, while retaining the same reliability.

The stopping rules that we have defined need no additional memory, and require a
minimal amount of additional computation. They do require an additional parameter,

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 287

δ, which controls the desired accuracy of the estimate of pε. Our analysis of stopping
rules that use p̄ε suggests that such a parameter is appropriate for stopping rules
based on the type of asymptotic analysis that we have considered; stopping rules that
use p̄ε without a confidence parameter may terminate prematurely. If the user has a
priori estimates of the size of pε, then δ can be selected to match this information;
small values of δ should be used when pε is small and larger values of δ should be used
when pε is large. When no a priori estimates are available, rules using small values
of δ will terminate conservatively. Our experiments recommend the use of rules 2a
or 3a over rules 2b or 3b, because the former are more robust to choices of δ that are
too large. The experimental results in section 5 also indicate that the stopping rules
developed for PRS and SRS can be effectively applied to MS.

The empirical results in this paper provide preliminary evidence that the stopping
rules we have proposed can be effectively applied. However, a more careful comparison
is needed before making clear recommendations for one stopping rule over another.
This is especially true when making comparisons between the proposed rules and the
Bayesian methods; it is notoriously difficult to make comparisons between different
types of stopping rules [3, 5]. More challenging test functions are needed to make
such a comparison; the test functions described by Dixon and Szegö [8] have been
used in most previous research on stopping rules for MS, but these functions are
infamous for being an easy test set for global optimization. This comparison will also
need to evaluate the sensitivity of the reliability of the stopping rules to their control
parameters. Our experiments indicate that our stopping rules become less sensitive to
the value of δ when pε is small, which is a reasonable assumption in many practical
applications. However, selecting good values of δ may be more difficult than selecting
control parameters for Bayesian methods.

To conclude, we note several potential advantages of the stopping rules we have
proposed over Bayesian stopping rules. First, they can be applied to algorithms like
SMS that do not perform a uniform sampling of the search domain. Second, their
simplicity makes them easy to apply. Törn and Žilinskas [18, p. 93] note “the imple-
mentation (of Bayesian stopping rules) is rather complicated and therefore not easily
available to potential users.” Our stopping rules are simple and add little overhead to
MS and SMS.

Third, these stopping rules can be applied when using local search algorithms
that do not necessarily terminate at a local minimum. For example, the direct search
methods like generalized pattern search [17] provide only asymptotic guarantees that
the final solution is at a local minimum (or stationary point) of the objective function.
The Bayesian stopping rules for MS [1, 4, 3, 15] implicitly require that the local search
algorithm terminate at a local minimum, so it would be difficult to use Bayesian
stopping rules with these types of local search algorithms.

Finally, our stopping rules may perform better than Bayesian stopping rules that
utilize a priori for the number of local minima when optimizing functions that contain
many local minima. Rinnooy Kan and Timmer [16, p. 76] briefly describe the appli-
cation of a Bayesian stopping rule on a highly multimodal objective function. They
observe that this stopping rule terminates prematurely because of the large number of
local minima. The stopping rules that we have defined terminate based on an estimate
of the ε-close points, which is invariant to the number of local minima in the function.
Consequently, we do not expect this to adversely affect these stopping rules.

7. Appendix A: Proof of Proposition 1. From the definitions of δn(ε) and

δ̂η(ε), we have (4) by using (3) and the fact that Yn
a.s.→ y∗.

288 WILLIAM E. HART

To prove (3), we consider two cases. First, suppose P (f(x) ≤ y∗) = 0. Note that
pε = F (y∗ + ε). The right continuity of F gives limη↓0 pε+η = pε. Moreover, since
pε > 0, ε > 0 and F (y∗) = 0, we have pε strictly increasing on ε for small ε.

Now let ε > 0 and η > 0. Let η̂ > 0 such that pε+η̂ = pε + η. For small ε > 0,
there exists η1 ∈]0, η̂[such that pε+η̂ > pε+η1 . Let η2 > 0 such that pε+η ≥ pε+η1 + η2.
Thus

P

(
ρ̂n(ε)

n
≤ pε + η

)
= P

(
ρ̂n(ε)

n
≤ pε+η̂

)
≥ P

(
ρ̂n(ε)

n
≤ pε+η1 + η2

)
≥ P

(
ρ̂n(ε)

n
≤ γn(ε+ η1)

n
,

∣∣∣∣γn(ε+ η1)

n
− pε+η1

∣∣∣∣ < η2

)
.

Now γn(η1 + ε) is the number of samples that are within η1 + ε of y∗. If Yn− y∗ ≤ η1,
then Yn + ε ≤ y∗ + η1 + ε, so γn(η1 + ε) is greater than the number of samples that
are within Yn + ε of y∗. This itself is an upper bound on the value of ρ̂n(ε). Thus we
have P (Yn ≤ y∗ + η1) ≤ P (ρ̂n(ε) ≤ γn(ε+ η1)). Consequently,

P

(
ρ̂n(ε)

n
≤ pε + η

)
≥ P

(∣∣∣∣γn(ε+ η1)

n
− pε+η1

∣∣∣∣ < η2, Yn ≤ y∗ + η1

)
.

Since γn(ε+ η1)/n
a.s.→ pε+η1

and Yn
a.s.→ y∗, we have (3) by taking the proper limits.

Now suppose that P (f(x) ≤ y∗) = p0 > 0. We prove (3) by showing that

ρ̂n(ε)/n
a.s.→ pε. Since ρ̂n(ε) = ρn(ε) + Γn(ε), it suffices to show that ρn(ε)/n

a.s.→ 0

and Γ(ε)/n
a.s.→ pε.

Consider a sequence of samples from Ω for which there exists n1 such that Yn1
=

y∗. For n ≥ n1, ρn(ε) = C. Thus limn→∞ ρn(ε)/n = 0. Because p0 > 0, the set of
sequences of samples from Ω for which 6 ∃n1 such that Yn1 = y∗ has measure zero.

Therefore, ρn(ε)/n
a.s.→ 0.

Now let Ak be the set of sequences of samples from Ω for which Yk−1 > Yk = y∗.
For sequences in Ak, when n > k, Γn(ε) is binomially distributed with parameters n−k
and pε. Let Āk be the subset of Ak such that limn→∞ Γn(ε)/n = limn→∞ Γn(ε)/(n−
k) = pε exists. Since Γn(ε)/(n− k)

a.s.→ pε, P (Āk) = P (Ak) and

P
(

lim
n→∞Γn(ε)/n = pε

)
=
∞⋃
k=1

P (Āk) =
∞⋃
k=1

P (Ak) = pε

∞∑
k=1

(1− pε)k−1 = 1.

Thus Γn(ε)/n
a.s.→ pε.

8. Appendix B: Proof of Lemma 3.1. Suppose that a certain value Yn has
been repeated for m steps of the algorithm. To estimate P (Yn = Yn−j , j = 1, . . . ,m),
note that Yn has the distribution H(x) = P (Yn ≤ x) = 1 − L(x)n, where L(x) =∏K
i=1(1− Fi(x)). Thus

P (Yn = Yn−j , j = 1, . . . ,m) = P (Zin−m+j > Yn−m, j = 1, . . . ,m)

=

∫ ∞
y∗

L(x)mdH(x)

= −n
∫ ∞
y∗

L(x)m+n−1L′(x)dx

= −n
∫ 0

1

um+n−1du =
n

n+m
.

STOPPING RULES FOR RANDOM OPTIMIZATION METHODS 289

Similarly,

P (Yn = Yn−j , j = 1, . . . ,m, Yn > y∗ + ε) =∫ ∞
y∗+ε

L(x)mdH(x) =
n

n+m

K∏
i=1

(1− piε)m+n.

It follows that

P (Yn − y∗ ≤ ε | Yn = Yn−j , j = 1, . . . ,m) = 1−
K∏
i=1

(1− piε)m+n.

Acknowledgments. I wish to thank John DeLaurentis for his many helpful
discussions. I am also grateful for the comments from two anonymous reviewers that
led to a much clearer presentation of these results.

REFERENCES

[1] B. Betrò and F. Schoen, Sequential stopping rules for the multistart algorithm in global
optimization, Math. Programming, 38 (1987), pp. 271–286.

[2] B. Betrò and F. Schoen, A stochastic technique for global optimization, Comput. Math.
Appl., 21 (1991), pp. 127–133.

[3] B. Betrò and F. Schoen, Optimal and suboptimal stopping rules for the multistart algorithm
in global optimisation, Math. Programming, 57 (1992), pp. 445–458.

[4] C. Boender and A. Rinnooy Kan, Bayesian stopping rules for multistart global optimization
methods, Math. Programming, 37 (1987), pp. 59–80.

[5] C. Boender and A. Rinnooy Kan, On when to stop sampling for the maximum, J. Global
Optim., 1 (1991), pp. 331–340.

[6] L. de Haan, Estimation of the minimum of a function using order statistics, J. Amer. Statist.
Assoc., 76 (1981), pp. 467–469.

[7] A. L. Dekkers and L. de Haan, On the estimation of the extreme-value index and large
quantile esimation, Ann. Statist., 17 (1989), pp. 1795–1832.

[8] L. Dixon and G. Szegö, The global optimization problem: An introduction, in Towards Global
Optimization 2, L. Dixon and G. Szegö, eds., North–Holland, Amsterdam, 1978, pp. 1–15.

[9] C. Dorea, Limiting distribution for random optimization methods, SIAM J. Control Optim.,
24 (1986), pp. 76–82.

[10] C. Dorea, Estimation of the extreme value and the extreme points, Ann. Inst. Statist. Math.,
39 (1987), pp. 37–48.

[11] C. Dorea, Stopping rules for a random optimization method, SIAM J. Control Optim., 28
(1990), pp. 841–850.

[12] S. Ermakov, A. Zhigyavskii, and M. Kondratovich, Comparison of some random search
procedures for a global extremum, U.S.S.R. Comput. Math. Math. Phys., 29 (1989), pp. 112–
117.

[13] W. Feller, Introduction to Probability Theory and Its Applications, John Wiley and Sons,
New York, 1950.

[14] R. J. Morris and W. S. Wong, Systematic choice of initial points in local search: Extensions
and application to neural networks, Inform. Process. Lett., 39 (1991), pp. 213–217.

[15] M. Piccioni and A. Ramponi, Stopping rules for the multistart method when different local
minima have different function values, Optimization, 21 (1990), pp. 697–707.

[16] A. Rinnooy Kan and G. Timmer, Stochastic global optimization methods - part II: Multi level
methods, Math. Programming, 39 (1987), pp. 57–78.

[17] V. Torczon, On the convergence of pattern search methods, SIAM J. Optim., 7 (1997), pp. 1–
25.

[18] A. Törn and A. Z̆ilinskas, Global Optimization, Lecture Notes in Comput. Sci. 350, Springer-
Verlag, New York, 1989.

290 WILLIAM E. HART

[19] M. R. Veall, Testing for a global maximum in an econometric context, Econometrica, 58
(1990), pp. 1459–1465.

[20] W. S. Wong and R. J. Morris, A new approach to choosing initial points in local search,
Inform. Process. Lett., 30 (1989), pp. 67–72.

[21] R. Zieliński, A statistical estimate of the structure of multiextremal functions, Math. Pro-
gramming, 21 (1981), pp. 348–356.

A TRUST-REGION APPROACH TO NONLINEAR SYSTEMS OF
EQUALITIES AND INEQUALITIES∗

J. E. DENNIS, JR.† , MAHMOUD EL-ALEM‡ , AND KAREN WILLIAMSON§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 291–315

Abstract. In this paper, two new trust-region algorithms for the numerical solution of systems of
nonlinear equalities and inequalities are introduced. The formulation is free of arbitrary parameters
and possesses sufficient smoothness to exploit the robustness of the trust-region approach. The
proposed algorithms are one-sided least-squares trust-region algorithms. The first algorithm is a
single-model algorithm, and the second one is a multimodel algorithm where the Cauchy point
computation is a model selection procedure.

Global convergence analysis for the two algorithms is presented. Our analysis generalizes to
nonlinear systems of equalities and inequalities the well-developed theory for nonlinear least-squares
problems.

Numerical experiments on the two algorithms are also presented. The performance of the two
algorithms is reported. The numerical results validate the effectiveness of our approach.

Key words. fraction of Cauchy decrease, global convergence, multimodel algorithm, nonlinear
systems, nonlinear least squares, one-sided least squares, system of inequalities, trust-region methods,
active-set strategies

AMS subject classifications. 65K05, 49D37

PII. S1052623494276208

1. Introduction. In this paper, we present two new trust-region algorithms for
the numerical solution of a system of nonlinear equalities and inequalities defined by

ci(x) = 0, i ∈ E,
ci(x) ≤ 0, i ∈ I,(1.1)

where ci : <n → <, I ∪ E = {1, . . . ,m}, and I ∩ E = ∅. In particular, we study
trust-region methods for the following least-squares problem:

min
x∈<n

1

2

{∑
i∈E

ci(x)2 +
∑
i∈I

[max{ci(x), 0}]2
}
.(1.2)

In practice, it is often useful to include weights on each term of the objective function
(1.2), but here we omit them for simplicity.

Systems of nonlinear equalities and inequalities appear in a wide variety of prob-
lems in applied mathematics. These systems play a central role in the model formula-
tion design and analysis of numerical techniques employed in solving problems arising
in optimization, complementarity, and variational inequalities.

Best one-sided approximations have the form (1.2) (Taylor [35], Kaufman and
Taylor [19], etc.). Another interest in problem (1.2) is when (1.1) is the constraint

∗Received by the editors October 23, 1994; accepted for publication (in revised form) February
24, 1998; published electronically March 17, 1999. This research was supported by grants DOE
DE-FG005-86ER25017, CRPC CCR-9120008, and AFOSR-F49620-9310212.

http://www.siam.org/journals/siopt/9-2/27620.html
†Department of Computational and Applied Mathematics and Center for Research on Parallel

Computation, Rice University, P.O. Box 1892, Houston, TX 77251 (dennis@rice.edu).
‡Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt, and

Center for Research on Parallel Computation, Rice University, P.O. Box 1892, Houston, TX 77251
(elalem@alex.eun.eg, mahmoud@rice.edu).
§TDA Research Inc., 12345 West 52nd Avenue, Wheat Ridge, CO 80033 (kaw@rice.edu).

291

292 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

set in a nonlinear programming problem. For this reason, it is important that we
design our algorithms to handle any relationship between m and n, whereas, if we
were considering only the pure one-sided approximation generalization of nonlinear
least squares, then it would be reasonable to assume that m ≥ n. Also, the general
form of (1.2) we consider here is of interest in its own right (see Burke [5] and Burke
and Han [6]).

Newton’s method is a well-known and very powerful technique for solving non-
linear systems of equations. See, for example, Dennis and Schnabel [13]. Pshenichnyi
[31], Robinson [32], and Daniel [12] extended Newton’s method to nonlinear systems
of equalities and inequalities. Robinson [32] generalized Newton’s method to solve
problems in the form find x? such that f(x?) ∈ K, where K is a nonempty closed
convex cone. Polyak [28] used gradient methods for solving problem (1.1).

Burke and Han [6] considered a Gauss–Newton approach to solving generalized
inequalities; C(x) ≤K 0, where C maps between normed linear spaces and ≤K denotes
the partial order induced by the closed convex cone K. Burke and Ferris [7] considered
an extension of the Gauss–Newton method to convex composite optimization. Using
tools from nondifferentiable optimization, they were able to establish a local quadratic
rate of convergence. By using a backtracking line search they were able to prove
global convergence. Many authors, including Garcia-Palomares and Restuccia [16],
Garcia-Palomares [15], and Burke [5], consider globally convergent algorithms for
solving problem (1.1). None of these theories are based on a trust-region globalization
strategy.

In this paper, we present two new trust-region-based algorithms for solving prob-
lem (1.1). By using an indicator matrix that will be presented in the next section,
we are able to transform our problem into one that possesses sufficient smoothness
to exploit the robustness of our algorithms. This allows us to use well-developed
tools and algorithms that require differentiability. In addition to that, the proposed
active set subproblems in this paper are much simpler than those proposed by Garcia-
Palomares and Restuccia [16] and Burke [5]. When we present our algorithms, it will
be clear that they are active set-type methods that try to identify the inequalities
likely to be violated at a solution to (1.2). Based on this property, we plan in future
research to use the ideas underpinning the algorithms developed here to develop an
`2 trust-region active set algorithm for nonlinear programming.

The two algorithms we present in this paper are one-sided least-squares trust-
region algorithms. The first one is a single-model algorithm. The second one is
a multimodel algorithm, where the Cauchy point computation is a model selection
procedure. Most minimization algorithms use a local quadratic model where the
Hessian matrix may not be accurate. (See, e.g., Powell [30] and Toint [36].) Carter
[9], on the other hand, studied the case when the gradient might be inaccurate and
needs to be corrected during the step calculation. In this algorithm, we go all the
way to a model in which the function value may even be wrong, and it may need to
be corrected to find a step. See also Conn et al. [10].

We present global convergence results for the two algorithms. The two algorithms
were tested and compared on some test problems. The results are presented.

The rest of the paper is organized as follows. In section 2, we establish the
problem formulation and some notation. In section 3, we review the nonlinear least
squares problem and the concept of a fraction of the Cauchy decrease. In section 4,
we state some assumptions and prove a lemma that shows the required smoothness
properties of the problem formulation. In sections 5 and 6, we describe our two

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 293

trust-region algorithms. Section 7 is devoted to the global convergence theory for
the first algorithm. In section 8, we present the global convergence theory for the
multimodel algorithm. Section 9 contains our numerical results, and finally, we make
some concluding remarks in section 10.

2. Preliminaries. It will be useful to establish some notation. Let C(x) =
(c1(x), . . . , cm(x))T , and define the vector functions CE : <n → <|E| to be the vector
function whose components are ci(x) for i ∈ E and CI : <n → <|I| to be the vector
function whose components are ci(x) for i ∈ I. Then, (1.1) can be written as

CE(x) = 0,

CI(x) ≤ 0 .

We define a 0–1 diagonal indicator matrix W (x) ∈ <m×m whose diagonal entries
are

wi(x) =

 1, i ∈ E,
1, i ∈ I and ci(x) ≥ 0,
0, i ∈ I and ci(x) < 0.

(2.1)

It is also useful to identify the square submatrix WI(x) whose diagonal entries wi(x)
correspond to i ∈ I. Now, we define the functions

ΦE(x) =
1

2
CE(x)TCE(x) ,(2.2)

ΦI(x) =
1

2
CI(x)TWI(x)CI(x) ,(2.3)

and

Φ(x) = ΦE(x) + ΦI(x) .(2.4)

The definition of W (x) allows us to write Φ(x) as

Φ(x) =
1

2
C(x)TW (x)C(x),

and problem (1.2) can then be written as

min
x∈<n

Φ(x) .

It is easy to see that the function t+ = max{t, 0} is continuous and that (t+)2

satisfies

d

dt

(
1

2
t2+

)
= t+ .

Hence, (t+)2 ∈ C1. Thus, if each ci(x), for i = 1, . . . ,m, is continuously differentiable,

∇Φ(x) = ∇ΦE(x) +∇ΦI(x)(2.5)

= C ′E(x)TCE(x) + C ′I(x)TWICI(x)

294 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

is well defined and continuous. This allows us to write

∇Φ(x) = C ′(x)TW (x)C(x).

Throughout the rest of the paper, the sequence of points generated by an algo-
rithm will be denoted by {xk}. Subscripted functions indicate that the function is
evaluated at a particular point. For example, Wk ≡ W (xk), Ck ≡ C(xk), and so on.
The expression f ∈ Lip(S) is used to mean that the function f is Lipschitz continuous
at every point of the set S. Finally, unless otherwise specified, all the norms used in
this paper will be `2-norms.

3. Nonlinear least-squares trust-region algorithms. The nonlinear least-
squares problem is traditionally written only for equalities as

min
x∈<n

ΦE(x),(3.1)

where ΦE(x) is given by (2.2).
A trust-region method for solving (3.1) is an iterative method that computes,

at each iteration, a trial step sk by minimizing a quadratic model of the objective
function in the region in which we “trust” the model. First, we build a linear model
of CE around the current iterate xk, namely, CE(xk) + C ′E(xk)s. Then we compute
a trial step sk that (approximately) solves the trust-region subproblem

minimize
s∈<n

mk(s) =
1

2
‖ C ′E(xk)s+ CE(xk) ‖2

subject to ‖s‖ ≤ ∆k,

where ∆k > 0 is the radius of the trust region.
The trust-region approach was first suggested by Levenberg [20]. Later, Mar-

quardt [21] used a different formulation of this technique, and the method is now
known as the Levenberg–Marquardt method. More details about problem (3.1) and
the trust-region subproblem can be found in Moré [22] and Dennis and Schnabel [14].

The global convergence analysis for problem (3.1) has been well established. To
insure global convergence, the step can be required to satisfy a fraction of the Cauchy
decrease condition. The Cauchy step minimizes the quadratic model along the nega-
tive gradient direction inside the trust region; i.e., scp

k = −αcp
k C ′E(xk)TCE(xk), where

the step length is given by

αcp
k =

{ ‖C′E(xk)TCE(xk)‖2
‖C′

E
(xk)C′

E
(xk)TCE(xk)‖2 if

‖C′E(xk)TCE(xk)‖3
‖C′

E
(xk)C′

E
(xk)TCE(xk)‖2 ≤ ∆k,

∆k

‖C′
E

(xk)TCE(xk)‖ otherwise.
(3.2)

The fraction of the Cauchy decrease condition means that the step sk must predict
via the quadratic model of the function mk(s) at least as much as a fraction of the
decrease given by the Cauchy step scp

k on mk(s); that is, there exists a constant σ > 0
fixed across all iterations, such that

mk(0)−mk(s) ≥ σ [mk(0)−mk(scp
k)].(3.3)

Later, we will find it useful to work with the following condition instead of (3.3).
If the step satisfies a fraction of Cauchy decrease, i.e., inequality (3.3), then

mk(0)−mk(sk) ≥ σ

2
‖C ′E(xk)TCE(xk)‖min

{‖C ′E(xk)TCE(xk)‖
‖C ′E(xk)TC ′E(xk)‖ , ∆k

}
.(3.4)

More details can be found in Carter [8], Moré [23], and Powell [29].

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 295

4. The continuity property. Throughout this paper, we will require the fol-
lowing continuity and boundedness assumptions about the problem being solved.

Assumption 1. C ′E and C ′I ∈ Lip(Ω), where Ω ∈ <n is an open convex set.
Assumption 2. CE(x), CI(x), C ′E(x), and C ′I(x) are all bounded in norm for

x ∈ Ω.
Equivalent to these assumptions is the existence of constants γE , γI ≥ 0, β ≥

βi ≥ 0 for i ∈ {1, . . . ,m}, and b ≥ 0, such that for all x, y ∈ Ω,

‖C ′E(x)− C ′E(y)‖ ≤ γE‖x− y‖,(4.1)

‖C ′I(x)− C ′I(y)‖ ≤ γI‖x− y‖,(4.2)

‖C ′(x)‖ ≤ β,(4.3)

‖c′i(x)‖ ≤ βi, i ∈ {1, . . . ,m},(4.4)

‖CE(x)‖ ≤ b, and

‖CI(x)‖ ≤ b.
The following lemma establishes the Lipschitz continuity of ∇Φ(x) under As-

sumptions 1 and 2.
Lemma 4.1. Let Assumptions 1 and 2 hold. Then, for every x, y ∈ Ω,

‖∇Φ(x)−∇Φ(y)‖ ≤ a0‖x− y‖,(4.5)

where a0 is a positive constant.
Proof. We have

‖∇Φ(x)−∇Φ(y)‖≤‖∇ΦE(x)−∇ΦE(y)‖+ ‖∇ΦI(x)−∇ΦI(y)‖ .
Now,

‖∇ΦE(x)−∇ΦE(y)‖=
∥∥C ′E(x)TCE(x)− C ′E(y)TCE(y)

∥∥
≤
∥∥∥(C ′E(x)− C ′E(y))

T
CE(x)

∥∥∥+
∥∥C ′E(y)T (CE(x)− CE(y))

∥∥
≤γE ‖x− y‖ · ‖CE(x)‖+ ‖C ′E(y)‖ · ‖CE(y)− CE(x)‖

≤
(
γE b+ βE

(∑
i∈E

βi

))
‖x− y‖,(4.6)

where βE bounds ‖C ′E(y)‖, which establishes the Lipschitz continuity of ∇ΦE(x).
Also, we can bound ‖C ′I(y)‖ by βI . Hence, using an argument similar to what we

used in (4.6), we have

‖∇ΦI(x)−∇ΦI(y)‖ ≤ b · γI · ‖x− y‖+ βI ‖WI(y)CI(y)−WI(x)CI(x)‖ .
We will complete the proof by showing that WI(·)CI(·) is Lipschitz continuous. Con-
sider a fixed i ∈ I, and let Zi = {z ∈ <n : ci(z) = 0}. If ci(x) · ci(y) < 0, then we can
choose zi ∈ Zi ∩ [x, y]. Thus,

wi(x)ci(x)− wi(y)ci(y) =

{
ci(x)− ci(zi) if ci(y) < 0 ,
ci(zi)− ci(y) if ci(y) > 0 ,

and so by (4.4),

|wi(x)ci(x)− wi(y)ci(y)| ≤ βi max {‖x− zi‖ , ‖zi − y‖} ≤ βi‖x− y‖ .

296 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

If ci(x) · ci(y) ≥ 0, then for ci(y) 6= 0,

wi(x)ci(x)− wi(y)ci(y) =

{
0 if ci(y) < 0 ,
ci(x)− ci(y) if ci(y) > 0 ,

and so |wi(x)ci(x)− wi(y)ci(y)| ≤ βi‖x − y‖. If ci(y) = 0, then similarly, |wi(x)
ci(x)− wi(y)ci(y)| ≤ βi‖x− y‖. Putting the components together yields

‖WI(y)CI(y)−WI(x)CI(x)‖ ≤ ‖WI(y)CI(y)−WI(x)CI(x)‖1 ≤
(∑
i∈I

βi

)
‖x− y‖ .

Finally, we obtain ‖∇ΦI(x)−∇ΦI(y)‖ ≤ (γI b+ βI
(∑

i∈I βi
)) ‖x− y‖ . This com-

pletes the proof.

5. Single-model algorithm. We describe the single-model algorithm for (1.2)
in four sections. In section 5.1, we discuss the model and the trust-region subprob-
lem, and section 5.2 describes the method of solving this subproblem. Section 5.3
is devoted to presenting the trial-step acceptance mechanism and the trust-region
updating strategy. Finally, in section 5.4 we summarize the single-model algorithm.

5.1. The trust-region subproblem. The idea here is to use a standard trust-
region algorithm for nonlinear least squares on

min
x∈<n

Φ(x) ,

where Φ(x) is given by (2.4).
At the current iterate k, the set of binding or violated inequalities at xk is iden-

tified, and the 0–1 diagonal matrix W (xk) defined by (2.1) is assembled. Next, we
build a quadratic model

q(xk + s) =
1

2
‖W (xk)(C ′(xk)s+ C(xk))‖2(5.1)

of Φ around the current iterate xk, as in the Gauss–Newton approach, where

Φ(xk + s) =
1

2
C(xk + s)TW (xk + s)C(xk + s).

Thus, the quadratic model contains information about only those inequalities which
are violated or active at xk.

At each iteration, a trial step sk is computed as an approximate solution to the
trust-region subproblem

minimize q(xk + s) ≡ 1

2
‖W (xk) (C ′(xk)s+ C(xk))‖2(5.2)

subject to ‖ s ‖ ≤ ∆k

where ∆k > 0 is the current trust-region radius.

5.2. Solution of the single-model subproblem. We want to compute an
approximate solution to the trust-region subproblem (5.2). The most obvious strategy
would be to use an algorithm such as the one used in the MINPACK routine LMDER
[24], which is based on the Levenberg–Marquardt approach [22]. However, this routine
will not solve underdetermined systems; i.e., it requires that the dimension of C be

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 297

at least as large as the dimension of x. In the context of finding a solution to a set
of equalities and inequalities, we have not assumed any relationship between n and
m. Another alternative to consider is the completely general Moré–Sorensen routine
GQTPAR [1]. However, this routine is unsuitable for n < m because of its strategy for
the hard case. (See Moré and Sorensen [25] for the definition of the hard case.) This
routine always steps to the boundary of the trust region even when a zero-residual
step is safely inside. We emphasize that this is not a criticism of GQTPAR; it is a
statement of our special needs. Hence, we will use a dogleg algorithm to solve the
subproblem (5.2).

The dogleg algorithm approximates the solution curve to problem (5.2) by a
piecewise linear function connecting the Cauchy point to the “Newton” point. The
Cauchy step is defined to be scp

k = −αcp
k C ′(xk)TWkC(xk), where

αcp
k =

{ ‖C′(xk)TW (xk)C(xk)‖2
‖W (xk)C′(xk)C′(xk)TW (xk)C(xk)‖2 if ‖C′(xk)TW (xk)C(xk)‖3

‖W (xk)C′(xk)C′(xk)TW (xk)C(xk)‖2 ≤ ∆k,
∆k

‖C′(xk)TW (xk)C(xk)‖ otherwise.

If scp
k lies inside the trust region, then we compute the step that will play the role of

the Newton step, and it is the minimum norm solution to

minimize
1

2
‖W (xk) (C ′(xk)s+ C(xk))‖2.(5.3)

We will refer to this step as slf
k. To compute this step, one can use the routine GELSX

from LAPACK [1], which can handle both over- and underdetermined systems.
When n is large, iterative methods might have to be used to obtain the minimum

norm solution of problem (5.3). A truncation procedure might also be needed. For
example, a Steihaug–Toint-type algorithm can be used [34], [37].

The algorithm described in Golub and von Matt [17] is also of interest, especially
for the large-scale case. This algorithm is applicable to the over- and underdetermined
cases and can be applied directly to solve the trust-region subproblem (5.2).

Using the minimum norm solution ensures that if the computed step is outside the
trust region, then there are no other solutions to (5.3) that are inside the trust region.
If slf is inside the trust region, then we take it as the solution to the subproblem.
Otherwise, we compute the dogleg step between the Cauchy point and slf with length
∆k, and take it as the trial step.

Algorithm 5.1. Computing a Trial Step.
Compute the Cauchy step, scp = −αcp

k (C ′k)TWkCk.
If (‖scp‖ = ∆k), then set sk = scp

Else, if (∇qk(scp) = 0), then set sk = scp.
Else, compute slf , the minimum norm solution to

minimize 1
2 ‖WkCk +Wk(C ′k)T s‖2

If (‖slf‖ ≤ ∆k), then set sk = slf .
Else, dogleg between scp and slf .

Since our theory is based on the fraction of the Cauchy decrease condition (see
section 3), any method that computes a trial step that gives at least a fraction of the
Cauchy decrease can be used. Therefore, in the case when n is large, a generalized
dogleg algorithm introduced by Steihaug [34] and Toint [37] can be used to compute
the trial step sk. This algorithm is based on the linear conjugate gradient method
and is known to be suitable for large problems for which effective preconditioners are
known.

298 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

5.3. Accepting the step and updating the trust-region. Once we have
computed a trial step sk, we decide if the step is acceptable by comparing the amount
of reduction sk predicts in the model (5.1) to the amount of reduction we actually
obtain in Φ(x). The actual reduction in Φ(x) is given by

Aredk = Φ(xk)− Φ(xk + sk)

=
1

2
‖Wk Ck‖2 − 1

2
‖W (xk + sk)C(xk + sk)‖2,

and the predicted reduction in the model is given by

Predk = q(xk)− q(xk + sk)

=
1

2
‖Wk Ck‖2 − 1

2
‖Wk (Ck

′sk + Ck)‖2.

The trust-region algorithm should produce steps that decrease Φ and make
progress toward the feasible region. To guarantee this, the actual reduction in Φ
has to be greater than some fraction of the predicted reduction in the model for the
step to be deemed acceptable. The computation of the trial step (specifically, the
solution of the trust-region subproblem, discussed in section 5.2) ensures that the
step predicts at least a fraction of the Cauchy decrease in the model, and hence,
Predk > 0.

The step is accepted if η1 ≤ Aredk
Predk

, where η1 ∈ (0, 1) is a small fixed constant,

say 10−4. If the step is judged acceptable, then we proceed to the next iteration.
Otherwise, the trial step is rejected, the trust-region radius is decreased by setting
∆k = α1‖sk‖ for some α1 ∈ (0, 1), and another trial step is computed from xk in the
smaller trust region.

If the step is accepted, then the trust-region radius is updated by comparing the
value of Aredk with Predk. Namely, if η2 ≤ Aredk

Predk
< η3, where η2 ∈ (η1, 1), then

the radius of the trust region is kept the same. If the agreement between the actual
reduction and the predicted reduction is poor (AredkPredk

< η2, where η2 is less than or

equal to 0.1), then we allow possible reduction in the radius of the trust region. We
set ∆k+1 = min(∆k, α2‖sk‖) for some α2 ≥ 1. If, on the other hand, the agreement
between the actual reduction and the predicted reduction is fair, η3 ≤ Aredk

Predk
< η4,

possibly increase the trust region. Set ∆k+1 = max(∆k, α2‖sk‖). Typical values for
η3 and η4 are 0.25 and 0.75. If the agreement between the actual reduction and the
predicted reduction is good, η4 ≤ Aredk

Predk
, then increase the trust region radius. Set

∆k+1 = max(α2∆k, α3‖sk‖), where α3 ≥ α2.
Further details concerning the basic trust-region framework can be found, for

instance, in Moré [23] or Dennis and Schnabel [14].

5.4. Summary of the single-model algorithm. Putting the pieces together,
we can now outline the single-model algorithm for finding a local minimizer of Φ(x).

Algorithm 5.2. The Single-Model Algorithm.
Initialization: Given x0 and ∆0 > 0, compute C(x0), W (x0), and C ′(x0).
At every iteration, do

Step 1. Check for convergence.
Step 2. Compute a trial step sk by approximately solving

minimize q(xk + s) =
1

2
‖Wk (C ′ks+ Ck) ‖2

subject to ‖s‖ ≤ ∆k.

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 299

Step 3. Compute C(xk + sk) and W (xk + sk).
Step 4. Decide if the step is acceptable based on the ratio of Aredk to Predk

(as discussed in section 5.3) and update ∆k (by the mechanism given
in section 5.3).

Step 5. If the step sk is acceptable, set xk+1 = xk + sk, compute C ′(xk+1),
and go to Step 1.
Else set k := k + 1 and go to Step 2.

6. Multimodel algorithm. We describe our multimodel algorithm in four sec-
tions. In sections 6.1–6.3, we describe our way of computing the trial step. Section
6.4 is devoted to presenting the trial-step acceptance mechanism and how to update
the trust-region radius.

6.1. The trust-region subproblem. At each iteration k, the set of binding or
violated inequalities at xk is identified and the 0–1 diagonal matrix W (xk), defined
by (2.1), is assembled.

Next, a generalized Cauchy point is computed to be the point xk + sgcp
k where

sgcp
k solves the one-dimensional piecewise-quadratic convex minimization problem

minimize
s∈<n

1

2
‖Vk(s)(C ′ks+ Ck)‖2

subject to ‖s‖ ≤ ∆k, s = −αC ′kTWkCk,

where Vk(s) is another 0–1 diagonal indicator matrix, whose diagonal elements vi are

vi(s) =

 1, i ∈ E,
1, i ∈ I, wi(xk) = 1, and ci(xk) + c′i(xk) s ≥ 0,
0, otherwise.

(6.1)

The algorithm then computes a trial step by solving the following standard trust-
region subproblem:

minimize
s∈<n

1

2
‖Vk(sgcp

k)(C ′ks+ Ck)‖2

subject to ‖sk‖ ≤ ∆k.

It will be useful later if we point out here that

Ψk(s) =
1

2
‖Vk(s)(C ′ks+ Ck)‖2(6.2)

is a local form of Φ for the linearization of C about xk. It is easy to see that Ψk(0) =
Φ(xk), ∇sΨk(s) = C ′k

TVk(s)(C ′ks+ Ck), and ∇sΨk(0) = C ′k
TWkCk.

The mappings Wk and Vk are very reminiscent of the structure functionals used
by Osborne and Womersley. Interested readers are referred to [26] and [27].

6.2. Computing the generalized Cauchy point. In this section, we present
the algorithm that we use to compute the generalized Cauchy point and thus to
determine which inequalities will be included in the trial step calculation. At the kth
iteration, given C(xk), we form the nonlinear indicator matrix W (xk), given by (2.1).

300 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

The generalized Cauchy point sgcp solves the trust-region subproblem

minimize qk(s) ≡ 1

2
‖Vk(s) (Ck + C ′k s) ‖2

α ∈ <
subject to s = −α(C ′k)T Wk Ck,

‖s‖ ≤ ∆k,

(6.3)

where Vk(s) is a diagonal 0–1 indicator matrix that designates which of the linearized
inequalities that are binding or violated at s = 0 are still violated or binding for a
particular step s. As with W (x), the diagonal elements corresponding to equalities
are always one, and Vk(s) is given by (6.1)

In problem (6.3), the step is restricted to the negative gradient direction of the
model at xk. Normalizing this direction makes the trust-region constraint invariant
under the resulting change of variables, and so we will refer to

dcp
k =

−(C ′k)T Wk Ck
‖(C ′k)T Wk Ck‖

as the Cauchy direction.
It is easy to see that Vk(s) evaluated at s = 0 is just Wk. Furthermore, the

only components of Vk(s) that actually depend on s are those vi corresponding to
inequalities that are binding or violated at xk. Consequently, if all of the inequalities
are strictly satisfied at xk (or if there are no inequalities), then V (s) ≡ Wk for all s.
In this case, Vk(sgcp) = Wk, and problem (6.3) reduces to the standard Cauchy point
computation with sgcp

k = αk d
cp
k , where

αk = min

{‖(C ′k)T Wk Ck‖
‖Wk C ′k d

cp
k ‖2

, ∆k

}
.(6.4)

For the remainder of this section, we will assume that there is at least one violated
or binding inequality at xk. Thus, we have a one-dimensional trust-region subproblem
of the form

minimize qk(α) =
1

2
‖Vk(α) (Ck + αC ′k d

cp
k) ‖2

α ∈ <
subject to |α| ≤ ∆k.

(6.5)

Note that we obtain Vk as a function of α alone through the substitution s = αdcp
k .

The objective function of problem (6.5) is a one-dimensional piecewise quadratic, and
it is convex and continuously differentiable.

It is worth noting that the number of ones in Vk(α) decreases as α increases and
that for α1 ≤ α2, the following inequality holds for all α:

‖Vk(α1) (Ck + αC ′k d
cp
k) ‖ ≥ ‖Vk(α2) (Ck + αC ′k d

cp
k) ‖.

We will use a “piecewise” form of Newton’s method to solve problem (6.5). Start-
ing from α0 = 0, we fix the indicator matrix at Vk(αj) and form the jth quadratic
model

qjk(α) =
1

2
‖Vk(αj) (Ck + αC ′k d

cp
k) ‖2.(6.6)

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 301

The jth quadratic model qjk(α) is equal to the composite quadratic model qk(α) given
in (6.6) at the point αj . Then, we minimize this model subject to the trust-region
constraint to obtain the next iterate αj+1. The Newton step for (6.6) is

αj+1 =
−CTk Vk(αj) C

′
k d

cp
k

‖Vk(αj) C ′k d
cp
k ‖2

.(6.7)

Since the quadratic model is one-dimensional and convex, either the Newton step is
the solution to the trust-region subproblem or the trust-region is binding, in which
case αj+1 = ∆k.

Given the new iterate, αj+1, we must determine if it is the solution to (6.5). First,
we evaluate Vk(αj+1) to determine if the set of linearly violated or binding inequalities
has changed. The following lemma gives sufficient conditions for αj+1 to solve (6.5).

Lemma 6.1. Let αj+1 minimize the jth quadratic model qjk(α) inside the trust
region. Then, αj+1 solves the trust-region subproblem (6.5) if one of the following
conditions holds:

i. Vk(αj+1) = Vk(αj).
ii. The trust-region is binding at αj+1.

iii. The gradient of the new quadratic model,

∇qj+1
k (αj+1) = (Ck + αj+1C

′
kd

cp
k)

T
Vk(αj+1)C ′k d

cp
k ,(6.8)

is equal to zero.
Furthermore, the algorithm must terminate with αj+1 that satisfies either i, ii, or iii
in a finite number of iterations.

Proof. i. Since Vk(αj+1) = Vk(αj), we have

qjk(αj+1) =
1

2
‖Vk(αj) (Ck + αj+1 C

′
k d

cp
k) ‖2

=
1

2
‖Vk(αj+1) (Ck + αj+1 C

′
k d

cp
k) ‖2 = qj+1

k (αj+1) .

Since qj+1
k (αj+1) is the composite quadratic qk at αj+1, αj+1 solves (6.5).

ii. Now assume that Vk(αj+1) 6= Vk(αj). Then from the definition of Vk the only
possibility is that at least one of the linear inequalities that was violated or binding at
αj is strictly satisfied at αj+1. Without loss of generality, we will assume that there
is only one such inequality with index l such that Vlk(αj) = 1 and Vlk(αj+1) = 0.

We need to show that if αj+1 = ∆k minimizes qjk(α) subject to the trust-region

constraint, then it also minimizes qj+1
k (α) in the trust region. Thus, αj+1 will be a

solution to (6.5) because qj+1
k (αj+1) is the composite quadratic model at αj+1.

The only difference between qjk(αj+1) and qj+1
k (αj+1) is in the lth term, with

Vlk(αj) = 1 and Vlk(αj+1) = 0. So,

∇qjk(αj+1) = ∇qj+1
k (αj+1) + (clk + αj+1 c

′
lk d

cp
k) c′lk d

cp
k .(6.9)

Since Vlk(αj) = 1, the definition of Vk indicates that Wl(xk) = 1, which implies that
clk ≥ 0. Also, Vlk(αj+1) = 0 yields clk + αj+1 c

′
lk d

cp
k < 0.

We can conclude that αj+1 ∈ [0,∆k] from the fact that ∇αqk(0) ≤ 0 because
either dcp

k = 0 and α = 0 solves (6.5) or αdcp
k is a descent direction for qk at α = 0,

i.e.,

∇αqk(0) = CTkWkC
′
kd

cp
k = −‖(C ′k)TWkCk‖ ≤ 0.

302 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

Thus, αj+1 ≥ 0, and so c′lk d
cp
k ≤ 0. From this we obtain

(clk + αj+1 c
′
lk d

cp
k) c′lk d

cp
k ≥ 0.(6.10)

In other words, one previously violated linear inequality became strictly satisfied
or binding on the interval [αj , αj+1].

For αj+1 to minimize qjk(α) with the trust-region constraint binding, we know
that

∇αqjk(αj+1) ≤ 0.

Combining this with (6.9) and (6.10), we can conclude that ∇qj+1
k (αj+1) ≤ 0, and

since the trust region is binding, αj+1 solves (6.5).

iii. If ∇qj+1
k (αj+1) = 0, then clearly αj+1 solves (6.5).

Finally, the algorithm must terminate in at most ‖WI(xk)‖2F + 1 iterations. At
every iteration, at least one linear inequality, with wi(xk) = 1, must become strictly
satisfied, or i indicates that the algorithm will terminate at that iteration. We started
with ‖WI(xk)‖2F violated or binding linear inequalities, so by iteration ‖WI(xk)‖2F ,
either we have found the solution or all of the inequalities with wik = 1 now have
vik(α) = 0. Then, only the equalities, i ∈ E, have vik = 1, and one more iteration
could be required to solve (6.5).

Now after Lemma 6.1 has established constructive stopping criteria, we can state
our algorithm for computing the generalized Cauchy point.

Algorithm 6.2. Generalized Cauchy Point Algorithm.
Initialization.

Given xk, Ck, Wk, C ′k, and ∆k > 0.
Set j = 0, α0 = 0, and V0k = Wk.

Compute sgcp and Vk(sgcp) as follows:
Step 1. If all inequalities are strictly satisfied, i.e.,

∑
i∈I wi(xk) = 0, then

Vk(sgcp) ≡ Wk and sgcp = scp
k = αkd

cp
k , where αk is given by (6.4).

Return.
Step 2. Compute the normalized negative gradient direction:

dcp
k =

−(C ′k)T Wk Ck
‖(C ′k)T Wk Ck‖ .

Step 3. Solve

minimize qjk(α) =
1

2
‖Vjk (αC ′k d

cp
k + Ck) ‖2

subject to |α| ≤ ∆k

for the new iterate αj+1.
• Compute the Newton step

αj+1 =
−CTk Vjk C

′
k d

cp
k

(dcp
k)T C ′k Vjk C

′
k d

cp
k

.

• Determine if the trust region is binding; if (αj+1 > ∆k), then
αj+1 = ∆k.

Step 4. Evaluate Vk(αj+1) as in (6.1).

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 303

Step 5. Check for convergence.
• If (Vk(αj+1) = Vk(αj)) or (αj+1 = ∆k), then αj+1 solves (6.5).

Else
— Compute the gradient of the new quadratic model,

∇qj+1
k (αj+1) = (Ck + αj+1C

′
kd

cp
k)

T
Vk(αj+1)C ′k d

cp
k .

— If (∇qj+1
k (αj+1) = 0), then αj+1 solves (6.5).

Else go to Step 3.

Step 6. If (Vk(sgcp) 6= Wk), then compute sgcp = −αk (C′k)TVk(sgcp)Ck
‖(C′

k
)TVk(sgcp)Ck‖ .

6.3. Solution of the trust-region subproblem. We now consider an algo-
rithm that approximates the solution to the following trust-region subproblem:

minimize
s∈<n

1

2
‖Vk(sgcp

k)(C ′ks+ Ck)‖2

subject to ‖s‖ ≤ ∆k.

Algorithm 6.3. Multimodel Dogleg Step.
Compute the generalized Cauchy step sgcp and V (sgcp);
If (‖sgcp‖ = ∆k), then sk = sgcp. (* trust region was binding *)

Else if (∇qk(sgcp) = 0), then s = sgcp.
Else
∗ Compute slf , the minimum norm solution to

minimize 1
2‖V (sgcp)(C + C ′s)‖2

∗ If (‖slf‖ ≤ ∆k), then sk = slf

∗ Else dogleg between sgcp and slf

6.4. Accepting the steps. Let sk be a trial step computed by the algorithm.
We test whether the point xk+1 = xk + sk is making progress toward the feasible
region. We define the actual reduction in moving from xk to xk+1 to be

Aredk = Φk − Φk+1,

=
1

2

[‖WkCk‖2 − ‖Wk+1Ck+1‖2
]
.

The predicted reduction will be

Predk =
1

2

[‖WkCk‖2 − ‖Vk(sgcp
k)(Ck + C ′ksk)‖2] .

From the way of computing the trial step, the predicted reduction is defined to
produce a fraction of the Cauchy decrease in Φ at xk, which means that Predk > 0.
Hence, the step is accepted if Aredk

Predk
≥ η1 where η1 ∈ (0, 1).

Our rule for accepting the step and updating the trust-region radius for this
algorithm is the same as in section 5.3.

7. Convergence results for the single-model algorithm. In this section,
we will use the convergence theory for trust-region methods provided in Moré [23]
to show that the Levenberg–Marquardt approach to the solution of (1.1) is globally
convergent to a first-order stationary point under reasonable assumptions on C(x).

304 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

We make the following assumption on the sequence of iterates {xk} generated by
the single-model algorithm.

Assumption 3. For all k, xk and xk + sk ∈ Ω.
In order to apply Theorem 4.14 from Moré [23], we need to establish that Φ(x) is

bounded below, ∇Φ(x) is uniformly continuous, and the model Hessian is uniformly
bounded. From (2.2) and (2.3), it is obvious that Φ(x) is bounded below by 0. We
obtain the following convergence result.

Lemma 7.1. Let Assumptions 1, 2, and 3 hold. Then,

lim
k→∞

‖ ∇Φ(xk) ‖= 0.

Proof. A straightforward calculation from (5.1) yields

∇q(xk) = C ′(xk)W (xk)C(xk) = ∇Φ(xk) .

Lemma 4.1 shows that ∇Φ is Lipschitz continuous, and thus, uniformly continuous.
Boundedness of the Hessian of the quadratic model can be established in the

Frobenius norm in the following manner:

∇2q(xk) = C
′
(xk)TW (xk)C

′
(xk),

‖ ∇2q(xk) ‖F ≤ ‖ C ′E
T
C
′
E ‖F + ‖ C ′I

T
(xk)WI(xk)C

′
I(xk) ‖F

≤ ‖ C ′E ‖2F + ‖ C ′I ‖2F
≤ β2

E + β2
I .

The lemma then follows from Theorem 4.14 in Moré [23].

8. Convergence results for the multimodel algorithm. In this section we
start by proving some intermediate lemmas needed for global convergence. Then we
prove our main global convergence results.

We add to our list of assumptions the following assumption on the sequence of
iterates {xk} generated by the multimodel algorithm.

Assumption 3′. For all k, xk + scp
k , xk + sgcp

k , and xk + sk ∈ Ω.
We start with the following lemma, which is needed in the proof of Lemma 8.2.
Lemma 8.1. Let Assumptions 1, 2, and 3′ hold. Suppose that at any given

iteration k there exists an i ∈ I such that |cik| > 0. If ∆k satisfies

∆k ≤ 1

2β
min
cik 6=0

|cik|,(8.1)

where β is as in (4.3), then

Wk+1 = Wk −Bk(8.2)

and

Vk(sgcp
k) = Wk − B̄k,(8.3)

where Bk is a 0–1 diagonal matrix whose diagonal elements are

bi =

{
1 if i ∈ I, cik = 0, and cik+1 < 0,
0 otherwise,

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 305

and B̄k is a 0–1 diagonal matrix whose diagonal elements are

b̄i =

{
1 if i ∈ I, cik = 0, and c′iks

gcp
k < 0,

0 otherwise.

Proof. Let i index a constraint such that cik 6= 0. We will show that, if (8.1)
holds, cik+1 has the same sign as cik.

From the hypothesis, cik+1 = cik + c′i(xk + ξsk)sk, where ξ ∈ (0, 1). Therefore,
if cik > 0, then cik+1 ≥ cik − ‖c′i(xk + ξsk)‖‖sk‖, and because ‖sk‖ ≤ ∆k satisfies
(8.1), we have cik+1 >

cik
2 > 0. On the other hand, if cik < 0, then cik+1 ≤ cik +

‖c′i(xk + ξsk)‖‖sk‖, and again, because ‖sk‖ satisfies (8.1), we have cik+1 <
cik
2 < 0.

Therefore, for all the above cases, if wik = 1, then wik+1 = 1 and hence bik = 0.
Now consider the case where cik = 0. In this case wik = 1. Therefore, if cik+1 ≥ 0,

then wik+1 = 1, and hence bik = 0. Thus, the only case where bik = 1 is when cik = 0
and cik+1 < 0. Hence, (8.2) easily follows. Similarly, we can show that (8.3) holds.
This completes the proof.

The following lemma shows, for a fixed iterate k, how accurate our definition of
predicted reduction is as an approximation to the actual reduction. This lemma is
used in the proof of Theorem 8.5.

Lemma 8.2. Let Assumptions 1, 2, and 3′ hold. For a fixed k and varying ∆k,
there exists a positive constant a1, which depends on k, such that, if ∆k satisfies (8.1),
then

|Aredk − Predk| ≤ a1‖sk‖2.(8.4)

Proof. If there is no index i such that i ∈ I and cik > 0 or i ∈ E and |cik| > 0,
then the point xk is a solution and the algorithm is terminated and there is nothing
to prove.

Consider the case when there is at least one index i ∈ I with cik > 0 or i ∈ E
with |cik| > 0. Because of the assumption that ∆k satisfies (8.1) and using the above
lemma, we have

Aredk =
1

2

[
CTkWkCk − CTk+1Wk+1Ck+1

]
=

1

2

[
CTkWkCk − CTk+1(Wk −Bk)Ck+1

]
and

Predk =
1

2

[
CTkWkCk − (Ck + C ′ksk)TVk(sgcp

k)(Ck + C ′ksk)
]

=
1

2

[
CTkWkCk − (Ck + C ′ksk)T (Wk − B̄k)(Ck + C ′ksk)

]
.

Thus,

| Aredk − Predk | = 1

2

∣∣ CTk+1(Wk −Bk)Ck+1 − (Ck + C ′ksk)T (Wk − B̄k)(Ck + C ′ksk)
∣∣ .

But, because BkCk = 0 and B̄kCk = 0, we have

| Aredk − Predk | = 1

2

∣∣ (Ck + C ′(xk + ξsk)sk)TWk(Ck + C ′(xk + ξsk)sk

−sTkC ′(xk + ξsk)TBkC
′(xk + ξsk)sk

−(Ck + C ′ksk)TWk(Ck + C ′ksk) + sTkC
′T
k B̄kC

′
ksk

∣∣ .

306 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

Using Assumptions 1, 2, and 3′ we can easily obtain

| Aredk − Predk | ≤ a1‖sk‖2.
This completes the proof.

In the above lemma we bound the difference between Aredk and Predk by a
constant a1 times ‖sk‖2. This constant depends on k. This lemma can be used for a
fixed iterate k, but it cannot be used, with the same constant a1, across all iterates.

The following lemma gives a bound to |Aredk − Predk| that can be used across
all iterates. It also shows how accurate our definition of predicted reduction is as an
approximation to the actual reduction. It says that | Aredk − Predk | = o (∆k). This
lemma is used in the proof of Theorem 8.6.

Lemma 8.3. Let Assumptions 1, 2, and 3′ hold. Then, as ∆k → 0,

|Aredk − Predk| ≤ o(∆k).(8.5)

Proof. From the definition of Aredk and Predk, we have

| Aredk − Predk | = 1

2

∣∣ ‖WkCk‖2 − ‖Wk+1Ck+1‖2 − ‖WkCk‖2

+ ‖Vk(sgcp
k)(Ck + C ′ksk)‖2 ∣∣

≤ ∣∣ ‖WkCk‖2 − ‖Wk+1Ck+1‖2 − ‖WkCk‖2
+ ‖Wk(Ck + C ′ksk)‖2 ∣∣

+
∣∣ ‖Wk(Ck + C ′ksk)‖2 − ‖Vk(sgcp

k)(Ck + C ′ks
gcp
k)‖2 ∣∣

+
∣∣ ‖Vk(sgcp

k)(Ck + C ′ks
gcp
k)‖2 − ‖Vk(sgcp

k)(Ck + C ′ksk)‖2 ∣∣
= I + II + III,

where

I =
∣∣ ‖Wk+1Ck+1‖2 − ‖WkCk‖2 + ‖WkCk‖2 − ‖Wk(Ck + C ′ksk)‖2 ∣∣ ,

II =
∣∣ ‖Wk(Ck + C ′ksk)‖2 − ‖Vk(sgcp

k)(Ck + C ′ks
gcp
k)‖2 ∣∣ , and

III =
∣∣ ‖Vk(sgcp

k)(Ck + C ′ks
gcp
k)‖2 − ‖Vk(sgcp

k)(Ck + C ′ksk)‖2 ∣∣ .
From the continuity, we can easily show that

I ≤ O(‖sk‖2) = O(∆2
k) = o(∆k).(8.6)

On the other hand,

II =
∣∣ ‖Wk(Ck + C ′ksk)‖2 − ‖Vk(sgcp

k)(Ck + C ′ks
gcp
k)‖2 ∣∣ ,

=
∣∣ ‖Wk(Ck + C ′ksk)‖2 − 2Ψk(0) + 2Ψk(0)− 2Ψk(sgcp

k)
∣∣ ,

where Ψk is given by (6.2). Using the mean-value theorem on the real function
Ψk(tsgcpk) on [0,1], we have

II ≤ ∣∣ ‖Wk(Ck + C ′ksk)‖2 − ‖WkCk‖2 + 2∇Ψk(ξsgcp
k)T sgcp

k

∣∣
=
∣∣ 2(Ck + ξ̄C ′ksk)TWkC

′
ksk + 2∇Ψk(ξsgcp

k)T sgcp
k

∣∣
≤ 2

∣∣ ∇Ψk(0)T sk −∇Ψk(ξsgcp
k)T sgcp

k

∣∣+O
(‖sk‖2)

≤ 2
∣∣ ∇Ψk(0)T sk −∇Ψk(0)T sgcp

k +∇Ψk(0)T sgcp
k −∇Ψk(ξsgcp

k)T sgcp
k

∣∣
+O

(‖sk‖2)
≤ 2

∣∣ ∇Ψk(0)T (sk − sgcp
k)

∣∣+O
(‖sk‖2 + ‖sgcp

k ‖2
)

≤ 2‖∇Ψk(0)‖ ‖sk − sgcp
k ‖+O

(‖sk‖2 + ‖sgcp
k ‖2

)
,

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 307

where ξ, ξ̄ ∈ (0, 1). Also,

‖sk − sgcp
k ‖ =

∥∥∥∥ sk
‖sk‖ −

sgcp
k

‖sk‖
∥∥∥∥ ‖sk‖ = ‖uk − νkūk‖‖sk‖,(8.7)

where uk is a unit vector in the direction of the vector sk, ūk is a unit vector in the
direction of the vector sgcp

k , and νk = ‖sgcp
k ‖/‖sk‖. We have ‖∇Ψk(0)‖ = ‖C ′kTWkCk‖.

Let ∆k → 0, sk → 0. First consider the case ‖C ′kTWkCk‖ → 0. The definition of the
dogleg step implies that ‖sgcp

k ‖ ≤ ‖sk‖ (see also Dennis and Schnabel [13], Sec. 6.4.2).
Hence, νk ≤ 1 and

‖C ′kTWkCk‖ ‖uk − νkūk‖ ≤ 2‖C ′kTWkCk‖ → 0.

On the other hand, if ‖C ′kTWkCk‖ is bounded away from zero, then ‖sgcp
k ‖ = ∆k

for all sufficiently small ∆k (Algorithm 6.2). Since a dogleg strategy is employed to
compute sk, this implies sk = sgcp

k for all sufficiently small ∆k (Algorithm 6.3). Thus,
‖uk − νkūk‖ = 0 for all sufficiently small ∆k. Therefore, in either case,

‖∇Ψk(0)‖ ‖sk − sgcp
k ‖ = ‖C ′kTWkCk‖‖uk − νkūk‖‖sk‖ = o(‖sk‖).(8.8)

Hence, we have ‖C ′kTWkCk‖‖sk−sgcp
k ‖ ≤ ε̄k‖sk‖, where ε̄k → 0 as ∆k → 0. Therefore,

we can write

II ≤ ε̄k‖sk‖+O
(‖sgcp

k ‖2
)

+O
(‖sk‖2) = o (∆k) .(8.9)

Finally,

III =
∣∣ ‖Vk(sgcp

k)(Ck + C ′ks
gcp
k)‖2 − ‖Vk(sgcp

k)(Ck + C ′ksk)‖2 ∣∣
=
∣∣ CTk Vk(sgcp

k)Ck + 2CTk Vk(sgcp
k)C ′ks

gcp
k + (sgcp

k)TC ′k
TVk(sgcp

k)C ′ks
gcp
k

−CTk Vk(sgcp
k)Ck − 2CTk Vk(sgcp

k)C ′ksk − sTkC ′kTVk(sgcp
k)C ′ksk

∣∣
≤ 2‖C ′kTVk(sgcp

k)Ck‖‖sk − sgcp
k ‖+O(‖sgcp

k ‖2) +O(‖sk‖2).

Now using an argument similar to the one we used in (8.8), we can also write

‖C ′kTVk(sgcp
k)Ck‖‖sk − sgcp

k ‖ ≤ ε̂k‖sk‖,

where ε̂k → 0 as ∆k → 0. So,

III ≤ ε̂k‖sk‖+O
(
∆2
k

)
= o (∆k) .(8.10)

Combining (8.6), (8.9), and (8.10), we obtain (8.5). This completes the proof of the
lemma.

The following lemma shows that, at any iteration k, the predicted reduction
Predk satisfies the fraction of the Cauchy decrease condition obtained by the gener-
alized Cauchy point.

Lemma 8.4. At any iteration k, we have

Predk ≥ ‖C ′kTWkCk‖min
{

∆k, a2‖C ′kTWkCk‖
}
,(8.11)

where a2 is a constant that does not depend on k.

308 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

Proof. From the definition of Predk and Vk(sgcp
k), we have

Predk =
1

2

[‖WkCk‖2 − ‖Vk(sgcp
k)(Ck + C ′ksk)‖2]

≥ 1

2

[‖WkCk‖2 − ‖Vk(sgcp
k)(Ck + C ′ks

gcp
k)‖2]

≥ 1

2

[‖WkCk‖2 − ‖Wk(Ck + C ′ks
cp
k)‖2] .

The rest of the proof is straightforward. See, for example, Powell [29].
The following theorem shows that the algorithm is well defined in the sense that

it will never loop ad infinitum without finding an acceptable step.
Theorem 8.5. Let Assumptions 1, 2, and 3′ hold. At any iteration k, either the

point xk satisfies ∇Φ(xk) = 0 or an acceptable step will be found.
Proof. In the proof of this lemma we use the notation kj to mean the jth unac-

ceptable trial step of iteration k.
If the point xk satisfies ‖C ′TkWkCk‖ = 0, then it is a stationary point to the

problem and there is nothing to prove.
Assume that ∇Φ(xk) ≡ ‖C ′kTWkCk‖ 6= 0 and suppose that the algorithm loops

infinitely without finding an acceptable step. Hence all the trial steps are rejected
and we obtain, for all j,

(1− η1) <

∣∣∣∣AredkjPredkj
− 1

∣∣∣∣ .(8.12)

For sufficiently large j, and because ‖C ′kjTWkjCkj‖ = ‖C ′kTWkCk‖ 6= 0, the trust
region will have been reduced sufficiently so that inequality (8.11) will have the form

Predkj ≥ ‖C ′kTWkCk‖∆kj

and ∆kj will satisfy (8.1). Hence, Lemma 8.2 implies

|Aredk − Predk| ≤ a1‖sk‖2.

The above two inequalities imply that for j sufficiently large, we have∣∣∣∣AredkjPredkj
− 1

∣∣∣∣ =
|Aredkj − Predkj |

Predkj
≤ O(∆kj).

This means that, as j →∞, ∆kj → 0 and |AredkjPredkj
− 1| → 0. This contradicts (8.12).

Hence, j cannot go to infinity. But this contradicts the supposition that the algorithm
loops infinitely without finding an acceptable step and means that, after finitely many
rejected trial steps, an acceptable one will be found. This completes the proof.

Now we present our main global convergence result. We show that the algorithm
will converge to a stationary point of problem (1.2). In particular, we show that
limk→∞∇Φ(xk) = 0, where Φ(x) is given by (2.4). This is equivalent to proving that
limk→∞ ‖C ′kTWkCk‖ = 0.

Theorem 8.6. Let Assumptions 1, 2, and 3′ hold. The algorithm generates a
sequence of points {xk} that satisfies

lim
k→∞

∇Φ(xk) = 0.

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 309

Proof. Suppose that lim supk→∞ ‖C ′kTWkCk‖ = ε0 > 0. Then there exists an
infinite sequence of indices {kj}, such that ‖C ′kTWkCk‖ > ε0

2 for all k ∈ {kj}.
Let k̂ be such that k̂ ∈ {kj}. Since from Lemma 4.1, ∇Φ is Lipschitz continuous

in Ω, we have, for any x ∈ Ω,

‖C ′(x)TW (x)C(x)‖ ≥ ‖C ′
k̂
TWk̂Ck̂‖ − a0‖x− xk̂‖.

This implies that for all x that satisfy ‖x− xk̂‖ ≤
‖C′

k̂

TWk̂Ck̂‖
2a0

≡ σ, we have

‖C ′(x)TW (x)C(x)‖ ≥ 1

2
‖C ′

k̂
TWk̂Ck̂‖ >

ε0

4
.

Consider the ball Bσ = [x : ‖x− xk̂‖ ≤ σ].

If xk ∈ Bσ for all k ≥ k̂, then from (8.11), we have

Predk ≥ ‖C ′kTWkCk‖min
{

∆k, a2‖C ′kTWkCk‖
}
.(8.13)

Because xk ∈ Bσ, we have ‖C ′kTWkCk‖ ≥ ε0
4 . Hence, for all k ≥ k̂

P redk ≥ ε0

4
min

[
∆k, a2

ε0

4

]
.(8.14)

If there were no acceptable steps for all k ≥ k̂, a contradiction to Theorem 8.5 would
arise. Hence there exists an infinite sequence of acceptable steps. For any such k,

Φk − Φk+1 = Aredk ≥ η1Predk.

Since Φk is bounded below and decreasing, Φk −Φk+1 → 0, and we obtain, using the
above inequality and (8.14),

lim inf
k→∞

∆k = 0.(8.15)

Hence, using Lemmas 8.3 and 8.4, the above limit implies that

lim
k→∞

∣∣∣∣AredkPredk
− 1

∣∣∣∣ = lim
∆k→0

∣∣∣∣Aredk − PredkPredk

∣∣∣∣ = 0.

However, the updating rules for ∆k increase ∆k if Aredk
Predk

> η2. Thus ∆k cannot

converge to zero. But this contradicts (8.15) and means that all the iterates cannot
stay inside Bσ.

Let l + 1 be the first index greater than k̂ such that xl+1 does not lie inside the
ball Bσ. Hence

Φk̂ − Φl+1 =
l∑

k=k̂

{Φk − Φk+1} =
l∑

k=k̂

Aredk

≥ η1

l∑
k=k̂

Predk ≥ η1
ε0

4
min

 l∑
k=k̂

∆k, a2
ε0

4

≥ η1

ε0

4
min

[
ε0

4a0
, a2

ε0

4

]
.

As l and k̂ go to infinity, Φk̂ − Φl+1 goes to zero, which contradicts the supposition
that ε0 > 0. This proves the theorem.

310 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

9. Numerical examples. In this section, we report our preliminary numerical
experience with the two algorithms. The numerical experiments were done on a Sun
4/490 workstation running SunOS operating system release 4.1.3 with 64 megabytes of
memory. The programs were written in MATLAB and run under MATLAB version
4.2a with machine epsilon about 10−16. More numerical investigation with larger
dimensional problems is needed to fully understand the behavior of the two algorithms,
but the results given here are very encouraging when compared to LANCELOT on
the same problems.

9.1. Algorithm parameters. Successful termination means that the termina-
tion condition of the algorithm, ‖C ′kTWkCk‖ ≤ εtol = 10−6, is met. On the other
hand, if the algorithm generates a step of length less than 10−10, the number of iter-
ations is greater than 75, or the number of function evaluations is greater than 100,
then it is considered an unsuccessful termination.

The initial trust-region radius for the two algorithms is set to ∆0 = ‖scp
0 ‖. The

values of the parameters used for updating the trust-region radius in sections 5.3 and
6.4 are η1 = 10−4, η2 = 0.1, η3 = 0.25, η4 = 0.75, α1 = 0.3, α2 = 2, and α3 = 4.

9.2. Numerical results. In this section, we report the numerical results for
our two trust-region algorithms described in sections 5 and 6. The problems that
we tested are the constraint sets of a subset of the Constrained and Unconstrained
Testing Environment (the CUTE collection [3]). Some of these problems are from
Schittkowski [33]. See also Hock and Schittkowski [18] and Schittkowski [33] for more
test problems. We used a MATLAB interface written by Branch (see [4]).

The symbol * is added to the name of some problems to indicate that the cor-
responding problems have been modified by adding infeasible simple bounds on their
variables. The results are summarized in Tables 9.1 and 9.2. Note that m > n for
several problems.

In Table 9.1, columns 1–4 give the data of the problem. In particular, the first
column gives the problem name. The second column gives the dimension (number of
variables) of the problem. The third and fourth columns give the number of equalities
and the number of inequalities, respectively. In the fifth and sixth columns we list,
respectively, the average number of iterations and the average number of function
evaluations needed by the single-model algorithm to converge from different starting
points to points that satisfy the stopping criterion. In the seventh and eighth columns
we list the corresponding results for the multimodel algorithm. The average number
of starting points tried for each test problem was about seven points, and they were
chosen randomly.

We also compared our two trust-region algorithms against LANCELOT (release
A). LANCELOT is a Fortran package for large-scale nonlinear optimization written
by Conn, Gould, and Toint [11].

The test problems that we used are from the CUTE collection with the default
starting points. To make the comparison simpler, we selected the subset of the CUTE
test problems that have no objective function. LANCELOT in this case will find a
feasible point. We note here that we used LANCELOT with all its parameters set to
their default values.

In Table 9.2, we report the results of the single-model algorithm and the results
obtained using LANCELOT. For the test problems used in Table 9.2, the results
obtained by the multimodel algorithm are either the same as those obtained by the
single-model algorithm or there is a slight edge in favor of the multimodel algorithm,
so the results would even be slightly more in our favor had we given the multimodel

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 311

results. Remember that our single and multimodel algorithms are identical when
there are no inequalities.

In the second table, we report the number of function evaluations and the number
of gradient evaluations used. Indeed, the numbers of function and gradient evaluations
are good measures for the number of trial steps and the number of acceptable steps.
In particular, the number of function evaluations is greater by one than the number of
trial steps computed by the algorithm. The number of gradient evaluations is greater
by one than the number of acceptable steps used by the algorithm to converge from
the default starting points to points that satisfy the stopping criterion.

Again, in Table 9.2, columns 1–4 give the data of the problem. In columns 5
and 6, we list, respectively, the number of function evaluations and the number of
gradient evaluations for the single-model algorithm. In columns 7 and 8, we list
the corresponding results for the LANCELOT. Note that the maximum number of
function evaluations allowed by LANCELOT is 1000.

In most of the test problems reported in Table 9.2, the number of function evalu-
ations and the number of gradient evaluations obtained by our trust-region algorithm
are better than those obtained by LANCELOT. This gives some indication about the
viability of our approach. However, we believe that our two algorithms need to be
refined with efficiency in mind to be suitable for large-scale problems. We also expect
that the roughly 10% better performance of the multimodel over the single-model
algorithm would be larger in the large-scale case with many inequality constraints
(see section 10).

10. Concluding remarks. We have introduced two new trust-region algorithms
for finding a feasible point of a set of equalities and inequalities. A one-sided least-
squares formulation of the problem is described. The formulation is free of arbitrary
parameters and possesses sufficient smoothness to exploit the robustness of the two
algorithms. The first algorithm is a single-model algorithm. The second one is a
multimodel algorithm. Global convergence results for the two algorithms are pre-
sented. It is shown that these two algorithms are globally convergent to a first-order
stationary point. Another novelty is that we have given a global convergence analysis
for an algorithm based on a local model that does not match function or gradient
information.

We point out that our global results give us only first-order stationary point
convergence. Since we are using a least-squares formulation of problem (1.1), (i.e.,
solving problem (1.2)), there is the possibility that the algorithm will converge to a
stationary point x∗ with Φ(x∗) > 0. This can happen when the rank of the matrix
W∗C ′(x∗) is less than the number of equalities and the active inequalities at the
solution x∗.

We have reported preliminary numerical results with the two algorithms. For
large-scale problems, computing an accurate minimum norm solution in high dimen-
sions is probably too costly. Nevertheless, adapting an iterative method with a trun-
cation procedure can reduce the cost of the minimum norm solution. We believe that
there is considerable scope for modifying and adapting the basic ideas presented in
this paper to the large-scale setting. A more comprehensive computational investiga-
tion of the two algorithms, particularly for large problems, needs to be done. It will
be presented in a subsequent paper.

For future work, there are some questions that we would like to answer:
The algorithms that were developed in this paper are for finding a feasible point

of a set of equalities and inequalities. An important question, which is also a research

312 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

Table 9.1
Computational results for the two algorithms.

Problem data Single-model Multimodel
Prob. name n |E| |I| iter. nfunc iter. nfunc

AGG 163 36 615 42 61 51 76
BDVALUE 12 10 4 5 6 5 6
DALLASM 196 151 392 8.5 11.3 7 8.8
DALLASS 46 31 92 8.3 11.2 6.3 8
EIGENA 110 110 110 18 24 17 21.5

HATFLDG 25 25 40 7 8 7 8
HS6* 2 1 2 18 37.6 18 37.6
HS7* 2 1 4 16.6 17.6 16.6 17.6
HS10 2 0 1 11.2 12.2 11.2 12.2
HS11 2 0 1 9.8 12.2 9.8 12.2
HS12 2 0 1 7.6 8.6 7.6 8.6
HS14 2 0 1 9.6 11.2 11 14
HS22 2 0 2 10.6 13 9.6 12
HS29 3 0 1 7.2 8.2 7.2 8.2
HS40* 4 3 8 16.8 19.6 16.6 20
HS43 4 0 3 10.8 14 4 5
HS60 3 1 6 22.2 26.4 14.4 17.6
HS78* 5 2 10 16 22.8 15.2 21.4
HS80 5 3 6 14 17.2 15.4 19

HS99EXP 31 21 20 14 15 16 18
HS113 10 0 8 10 12.4 14.8 19.8

HYDCAR20 99 99 0 17 22 17 22
HYDCAR6 29 29 0 8 9 8 9
LEAKNET 156 153 82 7.7 10 7.7 10
LINSPANH 97 33 194 34.3 46.7 38.3 54

METHANB8 31 31 0 7.6 8.6 7.6 8.6
NET1 48 38 75 14 17.5 14.5 18

PRODPL0 60 20 69 23.5 37.5 20 19.5
PRODPL1 60 20 69 34 56.5 39 49.5

QPNBLEND 83 43 114 36.5 57.5 17.5 23.5
HS 226 2 0 4 8.6 13 3 4
S227 2 0 2 11.4 13.2 8.8 10.4
S262 4 1 7 4 6 3.4 4.6
S263 4 2 2 12.6 14.6 11.4 13
S353 4 1 6 8 14.4 11.4 21.4
S354 4 0 5 2 3 2 3

SMBANK 117 64 234 12 17 8 11.5
SPANHYD 97 33 194 34 42.5 39 54.5
SSEBLIN 194 48 388 7 11 11 16
SSEBNLN 194 72 388 42 61 32 48

Totals 665.9 915 619.8 822.5
Averages 15.5 21.3 14.4 19.1

topic, is how to use any of the two algorithms suggested in this paper as an active-set
strategy in a trust-region algorithm for nonlinear programming. Certainly, this is
an important topic that deserves to be investigated because problems with more
constraints than variables arise in engineering applications. See, for example, [2].
Our numerical results encourage us to extend this approach of treating inequalities
to an active set scheme for nonlinear programming.

A related important question is how to generalize the multimodel theory developed
in this paper to general nonlinear programming trust-region algorithms.

Acknowledgments. We wish to thank Amr El-Bakry for many useful discus-
sions and comments and Luis Vicente for his careful reading of an earlier version

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 313

Table 9.2
The single-model algorithm versus LANCELOT.

Problem data Single-model LANCELOT
Prob. name n |E| |I| nfunc ngrad nfunc ngrad

AIRCFTA 8 5 6 5 5 5 5
ARGAUSS 3 15 0 3 3 3 3
ARGLINA 100 200 0 2 2 3 3
ARGLINB 10 20 0 2 2 2 2
ARGTRIG 10 10 0 6 6 9 8

ARTIF 12 10 4 6 6 14 11
BDVALUE 12 10 4 5 5 3 3

BOOTH 2 2 0 3 3 4 4
BRATU2D 49 25 48 6 6 5 5
BRATU3D 27 1 52 5 5 5 5

BROYDNBD 10 10 0 7 7 12 11
BROYDN3D 10 10 0 6 6 6 6
CBRATU2D 32 8 48 5 5 5 5
CBRATU3D 54 2 104 5 5 5 5
CHANDHEQ 10 10 10 11 11 14 14
CHEMRCTA 10 10 10 7 7 10 9
CHEMRCTB 10 10 10 8 8 9 8

CLUSTER 2 2 0 8 8 12 11
CHEMRCTB 10 10 10 8 8 9 8

EIGENA 110 110 110 9 8 17 16
GOTTFR 2 2 0 6 6 31 26

HATFLDG 25 25 0 8 8 16 15
HIMMELBC 2 2 0 2 2 5 5
HIMMELBD 2 2 0 62 39 39 34
HIMMELBE 3 3 0 4 4 4 4
HYDCAR20 99 99 0 21 18 1000 982
HYDCAR6 29 29 0 9 9 1000 981
HYPCIR 2 2 0 6 6 8 7

INTEGREQ 52 50 4 4 4 4 4
METHANB8 31 31 0 8 8 194 194
METHANL8 31 31 0 9 9 630 622

MSQRTB 9 9 0 6 6 14 12
POWELLSQ 2 2 0 12 10 5 5

RCCIPE 3 3 0 11 11 17 17
SEMICON2 12 10 30 30 21 40 37
SPMSQRT 28 44 0 10 8 13 11
TRIGGER 7 6 2 74 49 22 20

ZANGWIL3 3 3 0 3 3 8 8

of this paper. We also wish to thank three referees and the editor for their helpful
reports.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammaling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK User’s
Guide, SIAM, Philadelphia, PA, 1992.

[2] J. T. Betts, W. P. Huffman, and D. P. Young, An investigation of algorithm performance
for aerodynamic design optimization, Tech. report BCSTECH-94-061, Boeing Computer
Services, Boeing Company, Seattle, WA, 1994.

[3] I. Bongartz, A. R. Conn, N. Gould, and Ph. L. Toint, CUTE: Constrained and uncon-
strained testing environment, Tech. report 18860, IBM T.J. Watson Research Center, York-
town, NY, 1993.

[4] M. A. Branch, Getting CUTE with Matlab, Tech. report CTC94TR194, Department of Com-

314 J. DENNIS, M. EL-ALEM, AND K. WILLIAMSON

puter Science, Cornell University, Ithaca, NY, 1994.
[5] J. Burke, Algorithms for Solving Finite Dimensional Systems of Nonlinear Equations and

Inequalities that have Both Global and Quadratic Convergence Properties, Tech. report
ANL/MCS-TM-54, Mathematics and Computer Science Division, Argonne National Lab-
oratory, Chicago, IL, 1985.

[6] J. Burke and S. P. Han, A Gauss-Newton approach to solving generalized inequalities, Math.
Oper. Res., 11 (1986), pp. 632–643.

[7] J. V. Burke and M. C. Ferris, A Gauss-Newton method for convex composite optimization,
Tech. report 1176, Center for Parallel Optimization, Computer Sciences, University of
Wisconsin, Madison, WI, 1993.

[8] R. Carter, Multi-Model Algorithms for Optimization, Ph.D. thesis, Department of Mathe-
matical Sciences, Rice University, Houston, TX, 1986.

[9] R. Carter On the global convergence of trust region algorithms using inexact gradient infor-
mation, SIAM J. Numer. Anal., 28 (1991), pp. 251–265.

[10] A. R. Conn, N. I. Gould, A. Sartenaer, and Ph. L. Toint, Global convergence of a class of
trust region algorithms for optimization using inexact projections on convex constraints,
SIAM J. Optim., 3 (1993), pp. 164–221.

[11] A. R. Conn, N. I. Gould, and Ph. L. Toint, LANCELOT: a Fortran Package for Large-Scale
Nonlinear Optimization (Release A), Springer Ser. Comput. Math. 17, Springer-Verlag,
Heidelberg, Berlin, New York, 1992.

[12] J. W. Daniel, Newton’s method for nonlinear inequalities, Numer. Math., 40 (1973), pp. 381–
387.

[13] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice–Hall, Englewood Cliffs, NJ, 1983.

[14] J. E. Dennis, Jr., and R. B. Schnabel, A View of Unconstrained Optimization, Handbooks
Oper. Res. Management Sci. 1, North–Holland, Amsterdam, 1989.

[15] U. M. Garcia-Palomares, On the Minimax Solution of a Nonlinear System of Mixed Equali-
ties and Inequalities, Tech. report, Departmento de procesos y sistemas, Universidad Simon
Bolivar, Caracas, Venezuela, 1983.

[16] U. M. Garcia-Palomares and A. Restuccia, A global quadratic algorithm for solving a
system of mixed equalities and inequalities, Math. Programming, 21 (1981), pp. 290–300.

[17] G. H. Golub and U. von Matt, Quadratic constrained least squares and quadratic problems,
Numer. Math., 59 (1991), pp. 561–580.

[18] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Econom. and Math. Systems 187, Springer-Verlag, Berlin, 1981.

[19] E. H. Kaufman and G. D. Taylor, Linearly constrained generalized rational approximation,
in Approximation Theory VI: Vol. 2, C. K. Chui, L. L. Schumaker, and J. D. Ward, eds.,
Academic Press, New York, 1989, pp. 353–356.

[20] K. Levenberg, A method for the solution of certain problems in least squares, Quart. Appl.
Math., 2 (1944), pp. 164–168.

[21] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM J.
Appl. Math., 11 (1963), pp. 431–441.

[22] J. J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, in Proceedings
of the Dundee Conference on Numerical Analysis, G. A. Watson, ed., Springer-Verlag,
Berlin, New York, 1978, pp. 105–116.

[23] J. J. Moré, Recent developments in algorithms and software for trust region methods, in
Mathematical Programming, The State of the Art, A. Bachem, M. Grotschel, and B. Korte,
eds., Springer-Verlag, New York, 1983, pp. 258–287.

[24] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK-1, Tech. report
ANL-80-74, Argonne National Laboratory, Argonne, IL, 1980.

[25] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,
4 (1983), pp. 553–572.

[26] M. R. Osborne, Finite Algorithms for Optimization and Data Analysis, John Wiley, New
York, 1985.

[27] M. R. Osborne, S. A. Pruess, and R. S. Womersley, Concise representation of generalized
gradients, J. Austral. Math. Soc. Ser. B, 28 (1986), pp. 57–74.

[28] B. T. Polyak, Gradient methods for solving equations and inequalities, USSR Comput. Math.,
4 (1964), pp. 17–32.

[29] M. J. D. Powell, Convergence properties of a class of minimization algorithms, in Nonlinear
Programming 2, O. Mangasarian, R. Meyer, and S. Robinson, eds., Academic Press, New
York, 1975, pp. 1–27.

[30] M. J. D. Powell, On the global convergence of trust region algorithms for unconstrained

TWO ALGORITHMS FOR SYSTEMS OF EQUALITIES AND INEQUALITIES 315

optimization, Math. Programming, 29 (1984), pp. 297–303.
[31] B. N. Pshenichnyi, Newton’s method for the solution of systems of equalities and inequalities,

Math. Notes Acad. Sci. USSR, 8 (1970), pp. 827–830.
[32] S. M. Robinson, Extension of Newton’s method to nonlinear functions with values in a cone,

Numer. Math., 19 (1972), pp. 341–347.
[33] K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in

Econom. and Math. Systems 282, Springer-Verlag, Berlin, 1987.
[34] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,

SIAM J. Numer. Anal., 20 (1983), pp. 626–637.
[35] G. D. Taylor, Uniform approximation with side conditions, in Approximation Theory, G. G.

Lorentz, ed., Academic Press, New York, 1973, pp. 481–484.
[36] Ph. L. Toint, Global convergence of a class of trust region methods for non-convex minimiza-

tion in Hilbert spaces, IMA J. Numer. Anal., 8 (1988), pp. 231–252.
[37] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, Tech.

report 80/4, Departément de Mathématique, Facultés Universitaires de Namur, Belgium,
1980.

OPTIMAL SIGNAL SETS FOR NON-GAUSSIAN DETECTORS∗

MARK S. GOCKENBACH† AND ANTHONY J. KEARSLEY‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 316–326

Abstract. Identifying a maximally separated set of signals is important in the design of modems.
The notion of optimality is dependent on the model chosen to describe noise in the measurements;
while some analytic results can be derived under the assumption of Gaussian noise, no such techniques
are known for choosing signal sets in the non-Gaussian case. To obtain numerical solutions for non-
Gaussian detectors, minimax problems are transformed into nonlinear programs, resulting in a novel
formulation yielding problems with relatively few variables and many inequality constraints. Using
sequential quadratic programming, optimal signal sets are obtained for a variety of noise distributions.

Key words. optimal design, inequality constraints, sequential quadratic programming

AMS subject classifications. 90C90, 94A12, 94A13

PII. S1052623496306553

1. Introduction. The transmission of digital information requires signals (finite
time series) that can be distinguished from one another in the presence of noise. These
signals may be constrained by bounds on their energy or amplitude; the degree to
which they can be distinguished depends on the distribution of noise.

We study the design of optimal signal sets under amplitude constraints and in
the presence of non-Gaussian noise. We will call a signal set optimal when, roughly
speaking, the largest probability of mistaking any one signal for any other is minimal.
For this reason, as we show below, this problem is naturally formulated as a smooth
and twice continuously differentiable minimax problem.

We shall assume that M signals

s0, s1, . . . , sM−1

are to be constructed, where each signal is to be a linear combination of K given
signals

φ0, φ1, . . . , φK−1.

Moreover, it is assumed that each φk is a time series of length N and that {φk} is an
orthonormal set under the Euclidean inner product. We denote the components of φk
by φk(n), n = 0, 1, . . . , N − 1, and the components of sm similarly. The unknowns to
be determined are the weights {αmk} defining the signals:

sm =
K−1∑
k=0

αmkφk, m = 0, 1, . . . ,M − 1.

∗Received by the editors July 12, 1996; accepted for publication (in revised form) August 15,
1997; published electronically March 17, 1999. This work was performed by an employee of the
U.S. Government or under U.S. Government contract. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by
these rights. Contributions of the National Institute of Standards and Technology are not subject to
copyright in the United States.

http://www.siam.org/journals/siopt/9-2/30655.html
†Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 (gock@caam.

rice.edu).
‡Mathematical Sciences Department, Carnegie Mellon University, Pittsburgh, PA 15213-3890

(anthonyk@andrew.cmu.edu).

316

OPTIMAL SIGNAL SETS FOR NON-GAUSSIAN DETECTORS 317

A signal set is often referred to as a constellation.
In the special case of only two basis functions, φ0, φ1, the signals can be repre-

sented in the plane by the coefficients (α00, α01), . . . , (αM−1,0, αM−1,1). In the case
of Gaussian noise, it turns out that the problem reduces to maximizing the minimum
Euclidean distance between any two signals (subject to constraints on the energy or
amplitudes of the signals). For this reason, heuristic methods have been used to design
good signal sets.

Typically, these heuristics have taken the form of choosing the points lying on a
lattice and somehow densely packing them within a fixed region of the plane. Identi-
fying these lattice-based constellations associated with low average energies has been
an active area of research (examples and pictures of these constellations can be found
in [8], [10], and [11]).

Although we are not aware of previous attempts to find optimal constellations
according to the criteria we describe below, related problems have been investigated.
The most famous is the sphere-packing problem of communication theory (see [1]); this
requires a constellation which maximizes the probability of detection under Gaussian
noise. Modern research into this question has focused on the case in which the signals
are chosen from a large dimensional space (in particular, an important research topic
has been the strong simplex conjecture, which deals with the case M = K + 1; see
[9]). We are concerned with the case in which the signals are chosen from a small
dimensional space (K = 2 or 3).

In the remainder of this paper, we show that this problem can be formulated as
a smooth nonlinear programming problem with relatively few variables but many in-
equality constraints. This problem is solved using a sequential quadratic programming
(SQP) algorithm.

In section 2, we explain the formulation of the optimization problem that describes
optimal signal sets. In section 3, we describe the SQP algorithm employed to solve
these problems. The noise distributions used in our computations are described in
section 4, and in section 5, numerical tests and results are presented. We conclude
the paper with observations and comments on future work in section 6.

2. Problem formulation. As mentioned above, we wish to find a signal set
which minimizes the largest probability of mistaking any one for any other. This
notion of optimality is therefore based on hypothesis testing (see, for example, [14]).
We consider for the moment that one of two signals, s0 and s1, is to be transmitted and
that the received signal is denoted by y. We assume further that the transmitted signal
is corrupted by independent, identically distributed (i.i.d.) additive noise drawn from
some fixed distribution with probability density function (pdf) pN . In other words,

y = sm + η, m = 0 or 1.

We assume that the a priori probabilities of s0 and s1 being transmitted are P0

and P1, respectively, and that there is a cost Cm associated with detecting signal s0

when s1 is actually present (a miss) and a cost Cf associated with detecting s1 when
s0 is present (a false alarm). It is then easy to show (see [14]) that the expected cost,
or risk, is minimized by detecting s0 whenever

p(y|s0)

p(y|s1)
>
P1Cm
P0Cf

,

and otherwise detecting s1. By taking the logarithm of both sides and using the fact

318 MARK S. GOCKENBACH AND ANTHONY J. KEARSLEY

that the noise is i.i.d., we obtain the following optimal detector : detect s0 whenever

1

N

N−1∑
n=0

log
pN (y(n)− s0(n))

pN (y(n)− s1(n))
> γ(2.1)

(where γ is the threshold determined by the a priori probabilities and the costs of
errors); otherwise detect s1.

Now assume that s0 was actually transmitted (so that y = s0 + η) and let ∆s =
s0 − s1; the optimal detector then computes

1

N

N−1∑
n=0

log
pN (η(n))

pN (η(n) + ∆s(n))
.

The expected value of the nth term is

KN (∆s(n)) =

∫
log

[
pN (τ)

pN (τ + ∆s(n))

]
pN (τ)dτ ;

this quantity is the Kullback–Leibler distance between the noise density and the noise
density shifted by ∆s(n) (see [15]).

Thus, if s0 is actually transmitted, the expected value of the sum in (2.1) is

1

N

N−1∑
n=0

KN (∆s(n)).(2.2)

If one assumes that pN is symmetric, as we will, it is easy to show that if s1 is
transmitted, the expected value of the sum in (2.1) is the negative of (2.2). Therefore,
the probability of detecting the correct signal increases with (2.2).

From this discussion, we see that we wish to choose the signals s0, s1, . . . , sm so
that

min
m1 6=m2

N−1∑
n=0

KN (sm1
(n)− sm2

(n))

is maximized. For physical reasons, either the average power (energy—L2 norm) or
the peak power (amplitude—L∞ norm) of the signals must be constrained. In this
paper, we are concerned with amplitude constraints.

We are thus faced with a constrained minimax problem. Due to the difficulty
of solving such problems, we rewrite it as a smooth nonlinear program (NLP) by
introducing an auxiliary variable t:

min
t,α
−t2(2.3)

s.t.

N−1∑
n=0

KN (sm1(n)− sm2(n)) ≥ t2, m1 < m2,(2.4)

sm(n)2 ≤ C2, n = 0, . . . , N − 1, m = 0, . . . ,M − 1,(2.5)

t ≥ 0,(2.6)

where C > 0 is the bound on the amplitudes of the signals. This problem has MK+1
variables and M(M +1)/2+MN +1 inequality constraints. A typical problem would
have K = 2,M = 16, N = 50, giving 33 variables and 937 constraints.

OPTIMAL SIGNAL SETS FOR NON-GAUSSIAN DETECTORS 319

Difficulties arise when one tries to solve the above NLP (2.3) with standard algo-
rithms. The fact that there are far fewer variables than constraints results in three
specific difficulties:

• There are many “almost” binding constraints at the solution.
• The linearized constraints are often inconsistent.
• The boundary of the feasible region is noticeably nonlinear.

The proximity of near-binding constraints to the solution suggests that correct identi-
fication of the active set becomes more difficult near the solution. In turn this suggests
that the region of rapid local convergence of the iteration sequence {xk, λk} will be
“small.” The lack of consistent linear inequalities complicates the calculation of the
SQP step (the solution of the quadratic subproblem). As observed in previous works,
([12] and others), nonlinear feasible regions can result in small acceptable steps if
penalty parameters become small. Iterates will follow too closely a feasible region
boundary that leads away from optimality. All three of these issues were relevant to
the solution of the optimal signal set problem presented here.

3. Nonlinearly constrained optimization. Many algorithms have been de-
veloped for the solution of smooth, inequality-constrained optimization problems.
Among the most popular methods is the SQP family of algorithms (see [6] for a review
of these methods). Given an estimate of the solution, an SQP algorithm progresses
by solving a quadratic program (QP), which is defined by a local quadratic model of
the objective function and linearized constraints. The solution to the quadratic pro-
gram is then used to construct an improved estimate of the solution. Many different
SQP algorithms can be constructed by varying the algorithm for solving the QP, the
Lagrange multiplier estimates, and the globalization strategy.

One version of the SQP algorithm, proposed by Boggs, Kearsley, and Tolle (see,
for example, [4]), appears to be well suited for solving this class of NLPs. The al-
gorithm employs a combined trust-region and merit function (see [5]) line search
procedure for globalization. A modern interior point method called O3D, Optimal
3-Dimensional subspace method (see Boggs et al. [3]), is used to solve the quadratic
programming subproblems. It appears that O3D is quite compatible with the global-
ization procedure (e.g., the steps produced by the O3D algorithm decrease the merit
function and do not impede convergence).

A nonstandard feature of this algorithm is useful because of the need to solve
NLPs with very small and highly nonlinear feasible regions. A perturbation is added
to the right-hand side of the system of linearized constraints to guarantee that this
linear system is always consistent. Similar constraint relaxations have appeared in
the literature before (see, for instance, the papers by Biggs [2], Tone [19], and Pow-
ell [17], among others). The relaxation procedure we employ is similar to methods
contained in papers mentioned above, with minor modifications (and can be found
in [16]). When far from feasibility, violated linearized constraints are relaxed enough
to guarantee that they form a consistent system of inequalities. This relaxation is
obtained by solving a linear programming problem; moreover, the solution to the lin-
ear programming problem can then be used as a feasible starting point for the QP.
Because O3D is designed to solve either linear or quadratic programming problems,
this two-step process can be carried out using one algorithm (and code). This proce-
dure ensures that no “phase I” or infeasible calculations are needed (i.e., no “Big-M”
method is needed) for the calculation of the SQP descent direction. Details of the
constraint perturbation procedure can be found in [16].

To test the efficacy of the constraint relaxation procedure, we solved the problems

320 MARK S. GOCKENBACH AND ANTHONY J. KEARSLEY

Table 1
Noise densities and associated Kullback–Leibler distances.

Name Density K(∆s)

Gaussian
exp(−τ2/2σ2)√

2πσ2

(∆s)2

2σ2

Laplacian
exp(−|τ |/(σ/√2))√

2σ

|∆s|
σ/
√

2
+ exp(− |∆s|

σ/
√

2
)− 1

Hyperbolic Secant
sech(πτ/2σ)

2σ
−2 ln(sech(π∆s/4σ))

Generalized Gaussian 1
2Γ(5/4)A

exp(− τ4

A4)
Γ2(3/4)

Γ2(1/4)

(
6

(∆s)2

σ2 +
(∆s)2

σ4

)
Cauchy 1

πσ(1+(τ/σ)2)
ln(1 + (∆s)2/rσ2)

−5 0 5
0

0.2

0.4

0.6

0.8
Laplacian density

−5 0 5
0

0.1

0.2

0.3

0.4

0.5
Hyperbolic Secant density

−5 0 5
0

0.1

0.2

0.3

0.4
Cauchy density

−5 0 5
0

0.1

0.2

0.3

0.4
Gaussian and Generalized Gaussian densities

Fig. 1. Noise densities studied.

described in this paper twice, first without the relaxation and then with it. The
advantages of relaxing the constraints are shown by the numerical results presented
in the following section.

4. Noise distributions. The primary purpose of this paper is to investigate
non-Gaussian noise distributions. Following Johnson and Orsak (see [15]), we se-
lected the five densities shown in Table 1 (including the Gaussian density for compar-
ison). These densities are graphed in Figure 1, while the associated Kullback–Leibler
distances are found in Figure 2.

These densities are chosen to illustrate different possibilities. For example, the
Kullback–Leibler distance associated with the Gaussian density is smaller than that
of the Laplacian when ∆s is small; for large ∆s, this relationship is reversed. The
hyperbolic secant density leads to a distance function that is similar to that of the

OPTIMAL SIGNAL SETS FOR NON-GAUSSIAN DETECTORS 321

−2 −1 0 1 2
0

1

2

3

4

5
Gaussian and Generalized Gaussian

−4 −2 0 2 4
0

1

2

3

4

5
Laplacian

−4 −2 0 2 4
0

1

2

3

4

5
Hyperbolic Secant

−4 −2 0 2 4
0

0.5

1

1.5

2
Cauchy

Fig. 2. Kullback–Leibler distances associated with the various noise densities.

Gaussian near the origin but close to that of the Laplacian for large ∆s. The Kullback–
Leibler distance for the generalized Gaussian density grows very rapidly with ∆s, while
that of the Cauchy density grows very slowly.

5. Numerical tests and results. In this section we summarize the performance
of the SQP algorithms on a suite of problems, corresponding to various choices of the
noise distribution, the basis signals, and the number of signals, M . For the purpose of
these numerical examples, we fix the length of the signals at N = 50, the amplitude
at C =

√
10, and the number of basis functions at K = 2. The bases used were{√

2

N
sin (2πω1n/N),

√
2

N
sin (2πω2n/N)

}

and {√
2

N
sin (2πω1n/N),

√
2

N
cos (2πω1n/N)

}
,

with ω1 = 10 and ω2 = 11.
We use analytic first and second derivatives and the least-squares estimate of the

Lagrange multipliers (see, for example, Gill, Murray, and Wright [13]).
Problems involving the sine-cosine basis are fundamentally more difficult than

those involving the sine-sine basis; this is because of the rotational symmetries in the
solution space, and also because of the geometry of certain signal sets. For example,

322 MARK S. GOCKENBACH AND ANTHONY J. KEARSLEY

Table 2
Performance of the unperturbed SQP algorithm on a collection of constellation problems (sine-

sine basis).

(M,N,K) Density (n,m) Outer Inner min #/10 ‖∇xL‖
(8,50,2) Gaussian (17,429) 16 201 (34) -69.7937 0 (214) 2e-12
(8,50,2) Generalized Gaussian (17,429) 16 179 (36) -189.0968 4 7e-10
(8,50,2) Hyperbolic Secant (17,429) 65 730 (94) -61.0936 5 5e-14
(8,50,2) Laplacian (17,429) 10 121 (28) -63.1230 0 (30) 5e-14
(8,50,2) Cauchy (17,429) 36 499 (76) -22.7308 0 (24) 1e-9
(16,50,2) Gaussian (33,937) 27 388 (55) -29.3142 4 5e-12
(16,50,2) Generalized Gaussian (33,937) 29 478 (80) -57.8296 3 7e-11
(16,50,2) Hyperbolic Secant (33,937) 10 119 (22) -29.5770 3 1e-1
(16,50,2) Laplacian (33,937) 42 646 (121) -32.3708 0 (12) 5e-5
(16,50,2) Cauchy (33,937) 33 501 (94) -11.4304 2 6e-2

Table 3
Performance of the unperturbed SQP algorithm on a collection of constellation problems (sine-

cosine basis).

(M,N,K) Density (n,m) Outer Inner min #/10 ‖∇xL‖
*(8,50,2) Gaussian (17,429) 48 631(22) -97.5518 0(21) 5.e-11
*(8,50,2) Generalized Gaussian (17,429) 52 679(31) -264.0240 0(12) 6.e-12
*(8,50,2) Hyperbolic Secant (17,429) 89 1199(30) -83.1955 0(14) 9.e-4
*(8,50,2) Laplacian (17,429) 49 645 (21) -84.4632 1 1 8.e-11
*(8,50,2) Cauchy (17,429) 67 888(19) -22.7308 1 7.e-10
(16,50,2) Gaussian (33,937) 26 343 (44) -39.7452 1 7e-12
(16,50,2) Generalized Gaussian (33,937) 100 1170 (110) -76.1390 1 1e-4
(16,50,2) Hyperbolic Secant (33,937) 10 119 (22) -29.5770 3 1e-1
(16,50,2) Laplacian (33,937) 51 611 (121) -32.3708 0 (12) 5e-5
(16,50,2) Cauchy (33,937) 41 417 (31) -15.6892 1 2e-6

when the signal set contains eight signals, optimality requires that one of the signals
lie in the center, with seven signals on a circle around it (see Figure 5). The signal
in the center is actually free to move in a small open set without affecting optimality.
Part of the numerical difficulty can be alleviated with a small amount of regularization
introduced to the objective function as follows:

min
t,α
−
(

1

2
t2 − ε

2
‖s‖22

)
(5.1)

s.t.

N−1∑
n=0

KN (sm1(n)− sm2(n)) ≥ t2, m1 < m2,(5.2)

sm(n)2 ≤ C2, n = 0, . . . , N − 1, m = 0, . . . ,M − 1,(5.3)

t ≥ 0.(5.4)

A value ε ≈ 10−6 worked well. The problems where this version was employed are
denoted by an asterisk.

In Tables 2 and 3 we report the performance of the algorithm described in [4]
without the constraint relaxation. Likewise, Tables 4 and 5 give the performance of
the algorithm with constraint relaxation. The first column in each table contains the
values for the number of signals M , the number of time samples N , and the number
of basis functions K. The noise distribution is given in the second column, while
the number of variables (n) and constraints (m) in the resulting nonlinear program is

OPTIMAL SIGNAL SETS FOR NON-GAUSSIAN DETECTORS 323

Table 4
Performance of the constraint perturbed SQP algorithm on a collection of constellation problems

(sine-sine basis).

(M,N,K) Density (n,m) Outer Inner min #/10 ‖∇xL‖
(8,50,2) Gaussian (17,429) 14 209 -69.7937 1 7e-12
(8,50,2) Generalized Gaussian (17,429) 14 198 -189.0968 1 4e-9
(8,50,2) Hyperbolic Secant (17,429) 59 801 -61.0936 1 1e-9
(8,50,2) Laplacian (17,429) 10 133 -63.1230 2 3e-12
(8,50,2) Cauchy (17,429) 31 440 -22.7308 2 8e-8
(16,50,2) Gaussian (33,937) 25 292 -29.3142 5 4e-11
(16,50,2) Generalized Gaussian (33,937) 27 401 -57.8296 3 5.e-11
(16,50,2) Hyperbolic Secant (33,937) 10 122 -29.5770 3 2.e-13
(16,50,2) Laplacian (33,937) 40 537 -32.3708 1 1.e-9
(16,50,2) Cauchy (33,937) 30 419 -11.4304 2 1.e-9

Table 5
Performance of the constraint perturbed SQP algorithm on a collection of constellation problems

(sine-cosine basis).

(M,N,K) Density (n,m) Outer Inner min #/10 ‖∇xL‖
*(8,50,2) Gaussian (17,429) 40 123 -69.7937 4 7e-8
*(8,50,2) Generalized Gaussian (17,429) 39 121 -189.0968 4 3.e-8
*(8,50,2) Hyperbolic Secant (17,429) 70 1612 -61.0936 8 2.e-10
*(8,50,2) Laplacian (17,429) 46 479 -63.1230 1 4.e-7
*(8,50,2) Cauchy (17,429) 58 1333 -22.7308 1 3.e-7
(16,50,2) Gaussian (33,937) 25 325 -39.7452 2 6.e-10
(16,50,2) Generalized Gaussian (33,937) 91 1066 -76.1390 4 4.e-8
(16,50,2) Hyperbolic Secant (33,937) 10 122 -29.5770 3 5e-5
(16,50,2) Laplacian (33,937) 41 416 -32.3708 1 1.e-6
(16,50,2) Cauchy (33,937) 29 410 -15.6892 5 1.e-9

found in the third column. The number of nonlinear or outer iterations required to find
the solution is recorded in the fourth column, while the fifth column gives the number
of QP iterations required (with the number of phase I iterations in parentheses).
In the sixth column we give the value of the putative global minimum, and in the
seventh column the number of times this minimum was found in 10 tries, each starting
from a randomly generated starting point. In the event that the minimizer was not
found in 10 tries, we record in parentheses the number of tries it took to find it.
Finally, the last column contains the size of the gradient of the Lagrangian at the
computed solution. The algorithm halted when either the 2-norm of the gradient of
the Lagrangian became less than or equal to 10−6 or the 2-norm of the solution to
the quadratic subproblem (the SQP step) fell below 10−12.

The optimal constellations for a subset of our test problems are shown in Figures
3, 4, and 5 (with M = 8) and Figures 6, 7, and 8 (with M = 16). It is interesting
to observe that the symmetric nature of constellations conjectured to be present in
optimal solutions (see [15]) is apparent in the current estimates of the solutions.

These problems have features that make them difficult to solve numerically. Not
only is the number of variables much smaller than the number of constraints, but
there are many constraints that are nearly binding at the solution. Many algorithms,
including SQP, give rise to rapid local convergence when iterates enter a neighborhood
of the solution and the correct collection of active sets has been identified (see the
paper by Robinson [18] for a discussion). This rapid local convergence is especially
apparent in the event that one can provide an accurate approximation to the true

324 MARK S. GOCKENBACH AND ANTHONY J. KEARSLEY

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

Fig. 3. Optimal constellation for M = 8
with sine-sine basis functions using a Gaussian
density.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

Fig. 4. Optimal constellation for M = 8
with sine-sine basis functions using a general-
ized Gaussian density.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

Fig. 5. Optimal constellation for M =
8 with sine-cosine basis functions using a
hyperbolic-secant Density.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

Fig. 6. Optimal constellation for M = 16
with sine-sine basis functions using a Cauchy
density.

Hessian matrix at every iteration, as is the case with our problem. Even though the
notion of active sets is less important to our algorithm because our interior point
method quadratic program solver, O3D, does not compute active sets, the fact that
many of the constraints are nearly binding at the solution has an effect on the size of
the neighborhood around the solution where fast local convergence is realized.

In these numerical tests the constraint relaxation substantially improved the per-
formance of the algorithm. This is probably due to the fact that the number of
inconsistent subproblems encountered was unusually high. It is worth commenting
that the additional cost of employing the relaxation procedure is not large.

6. Conclusions. In this paper we have presented an interesting collection of
difficult optimization problems and an NLP formulation of them. This formulation al-
lows a broad arsenal of numerical optimization algorithms and modern enhancements
to be employed. While these problems are not “large-scale” by modern computing
standards, they are, nonetheless, difficult problems to solve efficiently.

Numerical solutions to these problems were located using an SQP method with
and without the constraint relaxation procedure described in [16]. Numerous numer-
ical tests (and the summary of these tests that appear in Tables 2–5) suggest that
this constraint relaxation procedure can significantly improve the performance of this

OPTIMAL SIGNAL SETS FOR NON-GAUSSIAN DETECTORS 325

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

Fig. 7. Optimal constellation for M = 16
with sine-cosine basis functions using a Cauchy
density.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

Fig. 8. Optimal constellation for M = 16
with sine-cosine basis functions using a gener-
alized Gaussian density.

SQP method in the event that linearizations are inconsistent, which may be the case
when there are far more constraints than variables.

Because there are so many different algorithms and implementations for the so-
lution of the nonlinear programming problem, there is a need to create an accepted
collection of test problems (see the paper by Bongartz et al. [7]). Because of the dif-
ficulties it poses, this family of problems is a natural candidate for such a collection.

Acknowledgments. The authors are grateful to Professor Donald Johnson and
his graduate student Dong-Mei Li at Rice University for many patient discussions.
The authors also thank Dr. L. C. Cowsar from Lucent Technologies. Finally, the
authors greatly appreciated careful reading by an anonymous referee who suggested
numerous beneficial changes to this paper.

REFERENCES

[1] A. V. Balakrishnan, A contribution to the sphere-packing problem of communication systems,
J. Math. Anal. Appl., 3 (1961), pp. 485–506.

[2] M. C. Bartholomew-Biggs, Opsqp and Opalqp—New Implementations of the Sequential
Quadratic Programming Approach to Constrained Optimisation, Technical Report 208,
Hatfield Polytechnic, Numerical Optimisation Centre, Hatfield, Hertfordshire, England,
1989.

[3] P. T. Boggs, P. D. Domich, J. E. Rogers, and C. Witzgall, An interior point method
for general large scale quadratic programming problems, Ann. Oper. Res., 62 (1996), pp.
419–437.

[4] P. T. Boggs, A. J. Kearsley, and J. W. Tolle, A practical algorithm for general large scale
nonlinear optimization problems, SIAM J. Optim., to appear.

[5] P. T. Boggs, A. J. Kearsley, and J. W. Tolle, A global convergence analysis of an algorithm
for large scale nonlinear programming problems, SIAM J. Optim., to appear.

[6] P. T. Boggs and J. Tolle, Sequential quadratic programming, Acta Numer., (1995), pp. 1–54.
[7] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint, Cute: Constrained and uncon-

strained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.
[8] C. N. Campopiano and B. G. Glazer, A coherent digital amplitude and phase modulation

scheme, IRE Trans. Comm. Syst., 10 (1962), pp. 90–95.
[9] T. M. Cover and B. Gopinath, Open Problems in Comminication Computation, Springer-

Verlag, New York, 1987.
[10] G. D. Forney, R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U. Qureshi, Efficient

modulation for band-limited channels, IEEE J. Sel. Areas Comm., Sac-2 (1984), pp. 632–
647.

326 MARK S. GOCKENBACH AND ANTHONY J. KEARSLEY

[11] G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, Optimization of two-dimensional signal
constellations in the presence of Gaussian noise, IEEE Trans. Comm., Com-22 (1974), pp.
28–38.

[12] P. E. Gill, W. Murray, M. Saunders, and M. H. Wright, Some Theoretical Properties of an
Augmented Lagrangian Merit Function, Technical Report 86-6, Department of Operations
Research, Stanford University, Stanford, CA, 1986.

[13] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New
York, 1981.

[14] W. W. Harman, Principles of the Statistical Theory of Communication, McGraw-Hill, New
York, 1963.

[15] D. H. Johnson and G. C. Orsak, Performance of optimal non-Gaussian detectors, IEE Trans.
Comm., 41 (1993), pp. 1319–1328.

[16] A. J. Kearsley, The Use of Optimization Techniques in the Solution of Partial Differential
Equations from Science and Engineering, Technical Report and Ph.D. thesis, Department
of Computational and Applied Mathematics, Rice University, Houston, TX, 1996.

[17] M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in
Proceedings of the 1977 Dundee Biennial Conference on Numerical Analysis, Springer-
Verlag, Berlin, 1977, pp. 144–157.

[18] S. Robinson, Perturbed Kuhn–Tucker points and rates of convergence for a class of nonlinear-
programming algorithms, Math. Programming, 7 (1974), pp. 1–16.

[19] K. Tone, Revisions of constraint approximations in the successive QP method for nonlinear
programming problems, Math. Programming, 26 (1983), pp. 144–152.

ESTIMATES FOR THE NASH–SOFER PRECONDITIONER FOR
THE REDUCED HESSIAN FOR SOME ELLIPTIC VARIATIONAL

INEQUALITIES∗

T. D. CHOI† AND C. T. KELLEY†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 327–341

Abstract. The purpose of this paper is to present a class of examples to show how the quality
of the Nash–Sofer preconditioner can be directly estimated. This class of examples includes certain
discretized elliptic variational inequalities. We use sparsity and locality properties of discretizations
of elliptic operators and smoothing properties of their inverses to estimate the quality of the pre-
conditioner. One consequence of our results is that if the Hessian is the five-point discretization of
a certain type of strongly elliptic operator with homogeneous Dirichlet boundary conditions on an
n × n mesh and the preconditioner is a fast Poisson solver for that discretization, then the condi-
tion number of the reduced Hessian can be lowered from O(n2) to O(n ln(n)). We illustrate these
theoretical results with calculations.

Key words. preconditioners, reduced Hessian, elliptic variational inequalities

AMS subject classifications. 65J15, 65J10, 65K05, 65K10, 65N22

PII. S1052623497323364

1. Introduction. In this paper we consider a class of preconditioners for con-
strained optimization that was recently proposed by Nash and Sofer in [26]. The
motivation is the hope that a preconditioner that is good for the unconstrained prob-
lem can be projected to construct a useful preconditioner for the reduced Hessian in
the constrained problem. The purpose of this paper is to present a class of examples
to show how the quality of the simplest of this class of preconditioners can be directly
estimated.

For these examples, the preconditioner for the unconstrained problem is a fast
solver for an elliptic partial differential equation in a simple geometry, and the reduced
Hessian corresponds to the same differential equation or one of the same order, but in
a much more complex geometry for which fast solvers are more difficult to construct.
One consequence of our results is that if the Hessian is the five-point discretization
of a certain type of strongly elliptic operator with homogeneous Dirichlet boundary
conditions on an n × n mesh and the preconditioner is a fast Poisson solver for that
discretization, then the condition number of the reduced Hessian can be lowered from
O(n2) to O(n ln(n)).

Our class of problems, discretized bound constrained elliptic variational inequal-
ities, can be solved more efficiently by multilevel methods, and we are not claiming
that using the preconditioners under study in this paper will lead to optimal solvers.
Our goal is not to construct optimal solvers, but rather to show that the Nash–Sofer
can be analyzed for a nontrivial class of problems and that that analysis is consistent
with numerical observations. Moreover, the multilevel methods discussed in the lit-
erature are more complicated to implement than, say, a multigrid Poisson solver on
a regular domain, and conjugate gradient with a good preconditioner may be signifi-

∗Received by the editors June 23, 1997; accepted for publication (in revised form) June 3, 1998;
published electronically March 17, 1999. This research was supported by National Science Foundation
grants DMS-9321938 and DMS-9700569 and a U.S. Department of Education GAANN fellowship.

http://www.siam.org/journals/siopt/9-2/32336.html
†North Carolina State University, Center for Research in Scientific Computation and Department

of Mathematics, Box 8205, Raleigh, NC 27695-8205 (tdchoi@unity.ncsu.edu, Tim Kelley@ncsu.edu).

327

328 T. D. CHOI AND C. T. KELLEY

cantly easier to program than a multilevel code for the complete problem. We provide
a brief discussion of several alternative approaches to the problem in section 1.2.

1.1. Notation. In this section we specify the notation, describe the precondi-
tioner we will study, and discuss some known convergence results for the projected
Newton method. In section 3 we show how the sparsity and locality of the finite
element discretization of elliptic partial differential operators and known properties
of the spectrum of these operators lead to quantitative results on the effectiveness of
the preconditioner. In section 4 we give numerical results based on problems from
[10] and [2].

We begin with the gradient projection [4] and projected Newton [5] methods for
bound constrained optimization problems of the form

min
u∈U

f(u),(1.1)

where f is twice Lipschitz continuously differentiable and U ⊂ RN is given by

U = {u |ulow ≤ u ≤ uhigh}(1.2)

with the inequalities understood to be componentwise. If we let ui be the ith compo-
nent of u ∈ RN , the l2 projection onto U is P, where

P(u)i =

uilow if ui ≤ uilow,
ui if uilow < ui < uihigh,

uihigh if ui ≥ uihigh.
(1.3)

For sets S ⊂ ZN we define PSu by

(PSu)i =

{
ui, i ∈ S,
0, i 6∈ S.

Throughout this paper we make the following assumption.
Assumption 1.1. Problem (1.1) has a solution u∗ ∈ U such that
1. ∇f(u∗)i 6= 0 if

i ∈ A∗ = {i | (u∗)i = uilow or (u∗)i = uihigh};
2. the reduced Hessian

R∗ = (I − PA∗)∇2f(u∗)(I − PA∗) + PA∗
is positive definite.

This paper is about local convergence and we will assume that our iterates are
near u∗.

We consider iterative methods of the form

u+ = P(uc − αR−1∇f(uc)).(1.4)

In (1.4) R is a symmetric positive definite matrix and α is a steplength control pa-
rameter. For the gradient projection method, R = I. For the projected Newton
method, which is of interest here, R is the reduced Hessian and is built from the
Hessian ∇2f(uc) of f and an approximation of the active set at the current point

Ac ≈ {i |uic ∈ {uilow, uihigh}}(1.5)

PRECONDITIONERS 329

by

Rc = PIc∇2f(uc)PIc + PAc .(1.6)

In (1.6), Ic, the inactive set, is the complement of Ac. It is known [5] that if Assump-
tion 1.1 holds and Ac is carefully constructed, then the projected Newton iteration is
locally q-superlinearly convergent and full steps (i.e., α = 1) are taken in the terminal
phase of the iteration. One possible choice of Ac is

(1.7)

Ac = Aε(uc) =

{
i |uic < uilow + ε,

∂f(uc)

∂ui
> 0

}
∪
{
i |uic < uihigh − ε,

∂f(uc)

∂ui
< 0

}
.

Note that part 1 of Assumption 1.1 implies that the conditions on ∂f/∂ui in (1.7)
are redundant if uc is sufficiently near u∗. To compute the projected Newton step the
linear system

Rcd = −∇f(uc)(1.8)

must be solved for the search direction d. If we apply PAc and PIc to (1.8) we obtain

PIc∇2f(uc)PIcd = −PIc∇f(uc) and PAcd = −PAc∇f(uc).(1.9)

The idea of [26] is that if M is a good preconditioner, for example, a fast solver
for the full Hessian or a simpler problem of the same order [19], [23], then

MR = PIcMPIc + PAc(1.10)

can be an effective preconditioner for R. Some numerical evidence is presented in [26]
but we believe that this paper contains the first theoretical results on the application
of this preconditioner to problems involving partial differential operators.

In the case of the elastoplastic torsion problem that we use as an example in
section 2, ∇2f(uc) is a discretization of the Laplacian operator on a simply connected
region in R2 or R3, and fast solvers can be easily constructed using, for example,
Fourier methods in simple geometries [29] or multigrid methods [12] in more complex
situations. Since A and I change with the iteration and (1.9) is the discretization of
an elliptic equation on a complex geometry determined by the boundary between A
and I, it is not clear how to implement fast solvers for the reduced problem (1.9) in
an efficient way.

1.2. Alternative methods. For quadratic problems, as most of our examples
are, a related preconditioner has been proposed in [27]. This preconditioner is con-
structed using knowledge of a good preconditioner for ∇2f , which is exactly the view
taken in this paper. In [27] one assumes that one can find a matrix L ≈ (∇2f)−1 such
that

LR =
(
PIcL

−1PIc + PAc
)−1

can be computed easily. In that case, the condition number of LRR is no greater
than that of L∇2f . However, LR may be difficult to compute. For example, if
L = (∇2f)−1, then LR = R−1, and computing LR would be equivalent to solving
the linear system we are preconditioning. Thus, one needs a good preconditioner for

330 T. D. CHOI AND C. T. KELLEY

∇2f as well as some insight into R so that LR is easily computed. This insight is not
needed in the preconditioner considered here.

The obstacle and elastoplastic torsion problems are, after being discretized, es-
sentially box-constrained quadratic programming problems. The main methods for
solving them include the successive overrelaxation method with projection (SORP)
[22], multigrid methods [6], [14], [15], [16], [17], [20], methods which combine SORP or
projected gradient with conjugate gradient [21], [24], [25], and methods based on the
Polyak algorithm [9], [27]. SORP is an early method that is still widely used because
of its simplicity and robustness. In [6], [14], [15] the multigrid methods are shown in
numerical tests to be superior to SORP, but in [20] Kornhuber states that they still
either lack robustness or have poor convergence rates. Convergence of these multigrid
methods is proven, but there are no results on the optimality of the methods.

In [17], Hoppe and Kornhuber propose a multilevel method that uses an active
set strategy to reduce the problem to a series of subproblems which are solved using
preconditioned (by additive Schwarz [28]) conjugate gradient. They prove conver-
gence of the algorithm and estimates on the condition number of the subproblem.
The theory and numerical results show that the number of conjugate gradient itera-
tions is linear with respect to j (the refinement level) when j is large enough. In [20]
Kornhuber presents a multigrid method which in numerical tests has the same effi-
ciency as multigrid in the unconstrained case. He also proves in addition to conver-
gence of the method that the asymptotic convergence rates are bounded by 1−O(j−3),
where the minimal diameter of the discretization triangles is of O(2−j).

The nonmultigrid methods are not as fast as the multilevel methods; however,
they are often simpler to implement and do not require additional data for auxiliary
problems that most multigrid methods require [21]. Numerical experiments show that
these methods are faster than SORP. The convergence of the methods is proven, but
no results on the optimality of the methods are given. Two of the methods build
on the algorithm that we essentially use in this paper, which is the preconditioned
conjugate gradient method combined with an active set strategy (PCGA). One major
problem with PCGA is that the method is effective only when the initial active set
is sufficiently “good.” In [25] Moré and Toraldo modify this method by combining a
projected gradient step with the step from PCGA. That is, at each step they take
one or more projected gradient steps and then they take the step from PCGA. In
[21] Koc̆vara and Zowe use a SORP step in place of the projected gradient step. The
idea behind these methods is that the projected gradient or SORP step will help to
quickly locate the active set at the solution. Finding the active set at the solution is
the limiting factor in the efficiency of PCGA.

2. Example: Elastoplastic torsion problem. As an example, we consider
the elastoplastic torsion problem on the unit square in two dimensions [1], [2], [10].
We will consider one other example from these sources in section 4. Let

Ω = [0, 1]× [0, 1] ⊂ R2.

We use the formulation

min
u∈U

f(u),(2.1)

where

f(u) =
1

2

∫
Ω

‖Dxu(x)‖2 dx− c
∫

Ω

u(x) dx(2.2)

PRECONDITIONERS 331

and

U = {u ∈ H1
0 (Ω) | |u(x)| ≤ dist(x, ∂Ω) a.e. in Ω}.(2.3)

In (2.2) Dx denotes the gradient with respect to x. The purpose of this notation is
to distinguish Dx from ∇f , which will denote the derivative of f with respect to u.
Similarly, D2

x will denote the Laplacian in x and ∇2f the Hessian of f .
For this infinite-dimensional problem, the independent variable x plays the role

of the index i and, in terms of the formulation in section 1,

uhigh(x) = dist(x, ∂Ω) and ulow(x) = −dist(x, ∂Ω).

With respect to the L2 inner product, the gradient and Hessian of f are

∇f(u) = −D2
xu− c and ∇2f(u) = −D2

x.(2.4)

With this choice of inner product, the projection onto U is the obvious analog of (1.3):

Pu(x) =

 uhigh(x), u(x) ≥ uhigh(x),
u(x), ulow(x) < u(x) < uhigh(x),
ulow(x), u(x) ≥ ulow(x).

(2.5)

This choice of scalar product is the one inherited by the discretization in [2], which
we use here.

Ideally, one would use the inner product in H1
0 , the space where the problem is

naturally posed [10]. If we do this, then

∇f(u) = u+ e and ∇2f(u) = I,(2.6)

where e is the weak solution in H1
0 of −D2

xe = −c. Therefore, if the H1
0 inner product

is used, the projected Newton and gradient projection methods are identical. The
catch is that the projection onto the feasible set is not given by a simple and easy-to-
compute expression like (2.5). In fact, if w is the projection of u onto U relative to
the H1

0 norm, then by definition

‖w − u‖2H1
0
≤ ‖v − u‖2H1

0
(2.7)

for all v ∈ U . This is also an elliptic variational inequality of the first kind and is no
easier to solve than the original problem.

2.1. Discretization of elastoplastic torsion problem. Discretization of a
two-dimensional problem is most simply presented if the discrete variable is doubly
indexed. However, the general theory that we develop in section 3 is more clear with
single indexing. To make the distinction more clear, we double index in the next few
paragraphs with uppercase letters and then single index with lowercase letters.

We use a uniform mesh of width h = 1/(n + 1) in the horizontal and vertical
directions. Hence, the unknown vector {uI,J}nI,J=1 will have size N = n2. The nodal
points for the discretization are

xI,J = (Ih, Jh), 0 ≤ I, J ≤ n+ 1,

with values of I, J of 0 or n+ 1 denoting boundary nodes.

332 T. D. CHOI AND C. T. KELLEY

We discretize (2.1) with piecewise linear finite elements to obtain [10], [2]

min
u∈Uh

fh(u),(2.8)

where

fh(u) =
1

2

∑
I,J

(
qI,JL (u) + qI,JU (u)

)
− c
∑

I,J
uI,J ,(2.9)

qI,JL (u) =
1

2

[(
uI+1,J − uI,J

h

)2

+

(
uI,J+1 − uI,J

h

)2
]

and

qI,JU (u) =
1

2

[(
uI−1,J − uI,J

h

)2

+

(
uI,J−1 − uI,J

h

)2
]
,

(2.10)

and

Uh = {u ∈ Rn×n | |uI,J | ≤ dI,J = dist(xI,J , ∂Ω)}.(2.11)

The gradient of f is

∇fh(u) = −D2
hu− c,

where c is the vector having all components equal to c andD2
h is the discrete Laplacian.

We describe the Hessian of f , the negative discrete Laplacian with homogeneous
Dirichlet boundary data, in terms of its action on a vector:

(−D2
hfh(u)w)I,J =

−wI−1,J − wI,J−1 − wI,J+1 − wI+1,J + 4wI,J

h2
.

The discrete active set at u A(u) will be constructed to approximate

{I, J | |uI,J | = dI,J} ⊂ Zn×n

and let I(u) be the complement of A(u). Note that for the discrete problem the active
set is expressed in terms of indices, integer pairs, whereas for the continuous problem
the active set would be a subset of Ω. For the discrete problems under study here, our
notion of boundary for A and I must take into account the locality of the operator
D2
xf .

Definition 2.1. The indices (I, J) and (K,L) are adjacent if the corresponding
nodes xI,J, xK,L satisfy

‖xI,J − xK,L‖ ≤ h.
(I, J) is adjacent to a set S ⊂ Zn×n if (I, J) is adjacent to any point in S. If
S ⊂ Zn×n and S ′ is the complement of S, then

∂S = {(I, J) ∈ S | (I, J) adjacent to S ′}.

Note that the indices adjacent to (I, J) are exactly those that play a role in the
five-point approximation to the Laplacian of u at xI,J.

PRECONDITIONERS 333

We now order the nodes with a single index. For the elastoplastic torsion problem,
fh is quadratic, and the Hessian is the negative discrete Laplacian, −D2

h. It is well
known that −D2

h is positive definite [10], [18]. It is also known (see [13] with C =
1/log(4)), and easily verifiable using the diagonalization of the discrete Laplacian,
that (D2

h)−1 satisfies the componentwise estimate

((D2
h)−1)i,j ≤ Ch2 log(1/h)(2.12)

for some C > 0 which is independent of h.

3. Convergence results. The general assumptions made in this section are
motivated by the results for the elastoplastic torsion problem that we stated in sec-
tion 2 and the examples from section 4. Our assumptions on the preconditioner M
are based on known properties of a Poisson solver such as (2.12). We consider the
problem given by (1.1) and (1.2).

3.1. Assumptions and notation. We assume that the indices can be grouped
in such a way that notions of adjacency and interior make sense. This means that
our problem is based on a physical grid and hence that the mesh width plays a role
in the assumption. The underlying assumption in this section is that a sequence of
problems is under study; hence the bounds in the assumptions are stated in terms of
the problem size N .

Assumption 3.1. There is a metric δ on ZN and M,p > 0 such that
• i and j are adjacent if δ(i, j) ≤ N−p and
• the number of points adjacent to i is at most M .

We can now define the boundary and interior of a set and the support of a vector.
Definition 3.1. Let S ∈ ZN .
• S ′ is the complement of S.
• The boundary ∂S of S is

∂S = {i ∈ S | i is adjacent to S ′}.
• The interior So of S is

So = {i ∈ S | i 6∈ ∂S}.
• The support of u ∈ RN is

supp(u) = {i |ui 6= 0}.
Our assumptions on M and ∇2f are as follows.
Assumption 3.2.
• Locality: For all u ∈ RN , S ⊂ ZN , and w ∈ RN with supp(w) ⊂ So,

supp(M−1w), supp(∇2f(u)w) ⊂ S.
• Sparsity: There are at most M nonzeros in each row and column ofM−1 and
∇2f(u). Moreover, there are C1, d > 0 such that

|(M−1)ij |, |(∇2f(u))ij | ≤ C1N
2/d.

• Smoothing: There is a function φ ≥ 0 such that limN→∞ φ(N) = 0 and

|Mij | ≤ φ(N)

for all 1 ≤ i, j ≤ N .

334 T. D. CHOI AND C. T. KELLEY

As an example of Assumptions 3.1 and 3.2 we point to the two-dimensional
elastoplastic torsion problem with

∇2f = −D2
h and M = (−D2

h)−1 = (∇2f)−1.

Here we see that the exponent in Assumption 3.1 p = 1/2. We may set M = C1 = 5,
and if i and j correspond to the two-dimensional mesh points (I, J) and (K,L),

δ(i, j) =
n+ 1

n
‖xI,J − xK,L‖2,

since h = 1/(n+ 1) and N = n2. The five-point Laplacian has d = 2 and M = 5. The
estimate (2.12) implies that, for some C0 > 0,

|Mij | = |((D2
h)−1)ij | = O(h2 log(1/h)) = O(N−1 log(N)) ≤ C0N

−1 log(N).

Hence we may use φ(N) = C0N
−1 log(N).

Local convergence of any Newton-like method requires regularity and nonsingu-
larity assumptions. In the present context, we will also require regularity of ∂A in a
certain sense.

Assumption 3.3. Let d be the exponent from Assumption 3.2. There are an open
neighborhood N of u∗ and C2, ε0 > 0 so that for all ε < ε0, u ∈ N , A = Aε(u), and
I = A′,

• R(u) is positive definite;
• M is symmetric and positive definite and there is C3 ≥ 0 such that

‖M∇2f(u)‖ ≤ C3N
1/d;

• the cardinality |∂I| of ∂I satisfies

|∂I| < C2N
(d−1)/d.

The third part of Assumption 3.3 states that the interface between the inactive
and active sets is, in a sense, of lower dimension (d− 1) than Ω, which has dimension
d. This is a natural assumption for the discretized elliptic variational inequalities
under consideration in this paper if ∂I is a family of curves in the two-dimensional
set Ω.

3.2. Main results. In order to estimate the effectiveness of M we need lower
and upper bounds for the spectrum of

M1/2
R R(u)M1/2

R = (PIMPI)1/2∇2f(u)(PIMPI)1/2 + PA.

We obtain these bounds by estimating the spectrum of the similar matrix

E(u) = PIMPI∇2f(u)PI + PA.(3.1)

Theorem 3.2. Let Assumptions 3.1, 3.2, and 3.3 hold. Let u ∈ N . Then there
is C > 0, independent of N , such that

0 < λ ≤ C(Nd−1

+ φ(N)Nd−1+1)(3.2)

for all eigenvalues λ of E(u).

PRECONDITIONERS 335

Proof. It clearly suffices to prove that (3.2) holds for λ 6= 1. Let E(u)w = λw
with λ 6= 1. Then

λPAw = PAE(u)w = PAw

and hence PAw = 0.
Now write

w = PIow + P∂Iw.

By Assumption 3.2 we see that

∇2f(u)PIow = PI∇2f(u)PIow

and hence

PIMPI∇2f(u)PIow = PIM∇2f(u)PIow.

Hence,

‖E(u)PIow‖ ≤ ‖M∇2f(u)‖‖PIow‖ ≤ C3N
1/d‖PIow‖.(3.3)

Our sparsity assumption implies that there is a set L with |L| ≤M |∂I| such that
for all i ∈ supp(P∂Iw) ⊂ ∂I,

(E(u)P∂Iw)i =
∑
j∈L
Mij

∑
k∈∂I

(∇2f(u))jk(P∂Iw)k.

Hence,

‖E(u)P∂Iw‖∞ ≤M2C1|∂I|φ(N)N2/d‖P∂Iw‖∞.

And so, since

‖PS‖∞ = 1

for all S ⊂ ZN ,

|λ|‖w‖∞= ‖E(u)w‖∞ ≤ ‖E(u)PIow‖∞ + ‖E(u)P∂Iw‖∞

≤ C3N
1/d‖PIow‖∞ +M2C1|∂I|φ(N)N2/d‖P∂Iw‖∞

≤ (C3N
1/d +M2C1C2φ(N)N2/d+1−1/d)‖w‖∞.

This completes the proof with C = C3 +M2C1C2.
Our remaining task is to prove a lower bound on λ. We begin with a basic lemma.
Lemma 3.3. Let M be symmetric and positive definite. Let A ⊂ ZN and I be

the complement of A. Then

σ(PIMPAM−1PI) ⊂ (−∞, 0).

336 T. D. CHOI AND C. T. KELLEY

Proof. Let µ 6= 0 be an eigenvalue of PIMPAM−1PI and v 6= 0 a corresponding
eigenvector. So

PIMPAM−1PIv = µv.

Hence

MPAM−1PIv = µv + y,

where supp(y) ⊂ A.
Now, using the symmetry and positivity ofM and the fact that vT y = 0, we have

yTM−1v = yTPAM−1v = (y + µv)TPAM−1v

= (MPAM−1v)TPAM−1v

= (PAM−1v)TM(PAM−1v) > 0.

(3.4)

We complete the proof by noting that

MPAM−1v = µv + y

implies

PAM−1v = µM−1v +M−1y

and so, since PAv = 0,

0 = vTPAM−1v = µvTM−1v + vTM−1y.

Hence, µvTM−1v = −vTM−1y < 0 by (3.4), which proves the assertion because
vTM−1v > 0.

In order to complete our lower estimate we require one more assumption, which
is trivially satisfied in the examples in section 4.

Assumption 3.4. There is δ− ∈ (0, 1), independent of N , such that ∇2f(u) −
δ−M−1 is symmetric and positive definite.

Theorem 3.4. Let Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Let u ∈ N . Then if

λ is an eigenvalue of M1/2
R R(u)M1/2

R ,

λ ≥ δ−.
Proof. Note that our assumptions imply that if

B(u) = (PIMPI)1/2M−1(PIMPI)1/2 + PA,
then

M1/2
R R(u)M1/2

R − δ−B(u)

is symmetric and positive definite. Hence if ν is the smallest eigenvalue of B(u), then
λ ≥ δ−ν.

As in the proof of Theorem 3.2 we consider the matrix

C(u) = PA + PIMPIM−1PI ,

PRECONDITIONERS 337

which is similar to B(u). Since

C(u) = I − PIMPAM−1PI
and all eigenvalues of PIMPAM−1PI are negative by Lemma 3.3, we must have
ν ≥ 1.

Corollary 3.5. Let Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Let u ∈ N . Then

κ(E(u)) ≤ Cδ−1
−
(
Nd−1

+ φ(N)Nd−1+1
)
.

Returning to elliptic variational inequalities in two space dimensions, the condi-
tion number of E(u), by the theorem above, is, using N = n × n ≈ h−2, d = 2,
∇2f(u) = M−1 (so any 0 < δ− < 1 will satisfy Assumption 3.4), and φ(N) =
N−1 ln(N),

O(Nd−1

ln(N)) = O(N1/2 ln(N)),

which is substantially better than the O(h−2) = O(N) condition number [3] of R
itself.

4. Numerical results.

4.1. Problems. In addition to the elastoplastic torsion problem, we report
computations on the journal bearing problem [10], [2]. As was the case with the
elastoplastic torsion problem, the journal bearing problem has the form

min
u∈U

f(u),(4.1)

where

f(u) =
1

2

∫
Ω

wq(x)(Dxu(x))T (Dxu(x))dx−
∫

Ω

wl(x)u(x)dx.(4.2)

In (4.2) Ω = (0, 2π)× (0, 2b) with b > 0, ε ∈ (0, 1),

wq(x1, x2) = (1 + ε cosx1)3 and wl(x1, x2) = ε sinx1.

The feasible set is

U = {u ∈ H1
0 (Ω) |u ≥ 0 a.e.}.(4.3)

The finite element discretization is described in [2]. The fact that wq > 0 implies
that if M is the inverse of the discrete Laplacian, then Assumption 3.4 holds with
δ− = inf wq.

We also report computations on the minimal surface problem [2]. It has the
following form:

min
u∈U

f(u),(4.4)

where

f(u) =

∫
Ω

(
1 + (Dxu(x))T (Dxu(x))

)1/2
dx.(4.5)

338 T. D. CHOI AND C. T. KELLEY

In (4.5) Ω = (− 1
2 ,

1
2)× (− 1

2 ,
1
2). The feasible set is

U =

{
u ∈ H1(Ω) : v(x) = vΩ(x) for x ∈ ∂Ω, v(x) ≥ 3 dist(x, ∂Ω)− 1

2

}
,(4.6)

where

vΩ(x1, x2) = u2 − v2

and u, v are the unique solutions to the equations

x1 = u+ uv2 − 1

3
u3,

x2 = −v − u2v +
1

3
v3.

The finite element discretization is described in [2]. The fact that the Gateaux
derivative f ′(u) exists and

(f ′(u), w) =

∫
Ω

(
1 + (Dxu(x))T (Dxu(x))

)−1/2
(Dxu(x))T (Dxw(x)) dx,

where (·, ·) denotes the L2 inner product and w ∈ H1, implies that ifM is the inverse
of the discrete Laplacian, then Assumption 3.4 holds with

δ− = inf
(
1 + (Dxu(x))T (Dxu(x))

)−1/2
.

4.2. Predictions of the theory. We will apply the theory developed in the
previous sections and the well-known estimate for convergence of conjugate gradient
iterations for a positive definite A [7], [11],

‖x− xk‖A ≤ ‖x− x0‖A
(

1− κ(A)1/2

1 + κ(A)1/2

)2k

,(4.7)

to explain the numerical observations in this section. If, as in the case of the elliptic
operators considered in this paper, there is no special clustering of the spectrum, the
number of iterations needed to reduce the A-norm of the error by a factor of η is well
estimated by

η

2(ln(1 + κ(A)1/2)− ln(1− κ(A)1/2))
= O

(
η

κ(A)1/2

)
.

In computations, only residual norms are observed, not errors, but the estimate of
convergence rates in (4.7) should also reflect the reduction in residuals.

In the context of the two-dimensional elliptic variational inequalities considered
here,

κ(R) = O(h−2) = O(N)

for the unpreconditioned problem and

κ(M1/2
R R(u)M1/2

R) = O(h−1 ln(1/h)) = O(N1/2 ln(N)).

In the reports on numerical results in this section we tabulate linear iteration counts
as a function of the mesh size h. We expect the count to double as h → h/2 for the
unpreconditioned problem and, neglecting the factor of ln(N), to increase by a factor
of
√

2 for the preconditioned problem.

PRECONDITIONERS 339

4.3. Observations. For all of the problems, we compute solutions of the discrete
problems having N = n2 unknowns with mesh sizes of

h =
1

n+ 1
= 2−k, k = 4, . . . , 8.

We terminate the linear iteration when the relative residual is small, i.e.,

‖Rd+∇f(u)‖ ≤ η‖∇f(u)‖(4.8)

for some small η. We use (4.8) rather than the standard inexact Newton criterion [8]

‖Rd+∇f(u)‖ ≤ η‖u− P(u−∇f(u))‖

in order to clearly see the effects of the preconditioner. We set η = 10−5 for all h.
The reason for making the termination criterion for the linear iteration independent
of the mesh is to be able to compare the increased cost of the linear iteration as the
mesh is refined to the prediction in section 4.2 in a direct way. The nonlinear iteration
was terminated when

‖u− P(u−∇f(u))‖ ≤ h2.

Since this is dependent on h, we tabulate the average number of linear iterations per
nonlinear iteration in the tables.

M was the fast Poisson solver from [29] and the functions, gradients, and Hessians
were computed using the MINPACK-2 codes [2]. The computations were done on an
IBM RS6000 Model 250 with the AIX XL Fortran Compiler under AIX operating
system version 3.2.

One might suspect that the size of the active set plays a role in the performance
in that for a small active set the preconditioner should perform more like that for
an unconstrained problem. To examine this we varied the value of the parameter c
for the elastoplastic torsion problem. The tables indicate that unless the active set
is empty and the preconditioner is the inverse (c = 3 and some cases with coarse
meshes), the performance of the preconditioner is as the theory predicts.

In Tables 4.1 and 4.2 we tabulate the average number of linear iterations per
nonlinear iteration for the three problems, the elastoplastic torsion problem (EPT),
the journal bearing problem (JBP), and the minimal surface problem (MIN), and
several mesh sizes. We also tabulate the ratios of these values from one mesh size
to the next. For the preconditioned results of the EPT, four different values of the
constant c are used (c = 5, 4, 3.5, 3). The percentage of indices that are active at the
solution is approximately 32% for c = 5, 17% for c = 4, 9% for c = 3.5, and 0% for
c = 3. In Table 4.2 the value of c is given in parentheses. For the numerical results
of the MIN we wish to minimize the nonlinear effects of the problem so that we can
clearly see the results of the theory. We do so by choosing a very good starting point
at each mesh, namely, the solution of the minimal surface problem on the h = 1/16
mesh. The predicted ratios for all three problems, 2 for the unpreconditioned case
and
√

2 for the preconditioned, are well approximated by the numerical results. The
exception, of course, is EPT(3), where the preconditioner is the inverse of the Hessian
and only one iteration is needed.

340 T. D. CHOI AND C. T. KELLEY

Table 4.1
Unpreconditioned iterations.

h 1/16 1/32 1/64 1/128 1/256
EPT(5) 19.0 36.2 68.6 129.7 247.3

1.9 1.9 1.9 1.9
JBP 29.3 56.3 112.4 214.4 403.4

1.9 2.0 1.9 1.9
MIN — 82 178 346 681.3

2.2 1.9 2.0

Table 4.2
Preconditioned iterations.

h 1/16 1/32 1/64 1/128 1/256
EPT(5) 3.7 5.6 8.4 13.2 19.1

1.5 1.5 1.6 1.5
EPT(4) 1 4.3 6.6 9.7 15.4

4.3 1.5 1.5 1.6
EPT(3.5) 1 1 4 7.3 11.6

1 4 1.8 1.6
EPT(3) 1 1 1 1 1

1 1 1 1
JBP 14.7 17.3 18.9 22.5 28.7

1.2 1.1 1.2 1.3
MIN — 32 44.5 57.5 69.8

1.4 1.3 1.2

Acknowledgments. The authors are most grateful to Loyce Adams for her wise
counsel on the smoothing assumptions.

REFERENCES

[1] B. M. Averick, R. G. Carter, and J. J. Moré, The MINPACK-2 Test Problem Collection
(Preliminary Version), Tech. Rep. ANL/MCS-TM-150, Math. and Comp. Science Div.
Report, Argonne National Laboratory, Argonne, IL, May 1991.

[2] B. M. Averick and J. J. Moré, User Guide for the MINPACK-2 Test Problem Collection,
Tech. Rep. ANL/MCS-TM-157, Math. and Comp. Science Div. Report, Argonne National
Laboratory, Argonne, IL, October 1991.

[3] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.
[4] D. P. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method, IEEE Trans.

Automat. Control, 21 (1976), pp. 174–184.
[5] D. P. Bertsekas, Projected Newton methods for optimization problems with simple constraints,

SIAM J. Control Optim., 20 (1982), pp. 221–246.
[6] A. Brandt and C. Cryer, Multigrid algorithms for the solution of linear complementarity

problems arising from free boundary problems, SIAM J. Sci. Stat., 4 (1983), pp. 655–684.
[7] P. Concus, G. H. Golub, and D. P. O’Leary, A generalized conjugate gradient method for the

numerical solution of elliptic partial differential equations, in Sparse Matrix Computations,
J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309–332.

[8] R. Dembo, S. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal.,
19 (1982), pp. 400–408.

[9] Z. Dostál, Box constrained quadratic programming with proportioning and projections, SIAM
J. Optim., 7 (1997), pp. 871–887.

[10] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New
York, 1984.

[11] G. H. Golub and C. G. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, 1983.

[12] W. Hackbusch, Multi-Grid Methods and Applications, Springer Series in Computational Math-
ematics 4, Springer-Verlag, New York, 1985.

PRECONDITIONERS 341

[13] W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, Springer-
Verlag, New York, 1992.

[14] W. Hackbusch and H. Mittelmann, On multigrid methods for variational inequalities, Nu-
mer. Math., 42 (1983), pp. 65–76.

[15] R. Hoppe, Multigrid algorithms for variational inequalities, SIAM J. Numer. Anal., 24 (1987),
pp. 1046–1065.

[16] R. Hoppe, Multigrid solutions to the elastic plastic torsion problem in multiply connected
domains, Internat. J. Numer. Meth. Engrg., 26 (1988), pp. 631–646.

[17] R. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM J.
Numer. Anal., 31 (1994), pp. 301–323.

[18] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
Method, Cambridge University Press, Cambridge, UK, 1987.

[19] W. Joubert, T. A. Manteuffel, S. Parter, and S.-P. Wong, Preconditioning second-
order elliptic operators: Experiment and theory, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 259–288.

[20] R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I, Numer.
Math., 69 (1994), pp. 167–184.

[21] M. Koc̆vara and J. Zowe, An iterative two-step algorithm for linear complementarity prob-
lems, Numer. Math., 68 (1994), pp. 95–106.

[22] O. Mangasarian, Solution of symmetric linear complementarity problems by iterative methods,
J. Optim. Theory Appl., 22 (1977), pp. 4656–485.

[23] T. A. Manteuffel and S. Parter, Preconditioning and boundary conditions, SIAM J. Numer.
Anal., 27 (1990), pp. 656–694.

[24] H. Mittelmann, On the efficient solution of nonlinear finite element equations II, Numer.
Math., 36 (1981), pp. 375–387.

[25] J. Moré and G. Toraldo, On the solution of large quadratic programming problems with
bound constraints, SIAM J. Optim., 1 (1991), pp. 93–113.

[26] S. G. Nash and A. Sofer, Preconditioning reduced matrices, SIAM J. Matrix Anal. Appl., 17
(1996), pp. 47–68.

[27] D. P. O’Leary, A generalized conjugate gradient algorithm for solving a class of quadratic
programming problems, Linear Algebra Appl., 34 (1980), pp. 371–399.

[28] B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, UK,
1996.

[29] P. N. Swarztrauber and R. A. Sweet, Algorithm 541: Efficient FORTRAN subprograms
for the solution of elliptic partial differential equations, ACM Trans. Math. Software, 5
(1979), pp. 352–364.

JACOBIAN SMOOTHING METHODS FOR NONLINEAR
COMPLEMENTARITY PROBLEMS∗

CHRISTIAN KANZOW† AND HEIKO PIEPER‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 342–373

Abstract. We present a new algorithm for the solution of general (not necessarily monotone)
complementarity problems. The algorithm is based on a reformulation of the complementarity prob-
lem as a nonsmooth system of equations by using the Fischer–Burmeister function. We use an idea
by Chen, Qi, and Sun and apply a Jacobian smoothing method (which combines nonsmooth Newton
and smoothing methods) to solve this system. In contrast to that of Chen, Qi, and Sun, however,
our method is at least well defined for general complementarity problems. Extensive numerical
results indicate that the new algorithm works very well. In particular, it can solve all nonlinear
complementarity problems from the MCPLIB and GAMSLIB libraries.

Key words. nonlinear complementarity problem, nonsmooth Newton method, smoothing
method, global convergence, quadratic convergence

AMS subject classification. 90C33

PII. S1052623497328781

1. Introduction. Let F : Rn → Rn be continuously differentiable. The nonlin-
ear complementarity problem is to find a solution of the following system of equations
and inequalities:

xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i ∈ I := {1, . . . , n}.
We denote this problem by NCP(F). It has a large number of important applications,
and we refer the interested reader to the survey papers by Harker and Pang [22] and
Ferris and Pang [17].

The basic idea of most algorithms for the solution of NCP(F) is to reformulate
this problem as a nonlinear system of equations, as an optimization problem, or as
a parametric problem. Here we concentrate on the equation-based approach, where
problem NCP(F) is written equivalently as

Φ(x) = 0(1.1)

for a suitable equation operator Φ : Rn → Rn. For certain reasons, the operator Φ is
usually nonsmooth, so that we cannot apply the classical Newton method in order to
solve the problem (1.1). Nevertheless, recent research shows that one can still design
globally and locally fast convergent methods for the solution of (1.1). In the following,
we give a short summary of the basic ideas of some of the methods that are related
to this paper.

Nonsmooth Newton Methods. Instead of solving problem (1.1) by the classical
Newton method, one can apply a nonsmooth Newton method based, e.g., on Clarke’s
[12] generalized Jacobian ∂Φ(x) of Φ at the point x ∈ Rn. For example, the nonsmooth

∗Received by the editors October 14, 1997; accepted for publication (in revised form) May 8,
1998; published electronically March 17, 1999.

http://www.siam.org/journals/siopt/9-2/32878.html
†University of Hamburg, Institute of Applied Mathematics, Bundesstrasse 55, 20146 Hamburg,

Germany (kanzow@math.uni-hamburg.de). The research of this author was supported by Deutsche
Forschungsgemeinschaft.
‡Department of Engineering-Economic Systems and Operations Research, Terman Engineering

Center, Stanford University, Stanford, CA 94305-4023 (pieper@stanford.edu).

342

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 343

Newton methods by Kummer [30] and Qi and Sun [37] solve at each iteration the
generalized Newton equation

Vkd = −Φ(xk),(1.2)

where Vk ∈ ∂Φ(xk). This method is locally superlinearly/quadratically convergent
under certain assumptions but (in contrast to the classical Newton method for smooth
systems of equations) cannot be globalized in a simple way for general operators Φ.
However, by using special functions Φ, several authors have recently presented globally
and locally fast convergent nonsmooth Newton-type methods; see, e.g., [25, 16, 13,
28, 5].

One of the main advantages of most of these methods is the fact that they are
usually well defined for an arbitrary complementarity problem NCP(F).

Smoothing Methods. Another way to deal with the nonsmoothness of Φ is to
approximate this function by a smooth operator Φµ : Rn → Rn, where µ > 0 denotes
the smoothing parameter. The basic idea of the class of smoothing methods is then
to solve a sequence of problems

Φµ(x) = 0(1.3)

and to force µ to go to 0. The advantage of this approach is that one can apply the
standard Newton method for solving problem (1.3) so that one has to solve at each
iteration the smoothing Newton equation

Φ′µ(xk)d = −Φµ(xk).(1.4)

Smoothing methods of this kind were considered, e.g., by Chen and Harker [6, 7], Chen
and Mangasarian [9], Kanzow [26], Gabriel and Moré [20], Burke and Xu [3, 43], Xu
[41, 42], Hotta and Yoshise [23], Chen and Ye [11], Chen and Chen [4], Chen and Xiu
[8], Jiang [24], Qi and Sun [36], and Tseng [40]. In particular, the paper [3] by Burke
and Xu initiated much of the recent research in this area.

The disadvantage of smoothing methods is that they usually require F to be at
least a P0-function in order to guarantee that the linear systems (1.4) are solvable. It
seems difficult to make smoothing methods work on general complementarity prob-
lems, where the Jacobian in (1.4) might be singular. This problem is also illustrated
by the fact that smoothing methods try to follow the so-called smoothing path, which
may not exist for non-P0- or nonmonotone problems.

Nevertheless, a sophisticated implementation, like in the SMOOTH code by Chen
and Mangasarian [9], seems to work quite well also for nonmonotone problems; see
[2].

Jacobian Smoothing Methods. The third class of algorithms for the solution of
(1.1) is due to Chen, Qi, and Sun [10]. They call it a smoothing Newton method,
but we prefer the name Jacobian smoothing method in order to distinguish it better
from the class of smoothing methods. These methods try to solve at each iteration
the mixed Newton equation

Φ′µ(xk)d = −Φ(xk).(1.5)

This linear system combines the nonsmooth Newton equation (1.2) and the smoothing
Newton equation (1.4): it uses the unperturbed right-hand side from (1.2) but the
smooth matrix from (1.4).

344 CHRISTIAN KANZOW AND HEIKO PIEPER

The algorithm and convergence theory developed by Chen, Qi, and Sun [10] still
relies on the fact that the linear systems (1.5) are solvable at each iteration, and,
similarly to the class of smoothing methods, this assumption is intimately related
to F being a P0-function. Hence also, this Jacobian smoothing method is not well
defined for general complementarity problems.

Note that the Jacobian smoothing idea is also used in a couple of recent smoothing
papers as a kind of hybrid step; see, e.g., [11, 4]. The main reason for doing this is
that the Jacobian smoothing method helps to prove (or simplifies the proof of) local
fast convergence.

Despite the fact that Jacobian smoothing methods are often viewed as a varia-
tion of smoothing methods, we take a different point of view: We view a Jacobian
smoothing method as a suitable perturbation of a nonsmooth Newton method. In
fact, the Jacobian smoothing method seems to be much closer to nonsmooth Newton
methods than to smoothing methods, since the Jacobian smoothing methods do not
try to follow any smoothing path. Instead, they also try to solve the unperturbed
problem (1.1) directly by replacing the matrix Vk ∈ ∂Φ(xk) in (1.2) by a suitable
approximation Φ′µ(xk).

With this in mind, it seems reasonable to ask if one can modify the Jacobian
smoothing method by Chen, Qi, and Sun [10] in such a way that it becomes well
defined for general complementarity problems. This is actually the main motivation
for this paper, and the answer is positive.

In order to do this, however, we cannot consider the general class of smoothing
methods used by Chen, Qi, and Sun [10]. Instead, we concentrate on one particular
reformulation of the complementarity problem NCP(F) and fully exploit the (addi-
tional) properties of this special reformulation. It is based on the Fischer–Burmeister
function ϕ : R2 → R defined by

ϕ(a, b) :=
√
a2 + b2 − a− b;

see [18]. Then it is well known and easy to see that problem NCP(F) is equivalent to
problem (1.1) with Φ being defined by

Φ(x) :=

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))

 .

The globalization strategy for our algorithm is heavily based on the natural merit
function Ψ : Rn → R given by

Ψ(x) :=
1

2
Φ(x)TΦ(x).

The corresponding smooth operator Φµ : Rn → Rn is defined similarly by

Φµ(x) :=

 ϕµ(x1, F1(x))
...

ϕµ(xn, Fn(x))

 ,

where ϕµ : R2 → R denotes Kanzow’s [26] smooth approximation

ϕµ(a, b) :=
√
a2 + b2 + 2µ− a− b, µ > 0,

of the Fischer–Burmeister function.

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 345

The basic idea of the Jacobian smoothing method to be presented in this paper
is to solve the nonlinear complementarity problem NCP(F) by minimizing the merit
function Ψ. Unfortunately, given an iterate xk, the search direction dk computed from
the mixed Newton equation (1.5) is not necessarily a descent direction for Ψ at the
point xk; instead, this search direction is used in order to reduce the related merit
function

Ψµ(x) :=
1

2
Φµ(x)TΦµ(x).

In order to make the algorithm at least well defined for an arbitrary nonlinear com-
plementarity problem, we use a gradient step for the merit function Ψ in case the
linear system (1.5) does not have a solution or gives a poor search direction for Ψµ.
Besides the fact that the introduction of such a gradient step is a rather simple idea,
it complicates the global convergence analysis considerably. Basically, this is due to
the fact that we now minimize different merit functions, and a reduction in one merit
function does not necessarily correspond to a reduction in the other merit function.
The global convergence analysis is therefore somewhat more difficult than for many
nonsmooth Newton and smoothing methods; in particular, it is based on a rather
sophisticated updating rule for the smoothing parameter µ.

The organization of this paper is as follows: The mathematical background and
some preliminary results are summarized in section 2. The Jacobian smoothing idea
is discussed in more detail in section 3. The algorithm, together with some of its
elementary properties, is presented in section 4. The global and local convergence
analysis is part of sections 5 and 6, respectively. Extensive and very encouraging
numerical results are reported in section 7, and section 8 concludes this paper with
some final remarks.

Some words about our notation: Let G : Rn → Rm be continuously differentiable.
Then G′(x) ∈ Rm×n denotes the Jacobian of G at a point x ∈ Rn, whereas the symbol
∇G(x) is used for the transposed Jacobian. In particular, if m = 1, the gradient
∇G(x) is viewed as a column vector. If G : Rn → Rm is only locally Lipschitzian, we
can define Clarke’s [12] generalized Jacobian as follows:

∂G(x) := conv
{
H ∈ Rm×n| ∃{xk} ⊆ DG : xk → x and G′(xk)→ H

}
;

here, DG denotes the set of differentiable points of G and convA is the convex hull
of a set A. If m = 1, we call ∂G(x) the generalized gradient of G at x for obvious
reasons.

Usually, ∂G(x) is difficult to compute, especially for m > 1. Instead, Proposition
2.6.2 (e) in Clarke [12] provides the overestimation

∂G(x)T ⊆ ∂G1(x)× · · · × ∂Gm(x),

where the right-hand side denotes the set of matrices in Rn×m whose ith column is
given by the generalized gradient of the ith component function Gi. Since this right-
hand side is often easier to compute and was motivated by the recent paper [34] by
Qi, we write

∂CG(x)T := ∂G1(x)× · · · × ∂Gm(x)

and call ∂CG(x) the C-subdifferential of G at x. For the purpose of this paper, the
C-subdifferential is considerably more important than the more familiar generalized
Jacobian.

346 CHRISTIAN KANZOW AND HEIKO PIEPER

If x ∈ Rn, we denote by ‖x‖ the Euclidian norm of x. Similarly, ‖A‖ denotes
the spectral norm of a matrix A ∈ Rn×n which is the induced matrix norm of the
Euclidian vector norm. Occasionally, we will also write ‖ · ‖2 in order to avoid any
possible confusion. Sometimes we also need the Frobenius norm ‖A‖F of a matrix
A ∈ Rn×n.

If A ∈ Rn×n is any given matrix and A ⊆ Rn×n is a nonempty set of matrices,
we denote by dist(A,A) := infB∈A ‖A − B‖ the distance between A and A. This
is sometimes also written as dist2(A,A) in order to emphasize that the distance is
measured using the spectral norm. Similarly, we write distF (A,A) if the distance is
calculated by using the Frobenius norm. The (Euclidian) distance between a vector
and a set of vectors of the same dimension is defined in an analogous way.

Finally, we make use of the Landau symbols o(·) and O(·): Let {αk} and {βk}
be two sequences of positive numbers such that βk → 0. Then we write αk = o(βk) if
αk/βk → 0 and αk = O(βk) if lim supk→∞ αk/βk <∞, i.e., if there exists a constant
c > 0 such that αk ≤ cβk for all k ∈ N := {0, 1, 2, . . .}.

2. Preliminaries. In this section, we summarize some of the known properties
of the functions Φ,Φµ, and Ψ, which will be important for our subsequent analysis.
In addition, we prove some preliminary results which will also be used later.

The first result follows directly from the definition of the C-subdifferential and
Proposition 3.1 in [16].

Proposition 2.1. For an arbitrary x ∈ Rn, we have

∂CΦ(x)T = Da(x) +∇F (x)Db(x),(2.1)

where Da(x) = diag(a1(x), . . . , an(x)), Db(x) = diag(b1(x), . . . , bn(x)) ∈ Rn×n are
diagonal matrices whose ith diagonal element is given by

ai(x) =
xi√

x2
i + Fi(x)2

− 1, bi(x) =
Fi(x)√

x2
i + Fi(x)2

− 1

if (xi, Fi(x)) 6= (0, 0) and by

ai(x) = ξi − 1, bi(x) = ρi − 1

for every (ξi, ρi) ∈ R2 such that ‖(ξi, ρi)‖ ≤ 1 if (xi, Fi(x)) = (0, 0).
The next result follows from [16, 19] together with known results for (strongly)

semismooth functions [37] and the recent theory of C-differentiable functions by Qi
[34].

Proposition 2.2. Assume that {xk} ⊆ Rn is any convergent sequence with limit
point x∗ ∈ Rn. Then the following statements hold:

(a) The function Φ is semismooth so that

‖Φ(xk)− Φ(x∗)−Hk(xk − x∗)‖ = o(‖xk − x∗‖)

for any Hk ∈ ∂CΦ(xk).
(b) If F is continuously differentiable with a locally Lipschitzian Jacobian, then

Φ is strongly semismooth so that

‖Φ(xk)− Φ(x∗)−Hk(xk − x∗)‖ = O(‖xk − x∗‖2)

for any Hk ∈ ∂CΦ(xk).

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 347

The following result can be verified similarly to Lemma 3.7 in [27].

Proposition 2.3. The function ϕµ satisfies the inequality

|ϕµ1(a, b)− ϕµ2(a, b)| ≤
√

2|√µ1 −√µ2|

for all (a, b) ∈ R2 and all µ1, µ2 ≥ 0. In particular, we have

|ϕµ(a, b)− ϕ(a, b)| ≤
√

2
√
µ

for all (a, b) ∈ R2 and all µ > 0.

As an immediate consequence of Proposition 2.3, we obtain the following corollary.

Corollary 2.4. The function Φµ satisfies the inequality

‖Φµ1(x)− Φµ2(x)‖ ≤ κ |√µ1 −√µ2 |(2.2)

for all x ∈ Rn and µ1, µ2 ≥ 0, where κ :=
√

2n. In particular, we have

‖Φµ(x)− Φ(x)‖ ≤ κ√µ

for all x ∈ Rn and all µ ≥ 0.

We next state a result which is a minor extension of Proposition 3.4 of [16]. We
omit its proof here since it can be carried out in a similar way as the one in [16].

Proposition 2.5. The merit function Ψ is continuously differentiable with
∇Ψ(x) = V TΦ(x) for an arbitrary V ∈ ∂CΦ(x).

The following technical result will be used in the proof of our main global con-
vergence result, Theorem 5.8 below.

Lemma 2.6. Let {xk} ⊆ Rn and {µk} ⊆ R be two sequences with {xk} → x∗ for
some x∗ ∈ Rn and {µk} ↓ 0. Then

lim
k→∞

∇Ψµk(xk) = ∇Ψ(x∗)

and

lim
k→∞

Φ′µk(xk)TΦ(xk) = ∇Ψ(x∗).

Proof. Since Ψµ is differentiable for all µ > 0, we have

∇Ψµk(xk) = Φ′µk(xk)TΦµk(xk) =
∑
i∈I

ϕµk(xki , Fi(x
k))∇Φµk,i(x

k),

where Φµk,i denotes the ith component function of Φµk . On the other hand, for
arbitrary V ∈ ∂CΦ(x∗), we obtain from Proposition 2.5

∇Ψ(x∗) = V TΦ(x∗) =
∑
i∈I

ϕ(x∗i , Fi(x
∗))V T

i ,

where V T
i denotes the ith column of the matrix V T . Now let

β(x∗) := {i |x∗i = Fi(x
∗) = 0}.

348 CHRISTIAN KANZOW AND HEIKO PIEPER

We consider two cases.
Case 1. i /∈ β(x∗).
Then the Fischer–Burmeister function is continuously differentiable at (x∗i , Fi(x

∗)),
and the ith column of V T is single valued and equal to ∇Φi(x

∗) (cf. Proposition 2.1).
In particular, all limits exist, and from the continuity of ϕ and ∇F , we obtain

lim
k→∞

ϕµk(xki , Fi(x
k))∇Φµk,i(x

k) = ϕ(x∗i , Fi(x
∗))∇Φi(x

∗) = ϕ(x∗i , Fi(x
∗))V T

i .

Case 2. i ∈ β(x∗).
Since

∂ϕµ
∂a

(a, b) ∈ (−2, 0) and
∂ϕµ
∂b

(a, b) ∈ (−2, 0)

for all (a, b) ∈ R2 and µ > 0, the sequence {∇Φµk,i(x
k)} is bounded for k →∞. Since

lim
k→∞

ϕµk(xki , Fi(x
k)) = ϕ(x∗i , Fi(x

∗)) = 0,

we therefore have

lim
k→∞

ϕµk(xki , Fi(x
k))∇Φµk,i(x

k) = 0.

Since we also have ϕ(x∗i , Fi(x
∗))V T

i = 0 for all i ∈ β(x∗), the first statement follows
from Cases 1 and 2.

The second statement is easier to establish than the first one since we multiply by
Φ(xk) and not by Φµk(xk). The proof would be similar to the one just given.

We conclude this section by stating another technical result that will also be
utilized in our global convergence analysis.

Lemma 2.7. Let {xk}, {dk} ⊆ Rn and {tk} ⊆ R be sequences with xk+1 := xk +
tkd

k such that {xk} → x∗, {dk} → d∗, and {tk} ↓ 0 for certain vectors x∗, d∗ ∈ Rn.
Furthermore, let {µk} ⊆ R be a sequence with {µk} ↓ 0. Then

lim
k→∞

Ψµk(xk + tkd
k)−Ψµk(xk)

tk
= ∇Ψ(x∗)Td∗.

Proof. From Proposition 2.5 and the mean value theorem, we obtain that, for
each k ∈ N, there exists a vector ξk ∈ Rn on the line segment between xk and xk+1

(that is, ξk = xk + θkd
k for some θk ∈ [0, tk]) such that

Ψµk(xk + tkd
k)−Ψµk(xk) = tk∇Ψµk(ξk)Tdk.

Dividing by tk gives

Ψµk(xk + tkd
k)−Ψµk(xk)

tk
= ∇Ψµk(ξk)Tdk.

Since ξk lies between xk and xk+1, it follows that {ξk} → x∗. Therefore, we can apply
the first statement of Lemma 2.6, so that passing to the limit, we get

lim
k→∞

Ψµk(xk + tkd
k)−Ψµk(xk)

tk
= lim
k→∞

∇Ψµk(ξk)Tdk = ∇Ψ(x∗)Td∗.

This completes the proof.

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 349

3. Jacobian smoothing. The basic idea of our algorithm, to be presented in
section 4, is to replace the generalized Newton equation

Vkd = −Φ(xk), Vk ∈ ∂CΦ(xk),

by the linear system

Φ′µk(xk)d = −Φ(xk);

i.e., we replace the element Vk from the C-subdifferential ∂CΦ(xk) by the (existing)
Jacobian Φ′µk(xk) of the smoothed operator Φµk . In order to guarantee local fast

convergence of this iteration, we have to control the difference between Φ′µk(xk) and

the set ∂CΦ(xk). A first result in this direction is established in the following lemma.
Lemma 3.1. Let x ∈ Rn be arbitrary but fixed. Then we have

lim
µ↓0

dist(Φ′µ(x), ∂CΦ(x)) = 0.(3.1)

Proof. From the definition of Φµ, we have for all µ > 0,

Φ′µ(x) = diag

(
xi√

x2
i + Fi(x)2 + 2µ

− 1

)
+ diag

(
Fi(x)√

x2
i + Fi(x)2 + 2µ

− 1

)
F ′(x).

We consider the distance between the columns of the transposed Jacobians.
To this end, let us define

β(x) := {i |xi = Fi(x) = 0}.
If we denote the ith component function of Φµ by Φµ,i, we obtain

lim
µ↓0
∇Φµ,i(x) =

(

xi√
x2
i
+Fi(x)2

− 1

)
ei +

(
Fi(x)√
x2
i
+Fi(x)2

− 1

)
∇Fi(x) for i /∈ β(x),

−ei −∇Fi(x) for i ∈ β(x).

Hence the assertion follows from Proposition 2.1 (with (ξi, ρi) = (0, 0) for i ∈
β(x)).

It is an immediate consequence of Lemma 3.1 that we can find, for every fixed
δ > 0, a parameter µ̄ = µ̄(x, δ) > 0 such that

dist(Φ′µ(x), ∂CΦ(x)) ≤ δ
for all 0 < µ ≤ µ̄. However, it does not follow from Lemma 3.1 how we can choose this
threshold value µ̄. On the other hand, it is important for the design of our algorithm
to have an explicit expression of a possible value of µ̄. This is made more precise in
Proposition 3.4 below, whose proof is based on the following two observations.

Lemma 3.2. Let x ∈ Rn and µ > 0 be arbitrary but fixed. Then

[distF (∇Φµ(x), ∂CΦ(x)T)]
2

=
n∑
i=1

[dist2 (∇Φµ,i(x), ∂Φi(x))]
2
.

Proof. Let Vi be the ith column of a matrix V . Then, using the definition of the
C-subdifferential, it is easy to see that

inf
V ∈∂CΦ(x)T

n∑
i=1

‖∇Φµ,i(x)− Vi‖22 =
n∑
i=1

inf
Hi∈∂Φi(x)

‖∇Φµ,i(x)−Hi‖22.

350 CHRISTIAN KANZOW AND HEIKO PIEPER

Using this and the definition of the Frobenius norm, we obtain

[distF (∇Φµ(x), ∂CΦ(x)T)]
2

= inf
V ∈∂CΦ(x)T

‖∇Φµ(x)− V ‖2F

= inf
V ∈∂CΦ(x)T

n∑
i=1

‖∇Φµ,i(x)− Vi‖22

=
n∑
i=1

inf
Hi∈∂Φi(x)

‖∇Φµ,i(x)−Hi‖22

=
n∑
i=1

[dist2 (∇Φµ,i(x), ∂Φi(x))]
2
.

This completes the proof.
Lemma 3.3. Let µ > 0 be arbitrary but fixed. Then the function f : (0,∞)→ R,

defined by

f(τ) :=
1√
τ
− 1√

τ + 2µ
,

is strictly decreasing in τ > 0.
Proof. The function f is continuously differentiable with

f ′(τ) = −1

2

1

(
√
τ)3

+
1

2

1√
τ + 2µ

3 = −1

2

(
1

(
√
τ)3
− 1√

τ + 2µ
3

)
.

Hence we have f ′(τ) < 0 for all τ > 0. This implies our assertion.
We now come to the main result of this section.
Proposition 3.4. Let x ∈ Rn be arbitrary but fixed. Assume that x is not a

solution of NCP(F). Let us define the constants

γ(x) := max
i 6∈β(x)

{‖xiei + Fi(x)∇Fi(x)‖} ≥ 0

and

α(x) := min
i 6∈β(x)

{x2
i + Fi(x)2} > 0,

where β(x) := {i|xi = Fi(x) = 0}. Let δ > 0 be given, and define

µ̄(x, δ) :=

 1 if
(
nγ(x)2

δ2 − α(x)
)
≤ 0,

α(x)2

2

(
δ2

nγ(x)2−δ2α(x)

)
otherwise.

Then

distF (Φ′µ(x), ∂CΦ(x)) ≤ δ
for all µ such that 0 < µ ≤ µ̄(x, δ).

Proof. We first note that {1, . . . , n}\β(x) 6= ∅ since x is not a solution of NCP(F)
by assumption. Hence α(x) > 0. Furthermore, since ‖A‖F = ‖AT‖F for an arbitrary
matrix A ∈ Rn×n, we obtain

distF
(
Φ′µ(x), ∂CΦ(x)

)
= distF (∇Φµ(x), ∂CΦ(x)T)

=
√∑n

i=1 [dist2 (∇Φµ,i(x), ∂Φi(x))]
2(3.2)

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 351

from Lemma 3.2. Hence it is sufficient to consider the distance between the ith
columns of ∇Φµ(x) and ∂CΦ(x)T . To this end, we recall that these columns are given
by

∇Φµ,i(x) =
∂ϕµ
∂a

(xi, Fi(x))ei +
∂ϕµ
∂b

(xi, Fi(x))∇Fi(x)

and

∂Φi(x) =

{
∂ϕ
∂a (xi, Fi(x))ei + ∂ϕ

∂b (xi, Fi(x))∇Fi(x) if i 6∈ β(x),
(ξi − 1)ei + (ρi − 1)∇Fi(x) if i ∈ β(x),

respectively, where (ξi, ρi) ∈ R2 denotes any vector such that ‖(ξi, ρi)‖ ≤ 1; see
Proposition 2.1. We distinguish two cases:

Case 1. i ∈ β(x).
Then (xi, Fi(x)) = (0, 0) and therefore

∇Φµ,i(x) = −ei −∇Fi(x).

Hence, taking (ξi, ρi) = (0, 0), we see that

∇Φµ,i(x) ∈ ∂Φi(x)

so that

dist2 (∇Φµ,i(x), ∂Φi(x)) = 0(3.3)

for all i ∈ β(x).
Case 2. i 6∈ β(x).
In this case, we have

∂Φi(x) = {∇Φi(x)}.
By a simple calculation, we therefore get

dist2 (∇Φµ,i(x), ∂Φi(x))

= ‖∇Φµ,i(x)−∇Φi(x)‖

=

∥∥∥∥∥
(

xi√
x2
i + Fi(x)2 + 2µ

− 1

)
ei +

(
Fi(x)√

x2
i + Fi(x)2 + 2µ

− 1

)
∇Fi(x)

−
(

xi√
x2
i + Fi(x)2

− 1

)
ei −

(
Fi(x)√

x2
i + Fi(x)2

− 1

)
∇Fi(x)

∥∥∥∥∥
=

∥∥∥∥∥xiei
(

1√
x2
i + Fi(x)2 + 2µ

− 1√
x2
i + Fi(x)2

)

+ Fi(x)∇Fi(x)

(
1√

x2
i + Fi(x)2 + 2µ

− 1√
x2
i + Fi(x)2

)∥∥∥∥∥
=

∥∥∥∥∥
(

1√
x2
i + Fi(x)2 + 2µ

− 1√
x2
i + Fi(x)2

)
(xiei + Fi(x)∇Fi(x))

∥∥∥∥∥
=

(
1√

x2
i + Fi(x)2

− 1√
x2
i + Fi(x)2 + 2µ

)
‖xiei + Fi(x)∇Fi(x)‖.

352 CHRISTIAN KANZOW AND HEIKO PIEPER

In view of the definitions of the constants α(x) and γ(x), we therefore obtain by using
Lemma 3.3

dist2(∇Φµ,i(x), ∂Φi(x)) ≤
(

1√
α(x)

− 1√
α(x) + 2µ

)
γ(x)

=

(√
α(x) + 2µ−√α(x)√
α(x)

√
α(x) + 2µ

)
γ(x)

≤
(√

2µ√
α(x)

√
α(x) + 2µ

)
γ(x),

where the latter inequality follows from the elementary fact that
√
a+ b ≤ √a +

√
b

for all a, b ≥ 0. We now want to show that(√
2µ√

α(x)
√
α(x) + 2µ

)
γ(x) ≤ δ√

n
(3.4)

for all 0 < µ ≤ µ̄(x, δ), which then implies

dist2 (∇Φµ,i(x), ∂Φi(x)) ≤ δ√
n
.(3.5)

If γ(x) = 0, then inequality (3.4) holds trivially (for arbitrary µ > 0). Hence we
assume that γ(x) > 0. Then an easy calculation shows that (3.4) is equivalent to

α(x)2 ≥ 2µ

(
nγ(x)2

δ2
− α(x)

)
.(3.6)

Hence, if nγ(x)2

δ2 − α(x) ≤ 0, inequality (3.4) is satisfied for any µ > 0, in particular
for all µ ∈ (0, 1]. Otherwise we obtain the following upper bound from (3.6):

µ ≤ α(x)2

2

(
δ2

nγ(x)2 − δ2α(x)

)
=: µ̄(x, δ).

Putting together (3.2), (3.3), and (3.5), we therefore obtain

distF (Φ′µ(x), ∂CΦ(x)) ≤
√√√√ n∑

i=1

δ2

n
= δ

for all 0 < µ ≤ µ̄(x, δ).

The constant µ̄(x, δ) defined in Proposition 3.4 will play a central role in the
design of our algorithm, to be described in the following section.

We also note that, since ‖A‖ ≤ ‖A‖F for an arbitrary matrix A ∈ Rn×n, it follows
from Proposition 3.4 that

dist(Φ′µ(x), ∂CΦ(x)) ≤ δ

for all µ with 0 < µ ≤ µ̄(x, δ).

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 353

4. Algorithm. In this section, we give a detailed description of our Jacobian
smoothing method and state some of its elementary properties. In particular, we
show that the algorithm is well defined for an arbitrary complementarity problem.

Basically, we try to take the Jacobian smoothing method from Chen, Qi, and
Sun [10]. In addition, we incorporate a gradient step in a way similar to (but slightly
different from) the way this is done by some nonsmooth Newton methods [13, 28, 5].
Unfortunately, the introduction of these gradient steps makes the updating rules for
our smoothing parameter µk, as well as the convergence theory, considerably more
technical and complicated. However, it is this gradient step which makes the algorithm
applicable to a general nonlinear complementarity problem.

In fact, this is also the reason why we concentrate on the Fischer–Burmeister
function: Its merit function Ψ is smooth due to Proposition 2.5, whereas the same
does not hold for the general class of smoothing functions considered in [10].

We now state our algorithm formally.
Algorithm 4.1 (Jacobian Smoothing Method).

(S.0) Choose x0 ∈ Rn, λ, α, η, ρ ∈ (0, 1), γ > 0, σ ∈ (0, 1
2 (1−α)), p > 2, and ε ≥ 0.

Set β0 := ‖Φ(x0)‖, κ :=
√

2n, µ0 := (α2κβ0)2, and k := 0.
(S.1) If ‖∇Ψ(xk)‖ ≤ ε: STOP.
(S.2) Find a solution dk ∈ Rn of the linear system

Φ′µk(xk)d = −Φ(xk). (Newton step)(4.1)

If the system (4.1) is not solvable or if the condition

Φ(xk)TΦ′µk(xk)dk ≤ −ρ‖dk‖p(4.2)

is not satisfied, set

dk := −∇Ψ(xk). (Gradient step)(4.3)

(S.3) Find the smallest mk in {0, 1, 2, . . .} such that

Ψµk(xk + λmkdk) ≤ Ψµk(xk)− 2σλmkΨ(xk)(4.4)

if dk is given by (4.1), and such that

Ψ(xk + λmkdk) ≤ Ψ(xk)− σλmk‖dk‖2(4.5)

if dk is given by (4.3). Set tk := λmk and xk+1 := xk + tkd
k.

(S.4) If

‖Φ(xk+1)‖ ≤ max

{
ηβk,

1

α
‖Φ(xk+1)− Φµk(xk+1)‖

}
,(4.6)

then set

βk+1 := ‖Φ(xk+1)‖

and choose µk+1 such that

0 < µk+1 ≤ min

{(α
2κ
βk+1

)2

,
µk
4
, µ̄(xk+1, γβk+1)

}
.(4.7)

354 CHRISTIAN KANZOW AND HEIKO PIEPER

If (4.6) is not satisfied and dk = −∇Ψ(xk), then set

βk+1 := βk

and choose µk+1 such that

0 < µk+1 ≤ min

{(α
2κ
‖Φ(xk+1)‖

)2

,

(‖Φ(xk)‖ − ‖Φ(xk+1)‖
2κ

)2

,
µk
4

}
.(4.8)

If none of the above conditions is met, set βk+1 := βk and µk+1 := µk.
(S.5) Set k ← k + 1, and return to step (S.1).

For convenience of presentation, we assume implicitly throughout the theoretical
part of this paper that the termination parameter ε is equal to 0 and that the algorithm
does not terminate after a finite number of iterations.

Before we start to investigate the properties of Algorithm 4.1, we give some com-
ments on it: In step (S.2), we try to solve the (mixed) Newton equation (4.1) which
is the main computational effort of our method. If the solution of this linear system
does not provide a direction of sufficient decrease (in the sense of (4.2)), we switch to
the steepest descent direction of the merit function Ψ.

In step (S.3), we perform a line search. The line search rule depends on the search
direction chosen in step (S.2): If dk is the Newton direction, the line search in (4.4)
is used as a globalization strategy. Note that this line search condition is exactly the
same as in Chen, Qi, and Sun [10]. On the other hand, if dk is a gradient step, we
use the standard Armijo rule in (4.5).

The complicated part of the algorithm is in step (S.4), where we update the
parameter µk. The first part of the updating rules (where condition (4.6) is satisfied)
is also used by Chen, Qi, and Sun [10]. The second part is due to the gradient step.
In the following list, we give some more detailed comments on the role of these two
updating rules:

(a) In both updating rules, namely, in (4.7) and (4.8), we reduce µk by at least
a factor of 1/4. This is reasonable since we want to force µk to go to 0.

(b) The last part of the updating rule (4.7) controls the distance between our
smooth Jacobian and the C-subdifferential; see Lemma 4.2 (b) below.

(c) The remaining parts of the updating rules (4.7) and (4.8) are important in
order to guarantee that Algorithm 4.1 is well defined and globally convergent.
We will exploit these rules several times in our convergence proofs.

We now turn to the analysis of Algorithm 4.1. To this end, we introduce the
index set

K = {0} ∪
{
k ∈ N

∣∣∣ ‖Φ(xk)‖ ≤ max

{
ηβk−1,

1

α
‖Φ(xk)− Φµk−1

(xk)‖
}}

.(4.9)

We stress that, compared to the updating rule (4.6), there is a shift of the indices in
the definition of the index set K!

We can prove the following result.
Lemma 4.2. The following two statements hold:
(a) We have

‖Φ(xk)− Φµk(xk)‖ ≤ α‖Φ(xk)‖(4.10)

for all k ≥ 0.

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 355

(b) We have

distF (Φ′µk(xk), ∂CΦ(xk)) ≤ γ‖Φ(xk)‖(4.11)

for all k ∈ K with k ≥ 1.
Proof. (a) We distinguish three cases.
Case 1. k ∈ K.
Then we obtain from (4.7) and Corollary 2.4

‖Φ(xk)− Φµk(xk)‖ ≤ κ√µk ≤ α

2
βk ≤ αβk = α‖Φ(xk)‖.

Case 2. k 6∈ K and the (k− 1)st step is a Newton step (i.e., µk is not updated by
(4.8)).

In this case, we have µk = µk−1, so that we obtain from (4.6)

‖Φ(xk)− Φµk(xk)‖ = ‖Φ(xk)− Φµk−1
(xk)‖ < α‖Φ(xk)‖.

Case 3. k 6∈ K and the (k − 1)st step is a gradient step (i.e., µk is updated by
(4.8)).

Then we obtain from Corollary 2.4 and (4.8)

‖Φ(xk)− Φµk(xk)‖ ≤ κ√µk ≤ α

2
‖Φ(xk)‖ ≤ α‖Φ(xk)‖.

Statement (a) now follows from these three cases.
(b) Statement (b) follows immediately from the definition of the threshold value

µ̄(x, δ) in Proposition 3.4 and the updating rule (4.7).
As a consequence of Lemma 4.2, we obtain the following theorem.
Theorem 4.3. Algorithm 4.1 is well defined.
Proof. We only have to show that the exponent mk in the line search rules

(4.4)/(4.5) is finite for any k ∈ N. In case of a gradient step, this is well known since
we use the standard Armijo rule. In case of a Newton step, we can use part (a) of
Lemma 4.2 and prove the finiteness of mk in essentially the same way as was done in
[10, Lemma 3.1].

5. Global convergence. The aim of this section is to show that any accumu-
lation point of a sequence generated by Algorithm 4.1 is at least a stationary point
of Ψ. Unfortunately, the analysis is somewhat technical due to the different updating
rules for Newton and gradient steps in Algorithm 4.1. We therefore need a couple of
preliminary results. Some of them, however, are of interest on their own.

We begin our global convergence analysis with the following observation.
Lemma 5.1. Let {xk} ⊆ Rn be a sequence generated by Algorithm 4.1. Assume

that {xk} has an accumulation point x∗, which is a solution of NCP(F). Then the
index set K is infinite and {µk} → 0.

Proof. Assume that K is finite. Then it follows from (4.6) and the updating rules
for βk in step (S.4) of Algorithm 4.1 that there is a k0 ∈ N such that

βk = βk0

and

‖Φ(xk+1)‖ > max

{
ηβk,

1

α
‖Φ(xk+1)− Φµk(xk+1)‖

}
≥ ηβk = ηβk0

356 CHRISTIAN KANZOW AND HEIKO PIEPER

for all k ∈ N with k ≥ k0. However, this contradicts the fact that x∗ is a solution of
NCP(F), so that we have Φ(x∗) = 0.

Hence K is an infinite set. The updating rules for µk therefore immediately imply
that the whole sequence {µk} converges to 0.

We will also need the following simple result.
Lemma 5.2. The following two statements hold:
(a) If dk is given by (4.1), we have

‖Φµk(xk+1)‖ < ‖Φµk(xk)‖.
(b) If dk = −∇Ψ(xk) and if µk is updated by (4.8), then

‖Φµk+1
(xk+1)‖ ≤ ‖Φµk+1

(xk)‖.
(Note the difference between the indexes µk and µk+1 in statements (a) and (b).)

Proof. Part (a) follows immediately from the line search rule (4.4).
(b) Let dk = −∇Ψ(xk) and assume (4.6) is not satisfied. From (4.5), we have

‖Φ(xk)‖ − ‖Φ(xk+1)‖ =: ck > 0. Therefore, together with Corollary 2.4, we get

‖Φµk+1
(xk+1)‖ ≤ ‖Φµk+1

(xk+1)− Φ(xk+1)‖+ ‖Φ(xk+1)‖
≤ κ√µk+1 + ‖Φ(xk)‖ − ck
≤ ‖Φµk+1

(xk)‖+ ‖Φ(xk)− Φµk+1
(xk)‖+ κ

√
µk+1 − ck

≤ ‖Φµk+1
(xk)‖+ 2κ

√
µk+1 − ck

≤ ‖Φµk+1
(xk)‖,

where the last inequality follows from the special choice of µk+1 made in (4.8).
As a simple consequence of this result, we obtain the following corollary.
Corollary 5.3. If k 6∈ K, then

‖Φµk(xk)‖ ≤ ‖Φµk(xk−1)‖.
Proof. First assume that k 6∈ K and the updating rule (4.8) is active (i.e., dk−1

is a gradient step). Taking into account the shift of indices in the definition of the set
K, we directly obtain from Lemma 5.2 (b)

‖Φµk(xk)‖ ≤ ‖Φµk(xk−1)‖.
On the other hand, if (4.8) is not active (i.e., dk−1 is a Newton direction), then we
have µk = µk−1 and therefore

‖Φµk(xk)‖ = ‖Φµk−1
(xk)‖ < ‖Φµk−1

(xk−1)‖ = ‖Φµk(xk−1)‖
by Lemma 5.2 (a). This completes the proof.

Using these preliminary results, we are now able to show that the iterates xk stay
in a certain level set. To this end, we first note that, in all standard descent methods,
the iterates would stay in the level set belonging to the level Ψ(x0) of Ψ at the initial
iterate x0. This is no longer true for our algorithm basically because we minimize
different merit functions in our line search rules, namely, Ψ when using a gradient
step and Ψµk when using a Newton step. (Note that a decrease in one merit function
does not necessarily imply a decrease in the other.) Fortunately, our following result
shows that the possible increase in Ψ can’t be too dramatic. In fact, this result shows

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 357

that all iterates xk stay in a level set whose level can be made arbitrarily close to the
level Ψ(x0).

Proposition 5.4. The sequence {xk} generated by Algorithm 4.1 remains in the
level set

L0 := {x ∈ Rn |Ψ(x) ≤ (1 + α)2Ψ(x0)}.(5.1)

Proof. We define the following two index sets:

K1 :=

{
k ∈ K

∣∣∣ ηβk−1 ≥ 1

α
‖Φ(xk)− Φµk−1

(xk)‖
}

(5.2)

and

K2 :=

{
k ∈ K

∣∣∣ ηβk−1 <
1

α
‖Φ(xk)− Φµk−1

(xk)‖
}
.(5.3)

Then K = {0} ∪ K1 ∪ K2, where K is defined in (4.9). Assume that K consists of
k0 = 0 < k1 < k2 < · · · (notice that K is not necessarily infinite). Let k ∈ N be an
arbitrary but fixed index and kj the largest number in K such that kj ≤ k. Then we
have

µk ≤ µkj and βk = βkj

in view of the updating rules in step (S.4) of Algorithm 4.1. We divide the proof into
three parts.

(a) In this part, we show that the following inequality holds:

‖Φ(xk)‖ ≤ βkj + 2κ
√
µkj .(5.4)

If kj = k, this inequality is obviously true since βkj = ‖Φ(xkj)‖ in this case. Hence
we assume that kj < k in the following. From Corollary 5.3, we obtain

‖Φµl(xl)‖ ≤ ‖Φµl(xl−1)‖

for all kj < l < kj+1. Since k < kj+1, this implies

‖Φµl(xl)‖ ≤ ‖Φµl(xl−1)‖

for all kj < l ≤ k or, equivalently,

‖Φµl+1
(xl+1)‖ ≤ ‖Φµl+1

(xl)‖

for all l such that kj ≤ l ≤ k − 1. Then, by Corollary 2.4, we get for all l such that
kj ≤ l ≤ k − 1:

‖Φµl+1
(xl+1)‖+ κ

√
µl+1 ≤ ‖Φµl+1

(xl)‖+ κ
√
µl+1

≤ ‖Φµl(xl)‖+ ‖Φµl+1
(xl)− Φµl(x

l)‖+ κ
√
µl+1

≤ ‖Φµl(xl)‖+ κ(
√
µl −√µl+1) + κ

√
µl+1

= ‖Φµl(xl)‖+ κ
√
µl.

(5.5)

358 CHRISTIAN KANZOW AND HEIKO PIEPER

This inequality, together with Corollary 2.4, gives

‖Φ(xk)‖ ≤ ‖Φµk(xk)‖+ ‖Φ(xk)− Φµk(xk)‖
≤ ‖Φµk(xk)‖+ κ

√
µk

≤ ‖Φµk−1
(xk−1)‖+ κ

√
µk−1

...

≤ ‖Φµkj (xkj)‖+ κ
√
µkj

≤ ‖Φ(xkj)‖+ ‖Φµkj (xkj)− Φ(xkj)‖+ κ
√
µkj

≤ ‖Φ(xkj)‖+ κ
√
µkj + κ

√
µkj

= βkj + 2κ
√
µkj ,

(5.6)

where the dots indicate the repeated use of (5.5). This shows that (5.4) holds for
arbitrary k ∈ N.

(b) In this part, we show that

√
µkj ≤

1

2j+1

α

κ
‖Φ(x0)‖

and

βkj ≤ rj‖Φ(x0)‖,

where

r := max

{
1

2
, η

}
.

Indeed, for j = 0, we have k0 = 0 and therefore

√
µk0

=
√
µ0 =

α

2κ
‖Φ(x0)‖

and

βk0
= β0 = r0‖Φ(x0)‖

by the definitions of µ0 and β0. For j ≥ 1, step (S.4) of Algorithm 4.1 shows that

βkj ≤ ηβkj−1 = ηβkj−1
≤ rβkj−1

for kj ∈ K1,

and, using Corollary 2.4,

βkj ≤
1

α
‖Φ(xkj)−Φµkj−1

(xkj)‖ ≤ κ

α

√
µkj−1 ≤ κ

α

√
µkj−1

≤ 1

2
βkj−1

≤ rβkj−1
for kj ∈ K2.

Similarly, we obtain

µkj ≤
1

4
µkj−1 ≤ 1

4
µkj−1 .

From the definitions of µ0 and β0, we thus have

√
µkj ≤

1

2j
√
µ0 =

1

2j+1

α

κ
‖Φ(x0)‖(5.7)

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 359

and

βkj ≤ rjβ0 = rj‖Φ(x0)‖.(5.8)

This completes the proof of part (b).
(c) In this part, we now want to verify the statement of our proposition. Using

parts (a) and (b), we obtain

‖Φ(xk)‖ ≤ βkj + 2κ
√
µkj

≤ rj‖Φ(x0)‖+
α

2j
‖Φ(x0)‖

≤ rj(1 + α)‖Φ(x0)‖
≤ (1 + α)‖Φ(x0)‖.

(5.9)

Hence xk ∈ L0.
Note that the level set L0 as defined in Proposition 5.4 is known to be compact

if F is a uniform P -function or, more generally, an R0-function [19].
Remark 5.5. We explicitly point out that the proof of Proposition 5.4 showed

that the following inequality holds for all k ∈ N:

‖Φ(xk)‖ ≤ rj(1 + α)‖Φ(x0)‖,
where, if K = {k0, k1, k2, . . .} with k0 = 0, the index j ∈ N is defined to be the largest
integer kj ∈ K such that kj ≤ k.

As an immediate consequence of Remark 5.5, we obtain the following proposition.
Proposition 5.6. Let {xk} be a sequence generated by Algorithm 4.1 and assume

that the index set K is infinite. Then each accumulation point of the sequence {xk}
is a solution of NCP(F).

Proof. Let x∗ be an accumulation point of the sequence {xk}, and let {xk}L be
a subsequence converging to x∗. Since K is infinite by assumption, we obtain from
Remark 5.5

‖Φ(x∗)‖ = lim
k∈L
‖Φ(xk)‖ ≤ lim

j→∞
rj(1 + α)‖Φ(x0)‖ = 0,

where the exponent j ∈ N is defined as in Remark 5.5. Hence x∗ is a solution of
NCP(F).

In our next result, we consider the situation in which x∗ is a limit point of a
subsequence which consists of gradient steps only.

Proposition 5.7. Let {xk} be a sequence generated by Algorithm 4.1 and let
{xk}L be a subsequence converging to a point x∗ ∈ Rn. If dk = −∇Ψ(xk) for all
k ∈ L, then x∗ is a stationary point of Ψ.

Proof. If the index set K is infinite, the accumulation point x∗ is a solution of
NCP(F) by Proposition 5.6. Hence x∗ is a global minimum and therefore a stationary
point of Ψ.

So let K be finite. Then, without loss of generality, we can assume that K∩L = ∅
so that the updating rule (4.8) is active for all k ∈ L. This, in particular, implies that
{µk} → 0.

Let k̂ be the largest number in K (which exists since K is finite). Then we obtain

from the updating rules in step (S.4) of Algorithm 4.1 for all k > k̂:

µk ≤ µk̂, βk = βk̂ = ‖Φ(xk̂)‖,(5.10)

‖Φ(xk)‖ > ηβk−1 = η‖Φ(xk̂)‖ > 0(5.11)

360 CHRISTIAN KANZOW AND HEIKO PIEPER

and

α‖Φ(xk)‖ > ‖Φ(xk)− Φµk−1
(xk)‖.(5.12)

From (5.11), we get

Ψ(xk) > η2Ψ(xk̂) > 0(5.13)

for all k > k̂.
The proof is by contradiction: Assume that ∇Ψ(x∗) 6= 0. Our first aim is to show

that lim infk∈L tk = 0. Suppose that lim infk∈L tk = t∗ > 0. Since dk = −∇Ψ(xk) for
all k ∈ L, we obtain from the Armijo rule (4.5)

Ψ(xk+1)−Ψ(xk) ≤ −σtk‖∇Ψ(xk)‖2 ≤ − c
2

(5.14)

for all k ∈ L sufficiently large, where c := σt∗‖∇Ψ(x∗)‖2 > 0. Since {µk} → 0,
Corollary 2.4 shows that

|Ψµk(xk+1)−Ψ(xk+1)| ≤ c

4
and |Ψµk(xk)−Ψ(xk)| ≤ c

4

for all k ∈ N sufficiently large. Using {µk} → 0 once again and taking into account
that the sequence {‖Φ(xk)‖} is bounded by Proposition 5.4, we also have

2κ
√
µk‖Φ(xk)‖+ 2κ2µk ≤ c

4
(5.15)

for all k ∈ N large enough. Let L consist of l0, l1, l2, Then, for all lj sufficiently
large, we obtain in a similar way as in the proof of Proposition 5.4 (see (5.6) and
recall that K is finite)

Ψ(xlj+1) = 1
2‖Φ(xlj+1)‖2

≤ 1
2

(‖Φ(xlj+1)‖+ 2κ
√
µlj+1

)2
= Ψ(xlj+1) + 2κ

√
µlj+1‖Φ(xlj+1)‖+ 2κ2µlj+1

≤ Ψ(xlj+1) + c
4 ,

(5.16)

where the last inequality follows from (5.15). Using (5.14) and (5.16), we obtain

Ψ(xlj+1)−Ψ(xlj) = Ψ(xlj+1)−Ψ(xlj+1)︸ ︷︷ ︸
≤ c4

+ Ψ(xlj+1)−Ψ(xlj)︸ ︷︷ ︸
≤− c2

≤ − c
4

for all lj large enough. Hence {Ψ(xlj)} → −∞ for j → ∞, but this contradicts the
fact that Ψ(x) ≥ 0 for all x ∈ Rn. Hence we have lim infk∈L tk = 0.

Subsequencing if necessary, we can assume that limk∈L tk = 0. We now want to
derive a contradiction to our assumption that ∇Ψ(x∗) 6= 0. Since limk∈L tk = 0, the
full stepsize is never accepted for all k ∈ L sufficiently large. Hence we obtain from
the Armijo rule (4.5)

Ψ(xk + λmk−1dk) > Ψ(xk)− σλmk−1‖dk‖2

or, equivalently,

Ψ(xk + λmk−1dk)−Ψ(xk)

λmk−1
> −σ‖dk‖2.(5.17)

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 361

By taking the limit k →∞ on L, we obtain from (5.17), the continuous differentiability
of Ψ, dk = −∇Ψ(xk) for all k ∈ L, and the fact that λmk−1 → 0 for k →L ∞

−∇Ψ(x∗)T∇Ψ(x∗) ≥ −σ∇Ψ(x∗)T∇Ψ(x∗).

This yields 1 ≤ σ, a contradiction to our choice of the parameter σ. Hence we must
have ∇Ψ(x∗) = 0, and this completes the proof of Proposition 5.7.

We are now able to prove the main global convergence result for Algorithm 4.1.
Theorem 5.8. Let {xk} be a sequence generated by Algorithm 4.1. Then each

accumulation point of the sequence {xk} is a stationary point of Ψ.
Proof. If K is infinite, the conclusion follows immediately from Proposition 5.6.

Hence we can assume that K contains only finitely many indices.
Similar to the proof of Proposition 5.7, we denote by k̂ the largest index in K.

Then (5.10), (5.11), (5.12), and (5.13) hold for all k > k̂.
Let x∗ be an accumulation point of the sequence {xk}, and let {xk}L be a sub-

sequence converging to x∗. If dk = −∇Ψ(xk) for infinitely many k ∈ L, then x∗ is
a stationary point of Ψ by Proposition 5.7. Hence we can assume without loss of
generality that dk is the Newton direction computed as a solution of the linear system
(4.1) for all k ∈ L, so that

‖Φ(xk)‖ = ‖Φ′µk(xk)dk‖ ≤ ‖Φ′µk(xk)‖ ‖dk‖(5.18)

holds for all k ∈ L. Since K is finite, we can further assume without loss of generality
that k 6∈ K for all k ∈ L; i.e., neither the updating rule (4.7) nor the updating rule
(4.8) is active for k ∈ L.

The proof is by contradiction: Assume that x∗ is not a stationary point of Ψ.
Since the sequence {µk} is monotonically decreasing and bounded from below, it
converges to some µ∗ ≥ 0. If µ∗ > 0, then it follows from the updating rules of step
(S.4) in Algorithm 4.1 that µk is actually constant for all k sufficiently large.

The remaining part of this proof is divided into three steps.
(a) We first show that there exist positive constants m and M such that

0 < m ≤ ‖dk‖ ≤M for all k ∈ L.(5.19)

In fact, if {‖dk‖}L̃ → 0 on a subset L̃ ⊆ L, we would have from (5.18) that {‖Φ(xk)‖}L̃
→ 0 because the sequence {Φ′µk(xk)}L̃ is obviously bounded on the convergent se-

quence {xk}L̃. But then the continuity of Φ would imply that Φ(x∗) = 0, so that
K would be infinite by Lemma 5.1. This, however, would contradict our assumption
that K is finite.

On the other hand, we have from (4.2) for all k ∈ L

−‖Φ′µk(xk)TΦ(xk)‖ ‖dk‖ ≤ Φ(xk)TΦ′µk(xk)dk ≤ −ρ‖dk‖p.(5.20)

Since {Φ′µk(xk)TΦ(xk)}L is convergent (either by Lemma 2.6 or because µk is even-
tually constant) and therefore bounded, there exists a constant C > 0 such that

‖Φ′µk(xk)TΦ(xk)‖ ≤ C

for all k ∈ L. With (5.20), we have

ρ‖dk‖p ≤ ‖Φ′µk(xk)TΦ(xk)‖‖dk‖ ≤ C‖dk‖

362 CHRISTIAN KANZOW AND HEIKO PIEPER

for all k ∈ L. Since p > 1, this shows that {‖dk‖}L is bounded. This completes the
proof of part (a).

(b) We now show that lim infk∈L tk = 0. Suppose that lim infk∈L tk =: t∗ > 0.
Then from (5.13) and the line search rule (4.4), we have for all k ∈ L sufficiently large

Ψµk(xk+1)−Ψµk(xk) ≤ −2σtkΨ(xk) ≤ −σt∗η2Ψ(xk̂) < 0.(5.21)

We define c := σt∗η2Ψ(xk̂) > 0 and consider two cases.
Case 1. {µk} → µ∗ > 0.
Then we have µk = µ∗ constant for k ∈ N sufficiently large. Hence we obtain

from (5.21) for all k ∈ L large enough

Ψµ∗(x
k+1)−Ψµ∗(x

k) = Ψµk(xk+1)−Ψµk(xk) ≤ −c.(5.22)

Since µk is eventually constant, the updating rule (4.8) excludes the existence of
gradient steps for k ∈ N sufficiently large. Hence, if we assume that L consists of
l0, l1, l2, . . . , we obtain from Lemma 5.2 (a) for all lj sufficiently large

Ψµ∗(x
lj+1)−Ψµ∗(x

lj) ≤ Ψµ∗(x
lj+1)−Ψµ∗(x

lj) ≤ −c.
This implies

Ψµ∗(x
lj)→ −∞

for j →∞, a contradiction to Ψµ∗(x) ≥ 0 for all x ∈ Rn.
Case 2. {µk} → 0.
Then we obtain from Corollary 2.4 that

|Ψµk(xk+1)−Ψ(xk+1)| ≤ c

4
and |Ψµk(xk)−Ψ(xk)| ≤ c

4
(5.23)

for all k ∈ N sufficiently large. Again, let the sequence L consist of l0, l1, l2, Then
the following inequality holds for all lj large enough:

Ψ(xlj+1)−Ψ(xlj) = −(Ψµlj
(xlj+1)−Ψ(xlj+1)) + (Ψµlj

(xlj)−Ψ(xlj))

+ Ψµlj
(xlj+1)−Ψµlj

(xlj)

≤ |Ψµlj
(xlj+1)−Ψ(xlj+1)|︸ ︷︷ ︸
≤ c4 by (5.23)

+ |Ψµlj
(xlj)−Ψ(xlj)|︸ ︷︷ ︸
≤ c4 by (5.23)

+ Ψµlj
(xlj+1)−Ψµlj

(xlj)︸ ︷︷ ︸
≤−c by (5.21)

≤ − c
2
.

(5.24)

The remaining part of the proof for Case 2 is now similar to the one for Proposition 5.7.
In particular, for lj large enough, we can prove the following inequality in essentially
the same way as in the proof of Proposition 5.7 (see (5.16) and recall that K is finite):

Ψ(xlj+1) ≤ Ψ(xlj+1) +
c

4
.(5.25)

Combining (5.24) and (5.25), we obtain

Ψ(xlj+1)−Ψ(xlj) = Ψ(xlj+1)−Ψ(xlj+1) + Ψ(xlj+1)−Ψ(xlj) ≤ c

4
− c

2
= − c

4
.

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 363

This implies Ψ(xlj) → −∞ for j → ∞, contradicting the fact that Ψ(x) ≥ 0 for all
x ∈ Rn.

Since both Case 1 and Case 2 lead to a contradiction, the proof of part (b) is also
completed.

(c) We now turn back to the main part of our proof; i.e., we will now derive a
contradiction to our assumption that ∇Ψ(x∗) 6= 0.

Because of part (b), we have lim infk∈L tk = 0. Let L0 be a subsequence of L
such that {tk}L0

converges to 0. Then mk > 0 for all k ∈ L0 sufficiently large, where
mk ∈ N denotes the exponent from the line search rule (4.4). By this line search rule,
we therefore have

−2σλmk−1Ψ(xk) < Ψµk(xk + λmk−1dk)−Ψµk(xk)

for all k ∈ L0 large enough. Dividing both sides by λmk−1, we obtain

−2σΨ(xk) <
Ψµk(xk + λmk−1dk)−Ψµk(xk)

λmk−1
.

Let µ∗ be the limit of {µk}, and if µ∗ = 0, we write ∇Ψµ∗(x
∗) for the gradient of the

unperturbed function Ψ at the limit point x∗. By (5.19) we can assume, subsequencing
if necessary, that {dk}L0 → d∗ 6= 0, so that, passing to the limit, we get

−2σΨ(x∗) ≤ ∇Ψµ∗(x
∗)Td∗.(5.26)

For µ∗ = 0 this follows from Lemma 2.7, and if µ∗ > 0, then µk = µ∗ for sufficiently
large k, so that (5.26) follows from the mean value theorem.

Using (4.1), (5.12), and Corollary 2.4, we further have for k ∈ L0:

∇Ψµk(xk)Tdk = −Φ(xk)TΦµk(xk)

= −2Ψ(xk) + Φ(xk)T (Φ(xk)− Φµk(xk))

≤ −2Ψ(xk) + ‖Φ(xk)‖ ‖Φ(xk)− Φµk−1
(xk)‖

+ ‖Φ(xk)‖ ‖Φµk−1
(xk)− Φµk(xk)‖

≤ −2Ψ(xk) + 2αΨ(xk) + κ‖Φ(xk)‖(√µk−1 −√µk)

= −2(1− α)Ψ(xk) + κ‖Φ(xk)‖(√µk−1 −√µk).

(5.27)

By taking the limit k →L0 ∞ in (5.27), we obtain from (5.26) (and Lemma 2.6 if
µ∗ = 0)

−2σΨ(x∗) ≤ ∇Ψµ∗(x
∗)Td∗ ≤ −2(1− α)Ψ(x∗),(5.28)

since {‖Φ(xk)‖} is bounded (by Proposition 5.4), and (
√
µk−1 −√µk) → 0 (because

{µk} converges). We have Ψ(x∗) > 0, because otherwise K would be infinite. There-
fore (5.28) gives σ ≥ (1− α), which is a contradiction to σ < 1

2 (1− α). This, finally,
completes the proof of Theorem 5.8.

Note that Theorem 5.8 is a subsequential convergence result to stationary points
of Ψ only. However, it is well known that such a stationary point x∗ is already a
solution of NCP(F) if, e.g., the Jacobian F ′(x∗) is a P0-matrix; see [16, 13]. Moreover,
Proposition 5.6 provides another sufficient condition for an accumulation point to be
a solution of the complementarity problem. In particular, Algorithm 4.1 is guaranteed
to converge to a solution of the nonlinear complementarity problem if F is a P0- and
R0-function.

364 CHRISTIAN KANZOW AND HEIKO PIEPER

6. Local convergence. In this section, we want to show that Algorithm 4.1
is locally Q-superlinearly/Q-quadratically convergent under certain assumptions. As
a first step in this direction, we show that the whole sequence {xk} generated by
Algorithm 4.1 converges to a unique point x∗ if certain conditions hold. The proof of
this result is based on the following Proposition by Moré and Sorensen [31]. (Note that
their result is fairly general and completely independent of any specific algorithm.)

Proposition 6.1. Assume that x∗ ∈ Rn is an isolated accumulation point of a
sequence {xk} ⊆ Rn (not necessarily generated by Algorithm 4.1) such that {‖xk+1 −
xk‖}L → 0 for any subsequence {xk}L converging to x∗. Then the whole sequence
{xk} converges to x∗.

Proposition 6.1 enables us to establish the following result.
Theorem 6.2. Let {xk} be a sequence generated by Algorithm 4.1. If one of

the accumulation points of the sequence {xk}, let us say x∗, is an isolated solution of
NCP(F), then {xk} → x∗.

Proof. Let x∗ be an isolated solution of NCP(F). We want to verify the as-
sumptions of Proposition 6.1. To this end, we first show that x∗ is also an isolated
accumulation point of the sequence {xk}.

Since x∗ solves NCP(F), Lemma 5.1 shows that the index set K is infinite and
{µk} converges to 0. Hence Proposition 5.6 shows that each accumulation point of
the sequence {xk} is already a solution of NCP(F). Thus x∗ is necessarily an isolated
accumulation point of the sequence {xk}.

Now let {xk}L be an arbitrary subsequence of {xk} converging to x∗. From the
updating rule in step (S.3) of Algorithm 4.1, we have

‖xk+1 − xk‖ = λmk‖dk‖ ≤ ‖dk‖.(6.1)

Therefore it suffices to show that {‖dk‖}L → 0. Since Ψ is continuously differentiable
and since the solution x∗ of NCP(F) is, in particular, a stationary point of Ψ, we
have

{∇Ψ(xk)}L → ∇Ψ(x∗) = 0.(6.2)

Suppose the sequence {dk}L contains only a finite number of Newton directions. Then
{‖dk‖}L → 0 follows immediately. Assume therefore that there is a subsequence
{dk}L0

of {dk}L such that dk is the solution of the linear system (4.1) for all k ∈ L0.
From (4.2), we obtain

ρ‖dk‖p ≤ −(Φ′µk(xk)TΦ(xk))T dk ≤ ‖Φ′µk(xk)TΦ(xk)‖ ‖dk‖
for all k ∈ L0, from which we get

‖dk‖ ≤
(
‖Φ′µk(xk)TΦ(xk)‖

ρ

) 1
p−1

(6.3)

because p > 1. Since {µk} → 0, we obtain

lim
k→∞,k∈L0

Φ′µk(xk)TΦ(xk)→ ∇Ψ(x∗) = 0

from Lemma 2.6. Hence the right-hand side of (6.3) converges to 0, so that {dk}L0

→ 0. We obviously also have {dk}L\L0
→ 0 from (6.2) (if the set L \ L0 is infinite).

Hence (6.1) shows that

{‖xk+1 − xk‖}L → 0.

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 365

The assertion now follows from Proposition 6.1.
Remark 6.3. We explicitly point out that, in the proof of Theorem 6.2, we have

actually shown that if the sequence {xk} generated by Algorithm 4.1 converges to a
solution of NCP(F), then {‖dk‖} → 0. This fact will be important in the proof of
Theorem 6.6 below.

In order to verify that Algorithm 4.1 eventually takes the full stepsize tk = 1, we
state the following lemma which was shown by Chen, Qi, and Sun [10, Lemma 3.2].

Lemma 6.4. If there exists a scalar

ω ∈
[

1

2
− (1− α− 2σ)2

2(2 + α)2
,

1

2

]
such that

Ψ(y) ≤ Ψ(xk)− 2ωΨ(xk)(6.4)

for some k ∈ K and y ∈ Rn, then it holds that

Ψµk(y) ≤ Ψµk(xk)− 2σΨ(xk),(6.5)

where µk is the smoothing parameter in the kth step.
In the proof of our main local convergence result, we will also utilize the following

proposition, which was originally shown by Facchinei and Soares [16]. An alterna-
tive proof of this result was given by Kanzow and Qi [29] under slightly different
assumptions. Here we restate the result from [29].

Proposition 6.5. Let G:Rn → Rn be locally Lipschitzian and x∗ ∈ Rn with
G(x∗) = 0 such that all elements in ∂G(x∗) are nonsingular, and assume that there
are two subsequences {xk} ⊆ Rn and {dk} ⊆ Rn with

lim
k→∞

xk = x∗ and ‖xk + dk − x∗‖ = o(‖xk − x∗‖).

Then

‖G(xk + dk)‖ = o(‖G(xk)‖).

Before stating our local convergence result, we recall that a solution x∗ of NCP(F)
is called R-regular if the submatrix F ′(x∗)αα is nonsingular and the Schur complement

F ′(x∗)ββ − F ′(x∗)βαF ′(x∗)−1
ααF

′(x∗)αβ ∈ R|β|×|β|

is a P -matrix; see Robinson [38]. Here, we have used the standard index set notation

α := {i|x∗i > 0 = Fi(x
∗)},

β := {i|x∗i = 0 = Fi(x
∗)},

γ := {i|x∗i = 0 < Fi(x
∗)}.

Theorem 6.6. Let {xk} be a sequence generated by Algorithm 4.1. If one of the
limit points of the sequence {xk}, let us say x∗, is an R-regular solution of NCP(F),
then {xk} → x∗, and the convergence rate is at least Q-superlinear. If F :Rn → Rn is
continuously differentiable with a locally Lipschitzian Jacobian, then the convergence
rate is Q-quadratic.

366 CHRISTIAN KANZOW AND HEIKO PIEPER

Proof. We first note that the assumed R-regularity of the solution x∗ implies
that all elements of the C-subdifferential ∂CΦ(x∗) are nonsingular; see [16]. Hence
Proposition 2.5 in [33], together with Proposition 2.2 of this paper, shows that x∗ is
an isolated solution of Φ(x) = 0 and therefore also of NCP(F). Hence, by Theorem
6.2, the whole sequence {xk} converges to x∗. Let K be again the set defined by (4.9),
which, by Lemma 5.1, is infinite since the sequence {xk} converges to a solution of
NCP(F). In particular, we have {xk}K → x∗.

We now divide the proof into four steps.
(a) In this part, we show that, for all k ∈ K sufficiently large, the matrix Φ′µk(xk)

is nonsingular and satisfies the inequality

‖Φ′µk(xk)−1‖ ≤ 2c

for a certain constant c > 0.
Since {xk} converges to x∗, the assumed R-regularity together with the upper

semicontinuity of the C-subdifferential implies that, for all k ∈ N sufficiently large, all
matrices Vk ∈ ∂CΦ(xk) are nonsingular with ‖V −1

k ‖ ≤ c for some constant c > 0. We
now want to show that the same is true for Φ′µk(xk). Let Hk ∈ ∂CΦ(xk) such that

distF (Φ′µk(xk), ∂CΦ(xk)) = ‖Φ′µk(xk)−Hk‖F

(note that such an element exists since the set ∂CΦ(xk) is nonempty and compact).
With (4.11) we have

‖Hk − Φ′µk(xk)‖ ≤ ‖Hk − Φ′µk(xk)‖F ≤ γβk(6.6)

for all k ∈ K. Hence it follows that

‖I −H−1
k Φ′µk(xk)‖ = ‖H−1

k (Hk − Φ′µk(xk))‖
≤ ‖H−1

k ‖ ‖Hk − Φ′µk(xk)‖
≤ γβkc.

(6.7)

Since K is infinite, we have βk → 0 in view of the updating rules in step (S.4) of
Algorithm 4.1. Therefore, for k ∈ K large enough such that βk ≤ 1

2γc , we have

‖I −H−1
k Φ′µk(xk)‖ ≤ 1

2
.

From the perturbation lemma [14, Theorem 3.1.4], we obtain that Φ′µk(xk) is nonsin-
gular for all k ∈ K large enough with

‖Φ′µk(xk)−1‖ ≤ 2‖H−1
k ‖ ≤ 2c.(6.8)

Hence system (4.1) admits a solution for all k ∈ K sufficiently large, and the proof of
part (a) is completed.

(b) We next want to show that, for all k ∈ K sufficiently large, the solution dk of
the linear system (4.1) satisfies the descent condition (4.2).

To this end, we first note that the linear system (4.1) has a unique solution for all
k ∈ K sufficiently large by part (a). We now show that these dk satisfy the inequality

Φ(xk)TΦ′µk(xk)dk ≤ −ρ1‖dk‖2(6.9)

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 367

for a certain positive constant ρ1. Indeed, this follows from the fact that

‖dk‖ ≤ ‖Φ′µk(xk)−1‖ ‖Φ(xk)‖

by (4.1), so that (6.8) implies

Φ(xk)TΦ′µk(xk)dk = −‖Φ(xk)‖2 ≤ −‖d
k‖2

4c2
(6.10)

for all k ∈ K large enough. Hence (6.9) follows from (6.10) by taking ρ1 = 1/(4c2).
Since {‖dk‖} → 0 by Remark 6.3, it is now easy to see that (6.9) eventually implies
(4.2) for any ρ > 0 und p > 2. Hence, for all k ∈ K sufficiently large, the search
direction dk is always given by (4.1).

(c) In view of parts (a) and (b), the search direction dk is given by (4.1) for all
k ∈ K large enough. In this step, we want to show that there is an index k̄ ∈ K such
that if k ∈ K is any index with k ≥ k̄, then the index k + 1 also belongs to the set
K and xk+1 = xk + dk. Repeating this argument, it then follows that eventually all
iterations k belong to the set K, and that the full step tk = 1 is always accepted.

In order to prove this statement, we recall from part (a) that there is a constant
c > 0 such that ‖Φ′µk(xk)−1‖ ≤ 2c for all k ∈ K sufficiently large. From Algorithm
4.1 and (6.6), we therefore obtain for all k ∈ K large enough:

(6.11)

‖xk + dk − x∗‖
= ‖xk − x∗ − Φ′µk(xk)−1Φ(xk)‖
= ‖Φ′µk(xk)−1(Φ′µk(xk)(xk − x∗)− Φ(xk) + Φ(x∗))‖
≤ ‖Φ′µk(xk)−1‖ (‖(Φ′µk(xk)−Hk)(xk − x∗)‖+ ‖Hk(xk − x∗)− Φ(xk) + Φ(x∗)‖)
≤ 2c(γβk‖xk − x∗‖+ ‖Hk(xk − x∗)− Φ(xk) + Φ(x∗)‖),

where, again, Hk ∈ ∂CΦ(xk) is chosen in such a way that

distF (Φ′µk(xk), ∂CΦ(xk)) = ‖Φ′µk(xk)−Hk‖F ;

see part (a) of this proof. Using Proposition 2.2 (a) and taking into account that
βk → 0, we have

‖xk + dk − x∗‖ = o(‖xk − x∗‖) for k →∞, k ∈ K.(6.12)

Hence (6.12) and Proposition 6.5 show that

‖Φ(xk + dk)‖ = o(‖Φ(xk)‖) for k →∞, k ∈ K.(6.13)

Let ω := max
{

1
2 − (1−α−2σ)2

2(2+α)2 , 1−η2

2

}
. Then (6.13) implies that there exists an index

k̄ ∈ K such that

Ψ(xk + dk) ≤ Ψ(xk)− 2ωΨ(xk)(6.14)

for all k ∈ K with k ≥ k̄. Hence, by Lemma 6.4, we therefore have

Ψµk(xk + dk) ≤ Ψµk(xk)− 2σΨ(xk)(6.15)

368 CHRISTIAN KANZOW AND HEIKO PIEPER

for all k ∈ K with k ≥ k̄. Hence the full stepsize of 1 will eventually be accepted for
all k ≥ k̄, k ∈ K. In particular, xk̄+1 = xk̄ + dk̄, and from (6.14) and the definition of
ω, we obtain

‖Φ(xk̄+1)‖ ≤ √1− 2ω‖Φ(xk̄)‖ ≤ η‖Φ(xk̄)‖ = ηβk̄,

which implies that k̄ + 1 ∈ K; cf. (4.9). Repeating the above process, we may prove
that for all k ≥ k̄, we have

k ∈ K
and

xk+1 = xk + dk.

This completes the proof of part (c).
(d) We now turn to the final part of the proof where we want to verify the Q-

superlinear/Q-quadratic rate of convergence. Since k ∈ K and tk = 1 for all k ∈ N
sufficiently large by part (c), the Q-superlinear convergence follows immediately from
(6.12).

If F :Rn → Rn is continuously differentiable with a locally Lipschitzian Jacobian,
then Proposition 2.2 (b) shows that

‖Hk(xk − x∗)− Φ(xk) + Φ(x∗)‖ = O(‖xk − x∗‖2).

Since Φ is obviously locally Lipschitzian, we further have

βk = ‖Φ(xk)‖ = ‖Φ(xk)− Φ(x∗)‖ = O(‖xk − x∗‖).
Hence the Q-quadratic rate of convergence of {xk} to x∗ follows from (6.11) by using
similar arguments as for the proof of the local Q-superlinear convergence.

7. Numerical results. We implemented the Jacobian smoothing method from
Algorithm 4.1 in MATLAB and tested it on a Sun SPARC20 station. As test prob-
lems, we use all complementarity problems and all available starting points from the
MCPLIB and GAMSLIB collections [15].

The implemented version of the algorithm differs from the one described before
in two main aspects: On the one hand, we replaced the monotone Armijo rule by a
nonmonotone variant [21]. For the details of the implementation of this nonmonotone
Armijo rule, we refer the interested reader to [32].

On the other hand, we incorporated a heuristic backtracking strategy in our
implementation in order to avoid domain violations which occur quite often since the
mapping F in many examples of the test libraries is not defined everywhere. To this
end, we first compute

t̂k := max{νlk| l = 0, 1, 2, . . .}
in such a way that F (xk + t̂kd

k) is well defined, and then we take t̂k as the initial
steplength, with which we go into the nonmonotone line search test. Note that we
allow the backtracking factor νk to vary in each iteration. In our implementation
we choose νk between 0.5 and 0.75; i.e., we increase νk gradually in case l ≤ 1 and
decrease it for l > 1. This procedure leads to fewer function evaluations and slightly
faster convergence for some of the pgvon105 and pgvon106 test problems.

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 369

The algorithm terminates if one of the following conditions is satisfied:

Ψ(xk) ≤ ε1, ‖∇Ψ(xk)‖ ≤ ε2, k > kmax or tk < tmin.

In the implementation we used the following parameter settings:

ρ = 10−18, p = 2.1, λ = 0.5, σ = 10−4, γ = 30, α = 0.95, η = 0.9,

and

ε1 = 10−12, ε2 = 10−6, kmax = 300, tmin = 10−16.

We report the results for all complementarity problems in the MCPLIB and GAMS-
LIB libraries and all available starting points in Tables 7.1 and 7.2, respectively. The
columns in these tables have the following meanings:

Problem: name of the test problem in the specific test library,
n: dimension of the test problem,
SP: number of starting point,
k: number of iterations,
F -ev.: number of function evaluations,
N: number of Newton steps taken,
G: number of gradient steps taken,
Ψ(xf): Ψ(x) at the final iterate x = xf ,
‖∇Ψ(xf)‖: ‖∇Ψ(x)‖ at the final iterate x = xf ,
B: number of backtracking steps.

From the definition of the algorithm it follows that the number of Jacobian evaluations
is one more than the number of iterations k.

Looking at Tables 7.1 and 7.2, the most obvious observation is that we do not
have a single failure; i.e., the main termination criterion

Ψ(xk) ≤ 10−12

is satisfied for all test problems including the difficult ones like billups, colvdual,
vonthmcp, and vonthmge, to mention just a few.

As known to the authors, there is currently only one other algorithm available
which also has no failures on these problems, namely the semismooth Newton-type
method by Chen, Chen, and Kanzow [5]. Compared to that algorithm, it seems
that our Jacobian smoothing method sometimes needs fewer iterations, whereas the
number of function evaluations is usually higher. This may indicate that the stepsize
rule (4.4) is not “optimal” and may be improved. However, function evaluations are,
in general, considerably cheaper than, e.g., the solution of the linear system (4.1). We
also stress that the philosophy of these two methods is different, so it is difficult to
compare them with each other.

On the other hand, however, we could try to compare our algorithm with its
underlying semismooth Newton method from De Luca, Facchinei, and Kanzow [13].
It turns out that our algorithm is more reliable and that we use considerably fewer
gradient steps. In fact, we have just one gradient step, namely, on example vonthmge.
We believe that this indicates that the smoothing parameter µ regularizes the Jacobian
matrix Φ′µ(x) to some extent. This is also reflected by some known theoretical results;
e.g., the Jacobian Φ′µ(x) is nonsingular if F ′(x) is a P0-matrix (see [26]), whereas
an element from the C-subdifferential ∂CΦ(x) is nonsingular only under a slightly
stronger assumption (see [13]).

370 CHRISTIAN KANZOW AND HEIKO PIEPER

Table 7.1
Numerical results for MCPLIB test problems.

Problem n SP k F -ev. N G Ψ(xf) ‖∇Ψ(xf)‖ B

bertsekas 15 1 34 271 34 0 1.5e-19 3.5e-08 0
bertsekas 15 2 37 353 37 0 1.4e-16 1.0e-06 0
bertsekas 15 3 42 406 42 0 2.5e-19 4.4e-08 0
billups 1 1 27 389 27 0 4.1e-17 1.8e-08 0

colvdual 20 1 15 37 15 0 1.0e-17 4.8e-07 0
colvdual 20 2 26 64 26 0 9.4e-16 4.4e-06 0
colvnlp 15 1 16 39 16 0 2.7e-17 7.8e-07 0
colvnlp 15 2 14 26 14 0 6.8e-15 1.7e-05 0
cycle 1 1 3 5 3 0 8.1e-16 4.0e-08 0

explcp 16 1 5 6 5 0 2.8e-15 7.5e-08 0
hanskoop 14 1 9 14 9 0 2.9e-16 3.3e-08 0
hanskoop 14 2 9 12 9 0 1.4e-17 1.8e-08 0
hanskoop 14 3 8 12 8 0 9.5e-16 1.5e-07 0
hanskoop 14 4 9 13 9 0 4.2e-18 1.0e-08 0
hanskoop 14 5 10 16 10 0 3.3e-18 8.9e-09 1
josephy 4 1 8 11 8 0 1.3e-19 1.7e-09 0
josephy 4 2 7 12 7 0 1.7e-18 1.5e-08 0
josephy 4 3 13 18 13 0 1.0e-14 4.8e-07 0
josephy 4 4 5 6 5 0 2.6e-20 7.6e-10 0
josephy 4 5 5 6 5 0 2.4e-13 2.6e-06 0
josephy 4 6 6 8 6 0 8.1e-21 9.9e-10 0
kojshin 4 1 10 17 10 0 3.3e-24 1.6e-11 0
kojshin 4 2 9 21 9 0 2.9e-15 1.2e-07 0
kojshin 4 3 7 10 7 0 1.8e-15 2.0e-07 0
kojshin 4 4 12 26 12 0 8.0e-17 1.6e-07 0
kojshin 4 5 5 7 5 0 5.0e-18 8.8e-09 0
kojshin 4 6 6 8 6 0 4.7e-25 8.5e-12 0

mathinum 3 1 7 11 7 0 1.7e-24 3.8e-12 0
mathinum 3 2 5 6 5 0 4.4e-15 2.6e-07 0
mathinum 3 3 5 6 5 0 9.2e-18 8.6e-09 0
mathinum 3 4 7 8 7 0 5.1e-23 2.8e-11 0
mathisum 4 1 5 7 5 0 4.1e-19 2.1e-09 0
mathisum 4 2 6 7 6 0 1.5e-13 1.3e-06 0
mathisum 4 3 8 10 8 0 9.0e-17 2.3e-08 0
mathisum 4 4 6 7 6 0 1.5e-22 4.1e-11 0

nash 10 1 8 9 8 0 5.3e-20 2.4e-08 0
nash 10 2 11 25 11 0 1.8e-22 6.9e-10 0

pgvon105 105 1 33 81 33 0 1.1e-13 4.7e-03 33
pgvon105 105 2 33 98 33 0 1.3e-14 7.3e-03 31
pgvon105 105 3 69 251 69 0 6.2e-17 5.0e-04 68
pgvon106 106 1 23 49 23 0 4.6e-14 4.0e-07 23

powell 16 1 13 41 13 0 3.3e-17 9.1e-08 4
powell 16 2 14 36 14 0 2.4e-14 3.3e-06 4
powell 16 3 23 45 23 0 1.3e-13 1.5e-06 4
powell 16 4 16 45 16 0 9.7e-16 5.7e-07 6

scarfanum 13 1 10 13 10 0 1.7e-16 1.7e-07 0
scarfanum 13 2 12 15 12 0 1.7e-16 1.7e-07 0
scarfanum 13 3 12 16 12 0 1.7e-16 1.7e-07 1
scarfasum 14 1 8 11 8 0 1.1e-18 3.1e-08 0
scarfasum 14 2 10 14 10 0 9.6e-17 2.8e-07 0
scarfasum 14 3 11 14 11 0 2.5e-19 1.4e-08 0
scarfbnum 39 1 23 36 23 0 1.7e-14 3.4e-05 0
scarfbnum 39 2 24 42 24 0 2.4e-14 3.7e-05 0
scarfbsum 40 1 20 56 20 0 1.2e-16 1.9e-06 0
scarfbsum 40 2 26 72 26 0 9.1e-20 5.2e-08 0

sppe 27 1 7 8 7 0 4.8e-14 4.4e-07 0
sppe 27 2 6 7 6 0 4.8e-25 2.9e-12 0
tobin 42 1 9 12 9 0 4.8e-13 9.9e-07 0
tobin 42 2 11 15 11 0 4.8e-24 3.1e-12 0

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 371

Table 7.2
Numerical results for GAMSLIB test problems.

Problem n SP k F -ev. N G Ψ(xf) ‖∇Ψ(xf)‖ B

cafemge 101 1 11 19 11 0 7.9e-25 1.7e-09 0
cammge 128 1 0 1 0 0 5.1e-13 3.1e-04 0
co2mge 208 1 1 2 1 0 1.3e-14 1.0e-07 0
dmcmge 170 1 88 523 88 0 1.3e-21 2.1e-07 1
etamge 114 1 20 49 20 0 1.6e-15 3.6e-05 0
finmge 153 1 0 1 0 0 2.2e-14 7.6e-06 0

hansmcp 43 1 17 31 17 0 3.3e-14 7.8e-07 0
hansmge 43 1 14 30 14 0 4.9e-13 9.1e-07 0
harkmcp 32 1 13 16 13 0 2.0e-16 2.9e-08 0
kehomge 9 1 10 12 10 0 1.7e-20 7.9e-09 0
mr5mcp 350 1 10 17 10 0 1.7e-18 2.8e-07 1
nsmge 212 1 12 19 12 0 5.6e-18 2.9e-07 0

oligomcp 6 1 6 7 6 0 7.1e-17 1.5e-07 0
sammge 23 1 0 1 0 0 0.0 0.0 0
scarfmcp 18 1 9 12 9 0 9.2e-17 1.3e-07 1
scarfmge 18 1 11 15 11 0 5.3e-13 1.1e-05 0
shovmge 51 1 1 2 1 0 5.6e-14 5.7e-05 0
threemge 9 1 0 1 0 0 0.0 0.0 0
transmcp 11 1 13 22 13 0 3.1e-16 2.5e-08 0
two3mcp 6 1 8 12 8 0 4.8e-13 2.0e-05 0
unstmge 5 1 8 9 8 0 1.6e-13 7.6e-07 0

vonthmcp 125 1 54 280 54 0 6.1e-15 2.9e-02 37
vonthmge 80 1 31 97 30 1 4.5e-13 1.3e-04 0

We finally stress that we also tested some other parameter settings; there, we
usually had some more gradient steps but still fewer than for the method from [13].
This fact may explain why our Jacobian smoothing method seems to be superior to
its underlying semismooth Newton method from [13], since it is well accepted in the
community that taking as many Newton steps as possible usually improves the overall
behavior of the algorithm. On the other hand, we stress that we were not able to
solve the vonthmge example without using a gradient step.

8. Final remarks. In this paper, we introduced a new algorithm for the solution
of a general (i.e., not necessarily monotone) complementarity problem. We call this
algorithm a Jacobian smoothing method since, basically, it is a perturbation of a
semismooth Newton method being applied to a reformulation of the complementarity
problem as a nonsmooth system of equations Φ(x) = 0. In this perturbation, we
replace an element from the generalized Jacobian by a standard Jacobian of a smooth
operator Φµ which approximates Φ for µ→ 0.

The basic idea of this Jacobian smoothing method is taken from the recent pa-
per [10] by Chen, Qi, and Sun. We modified their algorithm in such a way that
it becomes applicable to general complementarity problems. Although this modifi-
cation makes the convergence analysis rather technical (especially the global one),
the main convergence results are quite nice. Moreover, the numerical performance
is extremely promising. In fact, we are able to solve all complementarity problems
from the MCPLIB and GAMSLIB test problem collections. In particular, our Jaco-
bian smoothing method is considerably more reliable than the semismooth method
by De Luca, Facchinei, and Kanzow [13], which is the underlying semismooth Newton
method for our algorithm.

372 CHRISTIAN KANZOW AND HEIKO PIEPER

It would be interesting to see how our perturbation technique would work if we
applied it to other equation reformulations of the nonlinear complementarity problem
like those presented in [28, 35, 5]. Finally, it would also be interesting to see how the
Jacobian smoothing method would work on mixed complementarity problems. An
extension to this more general class of problems seems possible by using, e.g., an idea
from Billups [1]; see also Qi [35] and Sun and Womersley [39]. We leave this as a
future research topic.

REFERENCES

[1] S.C. Billups, Algorithms for Complementarity Problems and Generalized Equations,
Ph.D. Thesis, Computer Sciences Department, University of Wisconsin, Madison, WI,
August 1995.

[2] S.C. Billups, S.P. Dirkse, and M.C. Ferris, A comparison of algorithms for large scale
mixed complementarity problems, Comput. Optim. Appl., 7 (1997), pp. 3–25.

[3] J. Burke and S. Xu, The global linear convergence of a non-interior path-following algorithm
for linear complementarity problems, Math. Oper. Res., 23 (1998), pp. 719–734.

[4] B. Chen and X. Chen, A global and local superlinear continuation-smoothing method for
P0 +R0 and monotone NCP, SIAM J. Optim., to appear.

[5] B. Chen, X. Chen, and C. Kanzow, A Penalized Fischer-Burmeister NCP-Function: Theo-
retical Investigation and Numerical Results, Preprint 126, Institute of Applied Mathemat-
ics, University of Hamburg, Germany, September 1997 (revised May 1998).

[6] B. Chen and P.T. Harker, A non-interior-point continuation method for linear complemen-
tarity problems, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 1168–1190.

[7] B. Chen and P.T. Harker, Smooth approximations to nonlinear complementarity problems,
SIAM J. Optim., 7 (1997), pp. 403–420.

[8] B. Chen and N. Xiu, A Global Linear and Local Quadratic Non-Interior Continuation Method
for Nonlinear Complementarity Problems Based on Chen-Mangasarian Smoothing Func-
tion, Tech. Report, Department of Management and Systems, Washington State University,
Pullman, WA, 1997.

[9] C. Chen and O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed
complementarity problems, Comput. Optim. Appl., 5 (1996), pp. 97–138.

[10] X. Chen, L. Qi, and D. Sun, Global and superlinear convergence of the smoothing New-
ton method and its application to general box constrained variational inequalities, Math.
Comp., 67 (1998), pp. 519–540.

[11] X. Chen and Y. Ye, On Homotopy-Smoothing Methods for Variational Inequalities, Tech.
Report AMR 96/39, School of Mathematics, The University of New South Wales, Sydney,
Australia, December 1996.

[12] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983 (reprinted
by SIAM, Philadelphia, 1990).

[13] T. De Luca, F. Facchinei, and C. Kanzow, A semismooth equation approach to the solution
of nonlinear complementarity problems, Math. Programming, 75 (1996), pp. 407–439.

[14] J.E. Dennis, Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983 (reprinted by SIAM,
Philadelphia, 1996).

[15] S.P. Dirkse and M.C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity
problems, Optim. Methods Software, 5 (1995), pp. 123–156.

[16] F. Facchinei and J. Soares, A new merit function for nonlinear complementarity problems
and a related algorithm, SIAM J. Optim., 7 (1997), pp. 225–247.

[17] M.C. Ferris and J.-S. Pang, Engineering and economic applications of complementarity prob-
lems, SIAM Rev., 39 (1997), pp. 669–713.

[18] A. Fischer, A special Newton-type optimization method, Optimization, 24 (1992), pp. 269–284.
[19] A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian func-

tions, Math. Programming, 76 (1997), pp. 513–532.
[20] S.A. Gabriel and J.J. Moré, Smoothing of mixed complementarity problems, In Complemen-

tarity and Variational Problems. State of the Art, M.C. Ferris and J.-S. Pang, eds., SIAM,
Philadelphia, 1997, pp. 105–116.

[21] L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone linesearch technique for Newton’s
method, SIAM J. Numer. Anal., 23 (1986), pp. 707–716.

JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 373

[22] P.T. Harker and J.-S. Pang, Finite dimensional variational inequality and nonlinear comple-
mentarity problems: A survey of theory, algorithms and applications, Math. Programming,
48 (1990), pp. 161–220.

[23] K. Hotta and A. Yoshise, Global Convergence of a Class of Non-Interior-Point Algorithms
Using Chen-Harker-Kanzow Functions for Nonlinear Complementarity Problems, Tech.
Report 708, Institute of Policy and Planning Sciences, University of Tsukuba, Tsukuba,
Ibaraki, Japan, December 1996.

[24] H. Jiang, Smoothed Fischer-Burmeister Equation Methods for the Complementarity Prob-
lem, Tech. Report, Department of Mathematics, The University of Melbourne, Parkville,
Victoria, Australia, June 1997.

[25] H. Jiang and L. Qi, A new nonsmooth equations approach to nonlinear complementarity
problems, SIAM J. Control Optim., 35 (1997), pp. 178–193.

[26] C. Kanzow, Some noninterior continuation methods for linear complementarity problems,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 851–868.

[27] C. Kanzow, A new approach to continuation methods for complementarity problems with
uniform P -functions, Oper. Res. Lett., 20 (1997), pp. 85–92.

[28] C. Kanzow and H. Kleinmichel, A new class of semismooth Newton-type methods for non-
linear complementarity problems, Comput. Optim. Appl., to appear.

[29] C. Kanzow and H.-D. Qi, A QP-free constrained Newton-type method for variational inequal-
ity problems, Math. Programming, to appear.

[30] B. Kummer, Newton’s method for nondifferentiable functions, In Advances in Mathematical
Optimization, J. Guddat et al., eds., Akademie-Verlag, Berlin, Germany, 1988, pp. 114–125.

[31] J.J. Moré and D.C. Sorensen, Computing a trust region step, SIAM J. Sci. Stat. Comput.,
4 (1983), pp. 553–572.

[32] H. Pieper, Ein Glättungsverfahren zur Lösung von nichtlinearen Komplemen-
taritätsproblemen, Diploma Thesis, Institute of Applied Mathematics, University of
Hamburg, Germany, May 1997.

[33] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), pp. 227–244.

[34] L. Qi, C-Differentiability, C-Differential Operators and Generalized Newton Methods, Tech.
Report, School of Mathematics, The University of New South Wales, Sydney, Australia,
January 1996.

[35] L. Qi, Regular Pseudo-Smooth NCP and BVIP Functions and Globally and Quadratically
Convergent Generalized Newton Methods for Complementarity and Variational Inequality
Problems, Tech. Report AMR 97/14, School of Mathematics, The University of New South
Wales, Sydney, Australia, July 1997 (revised September 1997).

[36] L. Qi and D. Sun, Globally Linearly, and Globally and Locally Superlinearly Convergent Ver-
sions of the Hotta-Yoshise Non-Interior Point Algorithm for Nonlinear Complementarity
Problems, Tech. Report, School of Mathematics, The University of New South Wales,
Sydney, Australia, May 1997.

[37] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993),
pp. 353–367.

[38] S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43–62.
[39] D. Sun and R.S. Womersley, A new unconstrained differentiable merit function for box

constrained variational inequality problems and a damped Gauss–Newton method, SIAM
J. Optim., 9 (1999), pp. 409–434.

[40] P. Tseng, Analysis of a Non-Interior Continuation Method Based on Chen-Mangasarian
Smoothing Functions for Complementarity Problems, Tech. Report, Department of Math-
ematics, University of Washington, Seattle, WA, July 1997.

[41] S. Xu, The Global Linear Convergence of an Infeasible Non-Interior Path-Following Algorithm
for Complementarity Problems with Uniform P -Functions, Tech. Report, Department of
Mathematics, University of Washington, Seattle, WA, December 1996.

[42] S. Xu, The Global Linear Convergence and Complexity of a Non-Interior Path-Following Algo-
rithm for Monotone LCP Based on Chen-Harker-Kanzow-Smale Smooth Functions, Tech.
Report, Department of Mathematics, University of Washington, Seattle, WA, February
1997.

[43] S. Xu and J.V. Burke, A polynomial time interior-point path-following algorithm for LCP
based on Chen-Harker-Kanzow smoothing techniques, Math. Programming, to appear.

OPTIMALITY CONDITIONS FOR OPTIMIZATION PROBLEMS
WITH COMPLEMENTARITY CONSTRAINTS∗

J. J. YE†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 374–387

Abstract. Optimization problems with complementarity constraints are closely related to opti-
mization problems with variational inequality constraints and bilevel programming problems. In this
paper, under mild constraint qualifications, we derive some necessary and sufficient optimality con-
ditions involving the proximal coderivatives. As an illustration of applications, the result is applied
to the bilevel programming problems where the lower level is a parametric linear quadratic problem.

Key words. optimization problems, complementarity constraints, optimality conditions, bilevel
programming problems, proximal normal cones

AMS subject classifications. 49K99, 90C, 90D65

PII. S1052623497321882

1. Introduction. The main purpose of this paper is to derive necessary and
sufficient optimality conditions for the optimization problem with complementarity
constraints (OPCC) defined as follows:

(OPCC) min f(x, y, u)

s.t. 〈u, ψ(x, y, u)〉 = 0, u ≥ 0, ψ(x, y, u) ≤ 0(1.1)

L(x, y, u) = 0, g(x, y, u) ≤ 0, (x, y, u) ∈ Ω,

where f : Rn+m+q → R, ψ : Rn+m+q → Rq, L : Rn+m+q → Rl, g : Rn+m+q → Rd,
and Ω is a nonempty subset of Rn+m+q.

(OPCC) is an optimization problem with equality and inequality constraints.
However, due to the complementarity constraint (1.1), the Karush–Kuhn–Tucker
(KKT) necessary optimality condition is rarely satisfied by (OPCC) since it can be
shown as in [9, Proposition 1.1] that there always exists a nontrivial abnormal multi-
plier. This is equivalent to saying that the usual constraint qualification conditions,
such as the Mangasarian–Fromovitz condition, will never be satisfied (see [8, Propo-
sition 3.1]). The purpose of this paper is to derive necessary and sufficient optimality
conditions under mild constraint qualifications that are satisfied by a large class of
OPCCs.

To motivate our main results, we formulate problem (OPCC), where Ω = Rn+m+q,
as the following optimization problem with a generalized equation constraint:

(GP) min f(x, y, u)

s.t. 0 ∈ −ψ(x, y, u) +N(u,Rq+),(1.2)

L(x, y, u) = 0, g(x, y, u) ≤ 0,

where

N(u,C) :=

{
the normal cone of C at y if u ∈ C,
∅ if u /∈ C

∗Received by the editors May 26, 1997; accepted for publication (in revised form) May 4, 1998;
published electronically March 17, 1999. This work was supported by the Natural Sciences and
Engineering Research Council of Canada and a University of Victoria internal research grant.

http://www.siam.org/journals/siopt/9-2/32188.html
†Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3P4,

Canada (janeye@uvic.ca).

374

OPTIMIZATION PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS 375

is the normal cone operator in the sense of convex analysis.
Let (x̄, ȳ, ū) be a solution of (OPCC), where Ω = Rn+m+q. If N(u,Rq+) were

single-valued and smooth, then the generalized equation constraint (1.2) would re-
duce to an ordinary equation. Using the KKT condition, we could deduce that if a
constraint qualification is satisfied for (GP) and the problem data are smooth, then
there exist KKT multipliers ξ ∈ Rl, ζ ∈ Rd, η ∈ Rq such that

0 = ∇f(x̄, ȳ, ū) +∇L(x̄, ȳ, ū)>ξ +∇g(x̄, ȳ, ū)>ζ
−∇ψ(x̄, ȳ, ū)>η + {0} × {0} × ∇NRq

+
(ū)>η,

0 = 〈ζ, g(x̄, ȳ, ū)〉, ζ ≥ 0,

where ∇ denotes the usual gradient, M> denotes the transpose of the matrix M , and
NC denotes the map y → N(y, C). However, u⇒ N(u,Rq+) is in general a set-valued
map. Naturally, we hope to replace ∇NRq

+
(ū)>η by the image of some derivatives

of the set-valued map u ⇒ N(u,Rq+) acting on the vector η. The natural candidate
for such a derivative of set-valued maps is the Mordukhovich coderivative (see Defini-
tion 2.3) since the Mordukhovich coderivatives have a good calculus, and in the case
when the set-valued map is single-valued and smooth, the image of the Mordukhovich
coderivative acting on a vector coincides with the usual gradient operator acting on
the vector (see [6, Proposition 2.4]). Indeed, as in [7], we can show that if (x̄, ȳ, ū) is
an optimal solution of (OPCC) and a constraint qualification holds, then there exist
ξ ∈ Rl, ζ ∈ Rd, η ∈ Rq such that

0 ∈ ∇f(x̄, ȳ, ū) +∇L(x̄, ȳ, ū)>ξ +∇g(x̄, ȳ, ū)>ζ
−∇ψ(x̄, ȳ, ū)>η + {0} × {0} ×D∗NRq

+
(ū, ψ(x̄, ȳ, ū))(η),

0 = 〈ζ, g(x̄, ȳ, ū)〉, ζ ≥ 0,

where D∗ denotes the Mordukhovich coderivative (see Definition 2.3). Recall from [7,
Definition 2.8] that a set-valued map Φ : Rn ⇒ Rq with a closed graph is said to be
pseudo-upper-Lipschitz continuous at (z̄, v̄) with v̄ ∈ Φ(z̄) if there exist a neighbor-
hood U of z̄, a neighborhood V of v̄, and a constant µ > 0 such that

Φ(z) ∩ V ⊂ Φ(z̄) + µ‖z − z̄‖B ∀z ∈ U.

The constraint qualification for the above necessary condition involving the Mor-
dukhovich coderivative turns out to be the pseudo-upper-Lipschitz continuity of the
set-valued map

Σ(v1, v2, v3) := {(x, y, u) : v1 ∈ −ψ(x, y, u)+N(u,Rq+), L(x, y, u) = v2, g(x, y, u)+v3 ≤ 0}

at (x̄, ȳ, ū, 0). This constraint qualification is very mild since the pseudo-upper-
Lipschitz continuity is weaker than both the upper-Lipschitz continuity and the pseudo-
Lipschitz continuity (the so-called Aubin property). However, the Mordukhovich
normal cone involved in the necessary condition may be too large sometimes. For ex-
ample, in [7, Example 4.1], both (0, 0) and (1, 1) satisfy the above necessary conditions,
but only (1, 1) is the unique optimal solution. Can one replace the Mordukhovich
normal cone involved in the necessary condition by the potentially smaller proximal
normal cone? The answer is negative in general, since the proximal coderivative as
defined in Definition 2.3 usually has only a “fuzzy” calculus. Consider the following

376 J. J. YE

optimization problem:

min −y
s.t. y − u = 0, yu = 0, y ≥ 0, u ≥ 0.

The unique optimal solution (0, 0) does not satisfy the KKT condition but satisfies
the necessary condition involving the Mordukhovich coderivatives. It does not satisfy
the necessary condition with the Mordukhovich normal cone replaced by the proximal
normal cone. This example shows that some extra assumptions are needed for the
necessary condition involving the proximal coderivatives to hold. In this paper such a
condition is found. Moreover, we show that the proximal normal cone involved in the
necessary condition can be represented by a system of linear and nonlinear equations,
and the necessary optimality conditions involving the proximal coderivatives turn out
to be sufficient under some convexity assumptions on the problem data.

Although the optimization problems with complementarity constraints are a class
of optimization problems with independent interest, the incentive to study (OPCC)
mainly comes from the following optimization problem with variational inequality
constraints (OPVIC), where the constraint region of the variational inequality is a
system of inequalities:

(OPVIC) min f(x, y)

s.t. y ∈ S(x), g(x, y) ≤ 0, (x, y) ∈ Ω,

where f : Rn+m → R, Ω is a nonempty subset of Rm+n and S(x) is the solution set
of a variational inequality with parameter x; i.e.,

S(x) = {y ∈ Rm : ψ(x, y) ≤ 0 and 〈F (x, y), z − y〉 ≥ 0 ∀z s.t. ψ(x, z) ≤ 0},
where F : Rn+m → Rm and ψ : Rn+m → Rq. The recent monograph [4] by Luo, Pang,
and Ralph has an extensive study for (OPVIC). The reader may find the references
for the various optimality conditions for (OPVIC) from [4].

(OPCC) is closely related to OPVICs and bilevel programming problems. Indeed,
if ψ is C1and quasi convex in y and a certain constraint qualification condition holds
at ȳ for the optimization problem

min 〈F (x̄, ȳ), z〉 s.t. ψ(x̄, z) ≤ 0,

then by the KKT necessary and sufficient optimality condition, (x̄, ȳ) is a solution
of (OPVIC) if and only if there exists ū ∈ Rq such that (x̄, ȳ, ū) is a solution of the
following optimization problem:

(KS) min f(x, y)

s.t. 〈u, ψ(x, y)〉 = 0, u ≥ 0, ψ(x, y) ≤ 0,

F (x, y) +∇yψ(x, y)>u = 0,

g(x, y) ≤ 0, (x, y) ∈ Ω,

which is a special case of (OPCC).
In the case where F (x, y) = ∇yh(x, y), where h : Rn+m → R is differentiable and

pseudoconvex in y, (KS) is equivalent to the following bilevel programming problem
(BLPP), or so-called Stackelberg game:

(BLPP) min f(x, y)

s.t. y ∈ S(x), g(x, y) ≤ 0, (x, y) ∈ Ω,

OPTIMIZATION PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS 377

where S(x) is the set of solutions of the problem (Px):

(Px) minimize h(x, y) s.t. ψ(x, y) ≤ 0.

We organize the paper as follows. Section 2 contains background material on
nonsmooth analysis and preliminary results. In section 3 we derive the necessary and
sufficient optimality conditions for (OPCC). As an illustration of applications, we also
apply the result to (BLPP), where the lower level is a linear quadratic programming
problem.

2. Preliminaries. This section contains some background material on non-
smooth analysis and preliminary results which will be used later. We give only concise
definitions that will be needed in the paper. For more detailed information on the
subject, our references are Clarke [1, 2], Loewen [3], and Mordukhovich [6].

First we give some concepts for various normal cones and subgradients.
Definition 2.1. Let Ω be a nonempty subset of Rn. Given z̄ ∈ clΩ, the closure

of set Ω, the convex cone

Nπ(z̄,Ω) := {ξ ∈ Rn : ∃M > 0 s.t. 〈ξ, z − z̄〉 ≤M‖z − z̄‖2 ∀z ∈ Ω}

is called the proximal normal cone to set Ω at point z̄, and the closed cone

N̂(z̄,Ω) := { lim
i→∞

ξi : ξi ∈ Nπ(zi,Ω), zi → z̄}

is called the limiting normal cone to Ω at point z̄.
Remark 2.1. It is known that if Ω is convex, then the proximal normal cone

and the limiting normal cones coincide with the normal cone in the sense of convex
analysis.

Definition 2.2. Let f : Rn → R ∪ {+∞} be lower semicontinuous and finite at
z̄ ∈ Rn. The limiting subgradient of f at z̄ is defined to be the set

∂̂f(z̄) := {ζ : (ζ,−1) ∈ N̂(z̄, epi f)},

where epi f := {(z, v) : v ≥ f(z)} denotes the epigragh of f .
Remark 2.2. It is known that if f is a convex function, the limiting subgradient

coincides with the subgradient in the sense of convex analysis. For a locally Lipschitz
function f , ∂f = co∂̂f(x), where ∂ denotes the Clarke generalized gradient and co
denotes the convex hull. Hence the limiting subgradient is in general a smaller set
than the Clarke generalized gradient.

For set-valued maps, the definition for limiting normal cone leads to the definition
of coderivative of a set-valued map introduced by Mordukhovich (see, e.g., [6]).

Definition 2.3. Let Φ : Rn ⇒ Rq be an arbitrary set-valued map (assigning to
each z ∈ Rn a set Φ(z) ⊆ Rq which may be empty) and (z̄, v̄) ∈ cl GrΦ, where GrΦ
denotes the graph of Φ; i.e., (z, v) ∈ GrΦ if and only if v ∈ Φ(z). The set-valued
maps from Rq into Rn defined by

D∗πΦ(z̄, v̄)(η) = {ζ ∈ Rn : (ζ,−η) ∈ Nπ((z̄, v̄),GrΦ)},
D∗Φ(z̄, v̄)(η) = {ζ ∈ Rn : (ζ,−η) ∈ N̂((z̄, v̄),GrΦ)}

are called the proximal and Mordukhovich coderivatives of Φ at point (z̄, v̄), respec-
tively.

378 J. J. YE

Proposition 2.4. Suppose B is closed, x̄ ∈ A, x̄ /∈ B. Then

Nπ(x̄, A ∪B) = Nπ(x̄, A).

Proof. Since x̄ /∈ B and B is closed, there exists a neighborhood of x̄ that is not
contained in B. Therefore, from the definition of the proximal normal cone, we have

Nπ(x̄, A ∪B) = Nπ(x̄, A).

In the following proposition we show that the proximal normal cone of a union of
a finite number of sets is the intersection of the proximal cones.

Proposition 2.5. Let Ω = ∪mi=1Ωi and x̄ ∈ ∩mi=1Ωi. Suppose Ωi ∀ i = 1, 2, . . . ,m
are closed. Then

Nπ(x̄,Ω) = ∩mi=1N
π(x̄,Ωi).

Proof. Let ζ ∈ Nπ(x̄,Ω). Then, by definition, there exists a constant M > 0 such
that

〈ζ, x− x̄〉 ≤M ‖x− x̄‖2 ∀x ∈ Ω = ∪mi=1Ωi.

Since x̄ ∈ ∩mi=1Ωi, the above inequality implies that ζ ∈ ∩mi=1N
π(x̄,Ωi).

Conversely, suppose ζ ∈ ∩mi=1N
π(x̄,Ωi). Then for all i = 1, 2, . . . ,m, there exists

Mi > 0 such that

〈ζ, x− x̄〉 ≤Mi ‖x− x̄‖2 ∀x ∈ Ωi.

That is, there exists M = maxi∈{1,2,...,m}Mi > 0 such that

〈ζ, x− x̄〉 ≤M ‖x− x̄‖2 ∀x ∈ Ω = ∪mi=1Ωi,

which implies that ζ ∈ Nπ(x̄,Ω).
The above decomposition formula for calculating the proximal normal cones turns

out to be very useful, since when a set can be written as a union of some convex sets,
the task of calculating the proximal normal cones is reduced to calculating the normal
cone to convex sets which are easier to calculate. The following proposition is a nice
application of the decomposition formula and will be used to calculate the proximal
normal cone to the graph of the set-valued map NRq

+
for general q in Proposition 2.7.

Proposition 2.6.

Nπ((x̄, ȳ), GrNR+
) =

 {0} ×R if x̄ > 0, ȳ = 0,
R× {0} if x̄ = 0, ȳ < 0,
(−∞, 0]× [0,∞) if x̄ = ȳ = 0.

Proof. It is easy to see that GrNR+
= Ω1 ∪ Ω2, where Ω1 = [0,∞) × {0} and

Ω2 = {0} × (−∞, 0].
We discuss the following three cases.
Case 1. x̄ > 0, ȳ = 0.
In this case, (x̄, ȳ) ∈ Ω1 and (x̄, ȳ) /∈ Ω2. Since Ω2 is closed, by Proposition 2.4

we have in this case

Nπ((x̄, ȳ), GrNR+) = N((x̄, ȳ),Ω1) = {0} ×R.

OPTIMIZATION PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS 379

Case 2. x̄ = 0, ȳ < 0.
In this case, (x̄, ȳ) ∈ Ω2 and (x̄, ȳ) /∈ Ω1. Since Ω1 is closed, by Proposition 2.4

we have in this case

Nπ((x̄, ȳ), GrNR+) = N((x̄, ȳ),Ω2) = R× {0}.
Case 3. x̄ = ȳ = 0.
In this case, (x̄, ȳ) ∈ Ω1 ∩ Ω2. By Proposition 2.5 we have

Nπ((x̄, ȳ), GrNR+
) = N((x̄, ȳ),Ω1) ∩N((x̄, ȳ),Ω2)

= ((−∞, 0]×R) ∩ (R× [0,∞))

= (−∞, 0]× [0,∞).

Now we are in a position to give an expression for the proximal normal cone to
the graph of the set-valued map NRq

+
for general q.

Proposition 2.7. For any (x̄, ȳ) ∈GrNRq
+

, define

L := L(x̄) : = {i ∈ {1, 2, . . . , q} : x̄i > 0},
I+ := I+(x̄, ȳ) : = {i ∈ {1, 2, . . . , q} : x̄i = 0, ȳi < 0},
I0 := I0(x̄, ȳ) : = {i ∈ {1, 2, . . . , q} : x̄i = 0, ȳi = 0}.

Then

Nπ((x̄, ȳ), GrNRq
+

) = {(γ,−η) ∈ R2q : ηI0 ≤ 0, ηI+ = 0, γL = 0, γI0 ≤ 0}.

Proof. Since

GrNRq
+

=
{

(x, y) ∈ R2q : y ∈ N(x,Rq+)
}

=
{

(x, y) ∈ R2q : y ∈ N(x1, R+)×N(x2, R+)× · · · ×N(xq, R+)
}

=
{

(x, y) ∈ R2q : (xi, yi) ∈ GrNR+∀i = 1, 2, . . . , q
}
,

we have

(x, y) ∈ GrNRq
+

if and only if (x1, y1, x2, y2, . . . , xq, yq) ∈
q∏
i=1

GrNR+ .

Hence from the definition, it is clear that

(γ,−η) ∈ Nπ((x̄, ȳ), GrNRq
+

)

if and only if

(γ1,−η1, γ2,−η2, . . . , γq,−ηq) ∈ Nπ

(
(x̄1, ȳ1, x̄2, ȳ2, . . . , x̄q, ȳq),

q∏
i=1

GrNR+

)

=

q∏
i=1

Nπ((x̄i, ȳi),GrNR+
).

The rest of the proof follows from Proposition 2.6.
It turns out that we can express any element of Nπ((x̄, ȳ),GrNRq

+
) by a system

of nonlinear equations as in the following proposition.

380 J. J. YE

Proposition 2.8.

(γ,−η) ∈ Nπ((x̄, ȳ), GrNRq
+

)

if and only if there exist α, β ∈ R2q
+ such that

0 =

q∑
i=1

x̄i(αi + βi)−
q∑
i=1

ȳi(αq+i + βq+i),(2.1)

γi = −αi + ȳiβi ∀i = 1, 2, . . . , q,(2.2)

ηi = −αq+i + x̄iβq+i ∀i = 1, 2, . . . , q.(2.3)

Proof. By Proposition 2.7, (γ,−η) ∈ Nπ((x̄, ȳ), GrNRq
+

) if and only if

ηI0 ≤ 0, ηI+ = 0, γL = 0, γI0 ≤ 0.

By the definition for the index sets I0, I+, L in Proposition 2.7, we have

ηI0 ≤ 0, γI0 ≤ 0 if and only if x̄i = ȳi = 0 =⇒ ηi ≤ 0, γi ≤ 0,

ηI+ = 0 if and only if ȳi < 0 =⇒ ηi = 0,

γL = 0 if and only if x̄i > 0 =⇒ γi = 0.

Since for any (x̄, ȳ) ∈ GrNRq
+

, x̄ ≥ 0, ȳ ≤ 0, for nonnegative vectors α and β, (2.1) is

equivalent to

x̄i(αi + βi) = 0, ȳi(αq+i + βq+i) = 0 ∀i = 1, . . . , q.

Hence the existence of nonnegative vectors α and β satisfying (2.1)–(2.2) is equivalent
to the following condition:

x̄i = ȳi = 0 =⇒ ηi ≤ 0, γi ≤ 0,

ȳi < 0 =⇒ ηi = 0,

x̄i > 0 =⇒ γi = 0.

Consequently, it is equivalent to

ηI0 ≤ 0, ηI+ = 0, γL = 0, γI0 ≤ 0.

The proof of the proposition is therefore complete.
Finally, we would like to recall the following definition of a very mild constraint

qualification called “calmness,” introduced by Clarke [1].
Definition 2.9. Let x̄ be a local solution to the following mathematical program-

ming problem:

minimize f(x)

s.t. g(x) ≤ 0,

h(x) = 0,

x ∈ C,

OPTIMIZATION PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS 381

where f : Rd → Rn, g : Rd → Rm, and C is a closed subset of Rd. The above
mathematical programming problem is said to be calm at x̄ provided that there exist
positive ε and M such that for all (p, q) ∈ εB, for all x in x̄+ εB satisfying g(x)+p ≤
0, h(x) + q = 0, x ∈ C, one has

f(x)− f(x̄) +M‖(p, q)‖ ≥ 0,

where B is the open unit ball in the appropriate space.
It is well known that the calmness condition is a constraint qualification for the

existence of a KKT multiplier and the sufficient conditions for the calmness condition
include the linear independence condition, the Slater condition, and the Mangasarian–
Fromowitz condition. Moreover, the calmness condition is satisfied automatically in
the case where the feasible region is a polyhedron.

3. Optimality conditions for OPCC. Let (x̄, ȳ, ū) ∈ Ω and g(x̄, ȳ, ū) ≤ 0,
L(x̄, ȳ, ū) = 0. Let

L(ū) := {1 ≤ i ≤ q : ūi > 0},
I+(x̄, ȳ, ū) := {1 ≤ i ≤ q : ūi = 0, ψi(x̄, ȳ, ū) < 0},
I0(x̄, ȳ, ū) := {1 ≤ i ≤ q : ūi = 0, ψi(x̄, ȳ, ū) = 0}.

Where there is no confusion, we simply use L, I+, I0 instead of L(ū), I+(x̄, ȳ, ū),
I0(x̄, ȳ, ū), respectively. It is clear that {1, 2, . . . , q} = L(ū) ∪ I+(x̄, ȳ, ū) ∪ I0(x̄, ȳ, ū).
Let

F =

{
(x, y, u) ∈ Ω :

L(x, y, u) = 0, g(x, y, u) ≤ 0
〈u, ψ(x, y, u)〉 = 0, u ≥ 0, ψ(x, y, u) ≤ 0

}
be the feasible region of (OPCC). For any I ⊆ {1, 2, . . . , q}, let

FI :=

(x, y, u) ∈ Ω :
L(x, y, u) = 0, g(x, y, u) ≤ 0
ui ≥ 0, ψi(x, y, u) = 0 ∀i ∈ I
ui = 0, ψi(x, y, u) ≤ 0 ∀i ∈ {1, 2, . . . , q}\I

denote a piece of the feasible region F .

Taking the “piecewise programming” approach in the terminology of [4], as in
Corollary 2 of [5], we observe that the feasible region of the problem (OPCC) can
be rewritten as a union of all pieces F = ∪I⊆{1,2,...,q}FI . Therefore, a local solution
(x̄, ȳ, ū) for (OPCC) is also a local solution for each subproblem of minimizing the
objective function f over a piece which contains the point (x̄, ȳ, ū). Moreover, if
(x̄, ȳ, ū) is contained in all pieces and all subproblems are convex, then it is a global
minimum for the original problem (OPCC). Hence the following proposition follows
from this observation.

Proposition 3.1. Let (x̄, ȳ, ū) be a local optimal solution to (OPCC). Suppose
that f , g, ψ, L are locally Lipschitz near (x̄, ȳ, ū) and Ω is closed. If for any given
index set α ⊆ I0, the problem of minimizing f over Fα∪L is calm in the sense of
Definition 2.9 at (x̄, ȳ, ū), then there exist ξ ∈ Rl, ζ ∈ Rd, η ∈ Rq, γ ∈ Rq such that

0 ∈ ∂̂f(x̄, ȳ, ū) +

l∑
i=1

ξi∂̂Li(x̄, ȳ, ū) +
d∑
i=1

ζi∂̂gi(x̄, ȳ, ū) + N̂((x̄, ȳ, ū),Ω)

−
q∑
i=1

ηi∂̂ψi(x̄, ȳ, ū) + {(0, 0, γ)},(3.1)

382 J. J. YE

ζ ≥ 0, 〈ζ, g(x̄, ȳ, ū)〉 = 0,(3.2)

ηI0\α ≤ 0, ηI+ = 0, γL = 0, γα ≤ 0.(3.3)

Conversely, let (x̄, ȳ, ū) be a feasible solution for (OPCC), and for all index sets
α ⊆ I0, there exist ξ ∈ Rl, ζ ∈ Rd, η ∈ Rq, γ ∈ Rq such that (3.1)–(3.3) are satisfied.
If f is either convex or pseudoconvex, g is convex, ψ,L are affine, and Ω is convex,
then (x̄, ȳ, ū) is a minimum of f over all (x, y, u) ∈ ∪α⊆I0Fα∪L. If in addition to the
above assumptions I0 = {1, 2, . . . , q}, then (x̄, ȳ, ū) is a global solution for (OPCC).

Proof. It is obvious that the feasible region of (OPCC) can be represented as
the union of pieces F = ∪I⊆{1,2,...,q}FI . Since ūi > 0 ∀i ∈ L(ū) and ψi(x̄, ȳ, ū) < 0
∀i ∈ I+(x̄, ȳ, ū), and

Fα∪L =

(x, y, u) ∈ Ω :

L(x, y, u) = 0, g(x, y, u) ≤ 0
ui ≥ 0, ψi(x, y, u) = 0 ∀i ∈ α
ui ≥ 0, ψi(x, y, u) = 0 ∀i ∈ L
ui = 0, ψi(x, y, u) ≤ 0 ∀i ∈ I+
ui = 0, ψi(x, y, u) ≤ 0 ∀i ∈ I0\α

 ,

we have

(x̄, ȳ, ū) ∈ ∩α⊆I0Fα∪L
and

(x̄, ȳ, ū) /∈ F\(∪α⊆I0Fα∪L).

Hence if (x̄, ȳ, ū) is optimal for (OPCC), then for any given index set α ⊆ I0, (x̄, ȳ, ū)
is also a minimum for f over Fα∪L. Since this problem is calm, by the well-known
nonsmooth necessary optimality condition (see, e.g., [1, 2, 3]), there exist ξ ∈ Rl,
ζ ∈ Rd, η ∈ Rq, γ ∈ Rq such that (3.1)–(3.3) are satisfied. Conversely, suppose
that for each α ⊆ I0 there exist ξ ∈ Rl, ζ ∈ Rd, η ∈ Rq, γ ∈ Rq such that (3.1)–
(3.3) are satisfied and the problem is convex. By virtue of Remarks 2.1 and 2.2, the
limiting subgradients and the limiting normal cones coincide with the subgradients
and the normal cone in the sense of convex analysis, respectively. Hence, by the
standard first-order sufficient optimality conditions, (x̄, ȳ, ū) is a minimum of f over
Fα∪L for each α ⊆ I0 and hence is a minimum of f over ∪α⊆I0Fα∪L. In the case when
I0 = {1, 2, . . . , q}, L = ∅ and the feasible region F = ∪α⊆I0Fα∪L. Hence (x̄, ȳ, ū)
is a global optimal for (OPCC) in this case. The proof of the proposition is now
complete.

Remark 3.1. The necessary part of the above proposition with smooth problem
data is given by Luo, Pang, and Ralph in [4] under the so-called “basic constraint
qualification.”

Note that the multipliers in Proposition 3.1 depend on the index set α through
(3.3). However, if for some pair of index sets α (⊆ I0) and I0\α, the components
(ηI0 , γI0) of the multipliers are the same, then we would have a necessary condition
that does not depend on the index set α. In this case the necessary condition turns
out to be the necessary condition involving the proximal coderivatives as in (b) of the
following theorem.

Theorem 3.2. Suppose f, g, L, ψ are continuously differentiable. Then the fol-
lowing three conditions are equivalent:

OPTIMIZATION PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS 383

(a) There exist ξ ∈ Rl, ζ ∈ Rd, η, γ ∈ Rq such that

0 = ∇f(x̄, ȳ, ū) +

l∑
i=1

ξi∇Li(x̄, ȳ, ū) +
d∑
i=1

ζi∇gi(x̄, ȳ, ū)

−
q∑
i=1

ηi∇iψi(x̄, ȳ, ū) + {(0, 0, γ)},(3.4)

ζ ≥ 0, 〈ζ, g(x̄, ȳ, ū)〉 = 0,(3.5)

ηI0 ≤ 0, ηI+ = 0, γL = 0, γ
I0
≤ 0.(3.6)

(b) There exist ξ ∈ Rl, ζ ∈ Rd, η ∈ Rq such that

0 = ∇f(x̄, ȳ, ū) +

l∑
i=1

ξi∇Li(x̄, ȳ, ū) +
d∑
i=1

ζi∇gi(x̄, ȳ, ū)

−
q∑
i=1

ηi∇ψi(x̄, ȳ, ū) + {0} × {0} ×D∗πNRq+(ū, ψ(x̄, ȳ, ū))(η),(3.7)

ζ ≥ 0, 〈ζ, g(x̄, ȳ, ū)〉 = 0.(3.8)

(c) There exist ξ ∈ Rl, ζ ∈ Rd, η, γ ∈ Rq, α, β ∈ R2q
+ such that (3.4) and (3.5)

are satisfied and

0 =

q∑
i=1

ūi(αi + βi)−
q∑
i=1

ψi(x̄, ȳ, ū)(αq+i + βq+i),

ηi = −αq+i + ūiβq+i ∀i = 1, 2, . . . , q,

γi = −αi + ψi(x̄, ȳ, ū)βi ∀i = 1, 2, . . . , q.

Let (x̄, ȳ, ū) be a local optimal solution to (OPCC), where Ω = Rn+m+q. Suppose
that there exists an index set α ⊆ I0 such that the problem of minimizing f over Fα∪L
and the problem of minimizing f over F(I0\α)∪L are calm. Furthermore, suppose that

0 =

l∑
i=1

ξi∇Li(x̄, ȳ, ū) +

d∑
i=1

ζi∇gi(x̄, ȳ, ū)−
q∑
i=1

ηi∇ψi(x̄, ȳ, ū) + {(0, 0, γ)},(3.9)

0 = 〈ζ, g(x̄, ȳ, ū)〉 , ηI+ = 0, γL = 0(3.10)

implies that ηI0 = 0, γI0 = 0. Then the three equivalent conditions (a)–(c) hold.
Conversely, let (x̄, ȳ, ū) be a feasible solution to (OPCC), where Ω = Rn+m+q and
let f be pseudoconvex, g be convex, ψ,L be affine. If one of the equivalent conditions
(a)–(c) holds, then (x̄, ȳ, ū) is a minimum of f over all (x, y, u) ∈ ∪α⊆I0Fα∪L. If in
addition to the above assumptions I0 = {1, 2, . . . , q}, then (x̄, ȳ, ū) is a global solution
for (OPCC).

Proof. By the definition of the proximal coderivatives (Definition 2.3),

γ ∈ D∗πNRq+(ū, ψ(x̄, ȳ, ū))(η)

if and only if

(γ,−η) ∈ Nπ((ū, ψ(x̄, ȳ), GrNq
+).

384 J. J. YE

Hence the equivalence of condition (a) and condition (b) follows from Proposition 2.7.
The equivalence of condition (b) and condition (c) follows from Proposition 2.8.

Let (x̄, ȳ, ū) be a local optimal solution to (OPCC), where Ω = Rn+m+q. Then
it is also a local optimal solution to the problem of minimizing f over Fα∪L and
the problem of minimizing f over F(I0\α)∪L. By the calmness assumption for these

two problems, there exist ξi ∈ Rl, ζi ∈ Rd, ηi ∈ Rq, γi ∈ Rq, i = 1, 2, satisfying
(3.1)–(3.3), which implies that

0 =

l∑
i=1

(ξ1
i − ξ2

i)∇Li(x̄, ȳ, ū) +

d∑
i=1

(ζ1
i − ζ2

i)∇gi(x̄, ȳ, ū)

−
q∑
i=1

(η1
i − η2

i)∇ψi(x̄, ȳ, ū) + {(0, 0, γ1 − γ2)},

0 = 〈ζ1 − ζ2, g(x̄, ȳ, ū)〉, (η1 − η2)I+ = 0, (γ1 − γ2)L = 0.

By the assumption we arrive at η1
I0

= η2
I0
, γ1
I0

= γ2
I0

. Since by (3.3), η1
I0\α ≤ 0, γ1

α ≤ 0

and η2
α ≤ 0, γ2

I0\α ≤ 0, we have

η1
I0 = η2

I0 ≤ 0, γ1
Io = γ2

I0 ≤ 0.

That is, condition (a) holds.
The sufficient part of the theorem follows from the sufficient part of Proposition

3.1.
As observed in [4, Proposition 4.3.5], the necessary optimality conditions (3.4)–

(3.6) happen to be the KKT condition for the relaxed problem

(RP) minf(x, y, u)

s.t. ui ≥ 0, ψi(x, y, u) = 0 ∀i ∈ L(ū),

ui = 0, ψi(x, y, u) ≤ 0 ∀i ∈ I+(x̄, ȳ, ū),

ui ≥ 0, ψi(x, y, u) ≤ 0 ∀i ∈ I0(x̄, ȳ, ū),

L(x, y, u) = 0, g(x, y, u) ≤ 0,

and (ξ, ζ, η, γ) satisfies (3.4)–(3.6) if and only if it satisfies the KKT condition for the
subproblem of minimizing f over the feasible region Fα∪L, i.e., (3.1)–(3.3) with the
smooth problem data and Ω = Rn+m+q, for all index sets α ⊆ I0(x̄, ȳ, ū). Conse-
quently, if the strict Mangasarian–Fromovitz constraint qualification (SMFCQ) holds
for problem (RP) at (ξ, ζ, η, γ) which satisfies (3.4)–(3.6), then (ξ, ζ, η, γ) is the unique
multiplier which satisfies (3.4)–(3.6). Since the index sets α only affect the (ηI0 , γI0)
components of the multiplier (ξ, ζ, η, γ), we observe that the existence of multipliers
satisfying (3.4)–(3.6) is equivalent to the existence of multipliers satisfying (3.1)–(3.3)
for all index sets α ⊆ I0(x̄, ȳ, ū) with the components (ηI0 , γI0) having the same sign.
From the proof of Theorem 3.2, it is easy to see that the condition that no nonzero vec-
tors satisfy (3.9)–(3.10) is a sufficient condition for the existence of common (ηI0 , γI0)
components of the multiplier (ξ, ζ, η, γ) for all index sets α ⊆ I0(x̄, ȳ, ū). Hence this
condition refines the sufficient condition of a unique multiplier such as the SMFCQ
for the relaxed problem proposed in [4, Proposition 4.3.5].

We now give an example which does not have a unique multiplier satisfying (3.4)–
(3.6) but does satisfy the condition proposed in Theorem 3.2.

OPTIMIZATION PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS 385

Example 3.1 (see [4, Example 4.3.6]). Consider the following OPCC:

minimize x3 + u1 + u2

s.t. u ≥ 0, ψ(x, u) := (−x1 − u1,−x2 − u2) ≤ 0,

〈u, ψ(x, u)〉 = 0,

x3 ≥ 0, 2x3 ≥ 0.

(x̄, ū) = (x̄1, x̄2, 0, 0, 0), where x̄1, x̄2 are any real numbers, are obviously solutions
to the above problem. As pointed out in [4, Example 4.3.6], SMFCQ does not hold
for this problem. However, we can verify that it satisfies our condition. Indeed, the
equation (3.9) for this problem is

0 = ζ1(0, 0,−1, 0, 0) + ζ2(0, 0,−2, 0, 0)− η1(−1, 0, 0,−1, 0)

−η2(0,−1, 0, 0,−1) + (0, 0, 0, γ1, γ2),

which implies that η = 0, γ = 0.
Moreover, the calmness condition is satisfied since the constraint region for each

subproblem Fα∪L is a polyhedron due to the fact that ψ and g are both affine. Hence
by Theorem 3.2, if (x̄, ū) is a local minimum to the above problem, then there exist
ζ, η, γ such that

0 = (0, 0, 1, 1, 1) + ζ1(0, 0,−1, 0, 0) + ζ2(0, 0,−2, 0, 0)

−η1(−1, 0, 0,−1, 0)− η2(0,−1, 0, 0,−1) + (0, 0, 0, γ1, γ2),

ζ ≥ 0, ζ1x̄3 = 0, 2ζ2x̄3 = 0,

ηI0 ≤ 0, ηI+ = 0, γL = 0, γI0 ≤ 0,

which implies η1 = η2 = 0, γ1 = γ2 = 1, and x̄3 = 0. Since I0(x̄, ū) = {1, 2} for
(x̄, ū) = 0, 0 is a global optimal solution according to Theorem 3.2 and (x̄, 0, 0) with
x̄ 6= 0 are local optimal solutions.

To illustrate the application of the result obtained, we now consider the follow-
ing bilevel programming problem (BLQP), where the lower level problem is linear
quadratic:

(BLQP) min f(x, y)

s.t. y ∈ S(x),

Gx+Hy + a ≤ 0,

where G and H are l × n and l ×m matrices, respectively, a ∈ Rl, and S(x) is the
solution set of the quadratic programming problem with parameter x:

(QPx) min 〈y, Px〉+
1

2
〈y,Qy〉+ ptx+ qty

s.t. Dx+ Ey + b ≤ 0,

where Q ∈ Rm×m is a symmetric and positive semidefinite matrix, p ∈ Rn, q ∈ Rm,
P ∈ Rm×n, D and E are q × n and q ×m matrices, respectively, and b ∈ Rq.

Replacing the bilevel constraint by the KKT condition for the lower level problem,
it is easy to see that (BLQP) is equivalent to the problem

(KKT) min f(x, y)

s.t. 〈Dx+ Ey + b, u〉 = 0, u ≥ 0, Dx+ Ey + b ≤ 0,

Qy + Px+ q + E>u = 0,

Gx+Hy + a ≤ 0,

386 J. J. YE

which is an OPCC. Let (x̄, ȳ) be an optimal solution of (BLQP) and ū a corresponding
multiplier; i.e,

0 = Qȳ + Px̄+ q + E>ū,(3.11)

〈Dx̄+ Eȳ + b, ū〉 = 0, u ≥ 0.(3.12)

Then

L = {1 ≤ i ≤ q : ūi > 0},
I+ = {1 ≤ i ≤ q : ūi = 0, (Dx̄+ Eȳ + b)i < 0},
I0 = {1 ≤ i ≤ q : ūi = 0, (Dx̄+ Eȳ + b)i = 0}.

The feasible region of problem (KKT) is

F =

{
(x, y, u) ∈ Rn+m+q :

Qy + Px+ q + E>u = 0, Gx+Hy + a ≤ 0
〈u,Dx+ Ey + b〉 = 0, u ≥ 0, Dx+ Ey + b ≤ 0

}
,

and for any I ⊆ {1, 2, . . . , q},

FI =

(x, y, u) ∈ Rn+m+q :
Qy + Px+ q + E>u = 0, Gx+Hy + a ≤ 0
ui ≥ 0, (Dx+ Ey + b)i = 0 ∀i ∈ I
ui = 0, (Dx+ Ey + b)i ≤ 0 ∀i ∈ {1, 2, . . . , q}\I

 .

Since Fα∪L for any index set α ⊆ I0 has linear constraints only, the problem of
minimizing f over Fα∪L is calm. Hence the following result follows from Proposition
3.1.

Corollary 3.3. Let (x̄, ȳ) be an optimal solution of (BLQP) and ū a corre-
sponding multiplier. Suppose that f is locally Lipschitz near (x̄, ȳ). Then for each
α ⊆ I0, there exist ξ ∈ Rm, ζ ∈ Rd, η ∈ Rq such that

0 ∈ ∂̂f(x̄, ȳ) + {P>ξ} ×Q>ξ + {G>ζ} × {H>ζ} − {D>η} × {E>η},
ζ ≥ 0, 〈Gx̄+Hȳ + a, ζ〉 = 0,

ηα ≤ 0, ηI+ = 0, (Eξ)L = 0, (Eξ)α ≥ 0.

If f is either convex or pseudoconvex, then the above necessary condition is also
sufficient for a feasible solution (x̄, ȳ, ū) of (KKT) to be a minimum of f over all
(x, y, u) ∈ ∪α⊆I0Fα∪L. In particular, if f is either convex or pseudoconvex and I0 =
{1, 2, . . . , q}, then the above condition is sufficient for a feasible solution (x̄, ȳ) to be
a global optimum for (BLQP).

The following result follows from Theorem 3.2.
Corollary 3.4. Let (x̄, ȳ) be an optimal solution of (BLQP) and ū a corre-

sponding multiplier. Suppose that f is C1 and

0 = P>ξ +G>ζ −D>η,(3.13)

0 = Q>ξ +H>ζ − E>η,(3.14)

0 = 〈Gx̄+Hȳ + a, ζ〉 ,(3.15)

ηI+ = 0, (Eξ)L = 0

implies ηI0 = (Eξ)I0 = 0. Then there exist ξ ∈ Rm, ζ ∈ Rd, η ∈ Rq such that

0 = ∇f(x̄, ȳ) + {P>ξ} ×Q>ξ + {G>ζ} × {H>ζ} − {D>η} × {E>η},(3.16)

ζ ≥ 0, 〈Gx̄+Hȳ + a, ζ〉 = 0,(3.17)

ηI0 ≤ 0, ηI+ = 0, (Eξ)L = 0, (Eξ)I0 ≥ 0.

OPTIMIZATION PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS 387

Equivalently, there exist ξ ∈ Rl, ζ ∈ Rd, η ∈ Rq such that (3.16)–(3.17) are satisfied
and

(−Eξ,−η) ∈ Nπ((ū, Dx̄+ Eū+ b), GrNRq
+

).

Equivalently, there exist ξ ∈ Rl, ζ ∈ Rd, η ∈ Rq, α, β ∈ R2q
+ such that (3.16)–(3.17)

are satisfied and

0 =

q∑
i=1

ūi(αi + βi)−
q∑
i=1

(Dx̄+ Eȳ + b)i(αq+i + βq+i),

ηi = −αq+i + ūiβq+i ∀i = 1, 2, . . . , q,

(Eξ)i = αi − (Dx̄+ Eȳ + b)iβi ∀i = 1, 2, . . . , q.

Conversely, let (x̄, ȳ) be any vector in Rn+m satisfying the constraints Gx̄+Hȳ+a ≤ 0
and Dx̄ + Eȳ + b ≤ 0 and f be pseudoconvex. If there exists ū ∈ Rq that satisfies
(3.11)–(3.12) such that one of the above equivalent conditions holds, then (x̄, ȳ, ū) is a
minimum of f over all (x, y, u) ∈ ∪α⊆I0Fα∪L. In addition to the above assumptions,
if I0 = {1, 2, . . . , q}, then (x̄, ȳ) is a global minimum for (BLQP).

Acknowledgments. The author would like to thank Dr. Qing Lin for a helpful
discussion of Proposition 2.8.

REFERENCES

[1] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983;
reprinted by SIAM, Philadelphia, 1990.

[2] F .H. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Con-
ference Series in Applied Mathematics, Vol. 57, SIAM, Philadelphia, 1989.

[3] P. D. Loewen, Optimal Control via Nonsmooth Analysis, CRM Proceedings and Lecture
Notes, AMS, Providence, RI, 1993.

[4] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints,
Cambridge University Press, London, UK, 1996.

[5] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Piecewise Sequential Quadratic Programming for
Mathematical Programs with Nonlinear Complementarity Constraints, in Multilevel Op-
timization: Algorithms and Applications, Nonconvex Optim. Anal. 20, Kluwer Academic
Publishers, Norwell, MA, 1998.

[6] B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued map-
pings, J. Math. Anal. Appl., 183 (1994), pp. 250–288.

[7] J. J. Ye and X. Y. Ye, Necessary optimality conditions for optimization problems with vari-
ational inequality constraints, Math. Oper. Res., 22 (1997), pp. 977–997.

[8] J. J. Ye and D. L. Zhu, Optimality conditions for bilevel programming problems, Optimization,
33 (1995), pp. 9–27.

[9] J. J. Ye, D. L. Zhu, and Q. J. Zhu. Exact penalization and necessary optimality conditions
for generalized bilevel programming problems, SIAM J. Optim., 7 (1997), pp. 481–507.

A NEW UNCONSTRAINED DIFFERENTIABLE MERIT FUNCTION
FOR BOX CONSTRAINED VARIATIONAL INEQUALITY

PROBLEMS AND A DAMPED GAUSS–NEWTON METHOD∗

DEFENG SUN† AND ROBERT S. WOMERSLEY†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 388–413

Abstract. In this paper we propose a new unconstrained differentiable merit function f for box
constrained variational inequality problems VIP(l, u, F). We study various desirable properties of
this new merit function f and propose a Gauss–Newton method in which each step requires only the
solution of a system of linear equations. Global and superlinear convergence results for VIP(l, u, F)
are obtained. Key results are the boundedness of the level sets of the merit function for any uniform
P-function and the superlinear convergence of the algorithm without a nondegeneracy assumption.
Numerical experiments confirm the good theoretical properties of the method.

Key words. variational inequality problems, box constraints, merit functions, Gauss–Newton
method, superlinear convergence

AMS subject classifications. 90C33, 90C30, 65H10

PII. S1052623496314173

1. Introduction. Let F : Rn → Rn be a continuously differentiable mapping
and S be a nonempty closed convex set in Rn. The variational inequality problem,
denoted by VIP(S, F), is to find a vector x ∈ S such that

F (x)T (y − x) ≥ 0 for all y ∈ S.(1.1)

A box constrained variational inequality problem, denoted VIP(l, u, F), has

S = {x ∈ Rn| l ≤ x ≤ u},(1.2)

where li ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}, and li < ui, i = 1, . . . , n. In some papers,
e.g., [2, 7], VIP(l, u, F) is called the mixed complementarity problem. Further, if S =
Rn+, VIP(S, F) reduces to the nonlinear complementarity problem, denoted NCP(F),
which is to find x ∈ Rn such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0.(1.3)

Two comprehensive surveys of variational inequality problems and nonlinear comple-
mentarity problems are [23] and [34].

Recently much effort has been made to derive merit functions for VIP(S, F) and
then to use these functions to develop solution methods. Formally, we say that a
function h : X → [0,∞) is a merit function for VIP(S, F) on a set X (typically
X = Rn or X = S) provided h(x) ≥ 0 for all x ∈ X and x ∈ X satisfies (1.1) if and
only if h(x) = 0. Then, we may reformulate VIP(S, F) as the minimization problem

min
x∈X

h(x).(1.4)

∗Received by the editors December 27, 1996; accepted for publication (in revised form) April
17, 1998; published electronically March 17, 1999. This research was supported by the Australian
Research Council.

http://www.siam.org/journals/siopt/9-2/31417.html
†School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia

(sun@maths.unsw.edu.au, R.Womersley@unsw.edu.au).

388

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 389

Recent developments of this area are summarized in [20].
It is well known [9] that x ∈ Rn solves VIP(S, F) if and only if x is a solution of

the equation

H(x) := x−ΠS [x− α−1F (x)] = 0(1.5)

for an arbitrary positive constant α. Here ΠS is the orthogonal projection operator
onto S. An obvious merit function for (1.1) is

h(x) :=
1

2
‖H(x)‖2.(1.6)

We can find a solution of (1.1) by solving (1.4) with X = Rn or X = S. Unfor-
tunately the function h defined by (1.5) and (1.6) is not continuously differentiable,
so gradient-based methods cannot be used directly. Nevertheless global and super-
linear convergence properties have been obtained under some regularity conditions
[32, 33, 35, 36]. Another approach based on nonsmooth equations and nonsmooth
merit functions is Ralph’s path search method [41, 7].

Recent interests have focused on (unconstrained) differentiable merit functions.
Early differentiable merit functions such as the regularized gap function [19] are con-
strained ones. By applying the Moreau–Yosida regularization to some gap functions,
Yamashita and Fukushima [48] proposed unconstrained differentiable merit functions
for (1.1). These functions possess nice theoretical properties but are not easy to eval-
uate in general. Peng [37] showed that the difference of two regularized gap functions
constitutes an unconstrained differentiable merit function for VIP(S, F). Later, Ya-
mashita, Taji, and Fukushima [49] extended the idea of Peng [37] and investigated
some important properties related to this merit function. Specifically, the latter au-
thors considered the function hαβ : Rn → R defined by

hαβ(x) := fα(x)− fβ(x),(1.7)

where α and β are arbitrary positive parameters such that α < β and fα is the
regularized gap function

fα(x) := max
y∈S

{
F (x)T (x− y)− α

2
‖x− y‖2

}
.(1.8)

(The function fβ is defined similarly with α replaced by β.) In the special case
β = α−1 and α < 1 in (1.7), the function hαβ reduces to the merit function studied
by Peng [37]. The function hαβ defined by (1.7) is called the D-gap function. Based
on this merit function, globally and superlinearly convergent Newton-type methods
for solving VIP(S, F) have been proposed under the assumption that F is a strongly
monotone function [44]. It was pointed out by Peng and Yuan [38] that when S = Rn+,
β = α−1, and 0 < α < 1, the function hαβ is actually the implicit Lagrangian function

mα(x) := xTF (x) +
α

2

(‖[x− α−1F (x)]+‖2 − ‖x‖2

+ ‖[F (x)− α−1x]+‖2 − ‖F (x)‖2)(1.9)

introduced by Mangasarian and Solodov [30] for the nonlinear complementarity prob-
lem (1.3). Here [z]+ denotes the vector with components max{zi, 0}, i = 1, . . . , n. The
function mα(x) is one of the many unconstrained differentiable merit functions for
NCP(F) and its various properties were further studied in [11, 24, 28, 37, 46, 47, 49].

390 DEFENG SUN AND ROBERT S. WOMERSLEY

Another well-studied unconstrained differentiable merit function for NCP(F) has
the form

θ(x) :=
1

2

n∑
i=1

φ(xi, Fi(x))2,(1.10)

where φ : R2 → R is the function

φ(a, b) :=
√
a2 + b2 − (a+ b)(1.11)

introduced by Fischer [16] but attributed to Burmeister and called the Fischer–
Burmeister function. This merit function θ has been much studied and used in solving
nonlinear complementarity problems [6, 13, 14, 18, 21, 24, 25, 26, 45] (see [17] for a
survey). In particular, based on this merit function, globally and superlinearly con-
vergent Newton-type methods for NCP(F) were given in [6] under the assumption
that F is a uniform P -function, which is a weaker condition than the assumption
that F is a strongly monotone function. Unlike the implicit Lagrangian function mα,
the nice properties of the merit function θ based on the Fischer–Burmeister function
cannot be naturally generalized to VIP(S, F).

In this paper we study new unconstrained merit functions for the box constrained
variational inequality problem VIP(l, u, F) where S is of the form (1.2). Despite its
special structure, VIP(l, u, F) has many applications in engineering, economics, and
sciences. An available unconstrained differentiable merit function for VIP(l, u, F) is
the D-gap function hαβ . However, when reduced to NCP(F), the D-gap function hαβ
with β = α−1 and α ∈ (0, 1) becomes the implicit Lagrangian function mα. This
merit function suffers from the drawback that it needs more restrictive assumptions
to get globally and superlinearly convergent methods for NCP(F) than the merit
function θ(x) based on the Fischer–Burmeister function does. This motivates the
investigation of other unconstrained differentiable merit functions which need less
restrictive assumptions. Throughout this paper we adopt the convention that ±∞×
0 = 0. Then it is easy to see that VIP(l, u, F) is equivalent to its Karush–Kuhn–Tucker
(KKT) system

v − w = F (x),
xi − li ≥ 0, vi ≥ 0, (xi − li)vi = 0, i = 1, . . . , n,
ui − xi ≥ 0, wi ≥ 0, (ui − xi)wi = 0, i = 1, . . . , n.

(1.12)

If x ∈ Rn solves VIP(l, u, F), then (x, v, w) ∈ Rn × Rn × Rn with v = [F (x)]+ and
w = [−F (x)]+ solves the KKT system (1.12). Conversely, if (x, v, w) ∈ Rn×Rn×Rn
solves the KKT system (1.12), then x solves VIP(l, u, F). Define E : Rn×Rn×Rn →
R3n as

E(x, v, w) :=

 v − w − F (x)
φ(xi − li, vi), i = 1, . . . , n
φ(ui − xi, wi), i = 1, . . . , n

 .

Then an obvious unconstrained differentiable merit function for the KKT system
(1.12) is

ξ(x, v, w) :=
1

2
‖E(x, v, w)‖2.

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 391

The merit function ξ for VIP(l, u, F) has many good properties; for example, see [10].
However, it also suffers from several drawbacks. A disadvantage of this merit function
is that the level sets Lc(ξ) of ξ are in general not bounded for all nonnegative numbers
c. Here the level sets Lc(g) of g : Rm → R are

Lc(g) := {z ∈ Rm| g(z) ≤ c}.

This can easily be shown by taking li = −1, ui = 1, and vi = wi → ∞, i = 1, . . . , n.
The unboundedness of the level sets could allow the sequence of iterates to diverge
to infinity. This unfavorable property is caused by introducing the variables v and
w. So it appears better to consider VIP(l, u, F) in its original space instead of in the
larger-dimensional space.

We propose a new merit function which has bounded level sets for any uniform
P -function (see section 3) and establish superlinear convergence of a damped Gauss–
Newton algorithm without a nondegeneracy assumption (see section 7). First define
ψ : R2 → R+ as

ψ(a, b) := ([−φ(a, b)]+)2 + ([−a]+)2,(1.13)

where φ(a, b) is the Fischer–Burmeister function defined in (1.11).
The following proposition is simple but is essential to the discussion of this paper.
Proposition 1.1. The function ψ defined by (1.13) is continuously differentiable

on the whole space of R2 and has the property

ψ(a, b) = 0⇐⇒ a ≥ 0, ab+ = 0.(1.14)

Proof. Since both ([−φ(a, b)]+)2 and ([−a]+)2 are continuously differentiable, ψ
is continuously differentiable. By considering the fact that

a ≥ 0,
√
a2 + b2 − (a+ b) ≥ 0⇐⇒ a ≥ 0, ab+ = 0,

we get (1.14) easily.
After simple computation we can see that the function ψ can be rewritten as

ψ(a, b) = ϕ(a, b)2,(1.15)

where

ϕ(a, b) :=

{
[−φ(a, b)]+ if a ≥ 0,

a otherwise,

=

{ −φ(a, [b]+) if a ≥ 0,
a otherwise,

= min{[−φ(a, b)]+, a}.

(1.16)

Such equivalent expressions for ψ and ϕ will be useful in the following discussions.
Note that ϕ is not differentiable at (0, b) for any b ≤ 0 and at (a, 0) for any a ≥ 0,
but ψ is continuously differentiable.

Since for any b ∈ R

lim
a→∞φ(a, b) = −b,

392 DEFENG SUN AND ROBERT S. WOMERSLEY

it is natural to define

φ(+∞, b) = −b.

Thus, for any b ∈ R we define

ψ(+∞, b) = ([b]+)2.

Based on ψ, we define f : Rn → R as

f(x) :=
1

2

[
n∑
i=1

ψ(xi − li, Fi(x)) +
n∑
i=1

ψ(ui − xi,−Fi(x))

]
.(1.17)

This function is an unconstrained differentiable merit function for VIP(l, u, F) (see
Theorem 2.2) and has many good properties. When VIP(l, u, F) reduces to NCP(F),
i.e., li = 0 and ui = +∞, i = 1, . . . , n, the function (1.17) becomes

f(x) =
1

2

n∑
i=1

η(xi, Fi(x)),(1.18)

where for any (a, b) ∈ R2

η(a, b) :=

((a+ b)−√a2 + b2)2 if a ≥ 0, b ≥ 0,

b2 if a ≥ 0, b < 0,
a2 if a < 0, b ≥ 0,

a2 + b2 if a < 0, b < 0.

(1.19)

The organization of this paper is as follows. In the next section we study some
preliminary properties of the new merit function. In section 3 we study the conditions
under which the level sets of f are bounded. In section 4 we give conditions which
ensure that a stationary point of f is a solution of VIP(l, u, F). Section 5 is devoted to
the nonsingularity of the iteration matrices. In section 6 we state the algorithm. We
analyze the convergence properties of the algorithm in section 7 and give numerical
results in section 8. Some concluding remarks are given in section 9.

For a continuously differentiable function F : Rn → Rn, we denote the Jacobian
of F at x ∈ Rn by F ′(x), whereas the transposed Jacobian is ∇F (x). Throughout ‖·‖
denotes the Euclidean norm. If J and K are index sets such that J ,K ⊆ {1, . . . ,m},
we denote by WJK the |J | × |K| submatrix of W consisting of entries Wjk, j ∈ J ,
k ∈ K. If WJJ is nonsingular, we denote by W/WJJ the Schur complement of WJJ
in W , i.e., W/WJJ := WKK −WKJW−1

JJWJK, where K = {1, . . . ,m}\J . If w is an
m vector, we denote by wJ the subvector with components j ∈ J .

2. Some preliminaries. By noting that x ∈ Rn solves VIP(l, u, F) if and only
if H(x) = 0 and that ±∞× 0 = 0, we have the following results directly.

Lemma 2.1. A vector x ∈ Rn solves VIP(l, u, F) if and only if it satisfies

li ≤ xi ≤ ui, (xi − li)[Fi(x)]+ = 0, (ui − xi)[−Fi(x)]+ = 0, i = 1, . . . , n.(2.1)

Theorem 2.2. The function f(x) defined by (1.17) is nonnegative on Rn, and
f(x) = 0 if and only if x ∈ Rn solves VIP(l, u, F). In addition, if F is continuously
differentiable, then f is also continuously differentiable.

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 393

Proof. Since ψ(a, b) ≥ 0 for all (a, b) ∈ R2, f(x) is nonnegative on Rn. From
Proposition 1.1 and Lemma 2.1, x ∈ Rn solves VIP(l, u, F) if and only if it satisfies

ψ(xi − li, Fi(x)) = 0, ψ(ui − xi,−Fi(x)) = 0, i = 1, . . . , n.

Thus f(x) = 0 if and only if x ∈ Rn solves VIP(l, u, F). Moreover, it is easy to see
that if F is continuously differentiable, then so is F , as ψ is continuously differentiable
by Proposition 1.1.

Note that although f is continuously differentiable, it is not twice continuously
differentiable and its gradient ∇f may not be locally Lipschitz continuous. For such
an example we refer to the one-dimensional function given in section 1 of [44]. So
a direct use of Newton’s method for minimizing f(x) may fail. However, we can
still expect to obtain globally and superlinearly convergent Newton-type methods for
minimizing f(x). The tool used here is semismoothness.

Semismoothness was originally introduced by Mifflin [31] for functionals. Convex
functions, smooth functions, and piecewise linear functions are examples of semi-
smooth functions. The composition of semismooth functions is still a semismooth
function (see [31]). In [40] Qi and Sun extended the definition of semismooth functions
to G : Rn → Rm. A locally Lipschitz continuous vector valued function G : Rn → Rm
has a generalized Jacobian ∂G(x) as in Clarke [5]. G is said to be semismooth at
x ∈ Rn if

lim
V∈∂G(x+th′)
h′→h, t↓0

{V h′}

exists for any h ∈ Rn. It has been proved in [40] that G is semismooth at x if and
only if all its component functions are. Also G′(x;h), the directional derivative of G
at x in the direction h, exists for any h ∈ Rn and is equal to the above limit if G is
semismooth at x.

Lemma 2.3 (see [40]). Suppose that G : Rn → Rm is a locally Lipschitzian
function and is semismooth at x. Then

(i) for any V ∈ ∂G(x+ h), h→ 0,

V h−G′(x;h) = o(‖h‖);

(ii) for any h→ 0,

G(x+ h)−G(x)−G′(x;h) = o(‖h‖).

A stronger notion than semismoothness is strong semismoothness. G is said to
be strongly semismooth at x if G is semismooth at x, and for any V ∈ ∂G(x + h),
h→ 0,

V h−G′(x;h) = O(‖h‖2).

(Note that in [40] and [39] different names for strong semismoothness are used.) A
function G is said to be a (strongly) semismooth function if it is (strongly) semismooth
everywhere.

In [39] Qi defined the generalized Jacobian

∂BG(x) :=

{
V ∈ Rn×n| V = lim

xk→x
G′(xk), G is differentiable at xk for all k

}
.

394 DEFENG SUN AND ROBERT S. WOMERSLEY

This concept will be used in the design of our algorithm.

Let ϕ : R2 → R be the function defined by (1.16) and define Ψ, Φ : Rn → Rn by

Ψi(x) := ϕ(xi − li, Fi(x)) = min{[−φ(xi − li, Fi(x))]+, xi − li}

and

Φi(x) := ϕ(ui − xi,−Fi(x)) = min{[−φ(ui − xi,−Fi(x))]+, ui − xi}

for i = 1, . . . , n. Define G : Rn → Rn by

Gi(x) :=
√

Ψi(x)2 + Φi(x)2

=

(li − xi) if xi < li & Fi(x) ≥ 0,
−φ(xi − li, Fi(x)) if li ≤ xi ≤ ui & Fi(x) ≥ 0,√

(ui − xi)2 + φ(xi − li, Fi(x))2 if xi > ui & Fi(x) ≥ 0,√
(xi − li)2 + φ(ui − xi,−Fi(x))2 if xi < li & Fi(x) < 0,

−φ(ui − xi,−Fi(x)) if li ≤ xi ≤ ui & Fi(x) < 0,
(xi − ui) if xi > ui & Fi(x) < 0

(2.2)

for i = 1, . . . , n and where φ(·) is the Fischer–Burmeister function defined in (1.11).
Then the merit function f(x) defined by (1.17) can be rewritten as

f(x) =
1

2
‖G(x)‖2.(2.3)

Proposition 2.4. Suppose that F is continuously differentiable at x ∈ Rn. Then
G is semismooth at x. Moreover if F ′ is locally Lipschitz continuous around x, then
G is strongly semismooth at x.

Proof. We need only to prove that for each i, Gi is (strongly) semismooth at
x under the assumptions. First note that φ(·) is a strongly semismooth function
[18, Lemma 20] and [·]+ : R → R+ is strongly semismooth everywhere. Then by
Theorem 19 in Fischer [18], which states that the composition of strongly semismooth
functions is a strongly semismooth function, we know that [−φ(·)]+ is strongly semi-
smooth everywhere. It is easy to see that min{·, ·} : R2 → R is strongly semismooth
everywhere. Thus, by using Theorem 19 in Fischer [18] again, ϕ : R2 → R is a
strongly semismooth function. Then by Theorem 5 in Mifflin [31], which states that
the composition of semismooth functions is semismooth, we know that Ψi and Φi are
semismooth at x, and because

√
α2 + β2 is a strongly semismooth function of α and

β, Gi is semismooth at x. If F ′ is locally Lipschitz continuous, then (yi−li, Fi(y)) and
(ui − yi,−Fi(y)) are strongly semismooth at x. Thus, by Theorem 19 in Fischer [18]
we know that Ψi and Φi are strongly semismooth at x. So, Gi is strongly semismooth
at x.

We need the following definitions concerning matrices and functions.

Definition 2.5. A matrix W ∈ Rn×n is called a

• P0-matrix if each of its principal minors is nonnegative;
• P -matrix if each of its principal minors is positive.

Obviously a positive semidefinite matrix is a P0-matrix and a positive definite
matrix is a P -matrix.

Definition 2.6. A function F : Rn → Rn

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 395

• is a P0-function if for every x and y in Rn with x 6= y there is an index i
such that

xi 6= yi, (xi − yi)(Fi(x)− Fi(y)) ≥ 0;

• is a P -function if for every x and y in Rn with x 6= y there is an index i such
that

xi 6= yi, (xi − yi)(Fi(x)− Fi(y)) > 0;

• is a uniform P -function if there exists a positive constant µ such that for
every x and y in Rn there is an index i such that

(xi − yi)(Fi(x)− Fi(y)) ≥ µ‖x− y‖2;

• is a monotone function if for every x and y in Rn

(x− y)T (F (x)− F (y)) ≥ 0;

• is a strongly monotone function if there exists a positive constant µ such that
for every x and y in Rn

(x− y)T (F (x)− F (y)) ≥ µ‖x− y‖2.

It is known that every strongly monotone function is a uniform P -function and ev-
ery monotone function is a P0-function. Furthermore, the Jacobian of a continuously
differentiable P0-function (uniform P -function) is a P0-matrix (P -matrix).

3. Bounded level sets. In this section we study the conditions under which
the level sets of the merit function f are bounded. Since for any c ∈ R ∪ {−∞},
d ∈ R ∪ {∞} with c < d and a ∈ R, Π[c,d]∩R(a) = Π[c,d](a), for the sake of simplicity
we use Π[c,d](a) instead of Π[c,d]∩R(a) to represent the orthogonal projection of a
onto [c, d] ∩ R. Boundedness results for NCP(F) with uniform P -functions have been
established by Jiang [24], Facchinei and Soares [14], and De Luca, Facchinei, and
Kanzow [6]. Here these results are extended to VIP(l, u, F).

The following lemma is essential to develop conditions which ensure bounded level
sets.

Lemma 3.1. For four given numbers a, b ∈ R, c ∈ R ∪ {−∞}, and d ∈ R ∪ {∞}
with c < d, we have

γ1

∣∣a−Π[c,d][a− b]
∣∣2 ≤ ψ(a− c, b) + ψ(d− a,−b) ≤ γ2

∣∣a−Π[c,d][a− b]
∣∣2(3.1)

with γ1 = 1/(6 + 4
√

2) and γ2 = 12 + 8
√

2.
Proof. First, from Tseng [45], for any two numbers v, w ∈ R we have

1

2 +
√

2
|min{v, w}| ≤ |φ(v, w)| ≤ (2 +

√
2)|min{v, w}|.(3.2)

Then by using the second equality of (1.16), if v ≥ 0 we have

1

2 +
√

2
|min{v, w+}| ≤ |ϕ(v, w)| ≤ (2 +

√
2)|min{v, w+}|(3.3)

396 DEFENG SUN AND ROBERT S. WOMERSLEY

and if v < 0 we have

|ϕ(v, w)| = |v| = |min{v, w+}|.(3.4)

Thus, for all (v, w) ∈ R2 we have

1

6 + 4
√

2
|min{v, w+}|2 ≤ ϕ(v, w)2 ≤ (6 + 4

√
2)|min{v, w+}|2.

Let

t := |min{a− c, b+}|2 + |min{d− a, [−b]+}|2(3.5)

=

|min{a− c, b}|2 + (d− a)2 if b ≥ 0 & a ≥ d,
|min{a− c, b}|2 if b ≥ 0 & a < d,
|min{d− a,−b}|2 if b < 0 & a ≥ c,
(a− c)2 + |min{d− a,−b}|2 if b < 0 & a < c.

Then

1

6 + 4
√

2
t ≤ ψ(a− c, b) + ψ(d− a,−b) ≤ (6 + 4

√
2)t.(3.6)

Denote

r := |a−Π[c,d][a− b]|2 =

 (a− c)2 if a− b ≤ c,
b2 if c < a− b < d,
(a− d)2 if a− b ≥ d.

Next we prove that

r ≤ t ≤ 2r.(3.7)

First, if either b ≥ 0 and a < d or b < 0 and a > c, then we can directly verify that
r = t. Next, we consider the other two cases.

Case 1. b ≥ 0 and a ≥ d. Then

t = |min{a− c, b}|2 + (d− a)2 = (d− a)2 +

{
(a− c)2 if b ≥ a− c,
b2 if b < a− c.

After simple computation we get

r ≤ t ≤ 2r.

Case 2. b < 0 and a ≤ c. Then

t = (a− c)2 + |min{d− a,−b}|2 = (a− c)2 +

{
(d− a)2 if d− a ≤ −b,
b2 if d− a > −b.

Again, after simple computation we get

r ≤ t ≤ 2r.

Overall we have proved (3.7). By combining (3.6) and (3.7), we get (3.1).

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 397

Theorem 3.2. Suppose that for any sequence {xk} with ‖xk‖ → ∞ there exists
an index i ∈ {1, . . . , n} independent of k such that

|xki −Π[li,ui][x
k
i − Fi(xk)]| → ∞.(3.8)

Then for any c ≥ 0, Lc(f) is bounded. In particular, if S is bounded or if F is a
uniform P -function, then Lc(f) is bounded.

Proof. Suppose that for some given c ≥ 0, Lc(f) is unbounded. Then there exists
a sequence {xk} diverging to infinity and satisfying

f(xk) ≤ c.

But, on the other hand, from Lemma 3.1 and the assumption that there exists an
index i, independent of k, such that (3.8) holds, we have

f(xk) ≥ 1

2
γ1|xki −Π[li,ui][x

k
i − Fi(xk)]|2 →∞,

where γ1 = 1/(6 + 4
√

2). This is a contradiction. So for any c ≥ 0, Lc(f) is bounded
if (3.8) holds.

By noting that if S is bounded then (3.8) holds automatically, we can conclude
that for any given c ≥ 0, Lc(f) is bounded.

If F is a uniform P -function, then by [14] for any sequence {xk} with ‖xk‖ → ∞
there exists an index i ∈ {1, . . . , n} independent of k such that

|xki | → ∞, |Fi(xk)| → ∞,

which, in turn, implies (3.8). This completes the proof.

4. Stationary point conditions. In general a stationary point of a merit func-
tion may not be a solution of the underlying problem. Many people [6, 11, 14, 21, 24,
25, 26, 29, 47] have studied the conditions under which a stationary point is a solution
of NCP(F). In this section we study the conditions under which a stationary point
of (1.17) is a solution of VIP(l, u, F). Similar work has been done in [10, 27] for box
constrained variational inequality problems.

First let us study the structure of ∂BGi(x), where Gi(·), i = 1, . . . , n are defined
in (2.2). Denote by ei the ith unit row vector of Rn, i = 1, . . . , n. For any x ∈ Rn we
discuss five cases, each of which includes three subcases.

Case 1. xi < li.
Case 1.1 Fi(x) > 0. Then Gi(x) = li − xi and ∂BGi(x) = {−ei}.
Case 1.2. Fi(x) < 0. Then

Gi(x) =
√

(xi − li)2 + φ(ui − xi,−Fi(x))2,

∂BGi(x) = {αi(−ei) + βi(−F ′i (x))},

where

αi =
li − xi
Gi(x)

+
φ(ui − xi,−Fi(x))

Gi(x)

(
ui − xi√

(ui − xi)2 + (−Fi(x))2
− 1

)
,

βi =
φ(ui − xi,−Fi(x))

Gi(x)

(
−Fi(x)√

(ui − xi)2 + (−Fi(x))2
− 1

)
.

398 DEFENG SUN AND ROBERT S. WOMERSLEY

Case 1.3. Fi(x) = 0. Then Gi(x) = li − xi and ∂BGi(x) = {−ei}.
Case 2. xi > ui.

Case 2.1. Fi(x) > 0. Then

Gi(x) =
√

(ui − xi)2 + φ(xi − li, Fi(x))2,

∂BGi(x) = {αiei + βiF
′
i (x)},

where

αi =
xi − ui
Gi(x)

+
φ(xi − li, Fi(x))

Gi(x)

(
xi − li√

(xi − li)2 + Fi(x)2
− 1

)
,

βi =
φ(xi − li, Fi(x))

Gi(x)

(
Fi(x)√

(xi − li)2 + Fi(x)2
− 1

)
.

Case 2.2. Fi(x) < 0. Then Gi(x) = xi − ui and ∂BGi(x) = {ei}.
Case 2.3. Fi(x) = 0. Then Gi(x) = xi − ui and ∂BGi(x) = {ei}.

Case 3. li < xi < ui.
Case 3.1. Fi(x) > 0. Then

Gi(x) = −φ(xi − li, Fi(x)),

∂BGi(x) = {αiei + βiF
′
i (x)},

where

αi = 1− xi − li√
(xi − li)2 + Fi(x)2

and βi = 1− Fi(x)√
(xi − li)2 + Fi(x)2

.

Case 3.2. Fi(x) < 0. Then

Gi(x) = −φ(ui − xi,−Fi(x)),

∂BGi(x) = {αi(−ei) + βi(−F ′i (x))},
where

αi = 1− ui − xi√
(ui − xi)2 + Fi(x)2

and βi = 1− −Fi(x)√
(ui − xi)2 + Fi(x)2

.

Case 3.3. Fi(x) = 0. Then Gi(x) = 0 and ∂BGi(x) ⊆ {F ′i (x),−F ′i (x)}.
Case 4. xi = li.

Case 4.1. Fi(x) > 0. Then Gi(x) = 0 and ∂BGi(x) ⊆ {ei,−ei}.
Case 4.2. Fi(x) < 0. Then

Gi(x) = −φ(ui − li,−Fi(x)),

∂BGi(x) = {αi(−ei) + βi(−F ′i (x))},
where

αi = 1− ui − li√
(ui − li)2 + Fi(x)2

and βi = 1− −Fi(x)√
(ui − li)2 + Fi(x)2

.

Case 4.3. Fi(x) = 0. Then Gi(x) = 0 and

∂BGi(x) ⊆ {αiei + βiF
′
i (x)} ∪ {ᾱi(−ei) + β̄i(−F ′i (x))},

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 399

where αi, βi ∈ [0, 1] satisfy (αi − 1)2 + (βi − 1)2 = 1 and ᾱi, β̄i ∈ [0, 1]
satisfy ᾱ2

i + β̄2
i = 1.

Case 5. xi = ui.
Case 5.1. Fi(x) > 0. Then

Gi(x) = −φ(ui − li, Fi(x)),

∂BGi(x) = {αiei + βiF
′
i (x)},

where

αi = 1− ui − li√
(ui − li)2 + Fi(x)2

and βi = 1− Fi(x)√
(ui − li)2 + Fi(x)2

.

Case 5.2. Fi(x) < 0. Then Gi(x) = 0 and ∂BGi(x) ⊆ {ei,−ei}.
Case 5.3. Fi(x) = 0. Then Gi(x) = 0 and

∂BGi(x) ⊆ {αi(−ei) + βi(−F ′i (x))} ∪ {ᾱiei + β̄iF
′
i (x)},

where αi, βi ∈ [0, 1] satisfy (αi − 1)2 + (βi − 1)2 = 1 and ᾱi, β̄i ∈ [0, 1]
satisfy ᾱ2

i + β̄2
i =1.

For any x ∈ Rn define the index sets Ajk(x) by

Ajk(x) := {i| Case j.k occurs at xi, i = 1, . . . , n}, j = 1, . . . , 5, k = 1, . . . , 3.

For example, some i ∈ A42(x) means that Case 4.2 occurs at xi, i.e., xi = li and
Fi(x) < 0. Furthermore let

A−∞31 (x) := {i| i ∈ A31(x) and li = −∞, i = 1, . . . , n},
A∞32(x) := {i| i ∈ A32(x) and ui =∞, i = 1, . . . , n},
A∞42(x) := {i| i ∈ A42(x) and ui =∞, i = 1, . . . , n},
A−∞51 (x) := {i| i ∈ A51(x) and li = −∞, i = 1, . . . , n}.

For convenience we define the four additional index sets

O(x) := A11(x) ∪ A13(x) ∪ A22(x) ∪ A23(x),

P(x) := A−∞31 ∪ A∞32 ∪ A∞42 ∪ A−∞51 ,

Q(x) := A33(x) ∪ A41(x) ∪ A43(x) ∪ A52(x) ∪ A53(x),

R(x) := {1, . . . , n}\{O(x) ∪ P(x) ∪Q(x)}.

Lemma 4.1. For any x ∈ Rn, each i ∈ {1, . . . , n}, and any W ∈ ∂BGi(x) we
have that

i) if i ∈ O(x), then either WTGi(x) = Gi(x)eTi or WTGi(x) = −Gi(x)eTi ;
ii) if i ∈ P(x), then either WTGi(x) = Gi(x)∇Fi(x) or WTGi(x) = −Gi(x)∇Fi(x);
iii) if i ∈ Q(x), then WTGi(x) = 0;
iv) if i ∈ R, then there exist ci and di such that WTGi(x) = cie

T
i +di∇Fi(x) and

cidi > 0.
Proof. Parts i)–iii) can be easily verified. For part iv) we need only to note

that if i ∈ R, then Gi(x) 6= 0 and there exist positive numbers αi and βi such that
W = αiei + βiF

′
i (x) or W = αi(−ei) + βi(−F ′i (x)).

400 DEFENG SUN AND ROBERT S. WOMERSLEY

Without causing any confusion we will use O, P, Q, and R to represent O(x),
P(x), Q(x), and R(x), respectively. Without loss of generality, assume that ∇F (x)
is partitioned in the form

∇F (x) =

∇F (x)OO ∇F (x)OP ∇F (x)OQ ∇F (x)OR
∇F (x)PO ∇F (x)PP ∇F (x)PQ ∇F (x)PR
∇F (x)QO ∇F (x)QP ∇F (x)QQ ∇F (x)QR
∇F (x)RO ∇F (x)RP ∇F (x)RQ ∇F (x)RR

 .

Now we are ready to give the main result of this section.
Theorem 4.2. Suppose that x ∈ Rn is a stationary point of f , i.e., ∇f(x) = 0,

and that ∇F (x)PP is nonsingular and its Schur complement in ∇F (x)PP ∇F (x)PR

∇F (x)RP ∇F (x)RR

is a P0-matrix. Then x is a solution of VIP(l, u, F).

Proof. Since f is continuously differentiable and G is locally Lipschitz continuous,
by Clarke [5] we have that for any y ∈ Rn and any V ∈ ∂G(y)

∇f(y) = V TG(y).

Let V be an element of ∂BG(x)(⊆ ∂G(x)). Then for i = 1, . . . , n there exist matrices
Wi ∈ ∂BGi(x) such that

V = W1 ×W2 × · · · ×Wn.

Thus

∇f(x) =

n∑
i=1

WT
i Gi(x) = 0.

By considering parts i) and ii) of Lemma 4.1, without loss of generality we assume
that

WT
i Gi(x) = Gi(x)eTi for i ∈ O and WT

i Gi(x) = Gi(x)∇Fi(x) for i ∈ P.
Thus from Lemma 4.1,∑

i∈O
Gi(x)eTi +

∑
i∈P

Gi(x)∇Fi(x) +
∑
i∈R

(Mie
T
i +Ni∇Fi(x)) = 0,(4.1)

where

Mi := ciGi(x), Ni := diGi(x), i ∈ R,
and ci and di are numbers defined in part iv) of Lemma 4.1. Equation (4.1) can be
rewritten as

GO(x) +∇F (x)OPGP(x) +∇F (x)ORNR = 0,
∇F (x)PPGP(x) +∇F (x)PRNR = 0,
∇F (x)QPGP(x) +∇F (x)QRNR = 0,

∇F (x)RPGP(x) +MR +∇F (x)RRNR = 0.

(4.2)

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 401

From the second equality of (4.2) we have

GP(x) = − (∇F (x)PP)
−1∇F (x)PRNR.

This and the fourth equality of (4.2) give

MR + [∇F (x)RR −∇F (x)RP(∇F (x)PP)−1∇F (x)PR]NR = 0.(4.3)

Since ∇F (x)RR − ∇F (x)RP(∇F (x)PP)−1∇F (x)PR is a P0-matrix, there exists an
index j ∈ {1, . . . , |R|} such that

(NR)j{[∇F (x)RR −∇F (x)RP(∇F (x)PP)−1∇F (x)PR]NR}j ≥ 0,

which, with (4.3), gives

(MR)j(NR)j ≤ 0.

This contradicts part iv) of Lemma 4.1. So, we have

R = ∅.
Then from the second and the first equalities of (4.2) we get

GP(x) = GO(x) = 0.

Thus, by Lemma 4.1 we have proved that G(x) = 0, so x is a solution of VIP(l, u, F)
by Theorem 2.2.

The conditions used in Theorem 4.2 are quite mild. In particular, if all li = −∞
and all ui =∞, i.e., VIP(l, u, F) reduces to the nonlinear system of equations F (x) =
0, we require only that ∇F (x) is nonsingular. Also, if all li and ui are bounded we
require only that ∇F (x)RR is a P0-matrix, which is implied by assuming that F is a
P0-function.

5. Nonsingularity conditions. In this section we study the conditions under
which the elements of a generalized Jacobian are nonsingular at a solution point
x∗ ∈ Rn of VIP(l, u, F). The basic idea follows from Facchinei and Soares [14]. Since
x∗ is a solution of VIP(l, u, F),

O = P = R = ∅, Q = {1, . . . , n},
where O, P, Q, and R are abbreviations of O(x∗), P(x∗), Q(x∗), and R(x∗), respec-
tively. For notational convenience let

I := A33(x∗) = {i ∈ 1, . . . , n | li < x∗i < ui and Fi(x
∗) = 0},

J := A43(x∗) ∪ A53(x∗)
= {i ∈ 1, . . . , n | x∗i = li and Fi(x

∗) = 0}
∪{i ∈ 1, . . . , n | x∗i = ui and Fi(x

∗) = 0},
K := A41(x∗) ∪ A52(x∗)

= {i ∈ 1, . . . , n | x∗i = li and Fi(x
∗) > 0}

∪{i ∈ 1, . . . , n | x∗i = ui and Fi(x
∗) < 0}.

Then

I ∪ J ∪ K = {1, . . . , n}.

402 DEFENG SUN AND ROBERT S. WOMERSLEY

By rearrangement we assume that F ′(x∗) can be rewritten as

F ′(x∗) =

 F ′(x∗)II F ′(x∗)IJ F ′(x∗)IK
F ′(x∗)JI F ′(x∗)JJ F ′(x∗)JK
F ′(x∗)KI F ′(x∗)KJ F ′(x∗)KK

 .

VIP(l, u, F) is said to be R-regular at x∗ if F ′(x∗)II is nonsingular and its Schur
complement in the matrix (

F ′(x∗)II F ′(x∗)IJ
F ′(x∗)JI F ′(x∗)JJ

)
is a P -matrix; see [14]. R-regularity coincides with the notion of regularity introduced
in [42].

Proposition 5.1. Suppose that VIP(l, u, F) is R-regular at x∗. Then all V ∈
∂BG(x∗) are nonsingular.

Proof. Since

∂BG(x∗) ⊆ ∂CG(x∗) := ∂BG1(x∗)× ∂BG2(x∗)× · · · × ∂BGn(x∗),

it is sufficient to prove the conclusion by showing that all U ∈ ∂CG(x∗) are nonsin-
gular. Let U be an arbitrary element of ∂CG(x∗). By the discussion of section 4 on
the structure of ∂BGi(x

∗) and as x∗ is a solution of VIP(l, u, F), we have

Ui =

 F ′i (x
∗) or − F ′i (x∗) if i ∈ I,

αiei + βiF
′
i (x
∗) or αi(−ei) + βi(−F ′i (x∗)) if i ∈ J ,

ei or − ei if i ∈ K,
(5.1)

where in (5.1) αi and βi are nonnegative numbers satisfying (αi− 1)2 + (βi− 1)2 = 1
or (αi)

2 + (βi)
2 = 1 for i ∈ J . By using standard analysis (see, for example, [14,

Proposition 3.2]) we can prove that U is nonsingular under the assumptions and, so,
complete the proof.

Theorem 5.2. Suppose that VIP(l, u, F) is R-regular at x∗. Then there exist
a neighborhood N(x∗) of x∗ and a constant c such that for any x ∈ N(x∗) and any
V ∈ ∂BG(x), V is nonsingular and satisfies

‖V −1‖ ≤ c.

Proof. This follows directly from Proposition 5.1 and [39, Lemma 2.6].
Corollary 5.3. If F ′(x∗) is a P -matrix, then the conclusion of Theorem 5.2

holds.
Proof. This corollary is established by noting that if F ′(x∗) is a P -matrix, then

VIP(l, u, F) is R-regular at x∗.
We note that Sun, Fukushima, and Qi [44, Theorem 3.2] proved a similar result to

Corollary 5.3 for the D-gap function hαβ(x) defined by (1.7). For VIP(l, u, F), their
condition becomes

λmin(F ′(x∗) + F ′(x∗)T) ≥ α+ β−1‖∇F (x∗)‖2,(5.2)

where 0 < α < β and λmin(W) denotes the smallest eigenvalue of the symmetric
matrix W . Condition (5.2) implies that F ′(x∗) must be a positive definite matrix and

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 403

hence a P -matrix. It may not be satisfied if F ′(x∗) is only a P -matrix. For example,
let n = 2, S = R2

+, and F (x) = Wx+ q with

W =

(
1 2
0 1

)
, q =

(
0
0

)
.

Then x∗ = (0, 0)T , F ′(x∗) = W is a P -matrix, but (5.2) fails to hold because
λmin(F ′(x∗) + F ′(x∗)T) = 0. Thus our assumption is weaker. In fact, one of our
main motivations of this paper is to pursue a simple and differentiable merit func-
tion for VIP(l, u, F) such that the iteration matrix is nonsingular if F ′(x∗) is only a
P -matrix.

6. A damped Gauss–Newton method. In this section a damped Gauss–
Newton method for solving VIP(l, u, F) is outlined. It is similar to that in Facchinei
and Kanzow [12], except that a negative gradient direction is not used. The motiva-
tion for using damped Gauss–Newton methods for solving semismooth equations is
discussed in [12].

Let I ∈ Rn×n be the identity matrix. An outline of a damped Gauss–Newton
method is as follows.

Step 0. Choose x0 ∈ Rn, ρ ∈ (0, 1), p1, p2 > 0, and σ ∈ (0, 1/2). Set k := 0.

Step 1. If ‖∇f(xk)‖ = 0, stop.

Step 2. Select an element Vk ∈ ∂BG(xk). Let dk be the solution of the linear
system (

V Tk Vk + p1‖G(xk)‖p2I
)
d = −∇f(xk).(6.1)

Step 3. Let mk be the smallest nonnegative integer m such that

f(xk + ρmdk) ≤ f(xk) + σρm∇f(xk)T dk.(6.2)

Set xk+1 := xk + ρmkdk, k := k + 1 and go to Step 1.

The above method is different from the classical damped Gauss–Newton method
for solving nonlinear least squares problems in that G is not continuously differen-
tiable. Note that if in (6.1) p1 is set to zero, the solution of (6.1) is exactly the solution
of the linear least squares problem

min
d∈Rn

1

2
‖Vkd+G(xk)‖2

as f(x) is continuously differentiable and ∇f(xk) = V Tk G(xk) [5]. In (6.1), the term
p1‖G(xk)‖p2I is used to make sure that V Tk Vk + p1‖G(xk)‖p2I is positive definite. If
xk is not a solution of VIP(l, u, F), then ∇f(xk)T dk < 0, which means that the above
algorithm is well defined at the kth iteration. If Vk is nonsingular, then the term
V Tk Vk is positive definite and with p1 = 0 the solution of (6.1) reduces to solving the
linear system

Vkd = −G(xk)

to get a generalized Newton direction.

404 DEFENG SUN AND ROBERT S. WOMERSLEY

7. Convergence analysis. In this section we analyze the convergence proper-
ties of the damped Gauss–Newton method described in section 6, establishing super-
linear convergence without any nondegeneracy assumption. The analysis builds on
the work of [6, 12] for NCP(F).

First we state a global convergence theorem.

Theorem 7.1. Suppose that {xk} is a sequence generated by the damped Gauss–
Newton method. Then each accumulation point x∗ of {xk} is a stationary point of
f .

Proof. The proof is similar to that of [12, Theorem 15]. We omit the detail.

Now we are ready to prove the superlinear (quadratic) convergence of the damped
Gauss–Newton method. We proceed along the lines of the proof of [12, Theorem
17], except that for superlinear convergence we do not assume that F ′ is Lipschitz
continuous and for quadratic convergence we do not assume that F ′ is continuously
differentiable.

Theorem 7.2. Suppose that {xk} is a sequence generated by the damped Gauss–
Newton method and x∗, an accumulation point of {xk}, is a solution of VIP(l, u, F).
If VIP(l, u, F) is R-regular at x∗, then the whole sequence {xk} converges to x∗ Q-
superlinearly. Furthermore, if F ′ is Lipschitz continuous around x∗ and p2 ≥ 1, then
the convergence is Q-quadratic.

Proof. From Lemma 2.3, Proposition 2.4, and Theorem 5.2, for all xk sufficiently
close to x∗ we have

‖xk + dk − x∗‖
= ‖xk − (V Tk Vk + p1‖G(xk)‖p2I

)−1∇f(xk)− x∗‖

≤ ‖ (V Tk Vk + p1‖G(xk)‖p2I
)−1 ‖ ‖∇f(xk)− (V Tk Vk + p1‖G(xk)‖p2I

)
(xk − x∗)‖

= O(1)‖V Tk G(xk)− V Tk Vk(xk − x∗)− p1‖G(xk)‖p2(xk − x∗)‖
≤ O(1)

[‖V Tk ‖‖G(xk)−G(x∗)− Vk(xk − x∗)‖+ p1‖G(xk)‖p2‖xk − x∗‖]
≤ O(1)‖G(xk)−G(x∗)− Vk(xk − x∗)‖+O

(‖G(xk)‖p2
) ‖xk − x∗‖

≤ o(‖xk − x∗‖).
(7.1)
Then, for all xk sufficiently close to x∗,

‖dk‖ = ‖xk − x∗‖+ o(‖xk − x∗‖),

and so

f(xk + dk) =
1

2
‖G(xk + dk)‖2

=
1

2
‖G(xk + dk)−G(x∗)‖2

= O(‖xk + dk − x∗‖2)

= o(‖dk‖2).

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 405

Thus from Lemma 2.3 and Theorem 5.2, for all xk sufficiently close to x∗,

f(xk + dk)− f(xk)− σ∇f(xk)T dk

= o(‖dk‖2)− 1

2
‖G(xk)‖2 + σ(dk)T (V Tk Vk + p1‖G(xk)‖p2I)dk

= −1

2
‖G(xk)−G(x∗)‖2 + σ(dk)T (V Tk Vk)dk + o(‖dk‖2)

= −1

2
(‖Vk(xk − x∗)‖+ o(‖xk − x∗‖))2 + σ(dk)T (V Tk Vk)dk + o(‖dk‖2)

= −1

2
‖Vk(−dk + xk + dk − x∗)‖2 + σ(dk)T (V Tk Vk)dk + o(‖dk‖2)

= −1

2
(dk)T (V Tk Vk)dk + σ(dk)T (V Tk Vk)dk + o(‖dk‖2)

=

(
σ − 1

2

)
(dk)T (V Tk Vk)dk + o(‖dk‖2)

< 0.

Then we can deduce that for all xk sufficiently close to x∗,

xk+1 = xk + dk.

Thus from (7.1) we have proved that {xk} converges to x∗ Q-superlinearly.
Finally, if F ′ is locally Lipschitz continuous around x∗ and p2 ≥ 1, we can easily

modify the above arguments to get the Q-quadratic convergence of {xk}.
Corollary 7.3. If F is a uniform P -function, then the sequence {xk} generated

by the damped Gauss–Newton method is bounded and converges to the unique solution
x∗ of VIP(l, u, F) Q-superlinearly. Furthermore, if F ′ is locally Lipschitz continuous
around x∗ and p2 ≥ 1, then the convergence is Q-quadratic.

Proof. From Theorem 3.2 the level set Lf(x0)(f) is bounded. Then the sequence

{xk} generated by the damped Gauss–Newton method is bounded and hence has
at least one accumulation point, say, x̄. According to Theorem 7.1, x̄ is a station-
ary point of f . From Theorem 4.2, this stationary point x̄ must be a solution of
VIP(l, u, F) because F ′(x̄) is a P -matrix under the assumption that F is a uniform
P -function. Since F is a uniform P -function, VIP(l, u, F) has a unique solution x∗

(see, for example, [23, Theorem 3.9]). This means that x̄ = x∗. The conclusions of
this corollary follow from Theorem 7.2 and the fact that if F ′(x∗) is a P -matrix, then
VIP(l, u, F) is R-regular at x∗.

Corollary 7.3 says that if F is a continuously differentiable uniform P -function,
then the sequence {xk} generated by the damped Gauss–Newton method based on
the new merit function f is well defined and converges to the unique solution of
VIP(l, u, F) superlinearly. Such a result was only obtained for the nonlinear comple-
mentarity problem based on the merit function θ(x) (see, for example, [6]). In [27, 44]
a similar result based on the D-gap function hαβ was obtained by assuming that F
is a strongly monotone function, which is a stronger condition than that of a uniform
P -function. Additionally, by technically choosing a sequence of smooth mappings
Hε(x), ε→ 0+ to approximate the nonsmooth mapping H(x), Chen, Qi, and Sun [4]
gave a similar result to Corollary 7.3 based on the so-called Jacobian consistency prop-
erty. Here we directly construct a continuously differentiable merit function to obtain
Corollary 7.3 instead of constructing a series of smooth approximating functions.

406 DEFENG SUN AND ROBERT S. WOMERSLEY

8. Numerical results. In this section we present some numerical experiments
for the algorithm proposed in section 6 using the whole set of test problems from
GAMS and MCP libraries (GAMSLIB and MCPLIB) [2, 8, 15]. The algorithm was
implemented in MATLAB and run on a Sun SPARC Server 3002. Instead of a mono-
tone linesearch we used a nonmonotone version as described in [10], which was orig-
inally due to Grippo, Lampariello, and Lucidi [22] and can be stated as follows. Let
` ≥ 1 be a prespecified constant and `k ≥ 1 be an integer which is adjusted at each
iteration k. Calculate a steplength tk > 0 satisfying the nonmonotone Armijo-rule

f(xk + tkd
k) ≤ Wk + σtk∇f(xk)T dk,(8.1)

whereWk := max{f(xj)|j = k+1−`k, . . . , k} denotes the maximal function value of f
over the last `k iterations. Note that `k = 1 corresponds to the monotone Armijo-rule.
In the implementation, we used the following adjustment of `k:

1. Set `k = 1 for k = 0, 1, 2, 3, 4, i.e., start the algorithm using the monotone
Armijo-rule for the first four steps.

2. `k+1 = min{`k+1, `} at all remaining iterations (` = 5 in our implementation).
Throughout the computational experiments the starting points are provided by

GAMSLIB or MCPLIB. The parameters used in the algorithm were ρ = 0.5, p1 =
5.0 × 10−7/

√
n (n < 100), 10−6/n (n ≥ 100), p2 = 1, and σ = 10−4. We replaced

the term p1‖G(xk)‖p2 in the algorithm by min{p0, p1‖G(xk)‖p2} with p0 = 10−4.
If n > 2500, instead of using a Gauss–Newton direction, we simply used a pure
Gauss–Newton direction dk = −(V Tk Vk)−1∇f(xk) = −V −1

k G(xk), which is actually a
(generalized) Newton direction. The iteration of the algorithm is stopped if either

f(xk)/n ≤ 10−12 or ‖∇f(xk)‖/√n ≤ 10−10

or if either
—the number of iterations exceeds 300, or
—the number of linesearch steps exceeds 40, giving a stepsize tk < 9.09× 10−13.

Finally we note that in our algorithm we assume that F is well defined everywhere,
whereas there are a few examples in the GAMSLIB and MCPLIB where the function
F may not be defined outside of S or even on the boundary of S. To partially avoid
this problem our implementation used the following heuristic technique introduced in
[10]. Let t denote a stepsize for which inequality (8.1) shall be tested. Before testing
check whether F (xk + tdk) is well defined. If F (xk + tdk) is not well defined, then set
t := t/2 and check again. Repeat this process until F is well defined or the limit of 40
linesearch steps is exceeded. In the first case continue with the nonmonotone Armijo
linesearch. Otherwise the algorithm stops. This is equivalent to taking f(x) =∞ for
all points x where F (x) is not defined.

The numerical results are summarized in Table 8.1 for the GAMSLIB problems
and Tables 8.2–8.4 for the MCPLIB problems. In these tables the first column gives
the name of the problem; n is the number of the variables in the problem; Nit denotes
the number of iterations (LSF means the maximum number of linesearch steps was
exceeded); NF denotes the number of evaluations of the function F ; f0 and fF denote
the value of f/n at the starting point and the final iterate, respectively; ‖∇fF ‖ denotes
the value of ‖∇f‖/√n at the final iterate; and CPU denotes the CPU time in seconds
for the MATLAB implementation. Nit is equal to the number of evaluations of the
Jacobian F ′(x) and the number of subproblems (6.1) or systems of linear equations
solved. In the “Problem” column of Tables 8.2–8.4, the number after each problem
specifies which starting point from the library is used. In the “f0” column of Tables

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 407

Table 8.1
Numerical results for the problems from GAMSLIB.

Problem n f0 Nit NF fF ‖∇fF ‖ CPU

cafemge 101 1.6×10+1 7 12 7.2×10−16 2.0×10−6 0.6

cammcp 242 1.6×10+2 7 10 3.6×10−16 5.5×10−6 1.4

cammge 128 4.0×10−15 0 1 4.0×10−15 2.8×10−5 0.2

cirimge 9 1.1×10+3 5 7 4.0×10−14 3.7×10−5 0.2

co2mge 208 3.1×10−15 0 1 3.1×10−14 1.1×10−5 0.2

dmcmge 170 7.3 89 514 1.4×10−13 1..4×10−3 23.2

ers82mcp 232 7.0 7 9 8.5×10−20 4.2×10−8 2.9

etamge 114 1.0×10+1 15 25 2.4×10−21 5.8×10−8 1.1

finmge 153 1.4×10−16 0 1 1.4×10−16 6.1×10−7 0..2

gemmcp 262 9.6×10−14 0 1 9.6×10−14 1.1×10−5 0.1

gemmge 178 1.4×10−13 0 1 1.4×10−13 2.3×10−6 0.2

hansmcp 43 4.1 36 87 3.2×10−19 2.3×10−9 1.8

hansmge 43 3.7 14 41 3.2×10−25 2.3×10−12 1.0

harkmcp 32 3.6×10+1 23 44 1.6×10−13 8.6×10−7 0.7

harmge 11 2.9×10+2 24 57 1.3×10−17 6.7×10−8 0.7

kehomge 9 1.9×10+1 12 17 4.2×10−16 1.2×10−6 0.3

kormcp 78 7.3×10+2 5 6 6.3×10−13 1.2×10−3 0.3

mr5mcp 350 2.9×10+2 9 11 3.5×10−15 2.3×10−5 1.7

nsmge 212 1.6×10+1 15 25 2.1×10−20 2.0×10−9 3.8

oligomcp 6 8..8×10+2 6 9 2.7×10−21 9.2×10−10 0.2

sammge 23 0 0 1 0 0 0.1

scarfmcp 18 1.2×10+1 7 10 1.8×10−16 6.9×10−7 0.2

scarfmge 18 6.5 11 18 5.1×10−16 3.6×10−7 0.4

shovmge 51 9.4×10−9 1 2 1.9×10−16 9.6×10−7 0.2

threemge 9 0 0 1 0 0 0.1

transmcp 11 1.2×10+4 6 21 2.6×10−5 6.8×10−11 0.3

two3mcp 6 2.0×10+2 7 10 2.2×10−17 2.6×10−7 0.2

unstmge 5 5.5×10−2 8 10 7.6×10−19 1.6×10−9 0.2

vonthmcp 125 2.1×10+4 > 300 - 3.5 2.4×10+8 -

vonthmge 80 3.3×10+4 18(LSF) - 3.5×10+2 1.9×10+6 -

wallmcp 6 1.2 4 5 8.8×10−26 2.9×10−12 0.2

8.1–8.4, DomainV means that the starting point is not in the domain of function or
Jacobian.

Tables 8.1–8.4 show that the algorithm was able to solve most problems in GAM-
SLIB and MCPLIB. More precisely, for the GAMSLIB, for the problem transmcp

our algorithm converged to a local minimum of f(x) with fF = 2.6 × 10−5 and
‖∇fF ‖ = 6.8 × 10−11. This is not strange because our algorithm can be used only
to find local solutions of f , which may not be solutions of VIP(l, u, F). We also have
failures on the problems vonthmcp and vonthmge. These are two von Thünen prob-
lems which are known to be very hard. By choosing different parameters we can solve
transmcp and vonthmge with high precision but still fail on vonthmcp. On problems
from the MCPLIB we have more failures. However, by using different parameters than
those reported here, we can also solve all these failed problems except for billups

and pgvon105 with the second starting point, which violates the domain of Jacobian
evaluation. The billups problem was constructed by Billups [1] in order to make al-
most all state-of-the-art methods fail on this problem. Note that the function F in the

408 DEFENG SUN AND ROBERT S. WOMERSLEY

Table 8.2
Numerical results for the problems from MCPLIB.

Problem n f0 Nit NF fF ‖∇fF ‖ CPU

bertsekas(1) 15 1.8×10−2 30 115 1.5×10−21 5.0×10−9 1.1

bertsekas(2) 15 1.0×10−2 30 107 1.6×10−21 5.1×10−9 1.1

bertsekas(3) 15 4.3×10+3 32 126 3.8×10−14 2.5×10−5 1.2

billups 1 5.0×10−5 132 3494 1.0×10−5 1.0×10−12 4.6

bert oc 5000 2.5×10−2 4 6 2.5×10−31 1.1×10−15 49.2

bratu 5625 2.3×10−3 12 50 1.9×10−17 2.0×10−8 141.0

choi 13 2.2×10−3 4 5 3.2×10−17 5.5×10−9 0.6

colvdual(1) 20 2.0×10+1 > 300 - 2.5×10−4 1.0×10−1 -

colvdual(2) 20 3.3×10+2 > 300 - 2.5×10−4 1.1×10−1 -

colvnlp(1) 15 2.7×10+1 14 36 9.2×10−26 3.6×10−11 0.5

colvnlp(2) 15 4.4×10+1 11 20 1.1×10−13 6.6×10−5 0.4

cycle 1 4.4×10−1 3 5 3.3×10−14 2.6×10−7 0.2

ehl k40 41 3.1×10+3 38 158 1.6×10−18 2.8×10−6 5.1

ehl k60 61 9.2×10+3 > 300 - 3.4×10+1 1.3×10+6 -

ehl k80 81 2.0×10+4 134 1050 3.8×10−14 1.0×10−3 93.7

ehl kost 101 3.4×10+4 > 300 - 2.7×10+1 1.1×10+5 -

explcp 16 5.0×10−1 22 68 4.7×10−18 3.1×10−9 0.7

freebert(1) 15 1.8×10−2 27 110 1.6×10−21 5.1×10−9 1.1

freebert(2) 15 5.2×10+6 59 108 1.7×10−21 5.2×10−9 1.2

freebert(3) 15 1.8×10−2 26 106 1.6×10−21 5.1×10−9 1.1

freebert(4) 15 1.8×10−2 30 115 1.5×10−21 5.0×10−9 1.2

freebert(5) 15 5.2×10+6 271 374 1.6×10−21 5.1×10−9 4.1

freebert(6) 15 1.8×10−2 27 110 5.7×10−14 3.0×10−5 1.0

gafni(1) 5 5.3×10−2 11 20 1.2×10−15 5.7×10−6 0.3

gafni(2) 5 1.4×10−2 12 30 7.9×10−13 1.5×10−4 0.4

gafni(3) 5 5.5×10−2 29 40 2.1×10−16 2.4×10−6 0.5

hanskoop(1) 14 3.8×10−1 17 41 1.1×10−18 7.7×10−9 0.6

hanskoop(2) 14 1.3 18 45 2.9×10−15 8.9×10−7 0.6

hanskoop(3) 14 1.8×10−1 57 172 2.6×10−19 5.7×10−9 1.9

hanskoop(4) 14 1.1×10−1 22 116 2.8×10−19 6.3×10−9 1.2

hanskoop(5) 14 2.1×10+2 116 235 6.8×10−21 1.4×10−9 2.6

hydroc06 29 2.2×10−1 5 7 2.3×10−17 1.5×10−7 0.2

hydroc20 99 1.6×10−1 16 21 7.1×10−14 1.8×10−6 0.8

jel 6 2.0×10+2 7 10 2.2×10−17 2.6×10−7 0.2

josephy(1) 4 6.3 6 10 1.1×10−14 1.4×10−6 0.2

josephy(2) 4 4.3×10−1 6 9 2.1×10−19 5.9×10−9 0.2

josephy(3) 4 5.0×10+3 > 300 - 3.8×10−2 1.2 -

billups problem is pseudomonotone at a solution, which is exactly what is needed
for some globally convergent methods [43]. To solve this problem, we can first use the
method in [43] to make the iterates approximate the solution to some extent and then
switch to the above algorithm. In fact, by using the method in [43], after 76 iterations
and 147 function evaluations we get a final x with |min{x, F (x)}| = 3.8× 10−8. Note
that for pgvon106 we have ‖∇fF ‖ = 2.1 × 10+1 while fF is very small. This also
confirms that pgvon106 is really a hard problem. The main focus of this paper is prob-
lems with both lower bounds and upper bounds on the variables. Some of the larger
examples are bratu with n = 5625, opt cont127, opt cont255, and opt cont511

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 409

Table 8.3
Numerical results for the problems from MCPLIB (continued).

Problem n f0 Nit NF fF ‖∇fF ‖ CPU

josephy(4) 4 6.0×10−1 5 6 1.0×10−21 4.1×10−10 0.2

josephy(5) 4 1.6 4 5 4.1×10−22 2.6×10−10 0.2

josephy(6) 4 1.3 6 9 3.6×10−21 7.6×10−10 0.2

kojshin(1) 4 1.6×10+1 > 300 - 1.7×10−1 3.8×10−1 -

kojshin(2) 4 4.3×10−1 7 15 1.3×10−13 1.9×10−6 0.2

kojshin(3) 4 5.0×10+3 10 14 1.6×10−14 1.6×10−6 0.2

kojshin(4) 4 2.5 2 3 1.2×10−20 1.9×10−9 0.1

kojshin(5) 4 6.1 4 5 6.4×10−22 5.0×10−10 0.2

kojshin(6) 4 4.4 7 9 1.5×10−24 1.5×10−11 0.2

mathinum(1) 3 2.9×10−1 18 35 4.7×10−13 1.9×10−6 0.4

mathinum(2) 3 2.9×10−1 18 35 4.7×10−13 1.9×10−6 0.4

mathinum(3) 3 9.7 25 62 3.2×10−13 1.9×10−6 0.6

mathinum(4) 3 2.1 6 7 1.8×10−20 5.1×10−10 0.9

mathisum(1) 4 2.0×10−1 4 6 3.3×10−13 1.9×10−6 0.2

mathisum(2) 4 1.5 6 7 1.0×10−21 1.1×10−10 0.2

mathisum(3) 4 3.8×10+1 5 7 1.3×10−20 1.0×10−10 0.2

mathisum(4) 4 8.1×10−1 5 6 2.7×10−19 1.8×10−9 0.2

methan08 31 1.1 4 5 2.4×10−21 2.3×10−9 0.2

nash(1) 10 1.0×10+4 6 7 1.9×10−17 1.8×10−7 0.2

nash(2) 10 4.0×10+1 9 20 6.5×10−17 8.6×10−7 0.3

obstacle(1) 2500 1.4×10−4 10 11 2..6×10−23 3.2×10−11 12.9

obstacle(2) 2500 1.4×10−2 12 15 2.6×10−23 3.2×10−11 17.0

opt cont31 1024 4.0×10−2 9 16 4.4×10−24 5.4×10−13 10.6

opt cont127 4096 5.8×10−3 7 19 1.1×10−13 1.3×10−6 171.6

opt cont255 8193 2.2×10−3 10 34 1.4×10−15 1.5×10−7 894.7

opt cont511 16384 8.3×10−4 11 45 3.9×10−13 2.5×10−6 6003.8

pgvon105(1) 105 2.5×10+1 31 100 8.7×10−20 2.2×10−6 4.9

pgvon105(2) 105 DomainV - - - - -

pgvon105(3) 105 5.3×10−1 37(LSF) - 3.6×10−3 2.0×10+2 -

pgvon106 106 2.6×10+1 57 233 7.9×10−13 2.1×10+1 10..9

pies 42 1.7×10+4 10 11 1.2×10−19 3.4×10−8 0.3

powell(1) 16 5.6×10−1 4 5 1.0×10−20 1.4×10−9 0.2

powell(2) 16 1.2×10+1 10 18 2.7×10−25 1.3×10−11 0.4

powell(3) 16 2.9×10+3 10 11 1.4×10−21 4.5×10−10 0.3

powell(4) 16 1.5×10+2 9 10 2.5×10−17 6.7×10−8 0.3

powell mcp(1) 8 2.9×10+1 5 6 3.4×10−13 4..9×10−6 0.2

powell mcp(2) 8 1.4×10+2 6 7 1.1×10−13 2.8×10−6 0.2

powell mcp(3) 8 1.8×10+4 8 9 1.4×10−16 9.9×10−8 0.2

powell mcp(4) 8 1.1×10+3 7 8 1.1×10−15 2.7×10−7 0.2

with 4096, 8193, and 16, 394 variables, respectively. All of these problems were solved
to high accuracy within 12 iterations and 50 function evaluations.

The MATLAB implementation used for these numerical experiments is not very
sophisticated. The Jacobian F ′(xk) and the element Vk of the generalized Jacobian
are stored as a sparse matrix, but then for small problems (n ≤ 2500) the matrix
V Tk Vk is formed directly, resulting in considerable fill-in. For large problems we sim-
ply calculate the generalized Newton direction using MATLAB’s direct sparse linear

410 DEFENG SUN AND ROBERT S. WOMERSLEY

Table 8.4
Numerical results for the problems from MCPLIB (continued).

Problem n f0 Nit NF fF ‖∇fF ‖ CPU

scarfanum(1) 13 3.4 8 16 2.6×10−20 5.6×10−9 0.3

scarfanum(2) 13 4.5 12 33 2.6×10−20 5.6×10−9 0.5

scarfanum(3) 13 3.0 9 12 2.5×10−20 5.5×10−9 0.3

scarfasum(1) 14 5.4×10−1 4 6 7.3×10−18 1.7×10−7 0.2

scarfasum(2) 14 4.1×10−1 8 19 3.5×10−19 7.4×10−8 0.3

scarfasum(3) 14 2.4 11 24 4.7×10−19 8.5×10−8 0.4

scarfbnum(1) 39 1.0×10+2 46 94 2.0×10−13 6.0×10−5 1.7

scarfbnum(2) 39 1.1×10+2 13 18 3.8×10−15 3.2×10−5 0.5

scarfbsum(1) 40 6.1×10+1 9 21 1.8×10−16 2.5×10−6 0.5

scarfbsum(2) 40 6.8×10+1 32(LSF) - 4.0×10−1 5.8×10+1 -

sppe(1) 27 1.1×10+2 11 19 6.8×10−24 1.2×10−11 0.4

sppe(2) 27 4.8×10+1 7 8 8.5×10−20 1.4×10−9 0.2

tobin(1) 42 1.8×10+2 9 15 1.8×10−16 4.3×10−8 0..4

tobin(2) 42 1.8×10+2 12 15 2.0×10−22 6.8×10−11 0.4

equation solver. In particular, note from the formulae in section 4 that the general-
ized Jacobian Vk has rows which consist of either the unit vector ei, the corresponding
row F ′i (x

k) of the Jacobian of F , or a linear combination of these terms. Thus Vk
has at least the sparsity structure of F ′(xk) and often considerably more when a row
F ′i (x

k) is replaced by the (scaled) unit vector ei. Thus there is considerable potential
to exploit the sparsity of Vk, for example, by reordering the columns to produce more
efficient matrix factorizations. In particular, if the sparsity of F ′(x) does not change,
then this reordering could be done once rather than on every iteration.

The numerical experiments in this paper are simply meant to demonstrate the
viability of the proposed merit function f(x) for solving V IP (l, u, F). Further work
is needed to produce robust, efficient software.

9. Final remarks. In this paper we presented a new differentiable merit func-
tion for solving a box constrained variational inequality problem. This new merit
function has many desirable properties over the existing ones. The key idea is to use
the fact that

ψ(a, b) = 0⇐⇒ a ≥ 0, ab+ = 0

to reformulate VIP(l, u, F) as the minimization of an unconstrained differentiable
merit function. This reformulation allows us to construct a globally and superlinearly
convergent damped Gauss–Newton method for solving VIP(l, u, F). One of the most
important features of the damped Gauss–Newton method introduced here is that at
each iteration we need only to solve a linear system of equations. Besides the formula
introduced in this paper, there are other possible functions ψ(a, b). For example we
can let

ψnew(a, b) := ([−φR(a, b)]+)2 + ([−a]+)2,(9.1)

where φR : R2 → R is defined by

φR(a, b) := φ(a, b)− a+b+ =
√
a2 + b2 − (a+ b)− a+b+(9.2)

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 411

and can be regarded as a regularized Fischer–Burmeister function. It is not difficult to
verify that φR(·)2 and ψnew(·) are continuously differentiable functions on R2 (for any
b ∈ R we define φR(+∞, b) = −b). This modification may enhance the boundedness
results of the corresponding merit function. Chen, Chen, and Kanzow [3] reported
some interesting properties of the modified Fischer–Burmeister function

φCCK(a, b) = −[λφ(a, b)− (1− λ)a+b+]

= −λ (φ(a, b)− 1−λ
λ a+b+

)
, λ ∈ (0, 1).

(9.3)

By letting α = 1−λ
λ and ignoring the outside−λ parameter, the function φCCK defined

in (9.3) takes the form

φCCK(a, b) = φ(a, b)− αa+b+, α ∈ (0,∞).(9.4)

Note that a, b ≥ 0 and ab = 0 is equivalent to αa, αb ≥ 0 and (αa)(αb) = 0 for any
α > 0. The function φCCK defined in (9.4) can be treated as a scaled form of φR. Nu-
merically this scaling can play an important role in the behavior of the corresponding
algorithm. The application of φR or φCCK to box constrained variational inequality
problems needs further investigation.

In this paper we introduced the merit function f for VIP(l, u, F) without consid-
ering whether li, ui, i = 1, . . . , n are finite or not. However, if some li and/or ui are
infinite, we can modify our merit function. For example we can define

fnew(x) :=
1

2

[∑
i∈Il

φ(xi − li, Fi(x))2 +
∑
i∈Iu

φ(ui − xi,−Fi(x))2

+
∑
i∈Ilu

ψ(xi − li, Fi(x)) +
∑
i∈Ilu

ψ(ui − xi,−Fi(x))

]
,(9.5)

where

Il := {i| li > −∞, ui =∞, i = 1, . . . , n},
Iu := {i| li = −∞, ui <∞, i = 1, . . . , n},
Ilu := {1, . . . , n}\{Il ∪ Iu}.

The function fnew(x) has similar properties to f(x) and possibly has only slightly dif-
ferent stationary point conditions. Roughly speaking, the stationary point conditions
for f need a stronger nonsingularity condition on ∇F , while fnew needs a stronger
P0 property on ∇F (i.e., the set P in Theorem 4.2 may contain fewer elements).
Note that in (9.5) the functions φ(·) and ψ(·) can be replaced by φR(·) and ψnew(·),
respectively.

Acknowledgments. The authors would like to thank the two anonymous refer-
ees and the associate editor for their helpful comments, which improved the presen-
tation of this paper. Thanks also to Houduo Qi for his comments on (9.1) and (9.2).

412 DEFENG SUN AND ROBERT S. WOMERSLEY

REFERENCES

[1] S. C. Billups, Algorithms for complementarity problems and generalized equations, Ph.D.
thesis, Computer Sciences Department, University of Wisconsin, Madison, WI, 1995.

[2] S. C. Billups, S. P. Dirkse, and M. C. Ferris, A comparison of algorithms for large scale
mixed complementarity problems, Comput. Optim. Appl., 7 (1997), pp. 3–25.

[3] B. Chen, X. Chen, and C. Kanzow, A Modified Fischer-Burmeister NCP-function, Talk
presented at the 1997 International Symposium on Mathematical Programming, EPFL,
Lausanne, Switzerland, 1997.

[4] X. Chen, L. Qi, and D. Sun, Global and superlinear convergence of the smoothing New-
ton method and its application to general box constrained variational inequalities, Math.
Comp., 67 (1998), pp. 519–540.

[5] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983; reprinted
by SIAM, Philadelphia, 1990.

[6] T. De Luca, F. Facchinei, and C. Kanzow, A semismooth equation approach to the solution
of nonlinear complementarity problems, Math. Programming, 75 (1996), pp. 407–439.

[7] S. P. Dirkse and M. C. Ferris, The PATH solver: A non-monotone stabilization scheme for
mixed complementarity problems, Optimization Methods and Software, 5 (1995), pp. 123–
156.

[8] S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity
problems, Optim. Methods Softw., 5 (1995), pp. 319–345.

[9] B. C. Eaves, On the basic theorem of complementarity, Math. Programming, 1 (1971), pp. 68–
75.

[10] F. Facchinei, A. Fischer, and C. Kanzow, A semsimooth Newton method for variational
inequalities: The case of box constraints, in Complementarity and Variational Problems:
State of the Art, M. C. Ferris and J. S. Pang, eds., SIAM, Philadelphia, PA, 1997, pp. 76–
90.

[11] F. Facchinei and C. Kanzow, On unconstrained and constrained stationary points of the
implicit Lagrangian, J. Optim. Theory Appl., 92 (1997), pp. 99–115.

[12] F. Facchinei and C. Kanzow, A nonsmooth inexact Newton method for the solution of large-
scale nonlinear complementarity problems, Math. Programming, 76 (1997), pp. 493–512.

[13] F. Facchinei and J. Soares, Testing a new class of algorithms for nonlinear complementarity
problems, in Variational Inequalities and Network Equilibrium Problems, F. Giannessi, ed.,
Plenum Press, New York, 1995, pp. 69–83.

[14] F. Facchinei and J. Soares, A new merit function for nonlinear complementarity problems
and a related algorithm, SIAM J. Optim., 7 (1997), pp. 225–247.

[15] M. C. Ferris and T. F. Rutherford, Accessing realistic mixed complementarity problems
within MATLAB, in Nonlinear Optimization and Applications, G. Di Pillo and F. Gian-
nessi, eds., Plenum Press, New York, 1996, pp. 141–153.

[16] A. Fischer, A special Newton-type optimization method, Optimization, 24 (1992), pp. 269–284.
[17] A. Fischer, An NCP-function and its use for the solution of complementarity problems, in

Recent Advances in Nonsmooth Optimization, D. Du, L. Qi, and R. Womersley, eds., World
Scientific, River Edge, NJ, 1995, pp. 88–105.

[18] A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian func-
tions, Math. Programming, 76 (1997), pp. 513–532.

[19] M. Fukushima, Equivalent differentiable optimization problems and descent methods for asym-
metric variational inequality problems, Math. Programming, 53 (1992), pp. 99–110.

[20] M. Fukushima, Merit functions for variational inequality and complementarity problems, in
Nonlinear Optimization and Applications, G. Di Pillo and F. Giannessi, eds., Plenum Press,
New York, 1996, pp. 155–170.

[21] C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems, Com-
put. Optim. Appl., 5 (1996), pp. 155–173.

[22] L. Grippo, F. L. Lampariello, and S. Lucidi, A nonmonotone linesearch technique for
Newton’s method, SIAM J. Numer. Anal., 23 (1986), pp. 707–716.

[23] P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear comple-
mentarity problems: A survey of theory, algorithms and applications, Math. Programming,
48 (1990), pp. 161–220.

[24] H. Jiang, Unconstrained minimization approaches to nonlinear complementarity problems, J.
Global Optim., 9 (1996), pp. 169–181.

[25] H. Jiang and L. Qi, A new nonsmooth equations approach to nonlinear complementarity
problems, SIAM J. Control Optim., 35 (1997), pp. 178–193.

MERIT FUNCTIONS FOR BOX CONSTRAINED VI 413

[26] C. Kanzow, Nonlinear complementarity as unconstrained optimization, J. Optim. Theory
Appl., 88 (1996), pp. 139–155.

[27] C. Kanzow and M. Fukushima, Theoretical and numerical investigation of the D-gap function
for box constrained variational inequalities, Math. Programming, 83 (1998), pp. 55–87.

[28] Z. -Q. Luo, O. L. Mangasarian, J. Ren, and M. V. Solodov, New error bounds for the
linear complementarity problem, Math. Oper. Res., 19 (1994), pp. 880–892.

[29] Z. -Q. Luo and P. Tseng, A new class of merit functions for the nonlinear complementarity
problem, in Complementarity and Variational Problems: State of the Art, M. C. Ferris and
J. S. Pang, eds., SIAM, Philadelphia, PA, 1997, pp. 204–225.

[30] O. L. Mangasarian and M. V. Solodov, Nonlinear complementarity as unconstrained and
constrained minimization, Math. Programming, 62 (1993), pp. 277–297.

[31] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Con-
trol Optim., 15 (1977), pp. 959–972.

[32] J. S. Pang, Newton’s method for B-differentiable equations, Math. Oper. Res., 15 (1990),
pp. 331–341.

[33] J. S. Pang, A B-differentiable equation based, globally and locally quadratically convergent
algorithm for nonlinear programs, complementarity and variational inequality problems,
Math. Programming, 51 (1991), pp. 101–131.

[34] J. S. Pang, Complementarity problems, in Handbook of Global Optimization, R. Horst and
P. Pardalos, eds., Kluwer Academic Publishers, Norwell, MA, 1995, pp. 271–338.

[35] J. S. Pang and S. A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complemen-
tarity problem, Math. Programming, 60 (1993), pp. 295–337.

[36] J. S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim., 3
(1993), pp. 443–465.

[37] J. M. Peng, Equivalence of variational inequality problems to unconstrained optimization,
Math. Programming, 78 (1997), pp. 347–355.

[38] J. M. Peng and Y. Yuan, Unconstrained methods for generalized complementarity problems,
J. Comput. Math., 15 (1997), pp. 253–264.

[39] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), pp. 227–244.

[40] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993),
pp. 353–367.

[41] D. Ralph, Global convergence of damped Newton’s method for nonsmooth equations via the
path search, Math. Oper. Res., 19 (1994), pp. 352–389.

[42] S. M. Robinson, Generalized equations, in Mathematical Programming: The State of the Art,
A. Bachem, M. Grötschel, and B. Korte, eds., Springer-Verlag, Berlin, 1983, pp. 346–367.

[43] D. Sun, A class of iterative methods for solving nonlinear projection equations, J. Optim.
Theory Appl., 91 (1996), pp. 123–140.

[44] D. Sun, M. Fukushima, and L. Qi, A computable generalized Hessian of the D-gap func-
tion and Newton-type methods for variational inequality problems, in Complementarity
and Variational Problems: State of the Art, M. C. Ferris and J. S. Pang, eds., SIAM,
Philadelphia, PA, 1997, pp. 452–473.

[45] P. Tseng, Global behaviour of a class of merit functions for the nonlinear complementarity
problem, J. Optim. Theory Appl., 89 (1996), pp. 17–37.

[46] P. Tseng, N. Yamashita, and M. Fukushima, Equivalence of complementarity problems to
differentiable minimization: A unified approach, SIAM J. Optim., 6 (1996), pp. 446–460.

[47] N. Yamashita and M. Fukushima, On stationary points of implicit Lagrangian for nonlinear
complementarity problems, J. Optim. Theory Appl., 84 (1995), pp. 653–663.

[48] N. Yamashita and M. Fukushima, Equivalent unconstrained minimization and global error
bounds for variational inequality problems, SIAM J. Control Optim., 35 (1997), pp. 273–
284.

[49] N. Yamashita, K. Taji, and M. Fukushima, Unconstrained optimization reformulations of
variational inequality problems, J. Optim. Theory Appl., 92 (1997), pp. 439–456.

OPTIMAL SIZING FOR A CLASS OF NONLINEARLY
ELASTIC MATERIALS∗

CHRISTOPH STANGL†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 414–443

Abstract. The intention of this paper is to develop efficient algorithms for solving sizing
optimization problems for a class of nonlinearly elastic materials (including, e.g., gray cast iron
that is used in car engines) within common finite element programming packages such as, e.g.,
MSC/NASTRAN. The nonlinear material law is such that Young’s modulus depends on the stresses.
Therefore it is not possible to use standard software to perform sizing optimization; new algorithms
must be found.

We develop and analyze algorithms to solve the nonlinear discrete equilibrium equations and the
discrete design problem. Moreover, we test our algorithms on practically relevant problems, namely
to minimize the volume, respectively, to reach an even stress distribution, of a unit injector rocker
arm made of gray cast iron.

Key words. sizing optimization, nonlinearly elastic materials, Newton’s method, homotopy
method, sensitivities, sequential quadratic programming algorithm

AMS subject classifications. 65K10, 93C20, 90C30, 65N30

PII. S1052623497319213

1. Introduction. In this paper we will present a methodology for solving sizing
optimization problems for nonlinearly elastic materials that are practically relevant,
e.g., to minimize the volume of a given object under certain stress constraints or
to reach an even stress distribution such that the object of interest is utilized in an
optimal way.

In [15] such problems are solved for linearly elastic materials, where the sequential
quadratic programming (SQP) algorithm is used together with an active set strat-
egy in order to solve the optimization problem and the finite element programming
package MSC/NASTRAN is used to compute displacements and stresses and their
sensitivities.

We are interested in optimizing materials for which Young’s modulus depends on
the stress field. Therefore the displacements depend on the stresses, and the stress
field depends on the displacements (as usual) and is given implicitly; e.g., gray cast
iron (GGL25) that is used in car engines belongs to this class of nonlinearly elastic
material laws. Furthermore, this stress dependence is also exhibited in magnetostric-
tive materials (cf. [4], [14]) with similar nonlinear material behavior noted in certain
elastomers (cf. [2], [3]).

In [6] the following question is answered: under which assumptions does there exist
a (unique) solution to the resulting nonlinear equilibrium equations in the mathemat-
ical theory of continuum mechanics for this class of material laws? We will use these
results in the present paper as a basis to develop algorithms for solving the discrete
nonlinear equilibrium equations (section 5) and to compute sensitivities (section 6).
The methodology of [15] is used as a basis to solve the considered sizing optimization
problems (section 7). Since we are interested only in solving the discrete problem, we

∗Received by the editors March 31, 1997; accepted for publication (in revised form) January 25,
1998; published electronically March 17, 1999.

http://www.siam.org/journals/siopt/9-2/31921.html
†Institut für Industriemathematik, Johannes-Kepler-Universität, Altenbergerstrasse 69, A-4040

Linz, Austria (stangl@indmath.uni-linz.ac.at). The work of this author was supported by the Aus-
trian Forschungsförderungsfonds für die Gewerbliche Wirtschaft and AVL LIST GmbH Graz.

414

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 415

will not deal with the question of discretization errors (therefore cf. [19]) and formulate
the design problems as well as the equilibrium equations in finite dimensions.

In section 8 we will present some numerical results for the optimization of a unit
injector rocker arm made of gray cast iron, which will show that the properties of
the given object can be improved significantly by using our methodology. Analo-
gously to [15] we couple our own finite element analysis modules and the optimization
routines with the finite element programming package MSC/NASTRAN. Clearly our
concept can be coupled with other common finite element codes without changes.

Before we start with our investigations, we will write down the weak formulation
of the equilibrium equations of mathematical continuum mechanics for the considered
class of nonlinearly elastic materials as given in [6] in two dimensions. Let ω be a
bounded domain in R2, γ = ∂ω be sufficiently smooth, and γ1, γ2 ⊂ γ such that
γ̄1 ∪ γ̄2 = γ̄. Furthermore, let there be given body forces F̂ : ω → R2 and surface
forces G : γ2 → R2, and let ω be fixed on γ1. Then the weak equilibrium equations
for the considered class of nonlinearly elastic materials are given by

U ∈ V0 such that aσ(U, V) = 〈F̃ , V 〉 ∀ V ∈ V0,(1.1)

where

V0 := {V ∈ V := [H1(ω)]2 : V |γ1
≡ 0}(1.2)

and

aσ(U, V) :=

∫
ω

E(σ)

1 + ν
·
[

ν

1− ν tr(ε(U))tr(ε(V)) + ε(U) : ε(V)

]
dX,(1.3)

〈F̃ , V 〉 :=

∫
ω

F̂ · V dX −
∫
ω

∆T · (β : (∇V)) dX +

∫
γ2

G · V dA(1.4)

with

εij(U(X)) = 1
2 · (Ui,j(X) + Uj,i(X)) ∀i, j = 1, 2, in ω,(1.5)

where β = [βij]
2
i,j=1 is the real matrix of thermal expansion coefficients; ∆T :=

T − Tref ; Tref ∈ R is the reference temperature (the temperature of ω before the
deformation); T = const is the temperature distribution over ω, which is assumed to
be constant over ω throughout the whole paper; “:” denotes the matrix inner product;
and E : R3 → R is a given sufficiently smooth function. Moreover, σ is the solution
to the equation

σ ∈ W := [L2(ω)]3 with σ(X) = E(σ(X)) · G̃ · ε(U(X)) + ∆T · β,(1.6)

almost everywhere (a.e.) in ω,

where σ := (σ11, σ22, σ12)T , ε := (ε11, ε22, ε12)T , β := (β11, β22, β12)T , and G̃ is the
modified matrix of elasticity coefficients (for the situation of plane stress)

G̃ :=
1

(1− ν)(1 + ν)

 1 ν 0
ν 1 0
0 0 1− ν

 ,

416 CHRISTOPH STANGL

where 0 ≤ ν < 1/2 is Poisson’s ratio. We have stated this problem for the situation
of plane stress since we will assume in section 3 that the object to be optimized is (in
some sense) a thin plate.

Remark 1.1. As posed by our industrial partner AVL for the gray cast iron
GGL25, the material law function E is given by

E(σ) = y0 + y1 · f(σ) + y2 · (T − Tref) ∀ σ ∈ R3,(1.7)

where y0, y1, and y2 are given real constants and f : R3 → R is given by

f(σ) := σMAX(σ) =
σ11 + σ22

2
+

√(
σ11 − σ22

2

)2

+ σ2
12

(cf. also section 8). It can be shown that the mapping f is Lipschitz continuous with

constant Lf := 1 +
√

2
2 and the mapping E is Lipschitz continuous with the constant

LE := |y1| · Lf (cf., e.g., [6]).

2. Formulation of the discrete equilibrium equations. Since we are inter-
ested in solving design problems with the state equations (1.1) and (1.6) numerically,
we will transform (1.1) and (1.6) onto finite dimensions via finite elements. Although
the following considerations are quite standard, we will also present some details in
order to introduce the notation used throughout this paper.

Let there be given a triangulation {ω(i)}i∈I of ω ⊂ R2 with I := {1, . . . , Ne}, i.e.,⋃
i∈I ω

(i) = ω,

ω(i) ∩ ω(j) =

 a common point of ω(i) and ω(j), or
a common edge of ω(i) and ω(j), or
∅

∀ i 6= j ∈ I.(2.1)

We assume that all finite elements ω(i) are linear triangles (our results also stay
valid for bilinear parallelograms, respectively, combinations of both sorts of elements
(cf. also [8, p. 193]); only some constants will change in our analysis). In order to
establish a more comfortable treatment of the finite element analysis we introduce the
variables

Ng ∈ N . . . number of grid points,
Ne ∈ N . . . number of elements,
Nf ∈ N . . . number of unrestricted degrees of freedom

and the mappings (P(A) denotes the set of all subsets of the set A)

node : {1, . . . , Ne} → P({1, . . . , Ng}),
i 7→ {k ∈ {1, . . . , Ng} : node k belongs to finite element i},

dof : {1, . . . , Ne} → P({1, . . . , 6Ng}),
i 7→ {k ∈ {1, . . . , 6Ng} : Dk belongs to a node in node(i)},

∆ : {1, . . . , Nf} → P({1, . . . , Ne}),
i 7→ {k ∈ {1, . . . , Ne} : Dk belongs to a node of finite element i},

where “Dk” denotes the kth component of the displacement vector as defined af-
ter (2.4). The mapping node(i) determines those nodes that belong to finite element

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 417

i, dof assigns to a finite element i the set of all degrees of freedom that belong to
the nodes of i, and ∆ maps a degree of freedom to the set of those finite elements
it belongs to (sometimes we will also use ∆ defined on the set {1, . . . , Ng}, i.e., ∆
maps a grid point to the set of those finite elements it belongs to). Clearly one can
determine dof from the knowledge of node and the set of the restricted degrees of
freedom.

Furthermore, we will define the finite-dimensional space V0h that should approx-
imate the space V0 (cf. (1.2)) via

V0h := span{ψ1, . . . , ψNf},

where the functions ψ1, . . . , ψNf : ω ⊂ R2 → R2 should be linearly independent and
sufficiently smooth such that ψk ∈ V0, k = 1, . . . , Nf and V0h ⊂ V0. (This can
be realized by omitting all shape functions that correspond to grid points on the
boundary γ1.) Since the displacement field U is two-dimensional, the shape functions
ψk are of the form

ψ1(X) =

(
φ1(X)

0

)
, ψ2(X) =

(
0

φ1(X)

)
, . . . , ψ2Ng(X) =

(
0

φNg(X)

)
,

where φi : ω ⊂ R2 → R are the usual one-dimensional “hat functions” corresponding
to one grid point, i.e., φi|ω(j) ∈ Pk, k ∈ N,∀j = 1, . . . , Ne, where Pk denotes the set of
all polynomials of degree lower than or equal to k and φi equals 1 at the grid point Xi

and 0 at all other grid points (cf., e.g., [7, p. 129ff], [13, p. 560ff], or [24, p. 113ff]); for
the meaning of the discretization parameter h (as, e.g., in “V0h”) see Definition 4.1.

The generation of the finite element formulation of the equilibrium equations (1.1)
and (1.6) works analogously to the linear case, i.e., E = const (cf. [5, p. 287ff]),
and is given by (we perform numerical integration with the center of gravity as the
integration point and the measure of the domain of integration as the corresponding
integration weight; for ease of notation use only one integration point)

K(σ) ·D = Q(2.2)

with the stiffness matrix

Kij(σ) =
∑

k∈∆(i)∩∆(j)

meas(ω(k)) · E(σ(k))

1 + ν

[
ν

1− ν tr(ε(ψj))tr(ε(ψi))

+ ε(ψj) : ε(ψi)

]
(X

(k)
∗),(2.3)

the load vector

Qi =
∑

k∈∆(i)

meas(ω(k)) ·
[
F̂ (X

(k)
∗) · ψi(X(k)

∗)−∆T · β : (∇ψi)(X(k)
∗)

]
+ meas(γ

(k)
2) ·

[
G(Y

(k)
∗) · ψi(Y (k)

∗)
]
,(2.4)

and the displacement vector D := [Di]
Nf
i=1, where each two successive components of

D correspond to the first and the second degree of freedom of one grid point (unless

it is restricted). In the above formulas, X
(k)
∗ denotes the center of gravity of ω(k) and

418 CHRISTOPH STANGL

Y
(k)
∗ is some integration point on the boundary γ

(k)
2 := ∂ω(k) ∩ γ2, k ∈ {1, . . . , Ne}.

Furthermore, the discrete stress vector σ := (σ(1), . . . , σ(Ne))T fulfills the equations

σ(i) = E(σ(i)) · G̃ · C(i) ·D(i) + ∆T · β ∀ i = 1, . . . , Ne(2.5)

with β = (β11, β22, β12)T , D(i) as the local displacement vector for the ith finite

element, i.e., D(i) := [Dl]l∈dof(i), the local stress vectors

σ(i) := (σ
(i)
11 (X

(i)
∗), σ

(i)
22 (X

(i)
∗), σ

(i)
12 (X

(i)
∗))T ,

and the interpolation matrices

C(i) =

 φl1,1(X
(i)
∗) 0 . . . φlni ,1(X

(i)
∗) 0

0 φl1,2(X
(i)
∗) . . . 0 φlni ,2(X

(i)
∗)

1
2φl1,2(X

(i)
∗) 1

2φl1,1(X
(i)
∗) . . . 1

2φl,2(X
(i)
∗) 1

2φlni ,1(X
(i)
∗)

(2.6)

∀i = 1, . . . , Ne with ni := |node(i)| (cf. [19, p. 64ff]).

Summing up the work of this section, we have derived the discrete equilibrium
equations

K(σ) ·D = Q,

σ = E(σ) · G̃ · C ·D + ∆T · β,
(2.7)

where we have joined the Ne equations (2.5) to one equation for the discrete stress
vector σ = (σ(1), . . . , σ(Ne))T ∈ R3Ne without introducing a new notation. (This
should not give rise to any confusion.)

Notice that the global displacement vector D and the discrete stress vector σ
in (2.7) depend on each other in the same way as in the weak equilibrium equa-
tions (1.1) and (1.6). Furthermore, the structure of equations (2.2) and (2.5) is quite
similar to the one of (1.1) and (1.6), respectively, and therefore we will be able to ap-
ply the same techniques as in [6] to answer the question of existence and uniqueness
of solutions of the discrete equilibrium equations.

3. Formulation of the discrete design problem. In this section we want to
define the two discrete design problems of interest that we will solve in section 8 for a
practically relevant example. We will assume that the body to be optimized is defined
as follows.

Let there be given a fixed domain ω ⊂ R2 that is closed and bounded and the
body

Ω := {(x, y, z) ∈ R3 : (x, y) ∈ ω, z ∈ [−θ(x, y), θ(x, y)]}(3.1)

with a continuous thickness function θ : ω → R+. We want to optimize the design
of Ω as defined in (3.1), i.e., since ω is fixed, we intend to find an optimal thickness
distribution θ. Since we have to transform everything on finite dimensions in order to
be able to perform numerical computations, we will choose our design variables such
that they define a finite-dimensional approximation of the continuous thickness dis-
tribution θ over ω. We assume again that there is given a finite element discretization

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 419

p

jt

(j)

Fig. 3.1. The design variables are the thicknesses tj over the sets p(j).

{ω(i)}i=1,...,Ne of ω ⊂ R2 (cf. (2.1)). Furthermore, we suppose that there is given a
partition {p(j)}Ndj=1 of ω ⊂ R2 with the properties

p(j) =
⋃
i∈Ij ω

(i), ∅ 6= Ij ⊂ {1, . . . , Ne},⋃Nd
j=1 p

(j) = ω,
◦
p(j) ∩

◦
p(k) = ∅ ∀ j 6= k,

(3.2)

where Nd ∈ N denotes the number of design variables. We define the set Oad of
admissible bodies, respectively, designs, Ω via

Oad :=

Ω ⊂ R3 : Ω =
Nd⋃
j=1

p(j) × [−tj , tj], 0 < τ j ≤ tj ≤ τ̄j ∀j = 1, . . . , Nd

 ,(3.3)

with some real numbers τ j , τ̄j > 0, j = 1, . . . , Nd, i.e., the set of admissible designs

consists of all “skyline-like” bodies (cf. Figure 3.1) over the fixed partition {p(j)}Ndj=1,
where the corresponding heights tj have to satisfy box constraints. Since the partition
{p(j)}Ndj=1 is fixed, the geometry of a body Ω ∈ Oad is completely defined through the

design vector t := (t1, . . . , tNd)
T . In the following we will note the dependence of an

element Ω of Oad on the design vector t, sometimes explicitly by Ω(t).

Remark 3.1. We want to point out again that the definition (3.3) of admissible
designs has to be understood as a finite-dimensional approximation of a continuous
thickness distribution θ (cf. (3.1)). Clearly, no one would produce an object Ω ∈ Oad
in reality since at the interface between two adjacent sets p(j) and p(k) of the partition

420 CHRISTOPH STANGL

of ω there occur singularities in the (infinite-dimensional) stress field (for the finite
element formulation, no singularities occur).

Therefore we will approximate the skyline-like surface of the final design in sec-
tion 8 by some smoother surface, and we will show (by computation) that the resulting
displacements and stresses do not differ too much from each other, respectively.

Before we state the design problems to solve over the set of admissible de-
signs (3.3), we note some assumptions that should hold true throughout this paper.

Assumption 3.2. Let there be given a three-dimensional object Ω ⊂ R3 with
applied body forces F̂ : Ω → R3 and surface forces G : Γ2 → R3, where Γ2 ⊂ ∂Ω.
Performing sizing optimization, we assume that

• we have a plane stress problem, i.e., we consider the body Ω to be a plate that
is thin in X3-direction (compared to the other coordinate directions) and that
can carry stresses only parallel to this plane; more precisely, we suppose that
Ω can be defined as in (3.1) with a “small” thickness function θ and Γ2 given
by

Γ2 = {(x, y, z) ∈ R3 : (x, y) ∈ γ2, z ∈ [−θ(x, y), θ(x, y)]}

with some γ2 ⊂ ∂ω;
• the applied surface tractions G and the body forces F̂ are independent of X3

(therefore there is no displacement and no strain in X3-direction) and the
other displacement components U1 and U2 are also independent of X3.

Actually the above assumptions have to be checked for each considered example:
Can the object indeed be considered to be thin in X3-direction? Are the occurring
quantities really independent ofX3? These questions will be considered for our numer-
ical examples in section 8, where we will perform fully three-dimensional computations
to check our results.

From Assumption 3.2 we obtain that no variable depends on X3, and therefore
all integrals in (1.3) and (1.4) over a set Ω ∈ Oad can be written as

∫
Ω

[...] d(X1, X2, X3) =
Nd∑
j=1

tj

∫
p(j)

[...] d(X1, X2) =
Ne∑
i=1

t(i)
∫
ω(i)

[...] d(X1, X2),

where t(i) is the thickness over the finite element ω(i). Thus the discrete formulation
of the equilibrium equations for a body Ω ∈ Oad under Assumption 3.2 is given by
(2.2) and (2.5), but the stiffness matrix K and the load vector Q have to be redefined
via

Kij(t, σ) :=
∑

k∈∆(i)∩∆(j)

t(k) ·meas(ω(k)) · E(σ(k))

1 + ν

[
ν

1− ν tr(ε(ψj))tr(ε(ψi))

+ ε(ψj) : ε(ψi)

]
(X

(k)
∗),(3.4)

Qi(t) :=
∑

k∈∆(i)

t(k) ·meas(ω(k)) ·
[
F̂ (X

(k)
∗) · ψi(X(k)

∗)−∆T · β : (∇ψi)(X(k)
∗)

]
+t(k) ·meas(γ(k)

2) ·
[
G(Y

(k)
∗) · ψi(Y (k)

∗)
]
,

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 421

respectively (cf. (2.3) and (2.4)), where γ
(k)
2 = γ2 ∩ ∂ω(k). Moreover the bilinear form

corresponding to (3.4) is given by

aσ,t(U, V) :=

Nd∑
i=1

ti ·
∫
p(i)

E(σ)

1 + ν
·
[

ν

1− ν tr(ε(U))tr(ε(V)) + ε(U) : ε(V)

]
dX(3.5)

(cf. (1.3)).

Next we define the discrete design problems that we will solve in section 8 for
a practically relevant problem. We want to stress again that we are only interested
in numerical aspects and the development of algorithms to solve the optimization
problem and we will not deal with the question of discretization errors (therefore
cf. [19]).

The first design problem we want to solve is to minimize the volume of a given
body under maximum stress constraints whose design can be approximated by ele-
ments Ω of the set Oad (cf. Remark 3.1); more precisely,

V olume =

Nd∑
j=1

tj ·meas(p(j)) −→ min
t∈RNd

,

K(t, σ) ·D = Q(t),

σ = E(σ) · G̃ · C ·D + ∆T · β,
σ

(i)
elm ≤ σ̄ ∀ i = 1, . . . ,Me,

δi ≤ Di ≤ δ̄i ∀ i = 1, . . . ,Mf,

τ i ≤ ti ≤ τ̄i ∀ i = 1, . . . ,Md,

(3.6)

with 1 ≤ Me ≤ Ne, 1 ≤ Mf ≤ Nf , 1 ≤ Md ≤ Nd integer numbers, σ∗, σ̄ > 0,

δi, δ̄i ∈ R, i = 1, . . . ,Mf , τ i, τ̄i > 0, i = 1, . . . ,Md, and the element stress σ
(i)
elm of the

ith finite element ω(i), i ∈ {1, . . . , Ne}, given by

σ
(i)
elm :=

1

meas(ω(i))

∫
ω(i)

σV ON (σ(X)) dX ≈ σV ON (σ(i)),(3.7)

where the von Mises stress σV ON is defined by

σV ON (σ) :=
√
σ2

11 + σ2
22 + 3σ2

12 − σ11σ22

∀σ = (σ11, σ22, σ12)T ∈ R3 (cf. [12, p. 255]); the introduction of the limits Me, Mf ,
Md instead of their upper bounds Ne, Nf , Nd allows for a more general notation of
the design problem. Notice that ti denotes the ith component of the design vector
and t(i) denotes the thickness of the ith finite element.

The second problem of interest is to find the optimal design Ω ∈ Oad (approxi-
mating a smooth three-dimensional body; cf. Remark 3.1) in order to reach an even
stress distribution over the cross section ω; more precisely,

422 CHRISTOPH STANGL

Even Distribution =
Ne∑
j=1

(
σ

(j)
elm

σ∗
− 1

)2

−→ min,

K(t, σ) ·D = Q(t),

σ = E(σ) · G̃ · C ·D + ∆T · β,
σ

(i)
elm ≤ σ̄ ∀ i = 1, . . . ,Me,

δi ≤ Di ≤ δ̄i ∀ i = 1, . . . ,Mf,

τ i ≤ ti ≤ τ̄i ∀ i = 1, . . . ,Md.

(3.8)

4. Existence and uniqueness of solutions. We have stated in sections 2
and 3, respectively, the discrete equilibrium equations and the discrete design prob-
lem(s) we want to solve. In this section we will (briefly) deal with the question of
existence and uniqueness of these problems before we develop and analyze algorithms
for solving both problems.

4.1. Discrete equilibrium equations. Following the lines of [6], one can see
that the same technique used there to prove the existence and uniqueness of solutions
of the weak equilibrium equations (1.1) and (1.6) can be applied to (2.2) and (2.5),
too. Since it is very space consuming to write down all the details and we want
to concentrate on numerical aspects, we will state only the main result and some
important facts (for the full details see [19, p. 68ff]). Throughout this section we
assume that the parameters tj , j = 1, . . . , Nd, are fixed (cf. (3.3)).

First let us define the sets of suitable stress fields, respectively, displacement fields,

S(S) := {σ ∈ R3Ne : ‖σ(i)‖3 ≤ S ∀i = 1, . . . , Ne},(4.1)

B(R) := {D ∈ RNf : ‖D‖Nf ≤ R}(4.2)

∀R,S > 0, where ‖.‖n is the Euclidean norm in the space Rn.
In order to prove several estimates, it is necessary that the triangulation of the

two-dimensional cross section ω is a special kind, as shown in the following definition.
Definition 4.1. A (fixed) triangulation {ω(i)}Nei=1 of ω ⊂ R2 with discretization

parameter h is said to be regular iff there exist constants α0 > 0 and ϕ0 ∈ (0, π2) such
that

0 < α0 · h ≤ h(i),A, h(i),B , h(i),C ≤ h,
0 < ϕ0 ≤ θ(i),A, θ(i),B , θ(i),C ≤ π − ϕ0

∀i = 1, . . . , Ne, where h(i),A, h(i),B, h(i),C denote the lengths of the three edges and
θ(i),A, θ(i),B, θ(i),C denote the inner angles of the ith finite element.

Moreover, we introduce the following parameters:

λ = (1− ν)−1 . . . maximum eigenvalue of the matrix G̃,
c1 . . . maximum number of elements connected to a grid point,
c2 . . . maximum number of grid points of one finite element,

cKorn . . . constant of Korn’s inequality (cf., e.g., [22, p. 16ff]),
λMIN (G0) . . . minimal eigenvalue of the element mass matrix G

0
with

G
0

:= [Gij]
6
i,j=1 :=

[∫
∆

φi(X) · φj(X) dX

]6

i,j=1

,(4.3)

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 423

where ∆ is the master triangle with the corners (0, 0), (1, 0), (0, 1) (cf. [19, p. 138ff]).
Furthermore, we define tMIN := minNdi=1 |ti| and tMAX := maxNdi=1 |ti| (cf. (3.3)). Then
we have the following theorem.

Theorem 4.2. Let the material law function E be Lipschitz continuous with
constant LE > 0 such that E(0) > 0, and let t ∈ RNd be fixed. Then there exists a
radius S > 0 such that

0 < e ≤ E(σ) ≤ ē ∀ σ ∈ S(S)

with S(S) as defined in (4.1). Moreover, there exists a radius R > 0 such that there
exists a unique solution σ of (2.5) that lies in the set S(S) ∀D ∈ B(R) with B(R) as
defined in (4.2).

Furthermore, let the load vector Q lie in the ball B(0, r) := {v ∈ RNf : ‖v‖Nf <
r} with sufficiently small radius r > 0 such that K−1(t, σ)Q ∈ B(R) ∀σ ∈ S(S), and
let the triangulation of ω be regular.

Then there exists a solution (D∗, σ∗) ∈ B(R) × S(S) of the discrete equilibrium
equations (2.2) and (2.5).

Moreover, if the parameters LE, R, ν, c2, α0, ϕ0, h, ē, cKorn, e, λMIN (G0), c1,
tMIN , tMAX fulfill the inequality

LE ·R · λ · c′ · h−1 ·
(

ē · (1 + ν)

c2Korne · (1− ν)
· c′′ · h−2 + 1

)
< 1(4.4)

with

c′ :=
2
√

10c2
α2

0 sinϕ0
and c′′ :=

64λMIN (G0)c1c
2
2

α2
0 sin(ϕ0)

· tMAX

tMIN
,

then the solution (D∗, σ∗) ∈ B(R) × S(S) of the discrete equilibrium equations (2.2)
and (2.5) is unique.

Proof. (This is only a sketch; for details see [19, p. 76ff]). Everything works
analogously to [6]: Under the assumptions E(0) > 0 and E ∈ C0,1(R3) there exists a
radius S > 0 such that Young’s modulus E is positive uniformly over the set S(S).
Furthermore, for all (fixed) σ ∈ S(S) and for a sufficiently small load vector Q there
exists a unique solution D ∈ B(R) to (2.2). Moreover, for all (fixed) D ∈ B(R) there
exists a unique solution σ ∈ S(S) to (2.5). We define the well-defined operator

M : (S(S), ‖.‖3Ne)→ (S(S), ‖.‖3Ne),
σ 7→ M(σ) := E(σ) · G̃ · C ·K−1(t, σ)Q+ ∆T · β.

Under the stated assumptions it is indeed possible to prove analogously to [6] that
M(σ) ∈ S(S) ∀σ ∈ S(S) and that M is Lipschitz continuous with constant

Lh := LERλ · 2
√

10c2
α2

0 sinϕ0h
·
(

ē · (1 + ν)

c2Korne · (1− ν)
· 64λMIN (G0)c1c

2
2

α2
0 sin(ϕ0)h2

· tMAX

tMIN
+ 1

)
.(4.5)

From (4.4) it follows that Lh < 1, and from Banach’s fixed point theorem it follows
that the fixed point σ ∈ S(S), and therefore the solution of the discrete equilibrium
equations is unique.

The difference between the proof of Theorem 4.2 and the proof of the existence
and uniqueness of solutions of the weak equilibrium equations (1.1) and (1.6) in [6]

424 CHRISTOPH STANGL

is that in several estimates the discretization parameter h occurs, e.g., the Frobenius
norm of the matrix C(i) can be estimated by

‖C(i)‖F :=

√
C

(i)
kl · C(i)

kl ≤
2 · √10 · c2
α2

0 sin(ϕ0)h

(cf. [19, p. 72]) or the norm of the inverse of the stiffness matrix K(t, σ) can be
estimated by

‖K−1(t, σ)‖ ≤ 2 · (1 + ν)

α2
0 sin(ϕ0)λMIN (G0)c2Korneh

2tMIN

(cf. [19, p. 73]), which yields the two multipliers “c′ ·h−1” and “c′′ ·h−2.” In fact, com-
paring the Lipschitz constant of the fixed point operator in the infinite-dimensional
case (cf. [6])

L =
LE ·Rcritical

1− ν ·
(

ē · (1 + ν)

c2Korne · (1− ν)
+ 1

)
(4.6)

with the Lipschitz constant Lh in (4.5), one can see that they are equal apart from
these additional multipliers.

One would expect that the Lipschitz constants Lh for the discrete operator M
converge to the Lipschitz constant L of the continuous operator as h tends to zero.
Since limh→0 Lh = ∞ we must conclude that our method to estimate the Lipschitz
constant Lh is not optimal (cf. also [7, p. 315], where it is mentioned that in the Lips-
chitz constant for the semidiscrete problem of parabolic partial differential equations
negative powers of h appear, too).

4.2. Discrete design problem. In [9] the existence of solutions of shape design
problems is studied extensively; notice that sizing problems are special cases of shape
design problems. In the following we will generalize an existence result for state-
constrained problems for linear elastic materials to our nonlinear material law E =
E(σ) (cf. [9, p. 221ff]).

If we assume that the bilinear form aσ,t(., .) as defined in (3.5) is uniformly elliptic
over the set S(S) (cf. (4.1)) and the set of all admissible designs, one can extend the
existence theory in [9] for linear problems to our special class of nonlinear problems
without too much effort.

Theorem 4.3. Let
1. X,Y, Z be Banach spaces,
2. T ⊂ X, K ⊂ Y , R ⊂ Z be convex, closed, and nonempty sets,
3. A(t, σ) : Y → Y ′ be generated by a symmetric, uniformly elliptic, and uni-

formly continuous bilinear form at,σ, i.e.,

〈A(t, σ)u, v〉 := at,σ(u, v) ∀ u, v ∈ Y,
where

at,σ(u, v) = at,σ(v, u) ∀ u, v ∈ Y,
at,σ(v, v) ≥ µ1 · ‖v‖2Y ∀ v ∈ Y ∀σ ∈ R ∀t ∈ T ,
|at,σ(u, v)| ≤ µ2 · ‖u‖Y · ‖v‖Y ∀ u, v ∈ Y ∀σ ∈ R ∀t ∈ T

with some positive constants µ1 and µ2, and let f ∈ Y ′ be linear and contin-
uous,

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 425

4. (tn, σn)→ (t, σ) in X × Z =⇒ A(tn, σn)→ A(t, σ) in L(Y, Y ′),
5. there exist a unique solution (u∗(t), σ∗(t)) ∈ Y × Z ∀t ∈ T (cf. [6]),
6. s : K → R be continuous,
7. J : X × Y × Z → R be convex and lower semicontinuous,
8. T ⊂ X and R ⊂ Z be compact.

Then the problem

(P)

J(t, u, σ) → min
t∈T

,

A(t, σ)u = f,
σ = s(u),

(u, σ) ∈ K ×R,
t ∈ T

has at least one optimal solution (t∗, u∗, σ∗) if problem (P) has admissible pairs (i.e.,
if the set of all t ∈ T such that (u(t), σ(t)) ∈ K ×R is nonempty).

Proof. See [19, p. 80ff].
Remark 4.4. Before we apply Theorem 4.3 to the design problems (3.6) and (3.8),

we want to state that the theorem also remains true for design problems formulated

in terms of the element stress vector σelm := (σ
(1)
elm, . . . , σ

(Ne)
elm)T instead of the stress

vector σ, since this is only a reformulation of the problem.
Then we have the following theorem.
Theorem 4.5. We define the set of admissible design vectors via

T := {t ∈ X := RNd : τ i ≤ ti ≤ τ̄i, i = 1, . . . ,Md}.(4.7)

Suppose that all assumptions of Theorem 4.2 are true, but with τMAX := maxNdi=1 |τ̄i|
and τMIN := minNdi=1 |τ i| instead of tMAX and tMIN , respectively. If there exists a
vector t ∈ T such that the unique solution (D(t), σ(t)) ∈ RNf × R3Ne of the dis-
crete equilibrium equations (2.2) and (2.5) fulfills the constraints for problem (3.6),
respectively, (3.8), then there exists an optimal solution t∗.

Proof. (This includes only the most important steps; for details cf. [19]). We
will apply Theorem 4.3 to the two design problems (3.6) and (3.8) using Remark 4.4.
Therefore we have to verify assumptions 1–8:

Let X := RNd, Y := RNf , and Z := RNe. Then assumption 1 is clearly fulfilled.
We define

K := {u ∈ Y : u ∈ B(R) and ui ≤ Di ≤ ūi, i = 1, . . . ,Mf},
R := {σelm = σelm(σ) ∈ Z : σ ∈ S(S) and (σelm)i ≤ σ̄, i = 1, . . . ,Me}

with S(S) and B(R) defined as in (4.1) and (4.2), respectively. It is easy to see that
T , K, and R are closed and convex sets. Furthermore, T and R are bounded and are
therefore compact since X and Z are finite-dimensional spaces (cf. [10, p. 33]).

For the design problems (3.6) and (3.8) the operator A is exactly the stiffness
matrix K defined as in (3.4). From subsection 4.1 and [6] it follows that the functional
f and the matrix K(t, σ) indeed have the required properties of assumption 3, where
the constants µ1 and µ2 do not depend on the design t, since the design vectors t in
the set T are uniformly bounded from below and above. This is also the reason why
one can formulate the conditions for existence and uniqueness of [6] uniformly over T .
The continuity assumption 4 can be seen as follows. Let (tn, σn) → (t, σ) in X × Z.
Then

‖K(tn, σn)−K(t, σ)‖ ≤ ‖K(tn, σn)−K(tn, σ)‖+ ‖K(tn, σ)−K(t, σ)‖.(4.8)

426 CHRISTOPH STANGL

Therefore the first term in (4.8) goes to zero as n tends to infinity since the sequence
{tn}n∈N is uniformly bounded over T and the mapping σ ∈ R3 7→ E(σ) ∈ R is
Lipschitz continuous. Furthermore, the second term goes to zero because K is linear
with respect to t, i.e., it is also continuous over T (cf. (3.4)).

Under the assumptions of Theorem 4.2 the continuity of the operator s can be
shown as in [6] for the infinite-dimensional case (for details see [19, p. 69ff]). More-
over, the cost functionals J of problems (3.6) and (3.8) are indeed convex and lower
semicontinuous.

Finally we may conclude from Theorem 4.3 that for the design problem (3.6) as
well as for the design problem (3.8) there exists a solution t∗.

For problem (3.8) the cost functional J = J(σelm) is strictly convex with respect
to σelm, but the mapping

σ = (σ11, σ22, σ12)T ∈ R3 7→ σelm(σ) =
√
σ2

11 + σ2
22 + 3σ2

12 − σ11σ22

is not injective (it is constant on ellipsoids). Therefore the solution of problem (3.8)
need not be unique. For the first design problem (3.6), J is linear, i.e., this solution
need not be unique either.

5. Algorithms for solving the discrete equilibrium equations. In this
section we will use the analysis of [6] and section 4 to develop algorithms to solve
(2.2) and (2.5), which will be used in section 8 to solve numerical examples. We will
also present convergence results and discuss difficulties that (may) occur. Throughout
this section we will omit the dependence of several terms on the design vector t.

5.1. Fixed point iteration. We have shown in section 4 that (2.2) and (2.5)
have a unique solution under certain restrictions on the applied loads and the material
law. Furthermore, we have seen that the operator

M : S(S)→ S(S),

σ 7→ M(σ) := E(σ) · G̃ · C · (K−1(σ)Q) + ∆T · β
is Lipschitz continuous with the constant Lh as given in (4.5). It follows from Banach’s
fixed point theorem that if Lh is smaller than one, the fixed point iteration σ(n+1) :=
M(σ(n)) converges to the unique fixed point σ∗ ∈ S(S) of the operator M for all
starting points σ(0) ∈ S(S), and (D∗ := K−1(σ∗)Q, σ∗) is then the unique solution of
the discrete equilibrium equations (2.2) and (2.5).

Therefore we define the fixed point iteration. (The superscript for the stress
vector denotes the iteration number, not a finite element index.)

Algorithm 5.1.

K(σ(n))D(n+1) = Q,

σ(n+1) = E(σ(n)) · G̃ · C ·D(n+1) + ∆T · β
with an arbitrary starting point of σ(0) ∈ S(S).

From Theorem 4.2 and Banach’s fixed point theorem, the next theorem follows
immediately.

Theorem 5.2. Let all assumptions of Theorem 4.2 hold, especially the condi-
tion (4.4) that implies that Lh < 1 with Lh as defined in (4.5). Then Algorithm 5.1
converges for an arbitrary starting point σ(0) ∈ S(S). Furthermore, the estimate

‖σ(n) − σ(0)‖ ≤ Lnh
1− Lh · ‖σ

(1) − σ(0)‖

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 427

is true for all n ∈ N.
Remark 5.3. In fact, the bound R on the displacement vector D, respectively,

the applied loads, and LE have to be quite small in order to make the Lipschitz con-
stant Lh of the operator M smaller than one (cf. (4.5)). Therefore some difficulties
have occurred in finding suitable input parameters for the numerical examples to yield
convergence of Algorithm 5.1. (We will return to that point in subsection 5.4.)

Next we will investigate another algorithm that is usually the first approach to-
ward solving a nonlinear equation.

5.2. Newton’s method. If we assume that the material law function E is con-
tinuously differentiable, then we can use Newton’s method in order to solve the discrete
equilibrium equations (2.2) and (2.5). Therefore we define the function

F (D,σ) :=

(
K(σ) ·D −Q

σ − E(σ) · G̃ · C ·D −∆T · β
)
.(5.1)

Then (2.2) and (2.5) read as “F (D,σ) = 0.” Computing the gradient of F with
respect to D and σ yields

∇(D,σ)F (D,σ) :=

K(σ)

...
∂

∂σ

(
K(σ) ·D)

· · · · · · · · · · · · · · ·
−E(σ) · G̃ · C ... I − ∂

∂σ
(E(σ) · G̃ · C ·D)

 ,(5.2)

and one Newton step is given by

∇(D,σ)F (D(j), σ(j)) ·
(

∆D(j)

∆σ(j)

)
= −F (D(j), σ(j)),

(D(j+1), σ(j+1))T = (D(j), σ(j))T + (∆D(j),∆σ(j))T .

Multiplying out, computing ∆D(j) explicitly from the first equation, and inserting
the resulting formula into the second equation results in the following algorithm.

Algorithm 5.4.
∆D(j) = K−1

[
Q−K ·D(j) − ∂

∂σ (K ·D(j))∆σ(j)
]
,[

I − ∂
∂σ (E(σ(j))G̃ · C ·D(j)) + E(σ(j))G̃ · C ·K−1 ∂

∂σ (K ·D(j))
]

∆σ(j)

= −σ(j) + E(σ(j))G̃ · C ·D(j) + ∆Tβ + E(σ(j))G̃ · C ·K−1(Q−K ·D(j))

with some appropriate starting point (D(0), σ(0))T . (Notice that the stiffness matrix
K = K(σ(j)) depends on j, too.)

From [17, p. 148] we get the following (local) convergence result of Newton’s
method.

Lemma 5.5. Let X,Y be normed vector spaces, D ⊂ X be open, and F : D → Y
be differentiable in D. Furthermore, let x∗ ∈ D be such that F (x∗) = 0, F ′(x∗) is
regular, and F ′ is continuous in x∗. Then Newton’s method

xk+1 = xk − [F ′(xk)
]−1 · F (xk)

428 CHRISTOPH STANGL

is locally q-superlinearly convergent.
Then a convergence result for Algorithm 5.4 is given by the following theorem.
Theorem 5.6. Let all assumptions of Theorem 4.2 hold, and let the function E be

in the space C1(R3). Then Newton’s method converges q-superlinearly for sufficiently
small R and LE in a neighborhood of the solution (D∗, σ∗) of the discrete equilibrium
equations (2.2) and (2.5), more precisely, if

LE ·R <

[
c · h−5 · ē

(1− ν)2

]−1

,(5.3)

where the constant c > 0 depends only upon the triangulation.
Proof. (This is only a sketch; for more details see [19, p. 90ff]). We will check the

assumptions of Lemma 5.5 in order to prove the (local) convergence of Algorithm 5.4.
• F is continuously differentiable: From the fact that E is continuously differ-

entiable over R 3 and (2.3) we may conclude that the derivatives

∂

∂σ

(
K(σ) ·D) and

∂

∂σ

(
E(σ) · G̃ · C ·D

)
exist and are continuous.
• F (x∗) = 0: Since we have shown in Theorem 4.2 that there exists a unique

solution (D∗, σ∗) to the discrete equilibrium equations, we obtain from the
definition (5.1) of F that x∗ := (D∗, σ∗) is a root of F .

• Regularity of F ′(x∗): Assume that there exists a vector c := (α, β) such that
F ′(x∗) · c = 0. Then it follows from (5.2) that

K(σ∗) · α+
∂

∂σ

(
K(σ∗) ·D∗) · β = 0,

−E(σ∗)G̃ · C · α+

[
I − ∂

∂σ
(E(σ∗)G̃ · C ·D∗)

]
· β = 0.

Computing α explicitly from the first equation and inserting the resulting
formula into the second equation yields

α = −K−1(σ∗) · ∂∂σ
(
K(σ∗) ·D∗) · β,[

I −
(
∂
∂σ (E(σ∗)G̃ · C ·D∗)− E(σ∗)G̃ · C ·K−1 · ∂∂σ

(
K ·D∗))] · β = 0.

(5.4)

We define the matrix

T :=
∂

∂σ

(
E(σ∗)G̃ · C ·D∗

)
−E(σ∗)G̃ ·C ·K−1(σ∗)

∂

∂σ

(
K(σ∗) ·D∗) .(5.5)

It can be shown that the Frobenius norm of the matrix T can be estimated
through

‖T‖F ≤ R · c · h−5 · LE · ē

(1− ν)2
(5.6)

with some constant 0 < c 6= c(h) (cf. [19, p. 91ff]). Due to (5.3), ‖T‖F is
lower than 1, i.e., the matrix I − T is invertible, which implies via (5.4) that
the vectors β and α are zero. Therefore F ′(x∗) is indeed regular.

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 429

In fact, computing the upper bound for the Frobenius norm of T in (5.6) for
some numerical examples yields horribly large numbers. On the other hand, if one
calculates the norm for the matrix T for the numerical examples given in section 8
(with some program), it is obtained that ‖T‖F ≈ 10. (In fact, the applied forces, the
prescribed temperature distribution, and LE would have to be smaller to make sure
that ‖T‖F is really lower than one.)

Thus we may conclude that the estimate (5.6) is extremely rough and the result
is not useful for practical problems. On the other hand these considerations supply
some insight into the nature of the problem.

Remark 5.7. Looking at the proof of Theorem 5.6, it would suffice that 1 is not
an eigenvalue of the matrix T instead of proving that the norm of T is lower than
1. This condition is extremely difficult to verify, but for numerical experiments we
should keep in mind that Newton’s method will probably converge for a broader class
of material laws than those given by (5.3).

5.3. Modified Newton method. We assume that the matrix T (cf. (5.5)) is
small compared to the identity matrix (measured in the Frobenius norm) in each
iteration step. Motivated by Algorithm 5.4 we have the following algorithm.

Algorithm 5.8. ∆D(j) = K−1
[
Q−K ·D(j) − ∂

∂σ (K ·D(j))∆σ(j)
]
,

σ(j+1) = E(σ(j))G̃ · C ·D(j) + β∆T + E(σ(j))G̃ · C ·K−1(Q−K ·D(j)).

(See Algorithm 5.8; now the matrix T is neglected.) In order to compare Algo-

rithms 5.4 and 5.8, let the iterates D(j) and σ(j) be the same for Newton’s algorithm
and Algorithm 5.8. (In the following we will denote an iterate of Newton’s algorithm
by the subscript “NEW” and an iterate of Algorithm 5.8 by the subscript “MOD.”)

Then the error in the next iteration point (D(j), σ(j)) can be estimated as follows. We
define

g(j) := −σ(j) + E(σ(j))G̃ · C ·D(j) + β∆T + E(σ(j))G̃ · C ·K−1(Q−K ·D(j)),

and T (j) should be given by (5.5), where the iterates D(j) and σ(j) have to be inserted

for D and σ, respectively. If we assume that ‖T (j)‖F < (‖I‖F)−1, then it holds that

‖σ(j+1)
MOD − σ(j+1)

NEW ‖ ≤ ‖I − (I − T (j))−1‖F · ‖g(j)‖ ≤ ‖I‖2F · ‖T (j)‖F
1− ‖I‖F · ‖T (j)‖F

· ‖g(j)‖

and

‖D(j+1)
MOD −D(j+1)

NEW ‖ ≤ ‖K−1‖F ·
∥∥∥∥ ∂∂σ (K ·D(j))

∥∥∥∥
F

· ‖σ(j+1)
MOD − σ(j+1)

NEW ‖,

where we used the “perturbation lemma”

‖A−1 −B−1‖ ≤ ‖B−1‖2 · ‖A−B‖
1− ‖B−1‖ · ‖A−B‖

for a regular matrix B and a matrix A with ‖A−B‖ · ‖B−1‖ < 1 (cf. [21, p. 162]).

430 CHRISTOPH STANGL

Therefore the difference in the next iterates over the jth finite element is “small”
if the Frobenius norm of the matrix T (j) is sufficiently small.

This algorithm has the great advantage (compared with Algorithm 5.4) that no
linear equation has to be solved for computing σ(j+1). The dimension of the corre-
sponding matrix I − T (in Algorithm 5.4) is Nf × 3Ne, and the matrix is full, which
is extremely costly in terms of computing time.

We could not find a convergence result for Algorithm 5.8, but the numerical results
in section 8 together with the above considerations indicate that a positive answer
exists.

5.4. Homotopy method. In this section we want to improve the algorithms
for solving the discrete equilibrium equations (2.2) and (2.5) developed so far for the
nonlinear material law given in Remark 1.1. The method suggested can be transferred
to other nonlinear material laws in the same manner.

We mentioned in subsection 5.1 that some difficulties may occur (and in practice
do indeed occur) for Algorithms 5.1, 5.4, and 5.8. On the one hand, the global
displacement vector D, respectively, LE , is in practice not as small as needed for the
contractivity of the fixed point operator M and the smallness of the matrix T as
defined in (5.5). On the other hand, Algorithm 5.4 is only locally convergent, i.e., the
starting point x0 might be too far away from the solution x∗.

In fact, if Young’s modulus were constant, i.e., E = E0 = const, then only one
step of Algorithm 5.4 would have to be performed in order to yield the solution to
(2.2) and (2.5). Furthermore, the nonlinearity of the material law (1.7) lies in the
parameter y1: if y1 were 0, the material law would be constant. Thus one can try to
use some homotopy method with respect to the parameter y1 to solve (1.1) and (1.6)
for the nonlinear material law (1.7).

We define the operator H(y;D,σ) := Fy(D,σ), where Fy is given by (5.1) and
the subindex “y” denotes that in the material law (1.7) the parameter y1 is set to y.
Then (1.1) and (1.6) can be written as

H(y1;D,σ) = 0.(5.7)

The problem “H(0;D,σ) = 0” corresponds to a material law, where Young’s modulus
is constant, namely, E = y0 + y2 ·∆T , i.e., this is a linear problem and therefore it is
straightforward to find the solution (D0, σ0). Now we can try to find the solution of
(5.7) by the iteration scheme, as follows.

Algorithm 5.9.

given ỹ set ∆y := (y1 − ỹ)/n with n ∈ N; y(0) := ỹ
set y(k) = y(k−1) + ∆y
if y(k) > y1 then stop

solve H(y(k);D(k), σ(k)) = 0, e.g., by some Newton method

with starting point (D(k−1), σ(k−1))

 ∀ k = 1, 2,

In solving problem

H(y(k);D(k), σ(k)) = 0(5.8)

in Algorithm 5.9 one predictor step is usually made to get an approximation for the
solution (D(k), σ(k)), followed by several corrector steps in order to get nearer to the
curve y 7→ (D(y), σ(y)) that is implicitly defined through (5.8) (cf. [1]). The starting

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 431

homotopy parameter ỹ may be set to zero or to some value “nearer” to the final
value y1.

Looking at Algorithm 5.9 the following question arises: How does the increment
∆y have to be chosen such that the solution point (D(k−1), σ(k−1)) of the previous

iteration is sufficiently near the solution of the problem H(y(k), D(k), σ(k)) = 0 and
Newton’s method will indeed converge? An answer to this question is, e.g., given
in [1], [23, pp. 249–276], and [25]. In [23] conditions for choosing a uniform stepsize
are given in order to yield a converging solution algorithm.

For our numerical examples in section 8 it was sufficient to use only predictor
steps and to implement a fairly simple adaption algorithm for the steplength ∆y
(cf. subsection 7.4).

6. Calculation of sensitivities. In the previous section we developed algo-
rithms to solve the discrete nonlinear equilibrium equations (2.2) and (2.5). Once the
solutions D and σ are found, the objective function and the constraint functions of
the design problems (3.6) and (3.8) can be evaluated, but we also need derivatives
and therefore more information.

We want to state here that in this section we will only deal with the derivatives
of the discrete problem. Furthermore, we assume throughout this section that the
material law function E should be continuously differentiable.

For solving the discrete design problem (3.6) or (3.8), abstractly written as

φ(t,D(t), σ(t)) −→ min
t∈RNd

,

ci(t,D(t), σ(t)) ≤ 0 ∀ i = 1, . . . ,M
(6.1)

(cf. section 3 for the definition of the objective function φ and the constraint functions
ci, i = 1, . . . ,M), we will use the SQP algorithm (together with an active set strategy;
cf., e.g., [18]): In each iteration step the new iterate xk+1 is found through a line search
along a certain search direction dk, i.e.,

xk+1 = xk + αk · dk.

The search direction dk is determined as the solution of the quadratic optimization
problem

minimize
1

2
dTB

k
d+∇φ(xk)T d in Rn

∇cj(xk)T d+ cj(xk) ≤ 0 ∀ j = 1, . . . ,M,

where gradient information about the objective function and the constraint functions
is used. Thus we have to compute the derivatives of the objective and the constraint
functions with respect to the design variables ti, i = 1, . . . , Nd.

As indicated in the formulation of the design problem (6.1), the displacement
vector D and the stress vector σ depend upon the vector of design variables t via the
formulas established in section 2. Therefore it follows by the chain rule that

d

dti
φ(D,σ, t) =

∂φ

∂D
(D,σ, t) · ∂D

∂ti
+
∂φ

∂σ
(D,σ, t) · ∂σ

∂ti
+
∂φ

∂ti
(D,σ, t),

d

dti
cj(D,σ, t) =

∂cj
∂D

(D,σ, t) · ∂D
∂ti

+
∂cj
∂σ

(D,σ, t) · ∂σ
∂ti

+
∂cj
∂ti

(D,σ, t)
(6.2)

432 CHRISTOPH STANGL

∀i = 1, . . . , Nd, j = 1, . . . ,M . Thus, one has to calculate the sensitivities

∂D

∂ti
and

∂σ

∂ti
∀ i = 1, . . . , Nd(6.3)

in order to be able to compute the derivatives (6.2).
If the material law functionE is once continuously differentiable and the Frobenius

norm of the matrix T (cf. (5.5)) is “small” (cf. subsection 5.2), the sensitivities (6.3)
can be computed by applying the implicit function theorem (cf. [10, p. 295]) to the
function

F (t,D, σ) :=

(
K(t, σ) ·D −Q(t)

σ − E(σ)G̃ · C ·D −∆T · β
)
,

i.e.,
∂D

∂t

∂σ

∂t

 = −(∇D,σF)−1(t,D, σ) · F (t,D, σ)

∂t
⇐⇒

[
K(σ, t) ∂

∂σ

(
K(σ, t) ·D)

−E(σ) · G̃ · C ·D I − ∂
∂σ (E(σ) · G̃ · C ·D)

]
·

∂D

∂t

∂σ

∂t

 =

(
∂Q

∂t
− ∂K

∂t
D

0

)
.

Thus ∂D
∂t and ∂σ

∂t can be computed analogously to the displacement vector D and the
stress vector σ in Algorithm 5.4 via Algorithm 6.1.

Algorithm 6.1.

∂D∗
∂t

= K−1

[
∂Q

∂t
− ∂K

∂t
·D∗ −

∂

∂σ
(K ·D∗)

∂σ∗
∂t

]
,[

I − ∂

∂σ
(E(σ∗)G̃ · C ·D∗) + E(σ∗)G̃ · C ·K−1 ∂

∂σ
(K ·D∗)

]
∂σ∗
∂t

= E(σ∗)G̃ · C ·K−1

(
∂Q

∂t
− ∂K

∂t
·D∗

)
,

(6.4)

where D∗ and σ∗ are the solutions to (2.2) and (2.5); notice that K = K(σ∗).
If the matrix T (cf. (5.5)) is small compared to the identity matrix I, these

equations become

∂D∗
∂t

= K−1

[
∂Q

∂t
− ∂K

∂t
·D∗ −

∂

∂σ
(K ·D∗)

∂σ∗
∂t

]
,

∂σ∗
∂t

= E(σ∗) · G̃ · C ·K−1

(
∂Q

∂t
− ∂K

∂t
·D∗

)
.

(6.5)

If we omit the term ∂
∂σ (K ·D∗)∂σ∗∂t , we obtain the formulas

∂D∗
∂t

= K−1 ·
[
∂Q

∂t
− ∂K

∂t
·D∗

]
,

∂σ∗
∂t

= E(σ∗) · G̃ · C ·
∂D∗
∂t

.

(6.6)

Clearly (6.5) or (6.6) can be solved with less effort than (6.4), but one must check for
each example whether the matrix T or the derivatives with respect to σ may really
be neglected.

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 433

7. Algorithm for solving the discrete design problem. We already men-
tioned in section 6 that we solve the optimization problem

φ(t,D(t), σ(t)) −→ min
t∈RNd

,

ci(t,D(t), σ(t)) ≤ 0 ∀ i = 1, . . . ,M
(7.1)

with the sequential quadratic programming algorithm (together with an active set
strategy). Therefore we need to evaluate the objective function φ and the constraint
functions ci, i = 1, . . . ,M as well as their gradients ∇tf and ∇tci, i = 1, . . . ,M .

In section 5 we developed an algorithm to compute the displacement vector D
and the stress vector σ, and in section 6 we developed an algorithm for calculating
their sensitivities with respect to the design variables.

Therefore we are able to perform both function and gradient evaluations, i.e., we
are ready to formulate an algorithm for solving the discrete design problem.

7.1. Statement of the algorithm. Combining Algorithms 5.1 and 5.9 to com-
pute D and σ, and (6.6) to calculate ∂D/∂t and ∂σ/∂t, respectively, our algorithm to
solve the discrete design problem (7.1) is given by Algorithm 7.1 (again superscripts

denote the iteration index), where D(n) and σ(n) are the last iterates in the inner
loop and D∗ and σ∗ are the obtained solutions of discrete equilibrium equations. The

starting point (D(0), σ(0)) can be computed by using some linear material law which
approximates the given nonlinear material law (e.g., setting E = E(0) = const) or
choosing the solution of the foregoing iteration.

In Algorithm 7.1 we have chosen (6.6) in order to compute the sensitivities of D
and σ. Of course, one should use (6.4), (6.5), or (6.6) for computing the sensitiv-
ities that correspond to the algorithm one uses for solving the discrete equilibrium
equations (cf. Algorithm 5.1, 5.4, or 5.8).

In [18, p. 210ff] a convergence result is given for the SQP algorithm together with
an active set strategy, just as we use it to solve the design problems (3.6) and (3.8),
but the conditions given there are impossible to prove for our settings. Therefore we
are not able to state a priori parameter choice rules that guarantee the convergence
of Algorithm 5.8.

7.2. Stopping criteria. In order to reach convergence in the outer loop of Al-
gorithm 7.1, both of the following stopping criteria have to be fulfilled:

1. The relative change in the objective function should be sufficiently small, i.e.,

∆F :=
|φ(n) − φ(n−1)|

φ(n−1)
< εF ,(7.2)

2. the sum of the constraint violations should be sufficiently small, i.e.,

∆C :=
M

max
i=1

(0, ci(t)) < εC(7.3)

for some suitable positive parameters εF and εC . For the fixed point iteration, re-
spectively, the (modified) Newton iteration, in the inner loop the relative error of two
successive iteration points has to be “small enough,” i.e.,

‖D(j−1) −D(j)‖ < εD · ‖D(j−1)‖ and ‖σ(j−1) − σ(j)‖ < εσ · ‖σ(j−1)‖

for some suitable positive parameters εD and εσ.

434 CHRISTOPH STANGL

Algorithm 7.1.

given t0, ∆y1, ỹ

DO WHILE (not converged yet)

compute initial points D(0) and σ(0); set y := ỹ

DO WHILE (|y| ≤ |y1|)

DO WHILE (not converged yet)

∆D(j) = K−1(t0, σ
(j)) ·

[
Q(t0)−K(t0, σ

(j)) ·D(j)
]

D(j+1) = D(j) + ∆D(j)

σ(j+1) = E(σ(j))G̃ · C ·D(j+1) + β ·∆T
ENDDO

D(0) = D(n), σ(0) = σ(n)

y = y + ∆y

ENDDO

∂D∗
∂t

= K−1(t0, σ∗) ·
[
∂Q(t0)

∂t
− ∂K(t0, σ∗)

∂t
·D∗

]
∂σ∗
∂t

= E(σ∗)G̃ · C · ∂D∗
∂t

input D∗, σ∗,
∂D∗
∂t

,
∂σ∗
∂t

into optimizer (one SQP step) ⇒ t∗

t0 = t∗
ENDDO

Since we do not solve the nonlinear discrete equilibrium equations (2.2) and (2.5)
exactly, but only up to an error ε > 0, the following question arises: What effect does
this have on the solution of the design problem (7.1)? An answer to this question will
be given in [20] using results of the theory of point-to-set mappings.

7.3. Improvement of the algorithm. In Algorithm 7.1 there are several levels
of convergence:

1. the convergence of the whole design cycle,
2. the convergence of Newton’s method for calculating D and σ,
3. the convergence of the optimizer (if one uses approximations for the objective

and the constraint functions; see also [16]).

Since some software library will be used for the optimization, the convergence of
the optimizer is not included in the following considerations.

If the whole optimization is far away from the optimal solution, it would not be
very efficient to compute the displacement vector and the stress vector up to a high
accuracy. Thus at the beginning, larger relative errors in the finite element analysis
will be accepted and the “level of acceptance” will be decreased when the minimum
is approached, e.g., we have Algorithm 7.2.

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 435

Algorithm 7.2.

given 0 < ξ1, ξ2, η1, η2 < 1 and κF , κC > 1

IF (∆F ≤ κF · εF AND ∆C ≤ κC · εC) THEN

εD = ξ1 · εD
εσ = ξ2 · εσ
κF = max(η1 · κF , 1)

κC = max(η2 · κC , 1)

ENDIF

It is recommended that the last optimization cycle be repeated with the desired
accuracy for solving the discrete equilibrium equations, since there is no guarantee
that the final accuracy achieved by coupling Algorithm 7.1 with Algorithm 7.2 is
better than the desired accuracy.

The whole algorithm for solving the design problem (7.1), including the improve-
ments of this subsection, is summarized in Figure 7.1 (the module ACONTR performs
Algorithm 7.2).

7.4. Dynamic update of parameters. The parameters used for the homo-
topy method (ỹ,∆y) and for modifying the relative errors for the stopping criterion
of Newton’s method (κF , κC , ξ1, ξ2, η1, η2) should probably be dynamically updated
according to the actual state of the optimization process.

Since only a few iterations are needed for our numerical examples to reach the
desired solution of the design problem (cf. section 8), it was not necessary to pay too
much attention to choosing or adapting the “coupling parameters” κF , κC , ξ1, ξ2,
η1, η2; it is important only that the relative errors εD and εσ used in the stopping
criterion for Newton’s method are decreased quite rapidly approaching the solution
of the design problem.

The modification of the increment size ∆y is coupled with the maximum number
of iterations MAXLOP at solving the discrete equilibrium equations. The parameter
MAXLOP plays a crucial role in the finite element analysis: Each time Newton’s
method terminates because the number of iterations exceeds MAXLOP, the step size
∆y of the homotopy method will be decreased (e.g., halved) and a further solution
to (1.1) and (1.6) will be started. If ∆y becomes too small, the solution to (1.1)
and (1.6) is stopped and the optimization is continued with the last iterates.

Thus it seems to be best to choose MAXLOP quite large, but on the other hand,
if the number of iterations is too large and Newton’s method does not converge at
all, it would be better to abort this analysis as soon as possible. (We used the setting
MAXLOP = 10 for numerical experiments; see section 8.)

These considerations complete our analysis of the existence and uniqueness of the
discrete equilibrium equations and the discrete design problem and the convergence
analysis of different algorithms to solve these problems. The only thing remaining is
to test our algorithms for some numerical examples.

8. Numerical examples. In this section we will present some numerical results
for a real-life problem from our industrial partner AVL. The goal is to find the optimal
design of a unit injector rocker arm made of gray cast iron as the solution of the design

436 CHRISTOPH STANGL

Input Data

solve (2.7)
with parameters
ỹ,∆y, εD, εσ

D∗, σ∗

¡
¡¡

@
@@

@
@@

¡
¡¡

CONV

Y N�
�
�
�END ACONTR

(modify εD
and εσ)

solve equations
(6.4)

∂D∗
∂t

,
∂σ∗
∂t

�
�

�
�

�
�

�
�APPROX

'

&

$

%

'

&

$

%
SQP

(+ active set

strategy)

t∗

�
�
�
�

modify
ỹ,∆y

?

?

?

¡
¡
¡ª

HHHHHj

¡
¡
¡
¡
¡
¡¡ª

?

6

6 ?

6

�

-

�

Fig. 7.1. Flow diagram of the solution of the design problem for nonlinearly elastic materials.

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 437

. .
. .

.

.

.

.

.
.

..
.

.

.

.

.

.

.

.

.

.

.

.
.

. .
.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

..

.

.

.

. .
. .

.

.
.
.

.

.
. . . .

.
.
.

.

.

.
.

.
....

.
.
.

.

.

.
.
.

.

.
.

.

.

.

.

.

.

.

.

..

..
.

.

.

.

.

.

.

.

.

.

.
.

.
.

. .
.

. .

.
.

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

..

.
.

.
.

. .
...

.

...

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
..

.

.
..

.
.

.
.

.

.
.

..
.

.

.

.

.

.
..

.

.

.

.

.

.

..

.
.

.

.

.
.

.

.
.

.

.
.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.
.

.
..
. .
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.
.
.
.

.

.

. .

.

.

.

.

. ...

.
.
..

.

. .
.

.

. .
.

.

.

.

.

.

.
.

.

.

.

.

.

.
. ...

. . .

..

.
.
.

.

. .
.

Fig. 8.1. Finite element mesh, exerted forces and constraints of a unit injector rocker arm.

problem (3.6), respectively (3.8). Therefore we suppose that the nonlinear material
law considered is given by (1.7).

In the following the solution algorithm for the design problem developed in sub-
section 7.1 is modified according to [16]. There, not only one SQP step is performed
within each optimization cycle, but the objective function and the constraint functions
are approximated, e.g., quadratically, and then the optimization problem is solved in
a user-specified trust region around the actual iteration point using these approxi-
mations (cf. Figure 7.1). The great advantage of this method is that the number of
solutions of the equilibrium equations is remarkably lower, which is usually the most
costly part of the whole optimization process.

For our problems we have used a mixed linear approximation for the objective
function and the constraint functions, i.e. (we will write φ only as a function of t),

φ(t) ≈ φ(t(n)) + bT · ∇tφ(t(n))

with

bi :=

{
ti − t(n)

i for (∇tφ(t(n)))i ≥ 0,

− t
(n)
i

ti
· (ti − t(n)

i) for (∇tφ(t(n)))i < 0

(cf. [16, p. 12]).

8.1. Problem description. First let us have a look at the finite element mesh
of the unit injector rocker arm in Figure 8.1.

At the left and right side (with respect to the X-axis) of the object, there are
applied surface forces, and at the lower part of the bigger inner circle the displacements
of those grid points marked with a dot are prescribed (Dirichlet boundary conditions).

438 CHRISTOPH STANGL

Fig. 8.2. Partition of Ω in subdomains with constant thickness.

The finite element mesh consists of 467 grid points and 397 elements (396 bilinear
rectangles and 1 linear triangle). Thus the constants used in the previous sections for
describing the finite element model are given by

Ne = 397, Nf = 926, Ng = 467.

The partition of the domain ω into subdomains p(j), i = 1, . . . , Nd, according to
section 3 is given in Figure 8.2. The body is subdivided into 19 pieces, where there
are 13 variable thicknesses, i.e., Nd = 13.

The original design and the von Mises stress contours can be seen in Figure 8.3.
The surface in Figure 8.3 is an approximation of the skyline-like design defined
via (3.3) that has almost the same mechanical properties (cf. also Remark 8.1). The
same also holds for Figures 8.4 and 8.5.

8.2. Setting of the input parameter. In the following subsections the two
design problems stated in section 3 are analyzed for the nonlinear material law (1.7)
with the constants

y0 = 1.3 · 105, y1 = −320, y2 = −40.

Furthermore, the reference temperature Tref of the body is set to 20 degrees centigrade
and the temperature vector is initialized with 85 degrees centigrade, i.e., T = 85 all
over Ω. The thermal expansion coefficients are given by βi = 1.02 · 10−5 + 8.0 · 10−8 ·
(T − Tref).

The default values of the parameters controlling the finite element analysis are
given by κF = κC = 5.0, ξ1 = ξ2 = η1 = η2 = 0.5, εD = εσ = 0.05, ε0 = 0.01,
εC = εF = 5.0 · 10−3 (cf. subsection 7.1), and the parameters for the homotopy
method are set to ỹ = −260, ∆y = −30 (cf. subsection 5.4).

8.3. Objective equals minimal volume. The problem to be solved is

Volume −→ min,

σ
(i)
elm ≤ σ̄ ∀ i = 1, . . . ,Me,

δi ≤ Di ≤ δ̄i ∀ i = 1, . . . ,Mf,
τ i ≤ ti ≤ τ̄i ∀ i = 1, . . . ,Md,

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 439

1

. .
. .

. .

. .

. .

. .. .

.

. . .

. .

.

..

. .

.

. .

.

.

. .

.

.

. .

.

. .

.
.

. .

.

. .

.

.

. .

.

..

.
. .

.

. .

.

.

. .

.

.

. .

. .

. .

. .

.

.

.

.

.

. .. .

..

.

.

..

.

.

.

.

.

.
.
..

.

. . .

.
.

. .

. .

. .

.
. . .

.

.

.

.

.

..

.

. . .

.

.

. ..

.

.

.

.

.

..

.

.

.

.

. . .

.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.. .

. . .

.

.

.

.
.

.

.

. . .

.
.

.

.
.

.

.

. . .

.

.

.

. .

.

.

.

. . .

. . .

.

.

.

..

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.... .

.

.

.

.

.

.

.

... . . .

. .

.

.

.. .

.

.

..

.

.

. . .

.

. . .

.

.

. .

.

. ..

.

. . .

.

..

.

.

.

. . .

.

.

.

.

. .

..

. .

. . .

.

.

. .

.

..

.

.
.

.

. .

...

.

.

..

.

.

.

... .

.

.

.

.

..

.

.. .

.

.
. .

.... ..

.

.

.

..

.

.

.. . . .

. .

.

.

.. .

.. .

.

.

.

. .

.

. . .

.

.

. .

.

. . .

.

.

. .

. .

.

. .

.

.

..

.

..

.

.

.

. .

. . .

.

.

..

.

.

.

.

.

. .

...

.

.

.

.

. . .

. .

. .

.

.

. .

.

.

.

..

.

. . .

. . .

.

. .

..

.

.. .

.

..

.

.

. . .

.

.
.

.

.

.

. .

.

.

..
.

.

.

.

.. .

..
.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

..

. . .

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

..

.

.

.
.

..

.

.

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

.

..

.

.

.

.

.

.

..

.

. .

.

.

. .

.

. .

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.. . .

.

. .. .

.

.

.

.

.

.

.

.

. . .
.

.

.

..

.

.

.

. .

.

.

..

.

..

.

. . .

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. . .

.

.

.. .

..

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

..

.

. .

. .

. .. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

. .

.

.

..

.

.

. .

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.. ..

. .

.

.

.

.

. .

.

. .

.

. . .

. .

. .
. .. .

.

. .

.
. .

. .

. .

. . .

. .

. . .

.

. .

. .

. .

.
.

. .

. .

.

. .

. ..

.

. .

.
.

.

..

. .
.

.
.

.
.

.
.

RT 1: ResultsDB
Statics Analysis
Subcase 1
VonMisesStress
DisplacementTranslation1

 0.000 -
 28.000

 28.000 -
 56.000

 56.000 -
 84.000

 84.000 -
 112.000

 112.000 -
 140.000

 140.000 -
 168.000

 168.000 -
 196.000

 196.000 -
 224.000

 224.000 -
 252.000

 252.000 -
 280.0001

Fig. 8.3. Original design and von Mises stress of unit injector rocker arm.

1

.
.
.

..

.

. .

.

. .

.

. .

.
.

.

.

.

. .

.

. .

.

.
. .

.

. .

.
.

.
.

.

. .

.

. .

.

.

.

.

. .

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

. .

.

.

.

.

.

.
...

.

.

.

.

.

.

.

.

.
. .

.

. .

.... .

.

.

.

.

.

. .

.
. .

.

.

.. . . .

.

.

.

... .

.

..

. .

..
.. .

.

.

.

.

.

.

. . .

. .

.

.

..

. . .

.

. .

.

.

. . .

. .

. .

.

.

. .
.

. . . .

. . .

.

. .

. . .

.

.

.

.

.

..

. . .

.

. . .

.

.

.

.

.

.

.
.

.

.

.

.

. . .

. .

.

.

. .

.

.

.

.

. .

. . .

.

. . .

. .

.

. ..

.

. . .

. .

.

.

.
.

.

. .

.

. . .

.

.

.

...

. . .

..

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

. .

.
..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. ..

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

. . .

.

. . .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.... ..

. .

.

.

.

.

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.

. .

.

.

.

.

. .

.

. . .

.. .

.

.

.

. . .

.

.
.

.

.

. .

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

. .

.

. .

. . .

.

.

. .

.

. .

.
.

..

.

.

.

. .

.

.

.

.

. .

. . .

. .

.

.

.

. .

.

. . .

.

. .

.

. .

.

.

..

.

.

.

.

.

. .

.

. . .

. .

.

.

.
.

.

. . .

. .

. .

. .

.

.

. .. .

.

.

.

.

.

.

. . .

. .

.

. .

.

.

.

. . .

.

.

. .

.

. .

.

. .

.

.

.

.

.

.

.

. . .

.

.

. .

.

.

. . .

..

. .

. .

.

.

..

.

.

.

. .

.

.

.

.

..

.

.

.

. .

.

. .

..

.

.

.

.

.

.

..

.

. .

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

..

.

.

.

.

.

.

.

. ..

.

.

. ...

. .

.

.

.

.

.

.

. .

.

...

.

.

.

.

.

. .

.

.

.

.. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

. ..

.

.

..

.

.

.

.

. .

.

..

.

.

.

.

. .

.

. ..

. .

.

.

..

.

.

. .

.

.

.

.

.

.

.

.

. .

.

. .

..

..

.

.

.

. .

.

.

.

..

.

.

. .. .

.

..

.

.

.

.

.

.

.

.

.

.

.. ..

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
. .

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

. .

.

..

.

.

.

.
.

..

.
. .

.

.

.

.

.

.

. ..
. .. .

.

. .
. . .

. .
. .

. .

 0.000 -
 25.000

 25.000 -
 50.000

 50.000 -
 75.000

 75.000 -
 100.000

 100.000 -
 125.000

 125.000 -
 150.000

 150.000 -
 175.000

 175.000 -
 200.000

 200.000 -
 225.000

 225.000 -
 250.0001

Fig. 8.4. Optimal design (objective equals minimal volume) and von Mises stress of unit injector
rocker arm (modified Newton method).

440 CHRISTOPH STANGL

1

.
.
.

.

.

.

.

. .

.

.

. .

..

. .

.

. .. .

.

.

.

.
.

.

.

. .

.

.

. .. .

.
.

. .

. .
.

. .

. .

. .

.

.

.

.
.

. .

.

.

. .

. .

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

..

.

.... .

.

.
.

.

.

.

.

.
.

.

.

.

. .

. . . .

.

.

.

.

.

. .

.

.

.. .

.

.

.

. .

.

.

. ..
.

.

. . .

.

.

.

.

. . .

.

.

.

.

. .
.

.

.

.

.

.

. . .

.

. .

...

.

. . .

. .

.

.
..

. . .

. . .

.

.

.

.

. .

. .

.

. . . .

. . .

.

.

.
. . . .

.

. .

.
.

.

. . .

..

.
..

.
.

. . .

.

.

.

.
.

.

.

. .

..

.

. .
.

.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

. . .

..

. .

.

..

.

.

.

.

.

.

.

. .. .

.

.

.

.

. .

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

. .

..

.

.

.

.

.

.
.

. .

.

.

.. .

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

..

.

. .

.
.

..

. .

. .

.

.

.

.

.

.
.

.. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

. .

.

.

.

.

.

.... ..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. . .
.. . . .

.

..

.

.

.

. .

. .

.

. . .

.
.

.

.

.

.
...

.

.

.. .

.

.

.

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

.

..

.
.

. . .

.

.

.

.

.

.

. . .

. .

.

.

.

.

.

.

. . .

.

.

.

.

.

.

. . .

.

.. . .

.

.
.

.

.

. . .
.

.

.

.

.. .

. . .

.

.

.

.

.

. . .

.

.

.

.

.

.

.

. .

. .

.

.
.

. .

. . .

.

.

. .

.

.
.

..

.

.
.

.

.

. .

.

. . .

..

.

. .. .

.

. .

.

.. .

. .

.

.

.

. .. .

.

.

...

.

. .

.

.

. .

.

.

.

.

.

.

. .

.

.

.

..

.

..

.

..

.

. .

.

..

. .

. ..

.

..

.

.

.

. .

. .

..

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

. .

. .

.

.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .. .

.

.

.. .

.

.

.

.

.

..

. .

.

.
.

.

.

.

.

.

.

.

.

..

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

..

.

.

...
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.. ..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

. .

.

. .

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.. .
.
. .. .

. .
. . .

. .
. .

. .

 0.000 -
 25.000

 25.000 -
 50.000

 50.000 -
 75.000

 75.000 -
 100.000

 100.000 -
 125.000

 125.000 -
 150.000

 150.000 -
 175.000

 175.000 -
 200.000

 200.000 -
 225.000

 225.000 -
 250.0001

Fig. 8.5. Optimal design (objective equals even stress distribution) and von Mises stress of unit
injector rocker arm (modified Newton method).

where D and σ are the solutions to (2.2) and (2.5). The obtained results (with the
SQP algorithm together with an active set strategy) are given in Table 8.1.

The data in the first column correspond to the linear material law E = y0+y2 ·∆T
(cf. [15]), where all stiffness matrices are computed by NASTRAN. The results in the
second column are achieved by computing the stiffness matrix and the matrix of
elasticity coefficients with polynomial shape functions. (The differences in the results
of NASTRAN are due to the fact that NASTRAN uses different shape functions:
relative error in the objective function is 1.4%.)

The third column contains the results for the nonlinear case described above.
(Here we used εD = εσ = 0.02; Algorithm 5.1 did not converge for greater starting
errors.) The value of the objective function of the original design was 26374.525; thus
a decrease of 48.18% could be achieved in the nonlinear case. The corresponding
design and the von Mises stress contours can be seen in Figure 8.4 (cf. Remark 8.1).
On the one hand it can be seen in Figure 8.4 that the prescribed von Mises stress
is not exceeded; on the other hand it is reached in some regions, since otherwise it
would be possible to take away more material.

Remark 8.1. As mentioned in section 3, we assume that our problem is a plane
stress problem, which has to be verified for our specific example.

Therefore we performed some additional investigations in order to answer the
question of whether the reduction of the three-dimensional object to a two-dimensional
cross section is valid with sufficient accuracy: We generated a three-dimensional sur-
face of the above calculated optimal design by assigning to the z-coordinate of a grid
point (of the two-dimensional model) the arithmetic sum of the different heights of
adjacent finite elements, ending up in the design drawn in Figure 8.4. (The height is

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 441

Table 8.1
Numerical results for the nonlinear material law (1.7) for the design problems (3.6) and (3.8).

Linear case Linear case Nonlinear case Nonlinear case
NASTRAN New routines New routines New routines
E = const E = const E = E(σ, T) E = E(σ, T)

Fixed point Fixed point Modified Newton

F = 12933.643 12754.713 13668.458 14328.906
X = 5.000 5.000 5.000 5.000

5.689 5.637 5.151 5.342
5.000 5.000 5.000 5.000
8.575 8.722 11.061 10.164

10.573 10.708 10.826 10.303
8.220 6.956 6.669 9.447

(3.6) 18.477 18.771 18.168 23.224
14.481 13.752 14.993 18.576
12.657 12.364 12.626 14.183
7.423 7.298 6.334 5.764

12.538 12.364 11.758 12.932
6.740 6.209 7.921 8.548
6.017 5.865 6.308 6.499

IT = 7 7 11 9
CPU = 00:02:19.08 00:02:59.38 00:09:22.27 00:05:41.70

F = 72.275 71.476 63.703 63.321
X = 5.103 5.124 5.091 5.324

8.114 8.110 8.203 7.984
5.000 5.000 5.000 5.000
9.110 8.996 9.282 9.449

13.493 13.553 13.996 14.280
8.208 8.167 9.225 9.369

33.120 34.106 34.862 33.046
(3.8) 19.334 19.300 17.677 17.113

16.398 16.2463 15.955 16.643
12.705 12.665 11.701 10.960
22.568 22.571 21.604 21.598
8.172 7.929 9.274 9.226
6.403 6.533 6.007 5.662

IT = 6 6 7 7
CPU = 00:02:09.73 00:02:33.11 00:03:12.26 00:04:36.42

distributed symmetrically to the two-dimensional cross section; cf. (3.1) and (3.3).)
Solving the equilibrium equations for the resulting three-dimensional model, it turned
out that the stresses are indeed almost uniformly distributed over the height and the
results look very similar to those of the two-dimensional example. (In order to save
space we will not print these comparisons here; cf. [19, p. 117ff].)

Thus we may conclude that for our numerical examples the assumption of a plane
stress problem is at least approximately justified.

The fourth column corresponds to the results obtained with the modified Newton
method (cf. Algorithm 5.8). The convergence at solving (1.1) and (1.6) is improved
enormously: In each design cycle only a few iterations (about 3) are needed to achieve
a relative error in D and σ smaller than 5.10−7. Furthermore, no homotopy method
has to be used, i.e., ỹ can be set to −320. Compared to the solution of the fixed
point iteration, the relative error in the objective function is 4.83% and the objective
function could be decreased by 45.67%, which is only slightly worse than the result

442 CHRISTOPH STANGL

obtained with the fixed point iteration.
Thus the modified Newton method yields a similar result as the fixed point iter-

ation, but it is preferable because there is no need to use a homotopy method (fewer
parameters to choose) and it is faster.

8.4. Objective equals even stress distribution. The problem to be solved is

Ne∑
j=1

(
σ

(j)
elm

σ∗
− 1

)2

−→ min,

σ
(i)
elm ≤ σ̄ ∀ i = 1, . . . ,Me,

δi ≤ Di ≤ δ̄i ∀ i = 1, . . . ,Mf,
t ≤ ti ≤ t̄ ∀ i = 1, . . . ,Md.

The obtained results (with SQP and an active set strategy) are given in Table 8.1
(here ỹ is set to −320, i.e., no homotopy method has to be used). The value of
the objective function of the original design was 109.673; thus a decrease of 41.92%
could be achieved in the nonlinear case. Furthermore, the volume of the body has
been reduced by 36.37% (volume for optimal design is 16782.029). The corresponding
design and the von Mises stress contours can be seen in Figure 8.5 (cf. Remark 8.1).

The convergence at solving (1.1) and (1.6) with the modified Newton method is
improved in the same way as for the minimization of the volume. The relative error
in the objective function is only 0.6%.

Since no homotopy method had to be used at the fixed point iteration, one can
say that neither of the two methods is significantly superior to the other one.

9. Conclusions. In this paper we developed a methodology for solving sizing
optimization problems for a class of nonlinearly elastic materials. We developed al-
gorithms in order to solve the discrete equilibrium equations and to compute the
sensitivities of the displacement and the stress vector, and we presented a concept of
how to couple these modules efficiently with a finite element programming package
and some optimization code.

We showed the good performance of our algorithms for practically relevant numer-
ical examples by implementing our routines within the finite element programming
package MSC/NASTRAN and using the SQP algorithm together with an active set
strategy as the optimizer.

It turned out that using the modified Newton method in order to solve the non-
linear equilibrium equations yields quite the same results as the fixed point iteration
within almost the same CPU time (per iteration), but more accurate gradient informa-
tion is taken into account. Therefore for the modified Newton method no homotopy
method has to be used, as opposed to the fixed point iteration for which there have
occurred some difficulties in finding suitable input parameters in order to yield con-
vergence.

Since this kind of finite element package and the optimizer coupled with our own
routines can be treated as black boxes by our algorithms, the concept presented can
be transferred to finite element codes other than MSC/NASTRAN and to optimiza-
tion algorithms other than the SQP algorithm without any changes. Moreover, the
theoretical results presented will also stay valid.

Acknowledgment. We want to thank Ralf Uwe Pfau at the Institute of Indus-
trial Mathematics at the Johannes Kepler University of Linz for some hints on how
to reduce the CPU time for the modified Newton method.

OPTIMAL SIZING FOR NONLINEARLY ELASTIC MATERIALS 443

REFERENCES

[1] E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer-
Verlag, Berlin, Heidelberg, 1990.

[2] H. T. Banks, N. J. Lybeck, M. J. Gaitens, B. Muñoz, and L. Yanyo, Computational
methods for estimation in the modelling of nonlinear elastomers, Kybernetika, 32 (1996),
pp. 526–542.

[3] H. T. Banks, N. J. Lybeck, B. Muñoz, and L. Yanyo, Nonlinear elastomers: Modelling and
estimation, in Proceedings of the 3rd IEEE Mediterranean Symposium on New Directions
in Control, 1, Limassol, Cyprus, 1995, pp. 1–7.

[4] F. T. Calkins and A. B. Flatau, Transducer-based measurements of Terfenol-D material
properties, in Smart Structures and Materials 1996: Smart Structures and Integrated Sys-
tems, I. Chopra, ed., SPIE, San Diego, CA, 1996.

[5] P. G. Ciarlet, Mathematical Elasticity, Vol I: Three-Dimensional Elasticity,
Stud. Math. Appl. 20, North–Holland, Amsterdam, 1988.

[6] H. W. Engl and C. Stangl, Existence and uniqueness of solutions of the equilibrium equations
for a class of nonlinearly elastic materials, ZAMM, 78 (1998), pp. 467–481.

[7] Ch. Grossmann and H.-G. Roos, Numerik partieller Differentialgleichungen, Teubner-Verlag,
Stuttgart, 1992.

[8] W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, Springer-
Verlag, Berlin, 1992.

[9] J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape De-
sign: Theory and Applications, John Wiley, Chichester, 1988.

[10] H. Heuser, Lehrbuch der Analysis, Teil 2, 3rd ed., Teubner-Verlag, Stuttgart, 1986.
[11] L. Holzleitner, Domain Optimization in Linearized Elasticity with the Finite Element Pack-

age MSC/NASTRAN, Ph.D. thesis, Johannes Kepler University, Linz, Austria, 1996.
[12] E. J. Haug, K. K. Choi, and V. Komkov, Design Sensitivity Analysis of Structural Systems,

Math. Sci. Engrg. 177, Academic Press, New York, 1986.
[13] E. J. Haug and K. K. Choi, Methods of Engineering Mathematics, Prentice–Hall, Englewood

Cliffs, NJ, 1993.
[14] D. C. Jiles, Theory of the magnetomechanical effect, J. Phys. D, 28 (1995), pp. 1537–1546.
[15] K. G. Mahmoud, H. W. Engl, and L. Holzleitner, Optimum structural design using MSC/

NASTRAN and sequential quadratic programming, Comput. & Structures, 52 (1994),
pp. 437–447.

[16] K. G. Mahmoud, Approximations in optimum structural design, in Advances in Structural
Optimization, B. H. V. Topping and M. Papadrakakis, eds., Civil-Comp Press, Edinburgh,
1994, pp. 57–67.

[17] J. M. Ortega, Numerical Analysis, Academic Press, New York, 1972.
[18] K. Schittkowski, On the convergence of a sequential quadratic programming method with an

augmented Lagrangian line search function, Math. Oper. Statist., Ser. Optim., 14 (1983),
pp. 197–216.

[19] C. Stangl, Optimal Sizing for a Class of Nonlinearly Elastic Materials, Ph.D. thesis, Johannes
Kepler University, Linz, Austria, 1996.

[20] C. Stangl, Stability of the Optimal Design with Respect to Inaccurate Solution of the Nonlinear
State Problem, submitted.

[21] J. Stoer, Einführung in die Numerische Mathematik, 4th ed., Springer-Verlag, Berlin, 1983.
[22] R. Temam, Mathematical Problems in Plasticity, Gauthier–Villars, Paris, 1985.
[23] H. Wacker, ed., Continuation Methods, Academic Press, London, 1978.
[24] O. C. Zienkiewicz, Methode der Finiten Elemente, Carl Hanser Verlag München, Wien, 1975.
[25] W. Zulehner, Schrittweitensteuerung für Einbettungsmethoden, Ph.D. thesis, Johannes Kepler

University, Linz, Austria, 1981.

A PREDICTOR-CORRECTOR INTERIOR-POINT ALGORITHM
FOR THE SEMIDEFINITE LINEAR COMPLEMENTARITY

PROBLEM USING THE ALIZADEH–HAEBERLY–OVERTON
SEARCH DIRECTION∗

MASAKAZU KOJIMA† , MASAYUKI SHIDA‡ , AND SUSUMU SHINDOH§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 444–465

Abstract. This paper proposes a globally convergent predictor-corrector infeasible-interior-
point algorithm for the monotone semidefinite linear complementarity problem using the Alizadeh–
Haeberly–Overton search direction, and shows its quadratic local convergence under the strict com-
plementarity condition.

Key words. semidefinite linear complementarity problem, semidefinite programming, interior-
point algorithm, predictor-corrector algorithm, local convergence, quadratic convergence

AMS subject classifications. 90C33, 90C05, 90C25, 65K10

PII. S1052623496300623

1. Introduction. Several distinct search directions have been used in many
interior-point algorithms [1, 2, 5, 8, 9, 15, 14, 16, 20, 22, 23, 24, 27, 31, 32, 34] for the
semidefinite program (SDP). They are roughly classified into two groups. The search
directions in one group [1, 5, 22, 23, 24, 31, 32] are founded on the self-concordant
barrier or potential function [22] for the SDP, while each search direction in the
other group [2, 8, 9, 15, 14, 16, 20, 27, 34] is derived from a certain linearization
of the optimality condition for the SDP. The optimality condition consists of primal
feasibility, dual feasibility, and complementarity equations. This paper is concerned
with the latter group of search directions.

Among the search directions in the latter group, the one independently pro-
posed by Helmberg et al. [8] and Kojima, Shindoh, and Hara [15], which we will call
the HRVW/KSH/M search direction, has been studied extensively in recent papers
[8, 9, 14, 16, 20, 27, 34]. In particular, Monteiro [20] devised a new formulation of the
HRVW/KSH/M search direction. Many polynomial-time primal-dual interior-point
algorithms for the linear program (LP), such as central trajectory following algorithms
[10, 11, 19, 33], potential reduction algorithms [12, 17], predictor-corrector algorithms
[18, 26], were extended to the SDP, and similar global (polynomial-time) computa-
tional complexities for the extended algorithms were established in those papers. Also
there are a few articles [14, 27] that investigate the local convergence of interior-point
algorithms for the SDP. Using Monteiro’s new formulation of the HRVW/KSH/M
search direction, Potra and Sheng [27] provided a sufficient condition for the super-
linear convergence of an extension of the Mizuno–Todd–Ye-type predictor-corrector
algorithm for the LP to the SDP. In their recent paper [14], Kojima, Shida, and Shin-
doh presented an example that exhibits a substantial difficulty in the local conver-

∗Received by the editors March 15, 1996; accepted for publication (in revised form) July 15, 1997;
published electronically March 17, 1999.

http://www.siam.org/journals/siopt/9-2/30062.html
†Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1

Oh-Okayama, Meguro-ku, Tokyo 152, Japan (kojima@is.titech.ac.jp).
‡Department of Mathematics, Faculty of Engineering, Kanagawa University, Rokkakubashi,

Kanagawa-ku, Yokohama, 221, Japan (shida@is.titech.ac.jp).
§Department of Mathematics and Physics, The National Defense Academy, Hashirimizu 1-10-20,

Yokosuka, Kanagawa, 239, Japan (shindoh@cc.nda.ac.jp).

444

INTERIOR-POINT ALGORITHM FOR SDLCP 445

gence analysis of the Potra–Sheng extension of the Mizuno–Todd–Ye-type predictor-
corrector algorithm. They deduced from the example that the Potra–Sheng extension
needs an additional condition to attain the superlinear convergence. Their condition
requires that the generated sequence converges to a solution of the SDP tangentially
to the central path. This example gave the authors a motivation to explore the local
convergence of interior-point algorithms using different search directions. It will be
shown in the current paper that one of the search directions proposed by Alizadeh,
Haeberly, and Overton [2], which we will call the AHO search direction (see (1.3)
below), fits quadratic convergence under the strict complementarity condition quite
well.

Besides what we have called the AHO search direction above, Alizadeh, Haeberly,
and Overton [2] derived some other primal-dual search directions from linearization of
the optimality condition for the SDP, and they reported some numerical results which
showed that a primal-dual Mehrotra-type predictor-corrector interior-point algorithm
using the AHO search direction worked more efficiently than the algorithms using the
other primal-dual search directions. But no theoretical convergence analysis has been
done on the algorithm using the AHO search direction.

Let S denote the set of all n × n symmetric real matrices. We regard S as an
n(n + 1)/2-dimensional linear space with the inner product X • Y = Tr XTY of
X and Y in S and the Frobenius norm ‖X‖F = (X •X)1/2 of X ∈ S, where Tr A
denotes the trace of an n × n matrix A. We write X � O if X ∈ S is positive
definite and X � O if X ∈ S is positive semidefinite. Here O denotes the n× n zero
matrix. We also use the symbols S++ and S+ for the set of positive definite symmetric
matrices and the set of positive semidefinite symmetric matrices, respectively:

S++ = {X ∈ S : X � O} and S+ = {X ∈ S : X � O}.
Let F be an n(n+ 1)/2-dimensional affine subspace of S × S, and

F+ = {(X,Y) ∈ F : X � O, Y � O}.
We are concerned with the semidefinite linear complementarity problem (SDLCP):

find an (X,Y) ∈ F+ such that X • Y = 0.(1.1)

We call an (X,Y) ∈ F+ a feasible solution of the SDLCP (1.1). Throughout the
paper we assume the monotonicity of the n(n+ 1)/2-dimensional affine subspace F :

(U ′ −U) • (V ′ − V) ≥ 0 for every (U ′,V ′), (U ,V) ∈ F .(1.2)

The monotone SDLCP was introduced in the paper [15] by Kojima, Shindoh, and
Hara as an extension of the monotone LCP and a mathematical framework on which
they founded interior-point algorithms. Besides the interior-point algorithms given in
their paper [15], many of the primal-dual interior-point algorithms developed so far
for the SDP can be extended to the monotone SDLCP.

If we adapt the AHO search direction [2] to the monotone SDLCP, we can describe
it as a solution of the system of equations{

XdY + dY X + dXY + Y dX = 2βµI −XY − Y X,
(X + dX,Y + dY) ∈ F .(1.3)

Here (X,Y) ∈ S2
++ denotes an iterate, β ∈ [0, 1] a search direction parameter,

and µ = X • Y /n. It was shown in the recent paper [29] that the system (1.3) of

446 M. KOJIMA, M. SHIDA, AND S. SHINDOH

equations above has the unique solution (dX, dY) whenever X � O, Y � O and
XY + Y X � O. See also Corollary 3.2 in section 3.

The current paper has two purposes. One is to propose a globally convergent
Mizuno–Todd–Ye-type predictor-corrector infeasible-interior-point algorithm, with the
use of the AHO search direction, for the monotone SDLCP. The other purpose is to
demonstrate its quadratic convergence under the strict complementarity condition.
Although we will describe the algorithm for the monotone SDLCP, we can easily ap-
ply it to the primal-dual pair of SDPs. See the papers [13, 14, 15, 29] for detailed
relations between the primal-dual pair of SDPs and the monotone SDLCP.

In section 2, we present a globally convergent Mizuno–Todd–Ye-type predictor-
corrector infeasible-interior-point algorithm using the AHO search direction for the
SDLCP (1.1). Section 3 is devoted to fundamental lemmas which we will use in
sections 4 and 5. We prove the global convergence of the algorithm in section 4
and derive its quadratic convergence under the strict complementarity condition in
section 5. A proposition playing a key role in section 5 and its proof are based on the
paper [27] by Potra and Sheng. In section 6, we will show further local convergence
properties under an additional nondegeneracy assumption.

2. A predictor-corrector interior-point algorithm. Throughout the paper
we use the following notation:

ζ : a constant not less than 1/n,

F0 = {(U ′,V ′)− (U ,V) : (U ′,V ′), (U ,V) ∈ F},
Ñ (γ, τ) =

{
(X,Y) ∈ S+ × S+ :

(XY + Y X)/2 � (1− γ)τI,
X • Y /n ≤ (1 + ζγ)τ

}
for each γ ∈ [0, 1] and each τ ≥ 0.

By construction, we see that

(1− γ)τ ≤X • Y /n
if (X,Y) ∈ Ñ (γ, τ), γ ∈ [0, 1], and τ ≥ 0,

Ñ (0, τ) = {(X,Y) ∈ S+ × S+ : XY = τI} ⊂ Ñ (γ, τ) ⊂ Ñ (γ′, τ)
if 0 < γ < γ′ ≤ 1 and τ > 0.

Let 0 < γ < 1. Then the set {(X,Y) ∈ Ñ (γ, τ) : τ > 0} forms a neighborhood
of “the central manifold” {(X,Y) ∈ S+ × S+ : XY = τI for some τ > 0}. We
call γ a neighborhood parameter. This set serves as the admissible region in which we
confine iterates (Xk,Y k) (k = 0, 1, 2, . . .) of Algorithm 2.1 described below. More

precisely, starting from an (X0,Y 0, θ0, γ0) = (
√
µ0I,

√
µ0I, 1, 0) for some µ0 > 0,

Algorithm 2.1 generates a sequence {(Xk,Y k,Xk
c ,Y

k
c , θ

k, γk)} such that for every
k = 1, 2, . . . ,

1 ≥ θk ≥ 0, γ > γk ≥ 0,(2.1)

1 = θ0 > θk > θk+1,(2.2)

(Xk,Y k) ∈ Ñ (γk, θkµ0), (Xk,Y k) ∈ F + θk
(
(X0,Y 0)− (X,Y)

)
,(2.3)

(Xk
c ,Y

k
c) ∈ Ñ (γ, θk+1µ0), (Xk

c ,Y
k
c) ∈ F + θk+1

(
(X0,Y 0)− (X,Y)

)
.(2.4)

Here (X,Y) denotes an arbitrary pair of matrices in F ; in particular, we can take
any solution of the SDLCP (1.1) for (X,Y) when the SDLCP (1.1) has a solution.

INTERIOR-POINT ALGORITHM FOR SDLCP 447

Note that

F + θ
(
(X0,Y 0)− (X ′,Y ′)

)
= F + θ

(
(X0,Y 0)− (X,Y)

)
for any (X ′,Y ′) ∈ F , (X,Y) ∈ F and θ ∈ [0, 1].

Among the iterates Xk, Y k, Xk
c , Y

k
c , θ

k, γk, the triplet (Xk,Y k, θk) is updated
to (Xk

c ,Y
k
c , θ

k+1) by the predictor step (Step 2), while the triplet (Xk
c ,Y

k
c , γ

k) is
updated to (Xk+1,Y k+1, γk+1) by the corrector step (Step 4). θk+1 serves as a
measure of both feasibility and optimality. Given an ε ≥ 0, the algorithm stops (at
Step 3) when θk+1 becomes equal to or smaller than ε. In this case, we have an
approximate solution (Xk

c ,Y
k
c) of the SDLCP (1.1) such that

ε ≥ θk+1 ≥ 0,

Xk
c � O, Y k

c � O, Xk
c • Y k

c/n ≤ (1 + ζγ)θk+1µ0,

(Xk
c ,Y

k
c) ∈ F + θk+1

(
(X0,Y 0)− (X,Y)

)
.

(2.5)

We call ε an accuracy parameter.
Before describing Algorithm 2.1, we introduce the hypothesis below. When the

algorithm detects (at Step 1 or Step 3) that the hypothesis is false, it stops.
Hypothesis 2.1 (see [15]). Let ω∗ ≥ 1. There exists a solution (X∗,Y ∗) of the

SDLCP (1.1) such that

ω∗X0 �X∗ and ω∗Y 0 � Y ∗.(2.6)

Algorithm 2.1.
Step 0. Choose an accuracy parameter ε ≥ 0, a neighborhood parameter γ ∈

(0, 1), and an initial point (X0,Y 0) = (
√
µ0I,

√
µ0I) with some µ0 > 0. Let θ0 = 1,

σ = 2ω∗/(1− γ) + 1, γ0 = 0, and k = 0.
Step 1. If the inequality

θk(X0 • Y k +Xk • Y 0) ≤ σXk • Y k(2.7)

does not hold then stop.
Step 2 (predictor step). Compute a solution (dXk

p, dY
k
p) of the system of equa-

tions

XkdY k
p + dY k

pX
k + dXk

pY
k + Y kdXk

p = −XkY k − Y kXk,

(Xk + dXk
p,Y

k + dY k
p) ∈ F .

}
(2.8)

Let

δkp =
‖dXk

p‖F ‖dY k
p‖F

θkµ0
,

α̂kp =
2√

1 + 4δkp/(γ − γk) + 1
,

α̌kp = max

α′ ∈ [0, 1] :
(Xk + αdXk

p,Y
k + αdY k

p)

∈ Ñ (γ, (1− α)θkµ0)
for every α ∈ [0, α′]

 .

(2.9)

448 M. KOJIMA, M. SHIDA, AND S. SHINDOH

Choose a step length αkp ∈ [α̂kp , α̌
k
p]. Let

(Xk
c ,Y

k
c) = (Xk,Y k) + αkp(dXk

p, dY
k
p) and θk+1 = (1− αkp)θk.

Step 3. If θk+1 ≤ ε then stop. If the inequality

θk+1(X0 • Y k
c +Xk

c • Y 0) ≤ σXk
c • Y k

c(2.10)

does not hold then stop.
Step 4 (corrector step). Compute a solution (dXk

c , dY
k
c) of the system of equa-

tions
Xk
cdY

k
c + dY k

cX
k
c + dXk

cY
k
c + Y k

cdX
k
c

= 2θk+1µ0I −Xk
cY

k
c − Y k

cX
k
c ,

(dXk
c , dY

k
c) ∈ F0.

(2.11)

Let

(2.12)

δkc =
‖dXk

c‖F ‖dY k
c‖F

θk+1µ0
,

α̂kc =

{
γ/(2δkc) if γ ≤ 2δkc ,
1 if γ > 2δkc ,

γ̌k+1 =

{
γ(1− γ/(4δkc)) if γ ≤ 2δkc ,

δkc if γ > 2δkc ,

γ̂k+1 = min

γ′ ∈ [0, 1] :
(X + αdXk,Y + αdY k)

∈ Ñ (γ′, θk+1µ0),
α ∈ [0, 1]

 .

Choose a step length αkc ∈ [0, 1] and γk+1 such that{
γ̂k+1 ≤ γk+1 ≤ γ̌k+1,

(Xk
c + αkcdX

k
c ,Y

k
c + αkcdY

k
c) ∈ Ñ (γk+1, θk+1µ0).

(2.13)

(It will be shown in Lemma 3.8 that the pair of αkc = α̂kc and γk+1 = γ̌k+1 satisfies
the relations above.) Let (Xk+1,Y k+1) = (Xk

c ,Y
k
c) + αkc (dXk

c , dY
k
c).

Step 5. Replace k by k + 1. Go to Step 1.
A distinctive feature of Algorithm 2.1 lies in the sophisticated step length control

rule at Step 4 (the corrector step). When δkc = ‖dXk
c‖F ‖dY k

c‖F /(θk+1µ0) < γ/2,
we can take the unit step length αkc = 1 and a γk+1 ≤ γ/2; hence (Xk+1,Y k+1) ∈
Ñ (γ/2, θk+1µ0). When δkc ≥ γ/2, however, we may not be able to take the unit step
length, and as δkc gets larger, we are forced to take a smaller step length αkc . On the
other hand, the step length control rule at Step 2 (the predictor step) is based on
and similar to the one used in the paper [27]. The theorem below summarizes the
consistency and the global convergence of Algorithm 2.1. A proof of the theorem is
given in section 4.

Theorem 2.1 (global convergence theorem).
(i) Algorithm 2.1 consistently generates a sequence {(Xk,Y k,Xk

c ,Y
k
c , θ

k, γk)}
satisfying (2.1), (2.2), (2.3), and (2.4).

INTERIOR-POINT ALGORITHM FOR SDLCP 449

(ii) If Algorithm 2.1 stops at Step 1 violating the inequality (2.7), then there is no
solution of the SDLCP (1.1) satisfying (2.6).

(iii) If Algorithm 2.1 stops at Step 3 with θk+1 ≤ ε, then (Xk
c ,Y

k
c) gives an

approximate solution of the SDLCP (1.1) satisfying (2.5).
(iv) If Algorithm 2.1 stops at Step 3 violating the inequality (2.10), then there is

no solution of the SDLCP (1.1) satisfying (2.6).
(v) If ε > 0, Algorithm 2.1 stops in a finite number of iterations at either Step 1

or Step 3.

3. Lemmas. In this section, we present a series of lemmas which we will uti-
lize in proving both Theorem 2.1 (the global convergence theorem) in section 4 and
Theorem 5.1 (the local convergence theorem) in section 5.

Lemma 3.1. Assume that (X,Y) ∈ Ñ (γ, τ) for some τ > 0 and γ ∈ (0, 1).
(i) ‖(XY + Y X)/2‖F ≤ n(1 + ζγ)τ .
(ii) (X,Y) ∈ S++ × S++.
(iii) Let (dX, dY) be a solution of the system of equations

XdY + dY X + dXY + Y dX = C and (dX, dY) ∈ F0,(3.1)

where C ∈ S is a constant matrix. Then

‖dX‖F ≤ ‖X‖F ‖C‖F
((1− γ)τ)

and ‖dY ‖F ≤ ‖Y ‖F ‖C‖F
((1− γ)τ)

.

Proof. (i) Let νj (j = 1, 2, . . . , n) denote the eigenvalues of (XY +Y X)/2. Since
the matrix (XY + Y X)/2 is symmetric and positive definite, we see that

‖(XY + Y X)/2‖F =

 n∑
j=1

(νj)
2

1/2

≤
n∑
j=1

νj = X • Y ≤ n(1 + ζγ)τ.

Here the last inequality follows from (X,Y) ∈ Ñ (γ, τ).
(ii) By definition, we know that (X,Y) ∈ S+×S+. If X and/or Y were singular,

we would have

uT (XY + Y X)u = 0 for some nonzero u ∈ Rn,

which would contradict the assumption that (X,Y) ∈ Ñ (γ, τ) with τ > 0 and γ ∈
(0, 1).

(iii) We will use the notation A ⊗B for the Kronecker product of two matrices
A and B, and the notation

vec A =

A.1
A.2
·
A.n

 ∈ Rmn,
where A.j denotes the jth column of an m× n matrix A. See, e.g., the book [6] for
basic properties on the Kronecker product. Let

E = (X ⊗ I + I ⊗X) and F = (Y ⊗ I + I ⊗ Y).

450 M. KOJIMA, M. SHIDA, AND S. SHINDOH

Then both E and F are symmetric and positive definite. Hence we can rewrite the
system (3.1) of equations as

vec dY +E−1FE(E−1vec dX) = E−1vec C and (dX, dY) ∈ F0.

It follows that

‖E−1vec dX‖‖C‖F
≥ (E−1vec dX)Tvec C

≥ (E−1vec dX)TFE(E−1vec dX)

(since (vec dX)T (vec dY) = dX • dY ≥ 0 by the assumption (1.2))

= (E−1vec dX)T (Y ⊗ I + I ⊗ Y)(X ⊗ I + I ⊗X)(E−1vec dX)

= (E−1vec dX)T (Y X ⊗ I +X ⊗ Y +X ⊗ Y + I ⊗ Y X)(E−1vec dX)

≥ (E−1vec dX)T (Y X ⊗ I + I ⊗ Y X)(E−1vec dX)

(since both Y ⊗X and X ⊗ Y are symmetric and positive definite)

= (E−1vec dX)T (((XY + Y X)/2)⊗ I + I ⊗ ((XY + Y X)/2)) (E−1vec dX)

≥ (E−1vec dX)T (2(1− γ)τI ⊗ I) (E−1vec dX)

(since (XY + Y X)/2 � (1− γ)τI)

= 2(1− γ)τ‖E−1vec dX‖2.
Therefore, we obtain that

‖C‖F ≥ 2(1− γ)τ‖E−1vec dX‖.
On the other hand, if W ∈ S is a solution of the system of equations XW +WX =
dX, then vec W = E−1(vec dX); hence

‖dX‖F = ‖XW +WX‖F
≤ 2‖X‖F ‖W ‖F
= 2‖X‖F ‖E−1(vec dX)‖
≤ ‖X‖F ‖C‖F /((1− γ)τ).

We can prove similarly the inequality ‖dY ‖F ≤ ‖Y ‖F ‖C‖F /((1− γ)τ).
The corollary below ensures the existence and the uniqueness of the solution of

the systems (2.8) and (2.11) of equations. This result was shown in the paper [29],
but we give a proof of the corollary to make the current paper self-contained. The
assumption in the corollary is slightly stronger than the one in Theorem 3.1 of the
paper [29].

Corollary 3.2. Assume that (X,Y) ∈ S+ × S+ and XY + Y X � O. For
any C ∈ S and any (X ′,Y ′) ∈ S ×S, there exists a unique solution (dX, dY) of the
system of equations

XdY + dY X + dXY + Y dX = C and (dX +X ′, dY + Y ′) ∈ F .(3.2)

Proof. First we take τ > 0 and γ ∈ (0, 1) such that (X,Y) ∈ Ñ (γ, τ). Let
m = n(n+ 1)/2. For every C ∈ S and (X ′,Y ′) ∈ S × S, define

G(C) = {(dX, dY) ∈ S × S : XdY + dY X + dXY + Y dX = C},
F(X ′,Y ′) = F − (X ′,Y ′).

INTERIOR-POINT ALGORITHM FOR SDLCP 451

Since X ∈ S is positive definite by (ii) of Lemma 3.1, for every dX ∈ S there
exists a unique dY ∈ S such that (dX, dY) ∈ G(O). This implies that G(O) forms
an m-dimensional linear subspace of the 2m-dimensional linear space S × S. Take
an (X ′′,Y ′′) ∈ F . Then we see that F(X ′′,Y ′′) = F0; hence F(X ′′,Y ′′) forms an
m-dimensional linear subspace of the 2m-dimensional linear space S × S. Applying
(iii) of Lemma 3.1 with C = O, we know that the m-dimensional linear subspaces
G(O) and F(X ′′,Y ′′) = F0 of the 2m-dimensional linear space S × S transversally
intersect at the single point (O,O). Therefore, for any C ∈ S and (X ′,Y ′) ∈ S × S,
their parallel translations G(C) and F(X ′,Y ′) transversely intersect at a single point,
and the desired result follows.

Lemma 3.3. Suppose that Hypothesis 2.1 is true. Let γ ∈ (0, 1), µ0 > 0,

(X0,Y 0) = (
√
µ0I,

√
µ0I) and σ = 2ω∗/(1− γ) + 1. If (X,Y , θ) satisfies

1 ≥ θ ≥ 0, (X,Y) ∈ Ñ (γ, θµ0),(3.3)

(X,Y) ∈ F + θ
(
(X0,Y 0)− (X,Y)

)
for some (X,Y) ∈ F ,

then the inequality

θ
(
X0 • Y +X • Y 0

) ≤ σX • Y(3.4)

holds.
Proof. This lemma follows directly from Lemma 7.6 of [15].

Lemma 3.4. Let γ ∈ (0, 1), µ0 > 0, (X0,Y 0) = (
√
µ0I,

√
µ0I) and σ > 0.

Suppose that (3.3) and (3.4) hold. Then

‖X‖F ≤ nσ(1 + ζγ)
√
µ0 and ‖Y ‖F ≤ nσ(1 + ζγ)

√
µ0(3.5)

hold.
Proof. We see from (3.3) and (3.4) that

θ
√
µ0 (‖Y ‖F + ‖X‖F) ≤ θ

√
µ0 (Tr Y + Tr X)

= θ(X0 • Y +X • Y 0)

≤ σX • Y
≤ nσ(1 + ζγ)θµ0.

Thus (3.5) follows.

Lemma 3.5. Let γ ∈ (0, 1), µ0 > 0, (X0,Y 0) = (
√
µ0I,

√
µ0I), and σ > 0.

Define

κc = 2σ(1 + ζγ)(2 + ζγ)
√
µ0/(1− γ).(3.6)

If (Xk
c ,Y

k
c , θ

k+1) satisfies (2.1), (2.4), and (2.10), then the solution (dXk
c , dY

k
c) of

the system (2.11) of equations satisfies that ‖dXk
c‖F ≤ n2κc and ‖dY k

c‖F ≤ n2κc.
Proof. By applying (iii) of Lemma 3.1 with τ = θr+1µ0 and C = 2θk+1µ0I −

Xk
cY

k
c − Y k

cX
k
c , we have that

‖dXk
c‖F ≤ ‖Xk

c‖F ‖2θk+1µ0I −Xk
cY

k
c − Y k

cX
k
c‖F /((1− γ)θk+1µ0)

≤ ‖Xk
c‖F

(
2θk+1µ0

√
n+ ‖Xk

cY
k
c + Y k

cX
k
c‖F

)
/((1− γ)θk+1µ0).

By (i) of Lemma 3.1 and Lemma 3.4, we also know that

‖Xk
cY

k
c + Y k

cX
k
c‖F ≤ 2n(1 + ζγ)θk+1µ0 and ‖Xk

c‖F ≤ nσ(1 + ζγ)
√
µ0.

452 M. KOJIMA, M. SHIDA, AND S. SHINDOH

It follows that

‖dXk
c‖F ≤

(
nσ(1 + ζγ)

√
µ0
) (

2θk+1µ0
√
n+ n(1 + ζγ)θk+1µ0

)
/((1− γ)θk+1µ0)

≤ n2κc.

We can similarly prove that ‖dY k
c‖F ≤ n2κc.

Lemma 3.6. Let γ ∈ (0, 1), µ0 > 0, (X0,Y 0) = (
√
µ0I,

√
µ0I), (X,Y) ∈ F ,

and σ > 0. Define
ϕ = 2(1 + ζγ) max

{
µ0, σ

√
µ0
(‖X0 −X‖F + ‖Y 0 − Y ‖F

)}
,

κp =
2σ(1 + ζγ)ϕ

(1− γ)
√
µ0

+ max
{‖X0 −X‖F , ‖Y 0 − Y ‖F

}
.

(3.7)

Suppose that (Xk,Y k, θk) satisfies (2.2), (2.3), and (2.7). Define
Kk

1 = −XkY k − Y kXk,

Kk
2 = −θk

(
Xk(Y 0 − Y) + (Y 0 − Y)Xk

+(X0 −X)Y k + Y k(X0 −X)
)
.

(3.8)

Let (dXk
p, dY

k
p) be the solution of the system (2.8) of equations. For each j = 1, 2,

let (Uk
j ,V

k
j) be the solution of the system

XkV k
j + V k

jX
k +Uk

jY
k + Y kUk

j = Kk
j and (Uk

j ,V
k
j) ∈ F0.(3.9)

(i) ‖Kk
j ‖F ≤ nϕθk (j = 1, 2).

(ii) (dXk
p, dY

k
p) =

2∑
j=1

(Uk
j ,V

k
j) + θk

(
(X0,Y 0)− (X,Y)

)
.

(iii) ‖dXk
p‖F ≤ n2κp and ‖dY k

p‖F ≤ n2κp.
Proof. (i) By (i) of Lemma 3.1 and Lemma 3.4, we see that

‖Kk
1‖F = ‖XkY k + Y kXk‖F ≤ 2n(1 + ζγ)θkµ0 ≤ nϕθk,

‖Kk
2‖F = θk‖Xk(Y 0 − Y) + (Y 0 − Y)Xk + (X0 −X)Y k + Y k(X0 −X)‖F
≤ 2θk‖Xk(Y 0 − Y) + (X0 −X)Y k‖F
≤ 2θk(nσ(1 + ζγ)

√
µ0)

(‖Y 0 − Y ‖F + ‖X0 −X‖F
)

≤ nϕθk.

(ii) Let (U ,V) denote the right-hand side of the identity to be proved. It is easily
verified that (U ,V) is a solution of the system (2.8) of equations. Since (dXk

p, dY
k
p)

is the unique solution of the system (2.8) of equations, we obtain the desired identity.
(iii) By (iii) of Lemma 3.1, Lemma 3.4, and the assertion (i) above, we see that

‖Uk
j ‖ ≤ ‖Xk‖F ‖Kk

j ‖F /((1− γ)θkµ0)

≤
(
nσ(1 + ζγ)

√
µ0
) (
nϕθk

)
/((1− γ)θkµ0)

= n2σ(1 + ζγ)ϕ/
(

(1− γ)
√
µ0
)

for j = 1, 2.

INTERIOR-POINT ALGORITHM FOR SDLCP 453

Hence we see by the assertion (ii) above that

‖dXk
p‖F ≤ ‖Uk

1‖F + ‖Uk
2‖F + θk‖X0 −X‖F ≤ n2κp.

We can similarly prove that ‖dY k
p‖F ≤ n2κp.

Lemma 3.7. Let γ ∈ (0, 1), µ0 > 0, (X0,Y 0) = (
√
µ0I,

√
µ0I). Suppose that

(Xk,Y k, θk, γk) satisfies (2.1) and (2.3). Let (dXk
p, dY

k
p) be the solution of the system

(2.8) of equations. Define δkp , α̂kp and α̌kp by (2.9). Then 0 < α̂kp ≤ α̌kp ≤ 1.

Proof. By definition, we know that 0 < α̂kp ≤ 1 and 0 ≤ α̌kp ≤ 1. Hence it suffices
to show that

(Xk + αdXk
p,Y

k + αdY k
p) ∈ Ñ (γ, (1− α)θkµ0) for every α ∈ [0, α̂kp].(3.10)

Assume that 0 ≤ α ≤ α̂kp . Then

(3.11)

(Xk + αdXk
p)(Y k + αdY k

p) + (Y k + αdY k
p)(Xk + αdXk

p)

2−(1− γ)(1− α)θkµ0I

=
(1− α)(XkY k + Y kXk) + α2(dXk

pdY
k
p + dY k

pdX
k
p)

2−(1− γ)(1− α)θkµ0I

� (1− α)(1− γk)θkµ0I − α2‖dXk
p‖F ‖dY k

p‖F I
−(1− γ)(1− α)θkµ0I

=
(−α2δkp + (1− α)(γ − γk)

)
θkµ0I.

On the other hand, it follows from the definition of α̂kp in (2.9) that

α̂kp =
−(γ − γk) +

√
(γ − γk)2 + 4δkp (γ − γk)

2δkp
,

which coincides with a positive root of the quadratic polynomial(−α2δkp + (1− α)(γ − γk)
)

in (3.11). Therefore,

(Xk + αdXk
p)(Y k + αdY k

p) + (Y k + αdY k
p)(Xk + αdXk

p)

2

−(1− γ)(1− α)θkµ0I � O
for every α ∈ [0, α̂kp],

which, together with (Xk,Y k) ∈ S++ × S++, implies that

(Xk + αdXk
p,Y

k + αdY k
p) ∈ S+ × S+ for every α ∈ [0, α̂kp].

We also see that for every α ∈ [0, 1],

(1 + ζγ)(1− α)θkµp − (Xk + αdXk
p) • (Y k + αdY k

p)

n

454 M. KOJIMA, M. SHIDA, AND S. SHINDOH

= (1 + ζγ)(1− α)θkµ0 − (1− α)Xk • Y k

n
+
α2dXk

p • dY k
p

n

≥ ((1 + ζγ)(1− α)− (1− α)(1 + ζγk)− α2δkp/n
)
θkµ0

=
(−α2δkp/n+ ζ(1− α)(γ − γk)

)
θkµ0

≥ (−α2δkp + (1− α)(γ − γk)
)
ζθkµ0 (since ζ ≥ 1/n).

Note that the coefficient of ζθkµ0 is the same quadratic polynomial as the one that
appears in (3.11) above. Hence

(1 + ζγ)(1− α)θkµp − (Xk + αdXk
p) • (Y k + αdY k

p)

n
≥ 0 for every α ∈ [0, α̂kp].

Thus we have shown the desired relation (3.10).

Lemma 3.8. Let γ ∈ (0, 1), µ0 > 0, (X0,Y 0) = (
√
µ0I,

√
µ0I), and σ > 0.

Suppose that (Xk
c ,Y

k
c) satisfies (2.4) for some θk+1 ∈ [0, 1]. Let (dXk

c , dY
k
c) be the

solution of the system (2.11) of equations. Define δkc , α̂kc , γ̌k+1 and γ̂k by (2.12).
Then 0 ≤ γ̂k+1 ≤ γ̌k+1 < γ, and the pair of αkc = α̂kc and γk+1 = γ̌k+1 satisfies
(2.13).

Proof. We first observe that for every α ∈ [0, 1],

(Xk
c + αdXk

c)(Y k
c + αdY k

c) + (Y k
c + αdY k

c)(Xk
c + αdXk

c)

2

=
(1− α)(Xk

cY
k
c + Y k

cX
k
c) + 2αθk+1µ0I + α2(dXk

cdY
k
c + dY k

cdX
k
c)

2

� (1− α)(1− γ)θk+1µ0I + αθk+1µ0I − α2‖dXk
c‖F ‖dY k

c‖F I
=
(−α2δkc + γα+ (1− γ)

)
θk+1µ0I.

It follows that

(Xk
c + αdXk

c)(Y k
c + αdY k

c) + (Y k
c + αdY k

c)(Xk
c + αdXk

c)

2
� O for every α ∈ [0, α̂kc],

(Xk
c + α̂kcdX

k
c)(Y k

c + α̂kcdY
k
c) + (Y k

c + α̂kcdY
k
c)(Xk

c + α̂kcdX
k
c)

2
� (1− γ̌k+1)θk+1µ0I.

We also see that for every α ∈ [0, 1],

(Xk
c + αdXk

c) • (Y k
c + αdY k

c)

n

= (1− α)
Xk
c • Y k

c

n
+ αθk+1µ0 + α2 dX

k
c • dY k

c

n

≤ ((1− α)(1 + ζγ) + α+ α2δkc /n
)
θk+1µ0

=
(
α2δkc /n− ζγα+ (1 + ζγ)

)
θk+1µ0

≤ (ζα2δkc − ζγα+ (1 + ζγ)
)
θk+1µ0 (since ζ ≥ 1/n).

It follows that

(Xk
c + α̂kcdX

k
c) • (Y k

c + α̂kcdY
k
c)

n
≤ (1 + ζγ̌k+1)θk+1µ0.

Thus we have shown that (Xk
c + α̂kcdX

k
c ,Y

k
c + α̂kcdY

k
c) ∈ Ñ (γ̌k+1, θk+1µ0), and the

desired result follows.

INTERIOR-POINT ALGORITHM FOR SDLCP 455

4. Proof of Theorem 2.3.

4.1. Proof of (i), (ii), (iii), and (iv) of Theorem 2.3. By definition, (X0
c ,Y

0
c ,

θ0, γ0) satisfies (2.1), (2.3), and θ0 = 1. Let q ≥ 0. Assume that we have computed
(Xq

c ,Y
q
c , θ

q, γq) satisfying (2.1) and (2.3) for k = q, we will investigate each step of
the algorithm.

Step 1. Applying Lemma 3.3, we know that if the inequality (2.7) with θ = θq and
(X,Y) = (Xq,Y q) at Step 1 does not hold then there is no solution of the SDLCP
(1.1) satisfying (2.6). Hence we have shown (ii) of Theorem 2.1.

Step 2 (predictor step). Now suppose that the inequality (2.7) holds for k = q.
The validity of Step 2 follows from Corollary 3.2 and Lemma 3.7. Corollary 3.2 ensures
the existence and the uniqueness of the solution (dXq

p, dY
q
p) of the system (2.8) of

equations with k = q. In view of Lemma 3.7, we can consistently take a step length
αqp satisfying

0 < α̂qp ≤ αqp ≤ α̌qp ≤ 1,

0 ≤ θq+1 = (1− αqp)θq < θq,

(Xq
c ,Y

q
c) = (Xq,Y q) + αqp(dX

q
p, dY

q
p) ∈ Ñ (γ, θk+1µ0).

Hence (2.2) and the first relation of (2.4) with k = q follow. To derive the second
relation of (2.4) with k = q, we observe that

(Xq
c ,Y

q
c) = (Xq,Y q) + αqp(dX

q
p, dY

q
p)

= (1− αqp)(Xq,Y q) + αqp(X
q + dXq

p,Y
q + dY q

p)

∈ (1− αqp)
(F + θq

(
(X0,Y 0)− (X,Y)

))
+ αqpF

(since (2.3) and (2.8) hold for k = q)

= F + (1− αqp)θk
(
(X0,Y 0)− (X,Y)

)
= F + θk+1

(
(X0,Y 0)− (X,Y)

)
.

Thus we have shown the latter relation of (2.4) with k = q.
Step 3. If θq+1 ≤ ε, then (Xq

p,Y
q
p) satisfies (2.5) for k = q; hence (iii) of Theorem

2.3 holds. If the inequality (2.10) with k = q does not hold, then we have the same
conclusion as in Step 1 by applying Lemma 3.3 with θ = θq+1 and (X,Y) = (Xq

c ,Y
q
c).

Hence we have shown (iv) of Theorem 2.1.
Step 4 (corrector step). The validity of this step follows from Corollary 3.2 and

Lemma 3.8. Corollary 3.2 ensures the existence and the uniqueness of the solution
(dXq

c , dY
q
c) of the system (2.11) of equations with k = q. By Lemma 3.8, the first

relation of (2.3) holds for k = q + 1, and we can consistently take a step length αqc
and a γq+1 satisfying (2.13) with k = q. Hence the second relation of (2.1) holds for
q = k + 1. We also see by (2.4) and (2.11) with k = q that

(Xq+1,Y q+1) = (Xq
c ,Y

q
c) + αqc(dX

q
c , dY

q
c)

∈ F + θq+1
(
(X0,Y 0)− (X,Y)

)
+ F0

= F + θq+1
(
(X0,Y 0)− (X,Y)

)
.

Therefore the latter relation of (2.3) holds for k = q + 1.
We have shown (2.1) and (2.3) with k = q+1 to proceed to the (q+1)th iteration

consistently, and we have proved (i) of Theorem 2.1.

456 M. KOJIMA, M. SHIDA, AND S. SHINDOH

4.2. Proof of (v) of Theorem 2.3. Now we assume that ε > 0. Then we have
θk ≥ ε, the inequalities (2.7) and (2.10) while Algorithm 2.1 is running. We see by
Lemmas 3.5 and 3.6 that

0 ≤ δkp ≤ n4κ2
p/(εµ

0) and 0 ≤ δkc ≤ n4κ2
c/(εµ

0) for every k = 0, 1,

Hence, defining

γ̄ = max{γ(1− γεµ0/(4n4κ2

c)), γ/2},
ᾱp =

2√
1 + 4n4κ2

p/ (εµ0(γ − γ̄)) + 1
,(4.1)

we obtain that

0 ≤ γk ≤ γ̌k ≤ γ̄ < γ and 0 < ᾱp ≤ α̂kp ≤ αkp for every k = 0, 1, 2, . . . ;

hence

ε ≤ θk = θ0
k−1∏
j=1

(1− αjp) ≤ θ0(1− ᾱp)(k−1) for every k = 0, 1, 2,(4.2)

Therefore Algorithm 2.1 must stop in a finite number of iterations. This completes
the proof of Theorem 2.1.

Remark 4.1. If we regard κp, κc, γ, and µ0 as constant in (4.1), then we can take
a positive constant δ such that δε/n4 ≤ ᾱp for every sufficiently large n. In this case
we can derive from (4.2) that Algorithm 2.1 stops in O((n4/ε) log(1/ε)) iterations;
hence Algorithm 2.1 works as a fully polynomial-time approximation scheme [25].

5. Local convergence. In the remainder of the paper, we assume Hypothe-
sis 2.1 and discuss the local convergence of the sequence generated by Algorithm 2.1
with ε = 0. Hypothesis 2.1 ensures that (ii) and (iv) of Theorem 2.1 cannot occur.
Since ε = 0, if Algorithm 2.1 stops in a finite number of iterations (i.e., the sequence is
finite), then we obtain an exact solution (Xk+1

c ,Y k+1
c) of the SDLCP (1.1) at Step 3

of the last iteration. Assuming that the sequence is infinite, we will establish the
following.

Theorem 5.1 (local convergence theorem). Assume that Hypothesis 2.1 and
Condition 5.1 below hold. Let {(Xk,Y k,Xk

c ,Y
k
c , θ

k, γk)} be the sequence generated
by Algorithm 2.1 with ε = 0.

(i) The α̂kp defined in (2.9) satisfies that α̂kp → 1 as k →∞.

(ii) There is a positive constant η such that θk+1 ≤ η(θk)2 for every k = 0, 1, 2, . . . ,
i.e., the optimality and feasibility measure θk converges to zero quadratically.

Condition 5.1 (strict complementarity). There is a solution (X∗,Y ∗) of the
SDLCP (1.1) such that X∗ + Y ∗ � O.

Before proving Theorem 5.1, we introduce some notation. We often use the
following notation for a matrix B depending on a parameter δ:

B = Θ(δβ) if B is a symmetric matrix (or a number), and if ξ2δ
βI � B � ξ1δβI

for some ξ1 > 0, some ξ2 ≥ ξ1, and any small δ > 0,

B = O(δβ) if ‖B‖F ≤ ξδβ for some ξ ≥ 0 and any small δ > 0,

B = o(δβ) if ‖B‖F /δβ → 0 as δ → 0.

INTERIOR-POINT ALGORITHM FOR SDLCP 457

Since X∗ and Y ∗ commute, there exists an orthogonal matrix Q such that

Q>X∗Q =

(
ΛB O
O O

)
,Q>Y ∗Q =

(
O O
O ΛN

)
,

where ΛB and ΛN are positive diagonal matrices with dimensions m and n −m for
some m ∈ {0, 1, 2, . . . , n}, respectively. For each (X,Y) ∈ S × S, define

Q>XQ ≡ X̂ =

(
X̂B X̂J

X̂
>
J X̂N

)
and Q>Y Q ≡ Ŷ =

(
Ŷ B Ŷ J

Ŷ
>
J Ŷ N

)
.(5.1)

Define an affine subspace of S × S which contains the solutions of the SDLCP:

M̃ ≡

(X,Y) ∈ F ∩ (S × S) :
X̂ =

(
MB O
O O

)
, Ŷ =

(
O O
O MN

)
,

MB is an m×m symmetric matrix and
MN is an (n−m)× (n−m) symmetric matrix

 .

To simplify the argument, we here assume the following Proposition 5.2, which
we will prove later.

Proposition 5.2. Under Condition 5.1, for every (X,Y) ∈ Ñ (γ, τ), we have∥∥(X − X̌,Y − Y̌)∥∥
F

= O(τ),(5.2)

where (X̌, Y̌) is the solution of the minimization problem:

min{‖(X −X ′,Y − Y ′)‖F : (X ′,Y ′) ∈ M̃}.(5.3)

Proof of Theorem 5.1. By (iii) of Lemma 3.1, the definition of δkc , and the fact that
2θkI − (XkY k +Y kXk) = O(θk), we have δkc = O(1); i.e., there exists a constant C
such that δc ≤ C for all iterates. This implies the existence of a positive constant γ̄
such that

0 ≤ γk ≤ γ̄ < γ for every k = 0, 1, 2,(5.4)

Let ∆Xk = dXk
p+(Xk−X̌k

) and ∆Y k = dY k
p+(Y k−Y̌ k

). Note that (∆Xk,∆Y k)

is a solution of (3.1) with X = Xk, Y = Y k, and C = (Xk−X̌k
)(Y k− Y̌ k

)+(Y k−
Y̌
k
)(Xk − X̌k

). By (5.2), we have ‖C‖F = O((θk)2). Hence, by (iii) of Lemma 3.1,
we have ‖∆Xk‖F = O(θk) and ‖∆Y k‖F = O(θk). Therefore, using (5.2) again, we
also have ‖dXk

p‖F = O(θk) and ‖dY k
p‖F = O(θk). Hence we have

0 ≤ δkp =
‖dXk

p‖F ‖dY k
p‖F

θkµ0
≤ O(θk) for every k = 0, 1, 2,(5.5)

Specifically, δkp → 0 as k → ∞. Hence α̂kp → 1 as k → ∞. This implies the assertion
(i). Now, using the inequalities (5.4) and (5.5), we see that for every k = 0, 1, 2, . . .,

1− αkp ≤ 1− α̂kp
= 1− 2√

1 + 4δkp/(γ − γk) + 1

=
4δkp/(γ − γk)

(
√

1 + 4δkp/(γ − γk) + 1)2

≤ δkp/(γ − γk)
≤ δkp/(γ − γ̄)
= O(θk).

458 M. KOJIMA, M. SHIDA, AND S. SHINDOH

Finally we obtain by the construction of θk+1 that

θk+1 = (1− αkp)θk = O((θk)2).

Thus we have shown the assertion (ii).
The remainder of this section is devoted to proving Proposition 5.2 by a series of

Lemmas. The essential idea of the proof is based on section 4 of the paper [27] by
Potra and Sheng.

Lemma 5.3. Suppose that (X,Y) ∈ Ñ (γ, τ). Then, under Condition 5.1, we
have

X̂ = Q>XQ =

(
Θ(1) O(

√
τ)

O(
√
τ) O(τ)

)
,

Ŷ = Q>Y Q =

(
O(τ) O(

√
τ)

O(
√
τ) Θ(1)

)
.

(5.6)

Proof. By Lemma 2.2 of [27], we have

λmin(X
1
2Y X

1
2) ≥ 1

2
λmin(XY + Y X),

where λmin(A) is the smallest eigenvalue of A. Hence we have X
1
2Y X

1
2 � (1−γ)τI.

Using this fact, we can easily follow the proofs of Lemmas 4.4 and 4.6 of [27] to derive
(5.6).

Let ω = max{‖X̂J‖F , ‖Ŷ J‖F , τ}.
Lemma 5.4. Suppose that (X,Y) ∈ Ñ (γ, τ). Under Condition 5.1, we have

‖(X − X̌,Y − Y̌)‖F = O(ω),(5.7)

where (X̌, Y̌) is the solution of the minimization problem (5.3).
Proof. Suppose that (5.7) does not hold; i.e., there exists a convergent sequence

(Xk,Y k) ∈ Ñ (γ, τ) such that

ξk = ‖(Xk − X̌k,Y k − Y̌ k)‖F /ωk →∞, ωk → 0 as k →∞.(5.8)

Let us define

(∆Xk,∆Y k) =
1

ωkξk
(Xk − X̌k,Y k − Y̌ k).(5.9)

Since ‖(∆Xk,∆Y k)‖F = 1, taking a convergent subsequence, we may assume that

(∆Xk,∆Y k)→ (∆X ′,∆Y ′).

Then we have that (∆X ′,∆Y ′) ∈ F0. Let qi be the ith column vector of Q∗ (1 ≤
i ≤ n). From (5.6), we have for any i ∈ B,

|q>i (∆Y k)qi| = |q>i Y kqi|/(ξkωk) ≤ ‖(Ŷ k)B‖F /(ξkωk)
≤ O(τk)/(ξkωk) = O(1/ξk) = o(1),

which implies q>i ∆Y ′qi = 0 for each i ∈ B. Similarly, q>i ∆X ′qi = 0 for each i ∈ N .
For each pair i, j where i ∈ B, j ∈ N , or i ∈ N, j ∈ B, we have

|q>i (∆Y k)qj | = |q>i Y kqj |/(ξkωk) ≤ ‖(Ŷ k)J‖F /(ωkξk) ≤ 1/ξk = o(1),

INTERIOR-POINT ALGORITHM FOR SDLCP 459

which implies q>i ∆Y ′qj = 0. Similarly, we have q>i ∆X ′qj = 0 for any pair i, j
described above. Hence,

(X̌k, Y̌ k) + ν(∆X ′,∆Y ′) ∈ M̃ for all ν ∈ R,

and

‖ (Xk − (X̌k + ωkξk∆X ′),Y k − (Y̌ k + ωkξk∆Y ′)
) ‖F

‖(Xk − X̌k,Y k − Y̌ k)‖F
=

1

ωkξk
‖ (Xk − (X̌k + ωkξk∆X ′),Y k − (Y̌ k + ωkξk∆Y ′)

) ‖F
= ‖(∆Xk −∆X ′,∆Y k −∆Y ′)‖F
→ 0 as k →∞.

Therefore,(
Xk − (X̌k + ωkξk∆X ′),Y k − (Y̌ k + ωkξk∆Y ′)

) ∈ M̃ and

‖ (Xk − (X̌k + ωkξk∆X ′),Y k − (Y̌ k + ωkξk∆Y ′)
) ‖F < ‖(Xk − X̌k,Y k − Y̌ k)‖F

hold for every sufficiently large k. This contradicts the assumption that (X̌k, Y̌ k) is
the solution of the minimization problem (5.3).

Lemma 5.5. Suppose that (X,Y) ∈ Ñ (γ, τ). Under Condition 5.1, we have

X̂J = O(τ), Ŷ J = O(τ).(5.10)

Proof. Suppose that (5.10) does not hold. We may assume there exists a subse-

quence (Xk,Y k) ∈ Ñ (γ, τk) such that

χk =
‖(X̂k)J‖F

τk
→∞, τk → 0, as k →∞.(5.11)

Since (Xk,Y k) ∈ Ñ (γ, τk), we have

XkY k + Y kXk = O(τk) = o(‖(X̂k)J‖F).(5.12)

This yields

(X̂k)B(Ŷ k)J + (X̂k)J(Ŷ k)N = o(‖(X̂k)J‖F).(5.13)

Hence

(Ŷ k)J = −(X̂k)−1
B (X̂k)J(Ŷ k)N + (X̂k)−1

B o(‖(X̂k)J‖F).(5.14)

Since (X̂k)B = Θ(1), (Ŷ k)N = Θ(1) from Lemma 5.3, we have that

‖(Ŷ k)J‖F = Θ(‖(X̂k)J‖F).(5.15)

Take a convergent subsequence (Xk,Y k) such that

(Xk,Y k)→ (X∞,Y ∞) and

(
(X̂k)J

‖(X̂k)J‖F
,

(Ŷ k)J

‖(X̂k)J‖F

)
→ (X ′J ,Y

′
J)

460 M. KOJIMA, M. SHIDA, AND S. SHINDOH

as k →∞. By (5.13) and letting k →∞, we get

X̂
∞
B Y

′
J +X ′J Ŷ

∞
N = O.

By Lemma 5.3, X̂
∞
B , Ŷ

∞
N are positive definite matrices. Note that ‖X ′J‖F = 1.

Hence,

X ′J • Y ′J = −X ′J • [(X∞B)−1X ′JY
∞
N]

= −Tr ([(X∞B)−
1
2X ′J(Y ∞N)

1
2][(X∞B)−

1
2X ′J(Y ∞N)

1
2]>)

< 0.
(5.16)

Let (X̌k, Y̌ k) ∈ M̃ be defined as in Lemma 5.4 and let

X ′′ = Xk − X̌k + θ(X∞ −X0), Y ′′ = Y k − Y̌ k + θ(Y ∞ −X0).

It is easily seen that (X ′′,Y ′′) ∈ F0, and therefore X ′′ •Y ′′ ≥ 0. By Lemma 5.4, we
have

(Xk − X̌k) • (Y k − Y̌ k) = O(ωkτk),

i.e.,

(5.17)

((X̂k)B−(ˆ̌Xk)B)• (Ŷ k)B+2(X̂k)J • (Ŷ k)J +(X̂k)N • ((Ŷ k)N −(ˆ̌Y k)N) = O(ωkτk).

From Lemmas 5.3 and 5.4, we have that

(Ŷ k)B = O(τk), (X̂k)N = O(τk),(5.18)

(X̂k)B − (ˆ̌Xk)B = O(ωk), (Ŷ k)N − (ˆ̌Y k)N = O(ωk).(5.19)

Therefore,

(X̂k)J • (Ŷ k)J = O(ωkτk),(5.20)

and

ωkτk

‖(X̂k)J‖2F
=

τk

‖(X̂k)J‖2F
max{‖(X̂k)J‖F , ‖(Ŷ k)J‖F , τk}

=
τk

‖(X̂k)J‖F
max

{
1,
‖(Ŷ k)J‖F
‖(X̂k)J‖F

,
τk

‖(X̂k)J‖F

}
= o(1).

(5.21)

Dividing both sides of (5.20) by ‖(X̂k)J‖2F , recalling (5.21), and letting k → ∞, we
obtain

X ′J • Y ′J = 0,

which contradicts (5.16).
From Lemma 5.5, we get ωk = Θ(τk). Therefore, together with Lemma 5.4, we

conclude Proposition 5.2, i.e.,

‖(X − X̌,Y − Y̌)‖F = O(τ).

INTERIOR-POINT ALGORITHM FOR SDLCP 461

6. Local convergence with nondegeneracy. Throughout this section, we
assume Hypothesis 2.1, Condition 5.1, and the following.

Condition 6.1 (nondegeneracy). (U ,V) = (O,O) if X∗V + UY ∗ = O and
(U ,V) ∈ F0.

Under these assumptions, the solution (X∗,Y ∗) of the SDLCP (1.1) ensured
by Hypothesis 2.1 is the unique one. See section 4 of [14]. Hence the sequence
{(Xk,Y k,Xk

c ,Y
k
c , θ

k, γk)} generated by Algorithm 2.1 with ε = 0 satisfies

(Xk,Y k)→ (X∗,Y ∗) and (Xk
c ,Y

k
c)→ (X∗,Y ∗) as k →∞(6.1)

in addition to (2.1), (2.2), (2.3), and (2.4).
Remark. Under the strict complementarity, the nondegeneracy is equivalent to

the combination of the primal and the dual nondegeneracy conditions given in the
paper [3]. This fact was due to Haeberly [7].

Assuming that the sequence is infinite, we establish the following theorem.
Theorem 6.1. Assume that Hypothesis 2.1 and Condition 6.1 hold. Let {(Xk,Y k,

Xk
c ,Y

k
c , θ

k, γk)} be the sequence generated by Algorithm 2.1 with ε = 0.
(i) The α̂kc defined in (2.12) satisfies that α̂kc = 1 for every sufficiently large k.

(ii) The γ̂k+1 defined in (2.12) satisfies that γ̂k+1 → 0 as k →∞.
The assertions (i) and (ii) of the theorem imply the following.
(i)′ For every sufficiently large k, we can take the unit step length αkc = 1 at the

corrector step.
(ii)′ The sequence {(Xk,Y k)} converges to the solution (X∗,Y ∗) tangentially

to the central manifold in the sense that

‖(XkY k + Y kXk)/2−
(
Xk • Y k/n

)
I‖F /(Xk • Y k/n)→ 0 as k →∞.

We need some lemmas to prove the theorem.
Lemma 6.2. Assume that

X∗V + V X∗ +UY ∗ + Y ∗U = O and (U ,V) ∈ F0.

Then (U ,V) = (O,O).
Proof. Since X∗ ∈ S+ and Y ∗ ∈ S+ are commutative, we can take an orthogonal

matrix P that diagonalizes X∗ and Y ∗, simultaneously:

P TX∗P = Γ and P TY ∗P = ∆

for some n × n diagonal matrices Γ and ∆. Since 0 = X∗ • Y ∗ = Γ • ∆ and
Γ + ∆ = P T (X∗ + Y ∗)P � O, we may assume without loss of generality that the
diagonal matrix Γ and ∆ have the forms

Γ =

(
Γ11 O
O O

)
and ∆ =

(
O O
O ∆22

)
,

respectively. Here Γ11 is an m×m positive diagonal matrix, ∆22 an (n−m)×(n−m)
positive diagonal matrix, and 0 ≤ m ≤ n. Let

U ′ = P TUP =

(
U ′11 U ′12

(U ′12)T U ′22

)
and V ′ = P TV P =

(
V ′11 V ′12

(V ′12)T V ′22

)
.

Then we have from the assumption that

462 M. KOJIMA, M. SHIDA, AND S. SHINDOH

 Γ11V
′
11 + V ′11Γ11 = O,

∆22U
′
22 +U ′22∆22 = O,

Γ11V
′
12 +U ′12∆22 = O.

(6.2)

Using the Kronecker product of matrices, we can rewrite the first and second
equalities as

(I ⊗ Γ11 + Γ11 ⊗ I)(vec V ′11) = 0 and (I ⊗∆22 + ∆22 ⊗ I)(vec U ′22) = 0.

Since Γ11 and ∆22 are positive definite, so are the matrices (I ⊗ Γ11 + Γ11 ⊗ I) and
(I ⊗∆22 + ∆22 ⊗ I). Hence we have that V ′11 = O and U ′22 = O. It follows from
V ′11 = O, U ′22 = O, and the last equality of (6.2) that

X∗V +UY ∗ = P
(
ΓV ′ +U ′∆

)
P T

= P

(
Γ11V

′
11 Γ11V

′
12 +U ′12∆22

O U ′22∆22

)
P T

= O.

Therefore we obtain by Condition 6.1 that (U ,V) = (O,O).
Lemma 6.3. There exists a positive number ηc such that

‖(dXk
c , dY

k
c)‖F ≤ ηcθk+1 for every k = 0, 1, 2,

Proof. Since (Xk
c ,Y

k
c) ∈ Ñ (γ, θk+1µ0), we see by (i) of Lemma 3.1 that the

right-hand side 2θk+1µ0I−XkY k−Y kXk of the system (2.11) of equations satisfies

‖2θk+1µ0I −XkY k − Y kXk‖F
θk+1

≤ θk+1µ0
√
n+ ‖XkY k + Y kXk‖F

θk+1

≤ 2
√
n(µ0 + n+ nζγ).

On the other hand, we see from (2.11) that
Xk
c

dY k
c

θk+1
+
dY k

c

θk+1
Xk
c +

dXk
c

θk+1
Y k
c + Y k

c

dXk
c

θk+1

=
2θk+1µ0I −XkY k − Y kXk

θk+1
,

(dXk
c , dY

k
c)

θk+1
∈ F0.

(6.3)

Assume on the contrary that the sequence
{

(dXk
c ,dY

k
c)

θk+1

}
is unbounded. Along a sub-

sequence, we then have that

‖(dXk
c , dY

k
c)‖F

θk+1
→∞ and

(dXk
c , dY

k
c)

‖(dXk
c , dY

k
c)‖F

→ (U ,V) 6= (O,O)

for some (U ,V) ∈ F0. Now, dividing the identity (6.3) by ‖(dXk
c , dY

k
c)‖F /θk+1 and

taking its limit along the subsequence, we obtain that

X∗V + V X∗ +UY ∗ + Y ∗U = O and (O,O) 6= (U ,V) ∈ F0.

This contradicts Lemma 6.2.
Proof of Theorem 6.1. In view of Lemma 6.3, we know that δkc → 0 as k → ∞,

which implies (i) and (ii) of the theorem.

INTERIOR-POINT ALGORITHM FOR SDLCP 463

7. Concluding remarks.
(A) The admissible region {(X,Y) ∈ Ñ (γ, τ) : τ > 0} in which we confine

iterates (Xk,Y k) (k = 0, 1, 2, . . .) becomes larger as we take larger γ < 1. Taking
the limit as γ → 1, we have the largest admissible region⋃

0<γ<1

{(X,Y) ∈ Ñ (γ, τ) : τ > 0} = {(X,Y) ∈ S+ × S+ : XY + Y X � O}.

It is easily seen that this set is contained in S++ × S++. But the converse relation

S++ × S++ ⊂ {(X,Y) ∈ S+ × S+ : XY + Y X � O}
is not true. For a counterexample to this relation, see the paper [29].

(B) We can use a different admissible region. For every γ ∈ [0, 1] and τ ≥ 0,
define

N̂ (γ, τ) =

{
(X,Y) ∈ S+ × S+ :

∥∥∥∥XY + Y X

2
− τI

∥∥∥∥
F

≤ γτ
}
.(7.1)

We can easily verify that

{(X,Y) ∈ S+×S+ : XY = τI} ⊂ N̂ (γ, τ) ⊂ Ñ (γ, τ) for every γ ∈ (0, 1) and τ > 0.

But we need some modification in Algorithm 2.1 to prove global and local convergence.
(C) It is interesting to compare our (modified) algorithm with the predictor-

corrector infeasible-interior-point algorithm given by Potra and Sheng [28]. (See also
[27].)

• Our modified algorithm uses the combination of the AHO search direction
[2] and the neighborhood N̂ (γ, τ) (given in (7.1)) of {(X,Y) ∈ S+ × S+ :
XY = τI}, while Potra and Sheng’s algorithm uses the combination of the
HRVW/KSH/M direction [8, 15, 20] and the neighborhood

N (γ, τ) = {(X,Y) ∈ S+ × S+ : ‖X1/2Y X1/2 − τI‖F ≤ γτ}
of {(X,Y) ∈ S+ × S+ : XY = τI}. Using Lemma 3.3 of Monteiro [20], we

can prove that N̂ (γ, τ) ⊂ N (γ, τ) for every γ ∈ (0, 1) and τ > 0.
• Our global convergence theorem, Theorem 2.1, has not guaranteed the global

convergence at any linear rate (see also Remark 4.1) while Potra and Sheng
proved the global convergence at a linear rate for their algorithm (Theo-
rems 3.6, 3.7, and 3.8 of [26]).
• We have proved the quadratic local convergence under the strict complemen-

tarity condition while their algorithm requires different assumptions (section
4 of [26]) or additional restrictions (sections 3, 4, 5, and 6 of Kojima, Shida,
and Shindoh [14]) to attain the superlinear convergence.

(D) We briefly mention some recent results on interior-point methods based on
the AHO direction after the first version of this paper was written in January 1996.
In May 1996, Alizadeh, Haeberly, and Overton [4] studied several variants of primal-
dual interior-point algorithms using the AHO direction (or the XZ+ZX direction
in their terminology), the HRVW/KSH/M direction [8, 15, 20] (or the XZ direc-
tion in their terminology), and the Nesterov–Todd direction [23, 24]. They reported
through numerical results that the Mehrotra-type predictor-corrector algorithm us-
ing the AHO direction is more stable, converges faster, and achieves higher accuracy

464 M. KOJIMA, M. SHIDA, AND S. SHINDOH

than the other variants. In July 1996, Monteiro [21] presented the polynomial iter-
ation complexity for a short-step primal-dual path-following interior-point algorithm
and a Mizuno–Todd–Ye-type predictor-corrector interior-point algorithm for the SDP
based on the Monteiro–Zhang family of directions which covers the AHO direction
as a special case. In general, polynomial iteration complexity is stronger than global
convergence. We should mention, however, that our global convergence result (The-
orem 2.1) does not follow from his polynomial iteration complexity result. A critical
difference lies in the neighborhoods which Monteiro and we use. To ensure polynomial
iteration complexity, his predictor-corrector algorithm (Algorithm II in section 4 of
[21]) needs to generate a sequence in a very narrow neighborhood of the central tra-
jectory, which is apparently of theoretical interest. On the other hand, our algorithm
(Algorithm 2.1 in section 2) uses a fairly large neighborhood of the central trajectory.
In the second version of the paper (August 1996), we proved local quadratic conver-
gence (Theorem 5.1) without the nondegeneracy condition (Condition 6.1); the first
version used both Conditions 5.1 and 6.1 to prove quadratic convergence. Tseng [30]
also presented polynomial iteration complexity for a Mizuno–Todd–Ye-type predictor-
corrector interior-point algorithm for the SDP using the AHO direction in August
1996.

REFERENCES

[1] F. Alizadeh, Interior point methods in semidefinite programming with application to combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[2] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods for
semidefinite programming, manuscript presented at the Math. Programming Symposium,
Ann Arbor, MI, 1994.

[3] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Complementarity and nondegeneracy
in semidefinite programming, Math. Programming, 77 (1997), pp.111–128.

[4] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods
for semidefinite programming: convergence rates, stability and numerical results, SIAM J.
Optim., 8 (1998), pp. 746–768.

[5] R. M. Freund, Complexity of an Algorithm for Finding an Approximate Solution of a Semidef-
inite Program with No Regularity Assumption, Technical report OR 302-94, Operations
Research Center, MIT, Cambridge, MA, 1994.

[6] A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood Ltd.,
West Sussex, England, 1981.

[7] J.-P. A. Haeberly, private communication, 1996.
[8] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, An interior-point method

for semidefinite programming, SIAM J. Optim., 6 (1996), pp. 342–361.
[9] M. Kojima, S. Kojima, and S. Hara, Linear algebra for semidefinite programming, RIMS

Kokyuroku, 1004 (1997), pp. 1–23, Research Institute of Mathematical Sciences, Kyoto
University, Kyoto, Japan.

[10] M. Kojima, S. Mizuno, and A. Yoshise, A primal-dual interior point algorithm for lin-
ear programming, in Progress in Mathematical Programming: Interior Point and Related
Methods, N. Megiddo, ed., Springer-Verlag, New York, 1989, pp. 29–47.

[11] M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear
complementary problems, Math. Programming, 44 (1989), pp. 1–26.

[12] M. Kojima, S. Mizuno, and A. Yoshise, An O(
√
nL) iteration potential reduction algorithm

for linear complementarity problems, Math. Programming, 50 (1991), pp. 331–342.
[13] M. Kojima, M. Shida, and S. Shindoh, Reduction of monotone linear complementarity prob-

lems over cones to linear programs over cones, Acta Math. Vietnam., 22 (1997), pp. 147–
157.

[14] M. Kojima, M. Shida, and S. Shindoh, Local convergence of predictor-corrector infeasible-
interior-point algorithms for SDPs and SDLCPs, Math. Programming, 80 (1998), pp.
129–160.

[15] M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the monotone semidefinite
linear complementarity problems, SIAM J. Optim., 7 (1997), pp. 86–125.

INTERIOR-POINT ALGORITHM FOR SDLCP 465

[16] C.-J. Lin and R. Saigal, A Predictor-Corrector Method for Semi-definite Linear Program-
ming, Working paper, Department of Industrial and Operations Engineering, The Univer-
sity of Michigan, Ann Arbor, MI, 1995.

[17] S. Mizuno, M. Kojima, and M. J. Todd, Infeasible-interior-point primal-dual potential-
reduction algorithms for linear programming, SIAM J. Optim., 5 (1995), pp. 52–67.

[18] S. Mizuno, M. J. Todd and Y. Ye, On Adaptive-step primal-dual interior-point algorithms
for linear programming, Math. Oper. Res., 18 (1993), pp. 964–981.

[19] R. D. C. Monteiro and I. Adler, Interior path-following primal-dual algorithm. Part I:
Linear programming, Math. Programming, 44 (1989), pp. 27–41.

[20] R. D. C. Monteiro, Primal-dual path following algorithms for semidefinite programming,
SIAM J. Optim., 7 (1997), pp. 663–678.

[21] R. D. C. Monteiro, Polynomial convergence of primal-dual algorithms for semidefinite pro-
gramming based on the Monteiro and Zhang family of directions, SIAM J. Optim., 8 (1998),
pp. 797–812.

[22] Yu. E. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications, SIAM, Philadelphia, PA, 1994.

[23] Yu. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex
programming, Math. Oper. Res., 22 (1997), pp. 1–42.

[24] Yu. E. Nesterov and M. J. Todd, Primal-dual interior-point methods for self-scaled cones,
SIAM J. Optim., 8 (1998), pp. 324–364.

[25] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Prentice-Hall, Engle-
wood Cliffs, NJ, 1982.

[26] F. A. Potra, An O(nL) infeasible-interior-point algorithm for LCP with quadratic conver-
gence, Interior point methods in mathematical programming, Ann. Oper. Res., 62 (1996),
pp. 81–102.

[27] F. A. Potra and R. Sheng, A superlinearly convergent primal-dual infeasible-interior-point
algorithm for semidefinite programming, SIAM J. Optim., 8 (1998), pp. 1007–1028.

[28] F. A. Potra and R. Sheng, Superlinear Convergence of Infeasible-Interior-Point Algorithms
for Semidefinite Programming, Department of Mathematics, University of Iowa, Iowa City,
IA, 1996.

[29] M. Shida, S. Shindoh, and M. Kojima, Existence and uniqueness of search directions in
interior-point-algorithms for the SDP and the monotone SDLCP, SIAM J. Optim., 8
(1998), pp. 387–396.

[30] P. Tseng, Analysis of Infeasible Path-Following Methods Using the Alizadeh-Haeberly-Overton
Directions for the Monotone Semi-Definite LCP, Technical report, Department of Math-
ematics, University of Washington, Seattle, WA, 1996.

[31] L. Vandenberghe and S. Boyd, A primal-dual potential reduction method for problems in-
volving matrix inequalities, Math. Programming, 69 (1995), pp. 205–236.

[32] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[33] Y. Zhang, On the convergence of a class of infeasible interior-point algorithms for the hori-

zontal linear complementarity problem, SIAM J. Optim., 4 (1994), pp. 208–227.
[34] Y. Zhang, On extending some primal-dual interior-point algorithms from linear programming

to semidefinite programming, SIAM J. Optim., 8 (1998), pp. 365–386.

SECOND ORDER OPTIMALITY CONDITIONS BASED ON
PARABOLIC SECOND ORDER TANGENT SETS∗

J. FRÉDÉRIC BONNANS† , ROBERTO COMINETTI‡ , AND ALEXANDER SHAPIRO§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 466–492

Abstract. In this paper we discuss second order optimality conditions in optimization problems
subject to abstract constraints. Our analysis is based on various concepts of second order tangent sets
and parametric duality. We introduce a condition, called second order regularity, under which there is
no gap between the corresponding second order necessary and second order sufficient conditions. We
show that the second order regularity condition always holds in the case of semidefinite programming.

Key words. second order optimality conditions, semidefinite programming, semi-infinite pro-
gramming, tangent sets, Lagrange multipliers, cone constraints, duality

AMS subject classifications. 49K27, 90C30, 90C34

PII. S1052623496306760

1. Introduction. In this paper we investigate necessary as well as sufficient
second order optimality conditions for an optimization problem in the form

(P)Min
x∈X

f(x) subject to G(x) ∈ K,(1.1)

where X is a finite dimensional space, Y is a Banach space, K is a closed convex
subset of Y , and the objective function f : X → R as well as the constraint mapping
G : X → Y are assumed to be twice continuously differentiable. By Φ := G−1(K) we
denote the feasible set of (P).

A number of optimization problems can be formulated in the form (1.1) in a na-
tural way. When Y = Rp and K = {0} ×Rp−q+ , the feasible set of (P) is defined by a
finite number of equality and inequality constraints and (P) becomes a nonlinear pro-
gramming problem. As another example, consider the space Y = C(Ω) of continuous
functions ψ : Ω → R, defined on a compact metric space Ω and equipped with the
sup-norm ‖ψ‖ := supω∈Ω |ψ(ω)|. Let K := C+(Ω) be the cone of nonnegative valued
functions, i.e.,

C+(Ω) := {ψ ∈ C(Ω) : ψ(ω) ≥ 0 for all ω ∈ Ω}.

In that case the abstract constraint G(x) ∈ K corresponds to g(x, ω) ≥ 0 for all
ω ∈ Ω, where g(x, ·) := G(x)(·). If the set Ω is infinite, this leads to an infinite
number of constraints and (P) becomes a semi-infinite programming problem (cf. [18]
and references therein). Yet another example is provided by semidefinite programming
(see, e.g., [43]). There Y = Sn is the space of n× n symmetric matrices and K = Sn+
∗Received by the editors July 16, 1996; accepted for publication (in revised form) February 4,

1998; published electronically March 17, 1999. This research was supported by the French-Chilean
ECOS Program and by the European Community under contract 931091CL.

http://www.siam.org/journals/siopt/9-2/30676.html
†INRIA, B.P. 105, 78153 Rocquencourt, France (Frederic.Bonnans@inria.fr).
‡Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile (rcominet@dim.uchile.cl). The

work of this author was supported in part by Fondecyt 1961131.
§School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

30332-0205 (ashapiro@isye.gatech.edu). The work of this author was supported in part by National
Science Foundation grant DMI-9713878.

466

SECOND ORDER OPTIMALITY CONDITIONS 467

is the cone of positive semidefinite matrices. Note that Sn+ can be represented in the
form

Sn+ =
{
Z ∈ Sn : ωTZω ≥ 0, ω ∈ Rn, ‖ω‖ = 1

}
so that semidefinite programming can be considered in the framework of semi-infinite
programming.

An alternative approach for studying abstract optimality conditions is to consider
optimization problems of the form

Min
x∈X

g(F (x)),(1.2)

where g : Y → R ∪ {+∞} is a lower semicontinuous proper convex function and
F : X → Y . This problem, known as a composite optimization problem, is equivalent
to (e.g., [27])

Min
(x,c)∈X×R

c subject to (F (x), c) ∈ epi(g),(1.3)

where epi(g) := {(y, c) ∈ Y × R : g(y) ≤ c} is the epigraph of g and hence it can be
considered as a particular case of the problem (1.1). The converse is also true, that is,
problem (1.1) can be represented in the form (1.2) by taking g(r, y) = r + IK(y) and
F (x) = (f(x), G(x)), where IK(y) = 0 for y ∈ K and +∞ elsewhere (see [20, 27]), so
that both approaches are essentially equivalent.

Second order optimality conditions have been studied in numerous publications.
In order to give a general idea of that type of result, consider for the moment the
simplest case when problem (P) is unconstrained. Let x0 be a stationary point, i.e., it
satisfies the first order optimality condition ∇f(x0) = 0. Then it is well known that
the second order necessary condition for x0 to be locally optimal is that the Hessian
matrix ∇2f(x0) should be positive semidefinite, i.e., hT∇2f(x0)h ≥ 0 for all h ∈ X.
The corresponding second order sufficient condition is that there exists α > 0 such
that hT∇2f(x0)h > α‖h‖2 for all h ∈ X \ {0}. Since X is finite dimensional, this is
equivalent to hT∇2f(x0)h > 0 for all h ∈ X \ {0}, i.e., ∇2f(x0) is positive definite.
This condition is in fact necessary and sufficient for quadratic growth (3.13). The only
difference between the second order necessary condition and the sufficient condition
is the term α‖h‖2 in the right-hand side of the former. In such a case we say that
there is no gap between the necessary and the sufficient second order conditions.

In the case of nonlinear programming (i.e., when the space Y is finite dimensional
and the set K is polyhedral), “no gap” second order optimality conditions were al-
ready given, under somewhat restrictive assumptions, in [15]. In a sense, a complete
description of no gap second order conditions for nonlinear programming was given
in Ioffe [19], Ben-Tal [2], and Ben-Tal and Zowe [3].

In semi-infinite programming second order optimality conditions were first derived
(under quite restrictive assumptions) by the so-called reduction method, e.g., [1, 16,
17, 37, 44] (see [18] for additional references). It was already clear in those papers that
an additional term, representing the curvature of the set K, should appear in second
order optimality conditions in order to obtain no gap second order conditions. An
attempt to describe this additional term in an abstract way (in the case of semi-infinite
programming) was made in Kawasaki [23]. This sparked an intensive investigation
aimed at closing the gap between necessary and sufficient second order conditions
[11, 12, 20, 21, 25, 26, 27, 34].

468 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

Second order optimality conditions for problem (P) may also be obtained by for-
mulating it as a composite optimization problem in the form (1.2) and using the
so-called second order (epi)subderivatives. That approach was investigated in Rock-
afellar [34] for twice epidifferentiable functions and further explored by Ioffe [21] and
Cominetti [13]. (See also [36] for a detailed account of that approach.) In particular,
in the case of the composition of a piecewise linear-quadratic convex function with a
twice continuously differentiable mapping, no gap second order optimality conditions
can be explicitly stated in terms of second order (epi)subderivatives.

An alternative approach developed in this paper, which goes back to Ben-Tal [2]
and was later refined in Cominetti [12], is based on verification of optimality along
curves that have a second order expansion (in that case we speak of a parabolic curve).
This approach leads to more explicit second order optimality conditions involving the
Hessian of the Lagrangian and the support function of a second order tangent ap-
proximation of the set K. Explicit expressions of this support function are known
in various situations (see Cominetti and Penot [14]), including semidefinite program-
ming (see Shapiro [41]). This approach is also convenient for sensitivity analysis of
parameterized optimization problems [5, 9].

It is clear, however, that there is no reason a priori why optimality should be
verified along parabolic curves only. Therefore, one may expect a gap between such
necessary and corresponding sufficient second order optimality conditions. Never-
theless, one may search for classes of problems for which the “parabolic” estimates
coincide with the estimates based on the second order lower epiderivatives approach.
This was done, in the context of infinite dimensional sensitivity analysis, in [5] under
an assumption of generalized polyhedricity (although second order lower epideriva-
tives are not explicitly mentioned in [5], all lower estimates in that paper, in fact, are
lower epiderivative estimates).

The main purpose of this paper is to identify a wide class of sets K for which
there is no gap between necessary and sufficient second order optimality conditions
obtained via the parabolic curve approach. We argue that such sets, which we call
second order regular, are natural for purposes of second order analysis. In particular
we show that cones of positive semidefinite matrices are always second order regular.
This complements results in [40, 41] and gives quite a complete description of no
gap second order optimality conditions in semidefinite programming. It is possible to
show that the epigraph of a piecewise linear-quadratic convex function is second order
regular, and hence the suggested approach can be shown to cover the second order
optimality conditions obtained for composite optimization in [34]. In the follow-
up paper [6], we also show that the concept of second order regularity is useful in
sensitivity analysis of parameterized optimization problems.

The organization of this paper is as follows. In the next section we introduce
and discuss some concepts of second order tangent sets. Second order necessary and
second order sufficient optimality conditions, for the problem (P) in the form (1.1),
are given in section 3. Those conditions become no gap second order conditions under
the assumption of second order regularity of the set K, which is discussed in section
4. In section 5 we translate the obtained results into the framework of composite
optimization. Finally in section 6 some extensions to the case of nonisolated minima
are presented.

Throughout this paper we use the following notation and terminology. Let h :
Y → R ∪ {+∞} ∪ {−∞} be an extended real valued function. Assuming that h(·) is

SECOND ORDER OPTIMALITY CONDITIONS 469

finite at a point y ∈ Y , we denote by h′(y, d) its directional derivative

h′(y, d) := lim
t↓0

h(y + td)− h(y)

t

at the point y in the direction d ∈ Y . Recall that if h(·) is convex, finite valued, and
continuous at y, then h′(y, d) exists and is finite valued [31]. In order to deal with
possibly discontinuous convex functions in composite optimization (see section 5), we
also use the lower directional subderivative h↓(y, d) (see [35])

h↓(y, d) := lim inf
t↓0,d′→d

h(y + td′)− h(y)

t
.

It is not difficult to show from the definitions that, provided h(y) is finite, the epigraph
of ψ(·) := h↓(y, ·) coincides with the contingent (Bouligand) cone (see (2.3) below) to
the epigraph of h at the point (y, h(y)) (cf. [35]). Therefore the epigraph of h↓(y, ·)
is closed and hence h↓(y, ·) is lower semicontinuous. Note that if h(·) is convex, finite
valued, and continuous at y, and hence is Lipschitz continuous in a neighborhood of
y, then h↓(y, ·) ≡ h′(y, ·). In general, if h is a convex, possibly discontinuous function,
then the topological closure of the epigraph of h′(y, ·) coincides with the epigraph of
h↓(y, ·).

When h′(y, d) exists and is finite, we denote by h′′−(y; d,w) and h′′+(y; d,w) its
lower and upper second order parabolic derivatives [3], respectively, i.e.,

h′′−(y; d,w) := lim inf
t↓0

h(y + td+ 1
2
t2w)− h(y)− th′(y, d)

1
2
t2

,

h′′+(y; d,w) := lim sup
t↓0

h(y + td+ 1
2
t2w)− h(y)− th′(y, d)

1
2
t2

.

We say that h(·) is second order directionally differentiable, at y in the direction d,
if h′′−(y; d,w) is equal to h′′+(y; d,w) and is finite for all w ∈ Y . In that case the
common value is denoted h′′(y; d,w). We also use, when h(y) and h↓(y, d) are finite,
the following lower second order parabolic derivative:

h↓↓− (y; d,w) := lim inf
t↓0, w′→w

h(y + td+ 1
2
t2w′)− h(y)− th↓(y, d)

1
2
t2

.

Note that if h(·) is Lipschitz continuous near y, then h↓↓− (y; d,w) ≡ h′′−(y; d,w). This
holds, in particular, if h(·) is convex, finite, and continuous, and hence is Lipschitz
continuous, at y.

By Y ∗ we denote the dual space of Y and by 〈y∗, y〉 the value y∗(y) of the linear
functional y∗ ∈ Y ∗ at y ∈ Y . For a linear continuous mapping A : X → Y we
denote by A∗ : Y ∗ → X∗ its adjoint mapping, i.e., 〈A∗y∗, x〉 = 〈y∗, Ax〉 for all
x ∈ X and y∗ ∈ Y ∗. For a set T ⊂ Y we denote by σ(·, T) its support function, i.e.,
σ(y∗, T) := supy∈T 〈y∗, y〉, and by dist(·, T) the distance dist(y, T) := infz∈T ‖y − z‖.
By Df(x) and D2f(x) we denote the first and second order derivatives, respectively,
of a function f(x). We denote by BY := {y ∈ Y : ‖y‖ ≤ 1} the unit ball in Y . By
[[y]] := {ty : t ∈ R} we denote the linear space (one dimensional if y 6= 0) generated
by vector y.

470 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

2. Tangent sets. In this section we discuss the notions of first and second order
tangent sets on which our second order optimality conditions are based.

Let us first recall the notion of limits in the sense of Painlevé–Kuratowski for
a multifunction Ψ : X → 2Y from a normed space X into the set 2Y of subsets
of Y . The upper limit lim supx→x0

Ψ(x) is the set of points y ∈ Y for which there
exists a sequence xn → x0 such that yn → y for some yn ∈ Ψ(xn). The lower limit
lim infx→x0 Ψ(x) is the set of points y ∈ Y such that for every sequence xn → x0 it is
possible to find yn ∈ Ψ(xn) such that yn → y.

Let K be a closed subset of a Banach space Y . The (first order) tangent set
(cone) to K at a point y ∈ K can be defined as follows:

TK(y) := {h ∈ Y : dist(y + th,K) = o(t), t ≥ 0}.(2.1)

By the definition of lower set limits this can be written in the form

TK(y) = lim inf
t↓0

K − y
t

.(2.2)

It is well known that whenever K is convex, it is also true that

TK(y) = lim sup
t↓0

K − y
t

.(2.3)

Note that if K is a convex cone and y ∈ K, then TK(y) = cl(K + [[y]]), where [[y]]
denotes the linear space generated by vector y and “cl” stands for the topological
closure in the norm topology of Y .

Similarly to (2.2) and (2.3) we consider second order variations of the set K at a
point y ∈ K in a direction d. That is,

T 2
K(y, d) := lim inf

t↓0
K − y − td

1
2
t2

,(2.4)

O2
K(y, d) := lim sup

t↓0

K − y − td
1
2
t2

.(2.5)

We call T 2
K(y, d) and O2

K(y, d) the inner and outer second order tangent sets, respec-
tively. Alternatively these tangent sets can be written in the form

T 2
K(y, d) =

{
w ∈ Y : dist(y + td+ 1

2
t2w,K) = o(t2), t ≥ 0

}
,

O2
K(y, d) =

{
w : ∃ tn ↓ 0 such that dist(y + tnd+ 1

2
t2nw,K) = o(t2n)

}
.

It is clear from the above definitions that T 2
K(y, d) ⊂ O2

K(y, d) and that these second
order tangent sets can be nonempty only if d ∈ TK(y). Also, both sets T 2

K(y, d) and
O2
K(y, d) are closed. If K is convex, then the set T 2

K(y, d) is convex. On the other
hand the outer second order tangent set O2

K(y, d) can be nonconvex. An example
of a convex set K (in R4) for which O2

K(y, d) is nonconvex is constructed in the
forthcoming book [10]. (That example is not trivial and will be not repeated here.)

The following example demonstrates that unlike the first order tangent variations,
the second order inner and outer tangent sets can be different. (Other examples have

SECOND ORDER OPTIMALITY CONDITIONS 471

been given in [14, 27].) It also shows that lower and upper second order directional
derivatives can be different even for a convex continuous function of one variable.

Example 2.1. Let us first construct a convex piecewise linear function y = η(x),
x ∈ R, oscillating between two parabolas y = x2 and y = 2x2. That is, we construct
η(x) in such a way that η(x) = η(−x), η(0) = 0 and for some monotonically decreasing
to zero sequence xk, the function η(x) is linear on every interval [xk+1, xk], η(xk) = x2

k

and the straight line passing through the points (xk, η(xk)) and (xk+1, η(xk+1)) is
tangent to the curve y = 2x2. It is quite clear how such a function can be constructed.
For a given point xk > 0 consider the straight line passing through the point (xk, x

2
k)

and tangent to the curve y = 2x2. This straight line intersects the curve y = x2 at
a point xk+1. Clearly xk > xk+1 > 0. One can proceed with the construction in an
iterative way. It is easily proved that xk → 0.

Define K := {(x, y) ∈ R2 : y ≥ η(x)}. We have then that for the direction
d := (1, 0), T 2

K(0, d) = {(x, y) : y ≥ 4} and O2
K(0, d) = {(x, y) : y ≥ 2}. It also can

be seen that for any w ∈ R, η′′−(0; 1, w) = 2 and η′′+(0; 1, w) = 4 and hence η(·) is not
second order directionally differentiable at zero.

We say that the set K is second order directionally differentiable, at y ∈ K in a
direction d, if T 2

K(y, d) = O2
K(y, d) (for various related concepts see [35]). This ter-

minology is justified by the following result, which is an extension of [12, Proposition
4.1].

Proposition 2.1. Suppose that the set K is defined in the form K = {y ∈ Y :
h(y) ≤ 0}, where h : Y → R ∪ {+∞} is a proper convex function. Let h(y) = 0 and
h↓(y, d) = 0, and suppose that there exists ȳ such that h(ȳ) < 0 (Slater condition).
Then

O2
K(y, d) =

{
w : h↓↓− (y; d,w) ≤ 0

}
.(2.6)

If, in addition, h(·) is continuous at y, then

T 2
K(y, d) = {w : h′′+(y; d,w) ≤ 0}.(2.7)

Proof. We show only that (2.6) holds since the proof of (2.7) is similar. Consider
w ∈ O2

K(y, d), and choose sequences tn → 0+ and wn → w such that y+tnd+ 1
2
t2nwn ∈

K, and hence h(y + tnd+ 1
2
t2nwn) ≤ 0. Then

h↓↓− (y; d,w) ≤ lim inf
n→∞

h(y + tnd+ 1
2
t2nwn)

1
2
t2n

≤ 0.

Conversely, suppose first that h↓↓− (y; d,w) < 0. Then for some tn → 0+ and wn → w,
we have that

h(y + tnd+ 1
2
t2nwn) = 1

2
t2nh

↓↓
− (y; d,w) + o(t2n),

and hence h(y + tnd+ 1
2
t2nwn) < 0 for n large enough. Consequently

y + tnd+ 1
2
t2nwn ∈ K,

which implies that w ∈ O2
K(y, d).

Suppose now that h↓↓− (y; d,w) = 0, and hence for some tn → 0+ and wn → w,
h(y+ tnd+ 1

2
t2nwn) = o(t2n). Given α > 0 and w′ ∈ Y , set w′α := w′+α(ȳ− y). Then,

by convexity of h, we have that for t′ ≥ 0 small enough such that 1− 1
2
αt′2 > 0,

h(y + t′d+ 1
2
t′2w′α) ≤ (1− 1

2
αt′2)γ(t′, w′) + 1

2
αt′2h(ȳ),(2.8)

472 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

where

γ(t′, w′) := h
(
y + t′(1− 1

2
αt′2)−1d+ 1

2
t′2(1− 1

2
αt′2)−1w

)
.

Define t′n and w′n by the relations t′n(1− 1
2
αt′n

2
)−1 = tn, i.e., t′n = 2tn/(1+

√
1 + 2αt2n),

and (1− 1
2
αt′n

2
)w′n = wn. Then

γ(t′n, w
′
n) = h(y + tnd+ 1

2
t2nwn) = o(t2n).

Since t′n → 0+, w′n + α(ȳ − y) → wα, and h(ȳ) < 0, it follows then by (2.8) that for
any α > 0,

h↓↓− (y; d,wα) ≤ αh(ȳ) < 0

and hence wα ∈ O2
K(y, d). Since O2

K(y, d) is closed, letting α → 0+ we obtain that
w ∈ O2

K(y, d), which completes the proof of (2.6).
If h(·) is convex and continuous at y, then second order derivatives h↓↓− (y; d, ·)

and h′′−(y; d, ·) are the same. Then it follows from the above proposition, provided
the Slater condition holds, that K is second order directionally differentiable, at the
point y in the direction d, if and only if the level sets

{
w : h′′−(y; d,w) ≤ 0

}
and{

w : h′′+(y; d,w) ≤ 0
}

coincide. In particular, K is second order directionally differ-
entiable if h(·) is second order directionally differentiable.

To close this section we state two results, which extend Proposition 3.1 and The-
orem 3.1 in [12] to the case of outer second order tangent sets. We omit the proofs,
which are simple modifications of those in the cited reference.

Proposition 2.2. For all y ∈ K, d ∈ TK(y) one has

T 2
K(y, d) + TTK(y)(d) ⊂ T 2

K(y, d) ⊂ TTK(y)(d),(2.9)

O2
K(y, d) + TTK(y)(d) ⊂ O2

K(y, d) ⊂ TTK(y)(d).(2.10)

In particular, it follows from the above proposition that TTK(y)(d) is the recession
cone of T 2

K(y, d) and O2
K(y, d) whenever these sets are nonempty. Moreover, if 0 ∈

O2
K(y, d), then O2

K(y, d) = TTK(y)(d) and when 0 ∈ T 2
K(y, d) all three sets coincide:

T 2
K(y, d) = O2

K(y, d) = TTK(y)(d).

Note also that TTK(y)(d) = cl {TK(y) + [[d]]}, provided d ∈ TK(y); TTK(y)(d) is empty
otherwise.

The following formulas (2.12) and (2.13) provide a rule for computing the second
order tangent approximations of the feasible set Φ := G−1(K) of (P) in terms of the
second order tangent approximations of K. These formulas are valid under Robinson’s
constraint qualification [29]

0 ∈ int{G(x0) +DG(x0)X −K}(2.11)

and can be proved by using the Robinson–Ursescu [30, 42] stability theorem (see [12]).
Proposition 2.3. Let x0 ∈ Φ := G−1(K), and suppose that Robinson’s con-

straint qualification (2.11) holds. Then, for all h ∈ X,

T 2
Φ(x0, h) = DG(x0)−1

[
T 2
K(G(x0), DG(x0)h)−D2G(x0)(h, h)

]
,(2.12)

O2
Φ(x0, h) = DG(x0)−1

[
O2
K(G(x0), DG(x0)h)−D2G(x0)(h, h)

]
.(2.13)

SECOND ORDER OPTIMALITY CONDITIONS 473

3. Second order optimality conditions. In this section we derive second
order necessary and sufficient optimality conditions for a problem (P) given in the
form (1.1). With problem (P) are associated the Lagrangian

L(x, λ) := f(x) + 〈λ,G(x)〉, λ ∈ Y ∗,

and the generalized Lagrangian

L∗(x, α, λ) := αf(x) + 〈λ,G(x)〉, (α, λ) ∈ R× Y ∗.

Let x0 be a locally optimal solution of problem (P). Then F. John–type (first
order) optimality conditions can be written in the following form: there exists (α, λ) ∈
R× Y ∗, (α, λ) 6= (0, 0), such that

DxL
∗(x0, α, λ) = 0, α ≥ 0, λ ∈ NK(G(x0)).(3.1)

Here NK(y) := {y∗ ∈ Y ∗ : 〈y∗, z − y〉 ≤ 0 for all z ∈ K} is the normal cone to K
at y. We denote by Λ∗(x0) the set of generalized Lagrange multipliers (α, λ) 6= (0, 0)
satisfying condition (3.1). It should be noted that for a general Banach space Y the
set Λ∗(x0) can be empty. The above F. John optimality condition is necessary for
local optimality, i.e., Λ∗(x0) 6= ∅, in two important cases, namely, when the space Y
is finite dimensional or when the set K has a nonempty interior [24, 45].

If the multiplier α in (3.1) is nonzero, then we can take α = 1 and hence the
corresponding first order necessary condition becomes

DxL(x0, λ) = 0, λ ∈ NK(G(x0)).(3.2)

Under Robinson’s constraint qualification (2.11) the set Λ(x0) of Lagrange multipliers
satisfying (3.2) is nonempty and bounded [28, 45]. When the set K is a convex cone
and y ∈ K, the normal cone NK(y) can be written in the form NK(y) = {y∗ ∈ K− :
〈y∗, y〉 = 0}, where

K− := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≤ 0 for all y ∈ K}

is the polar (negative dual) cone of the cone K. In that case condition λ ∈ NK(G(x0))
becomes λ ∈ K− and 〈λ,G(x0)〉 = 0.

Let us finally recall that the cone

C(x0) := {h ∈ X : DG(x0)h ∈ TK(G(x0)), Df(x0)h ≤ 0}(3.3)

is called the critical cone of the problem (P) at the point x0. It represents those
directions for which a first order linearization of (P) does not provide information
about the optimality of x0. It may be noted that when the set Λ(x0) of Lagrange
multipliers is nonempty, then Df(x0)h ≥ 0 for any h ∈ X satisfying DG(x0)h ∈
TK(G(x0)). In such a case the inequality Df(x0)h ≤ 0 in the definition of the critical
cone can be replaced by the equation Df(x0)h = 0, which in turn is equivalent to
〈λ,DG(x0)h〉 = 0 for any λ ∈ Λ(x0).

With these preliminaries we may now state a second order necessary condition
for optimality, which is based on the analysis of feasible parabolic paths of the form

x(t) = x0 + th+ 1
2
t2w + o(t2),(3.4)

474 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

where t ≥ 0. This necessary condition, combined with the sufficient condition given
in Theorem 3.2, will lead to the notion of second order regularity (studied in the next
section) under which they become no gap second order optimality conditions.

The following result improves [12, Theorem 4.2], where a similar theorem is stated
based on the inner second order tangent set. We should mention here an alternative
approach suggested by Penot [27] based on the notion of second order compound
tangent set, which is a variant of the concept of outer second order tangent set specif-
ically tailored to derive no gap optimality conditions. In this sense we observe that
the following result is contained in [27, Corollary 3.6]. However, we will show that
under second order regularity, a condition covering many interesting situations, there
is no need to resort to the more complicated (and less explicit) concept of compound
tangent set, and therefore the following result will suffice for our purpose of stating
no gap second order optimality conditions. For the sake of completeness we provide
a direct proof which follows the lines of [12, Theorem 4.2].

Theorem 3.1. Let x0 be a locally optimal solution of the problem (P). Suppose
that Robinson’s constraint qualification (2.11) holds. Then for all h ∈ C(x0) and any
convex set T (h) ⊂ O2

K(G(x0), DG(x0)h),

sup
λ∈Λ(x0)

{
D2
xxL(x0, λ)(h, h)− σ(λ, T (h))

} ≥ 0.(3.5)

Proof. Note that if T (h) = ∅, then σ(·, T (h)) = −∞ and (3.5) trivially holds.
Therefore we assume that the set T (h), and hence the set O2

K(G(x0), DG(x0)h), is
nonempty.

We claim that the optimal value of the optimization problem

Minw∈X Df(x0)w +D2f(x0)(h, h)
subject to DG(x0)w +D2G(x0)(h, h) ∈ O2

K(G(x0), DG(x0)h)
(3.6)

is nonnegative. Indeed if w is feasible for this problem, then using Proposition 2.3 we
obtain w ∈ O2

Φ(x0, h), where Φ := G−1(K). Therefore we can find a sequence tk ↓ 0
such that xk := x0 + tkh+ 1

2
t2kw+ o(t2k) ∈ Φ. The sequence xk is feasible for (P) and

converges to the local minimum x0, consequently f(xk) ≥ f(x0) for all k sufficiently
large. By using the second order Taylor expansion we have

f(x0) ≤ f(xk) = f(x0) + tkDf(x0)h+ 1
2
t2k[Df(x0)w +D2f(x0)(h, h)] + o(t2k),

and since Df(x0)h = 0 for any h ∈ C(x0), we obtain

Df(x0)w +D2f(x0)(h, h) ≥ 0,

establishing our claim.
Consider now the following set T (h) := cl{T (h) + TK(G(x0))}. This set is the

topological closure of the sum of two convex sets and hence is convex. Moreover, it
follows from the first inclusion of (2.10), and the fact that second order outer tangent
sets are closed, that T (h) ⊂ O2

K(G(x0), DG(x0)h). Clearly if we replace the outer
second order tangent set in (3.6) by its subset T (h), the optimal value of the obtained
optimization problem will be greater than or equal to the optimal value of (3.6), and
hence the optimal value of the problem

Minw∈X Df(x0)w +D2f(x0)(h, h)
subject to DG(x0)w +D2G(x0)(h, h) ∈ T (h)

(3.7)

is nonnegative as well.

SECOND ORDER OPTIMALITY CONDITIONS 475

The optimization problem (3.7) is convex and its (parametric) dual (cf. [32], [5])
is

Max
λ∈Λ(x0)

{
D2
xxL(x0, λ)(h, h)− σ(λ, T (h))

}
.(3.8)

Indeed, the Lagrangian of (3.7) is

L(w, λ) = DxL(x0, λ)w +D2
xxL(x0, λ)(h, h).

Since for any z ∈ T (h) we have that z+TK(G(x0)) ⊂ T (h), it follows that σ(λ, T (h)) =
+∞ for any λ 6∈ [TK(G(x0))]− = NK(G(x0)). Therefore the effective domain of the
parametric dual of (3.7) is contained in Λ(x0). The duality then follows. Moreover,
Robinson’s constraint qualification (2.11) implies that

DG(x0)X − TK(G(x0)) = Y.

Since for any z ∈ T (h) it follows that z + TK(G(x0)) ⊂ T (h), we have that

z +DG(x0)X − T (h) = Y.

Therefore (3.7) has a feasible solution and Robinson’s constraint qualification for the
problem (3.7) holds as well. Consequently there is no duality gap between (3.7) and
its dual (3.8) (cf. [5]).

We obtain that the optimal value of (3.8) is nonnegative. Since T (h) ⊂ T (h),
we have that σ(λ, T (h)) ≤ σ(λ, T (h)) and hence (3.5) follows, which completes the
proof.

Remarks. (i) As we mentioned earlier, the outer second order tangent set

O2
K(G(x0), DG(x0)h)

can be nonconvex. However, when it is convex, one can use this set in the second
order condition (3.5), providing a sharper necessary condition. In any case one can
take T (h) to be the inner second order tangent set T 2

K(G(x0), DG(x0)h). For such
a choice of T (h), (3.5) coincides with the second order necessary condition obtained
in [12, Theorem 4.2]. In general, however, the set T (h) could be taken larger than
T 2
K(G(x0), DG(x0)d) and therefore Theorem 3.1 is stronger.

(ii) Note that in the second order necessary condition the optimal value of (3.6)
is nonnegative, irrespective of whether O2

K(G(x0), DG(x0)h) is convex.
(iii) If

0 ∈ O2
K(G(x0), DG(x0)h)

for every h ∈ C(x0), in particular if the set K is polyhedral, then

O2
K(G(x0), DG(x0)h) = TTK(G(x0))(DG(x0)h)

and σ(λ, T (h)) = 0 for every λ ∈ Λ(x0) and T (h) := O2
K(G(x0), DG(x0)h). Therefore

in that case the “sigma term” in (3.5) vanishes. This happens in the case of nonlinear
programming.

(iv) Let Σ be the set of sequences {tn} of positive numbers converging to zero.
With any s = {tn} ∈ Σ, y ∈ K, and d ∈ TK(y) we can associate the following second
order tangent set:

T 2,s
K (y, d) :=

{
w : dist(y + tnd+ 1

2
t2nw,K) = o(t2n)

}
.

476 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

For any s ∈ Σ the set T 2,s
K (y, d) is convex and closed. It is clear that the intersection

of T 2,s
K (y, d) over all s ∈ Σ is T 2

K(y, d) and the union of T 2,s
K (y, d) over all s ∈ Σ is

O2
K(y, d). A possible choice for T (h) is then T 2,s

K (G(x0), DG(x0)h) for any s ∈ Σ.
(v) We can formulate the second order necessary condition (3.5) in the form

inf
T (h)∈O(h)

sup
λ∈Λ(x0)

{
D2
xxL(x0, λ)(h, h)− σ(λ, T (h))

} ≥ 0,(3.9)

where O(h) denotes the set of all convex subsets of O2
K(G(x0), DG(x0)h). In particu-

lar, if we take all singleton subsets of O2
K(G(x0), DG(x0)h) (i.e., consisting from one

point), then condition (3.9) implies the following necessary condition:

inf
y∈O2

K
(G(x0),DG(x0)h)

sup
λ∈Λ(x0)

{
D2
xxL(x0, λ)(h, h)− 〈λ, y〉} ≥ 0.(3.10)

If Λ(x0) is a singleton, say, Λ(x0) = {λ0}, then condition (3.10) becomes

D2
xxL(x0, λ0)(h, h)− σ(λ0, O

2
K(G(x0), DG(x0)h)) ≥ 0,(3.11)

irrespective of whether O2
K(G(x0), DG(x0)h) is convex.

Definition 1. Let S ⊂ Φ be a set of feasible points of the problem (P) such that
f(x) = f0 for all x ∈ S. It is said that the second order growth condition holds at S
if there exist a constant c > 0 and a neighborhood N of S such that

f(x) ≥ f0 + c [dist(x, S)]2 for all x ∈ Φ ∩N.(3.12)

In particular, if S = {x0} is a singleton, the second order growth condition (3.12)
takes the form

f(x) ≥ f(x0) + c‖x− x0‖2 for all x ∈ Φ ∩N,(3.13)

which clearly implies that x0 is a locally optimal solution of (P). Moreover, in this
case (assuming always that Robinson’s condition (2.11) holds) it follows easily that
for any h ∈ C(x0) the optimal value of (3.6) is greater than or equal to 2c‖h‖2, so that
the second order necessary condition (3.5) can be strengthened to strict inequality for
all nonzero h ∈ C(x0).

The second order necessary condition (3.5) is based on upper estimates of the
objective function along feasible parabolic curves of the form (3.4). In order to derive
lower estimates, and hence to obtain second order sufficient conditions, we need an
additional concept.

Definition 2. Let y ∈ K, d ∈ TK(y), and consider a continuous linear mapping
M : X → Y . We say that a closed set AK,M (y, d) ⊂ Y is an upper second order
approximation set for K at the point y in the direction d and with respect to M ,
if for any sequence yk ∈ K of the form yk := y + tkd + 1

2
t2krk, where tk ↓ 0 and

rk = Mwk + ak with {ak} being a convergent sequence in Y and {wk} ⊂ X satisfying
tkwk → 0, the following condition holds:

lim
k→∞

dist (rk,AK,M (y, d)) = 0.(3.14)

If the above holds for any X and M , i.e., (3.14) is satisfied for any sequence

y + tkd+ 1
2
t2krk ∈ K

SECOND ORDER OPTIMALITY CONDITIONS 477

such that tkrk → 0, we omit M and say that the set AK(y, d) is an upper second order
approximation set for K at the point y in the direction d.

Let us make the following observations. The above definition is aimed at providing
a sufficiently large set AK(y, d) such that if y+td+ε(t) is a curve in K tangential to d
with ε(t) = o(t), then the second order remainder r(t) := ε(t)/(1

2
t2) tends to AK(y, d)

as t ↓ 0. Note that this remainder r(t) and its sequential analogue rk = r(tk) can
be unbounded. The additional complication of considering the linear mapping M ,
etc. is needed for technical reasons, as is typically encountered in infinite dimensional
functional spaces.

The upper second order approximation set AK(y, d) is not unique. Clearly, if
AK(y, d) ⊂ B, then B is also an upper second order approximation set. Since if
y ∈ K, d ∈ TK(y) and y + d+w ∈ K imply d+w ∈ TK(y) and hence w ∈ TTK(y)(d),
it follows that the set TTK(y)(d) is always an upper second order approximation set.
It is also not difficult to see from the definitions that the outer second order tangent
set O2

K(y, d) is included in any upper second order approximation set AK(y, d).
Theorem 3.2. Let x0 be a feasible point of the problem (P) satisfying the first

order (F. John–type) optimality condition (3.1). Let every h ∈ C(x0) correspond to an
upper second order approximation set A(h) := AK,M (y0, d) for the set K at the point
y0 := G(x0) in the direction d := DG(x0)h and with respect to the linear mapping
M := DG(x0), and suppose that the following second order condition is satisfied:

sup
(α,λ)∈Λ∗(x0)

{
D2
xxL

∗(x0, α, λ)(h, h)− σ (λ,A(h))
}
> 0(3.15)

for all h ∈ C(x0) \ {0}. Then the second order growth condition (3.13) holds at x0,
and hence x0 is a strict locally optimal solution of (P).

Proof. We argue by contradiction. Suppose that the second order growth con-
dition does not hold at x0. Then there exists a sequence of feasible points xk ∈ Φ,
xk 6= x0, converging to x0 and such that

f(xk) ≤ f(x0) + o(t2k),(3.16)

where tk := ‖xk − x0‖. Since the space X is finite dimensional, and hence bounded
closed sets in X are compact, we can assume that hk := (xk − x0)/tk converges to
a vector h ∈ X. Clearly ‖h‖ = 1 and hence h 6= 0. By using first order Taylor
expansions, we obtain from G(xk) ∈ K that DG(x0)h ∈ TK(G(x0)) and from (3.16)
that Df(x0)h ≤ 0. Therefore it follows that h ∈ C(x0).

By a second order Taylor expansion of G(xk) at x0, we have that

G(xk) = y0 + tkd+ 1
2
t2k
(
DG(x0)wk +D2G(x0)(h, h)

)
+ o(t2k),

where y0 := G(x0), d := DG(x0)h, and wk := 2t−2
k (xk − x0 − tkh). Note that

xk − x0 − tkh = o(tk) and hence tkwk → 0. Together with the definition of upper
second order approximation set this implies that

DG(x0)wk +D2G(x0)(h, h) ∈ A(h) + o(1)BY .(3.17)

We also have that

f(xk) = f(x0) + tkDf(x0)h+ 1
2
t2k
(
Df(x0)wk +D2f(x0)(h, h)

)
+ o(t2k)

so that using (3.16) and (3.17) one can find a sequence εk → 0 such that{
2t−1
k Df(x0)h+ (Df(x0)wk +D2f(x0)(h, h)) ≤ εk,

DG(x0)wk +D2G(x0)(h, h) ∈ A(h) + εkBY .
(3.18)

478 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

By (3.15) there exists (α, λ) ∈ Λ∗(x0) such that

D2
xxL

∗(x0, α, λ)(h, h)− σ(λ,A(h)) ≥ κ(3.19)

for some κ > 0. It follows from the second condition in (3.18) that

〈λ,DG(x0)wk +D2G(x0)(h, h)〉 ≤ σ(λ,A(h) + εkBY) = σ(λ,A(h)) + εk‖λ‖.

Also α ≥ 0, and if α 6= 0, then there exists a Lagrange multiplier and hence Df(x0)h =
0. In any case αDf(x0)h = 0, and hence we obtain from (3.18) and (3.19) that

0 ≥ α(2t−1
k Df(x0)h+Df(x0)wk +D2f(x0)(h, h)− εk)

+〈λ,DG(x0)wk +D2G(x0)(h, h)〉 − σ(λ,A(h))− εk‖λ‖
= D2

xxL
∗(x0, α, λ)(h, h)− σ(λ,A(h))− εk(α+ ‖λ‖)

≥ κ− εk(α+ ‖λ‖).

Since εk → 0 we obtain a contradiction which completes the proof.

Let us first observe that finite dimensionality of the space X was used in the
derivation of the above second order sufficient condition, while the corresponding
second order necessary condition did not require that assumption.

If the set Λ(x0) of Lagrange multipliers is nonempty, then the second order suffi-
cient condition (3.15) is equivalent to

sup
λ∈Λ(x0)

{
D2
xxL(x0, λ)(h, h)− σ(λ,A(h))

}
> 0 for all h ∈ C(x0) \ {0}.(3.20)

Also, as was mentioned earlier, the set Z(h) := TTK(G(x0))(DG(x0)h) is always an
upper second order approximation set. Furthermore,

σ(λ,Z(h)) =

{
0 if λ ∈ TK(G(x0)) and 〈λ,DG(x0)h〉 = 0,

+∞ otherwise.

Therefore for that choice of upper second order approximation set, the second order
sufficient condition (3.15) takes the form

sup
(α,λ)∈Λ∗(x0)

D2
xxL

∗(x0, α, λ)(h, h) > 0 for all h ∈ C(x0) \ {0}.(3.21)

We obtain the following result.

Corollary 3.3. Let x0 be a feasible point of the problem (P) satisfying the
first order (F. John–type) optimality condition (3.1). Suppose that the second order
sufficient condition (3.21) is satisfied. Then the second order growth condition (3.13)
holds at x0.

If the set Λ(x0) of Lagrange multipliers is nonempty, then one can replace Λ∗(x0)
in (3.21) by Λ(x0). In that form the second order sufficient condition (3.21) is well
known [3, 19]. Moreover, if the set K is polyhedral, i.e., in the case of nonlinear
programming, as we mentioned earlier the sigma term vanishes in the correspond-
ing second order necessary condition, which leads to a pair of no gap second order
conditions in that case.

SECOND ORDER OPTIMALITY CONDITIONS 479

4. Second order regularity. Comparing the necessary and sufficient conditions
given in (3.5) and (3.20), respectively, one may observe that besides the change from
weak to strict inequality, the set T (h) ⊂ O2

K(G(x0), DG(x0)h) in the former was
replaced by a possibly larger set A(h). Now, conditions (3.15) and (3.20) become
stronger if one can take a smaller second order approximation set A(h). In particular,
if O2

K(G(x0), DG(x0)h) is an upper second order approximation set, condition (3.20)
becomes the strongest possible by taking A(h) = O2

K(G(x0), DG(x0)h). In that case,
provided O2

K(G(x0), DG(x0)h) is convex, the gap between (3.5) and (3.20) reduces to
the difference between weak and strict inequality, and hence we obtain a pair of no
gap second order conditions. This motivates the following definition.

Definition 3. We say that the set K is outer second order regular at a point
y ∈ K in a direction d ∈ TK(y) and with respect to a linear mapping M : X → Y
if for any sequence yn ∈ K of the form yn := y + tnd + 1

2
t2nrn, where tn ↓ 0 and

rn = Mwn+an with {an} being a convergent sequence in Y and {wn} being a sequence
in X satisfying tnwn → 0, the following condition holds:

lim
n→∞dist

(
rn, O

2
K(y, d)

)
= 0.(4.1)

If K is outer second order regular at y ∈ K in every direction d ∈ TK(y) and with
respect to any X and M , we say that K is outer second order regular at y. If, in
addition, O2

K(y, d) = T 2
K(y, d) for every d ∈ TK(y), we say that K is second order

regular at y.
Outer second order regularity means that the outer second order tangent set

O2
K(y, d) provides an upper second order approximation for K at y in direction d. If

in addition the outer and inner second order tangent sets coincide, we simply talk
about second order regularity. Second order regularity means that if y+ td+ ε(t) is a
curve in K tangential to d with ε(t) = o(t), then r(t) := ε(t)/(1

2
t2) is arbitrarily close

to T 2
K(y, d) as t ↓ 0. Loosely speaking, second order regular sets are the appropriate

ones for second order optimality conditions in the sense that there is no gap between
the corresponding second order necessary and sufficient conditions; see the following
theorem.

Theorem 4.1. Let x0 be a feasible point of (P) satisfying the first order necessary
condition (3.2). Suppose that Robinson’s constraint qualification (2.11) holds, that
for every h ∈ C(x0) the set K is outer second order regular at G(x0) in direction
DG(x0)h and with respect to M := DG(x0), and that the outer second order tangent
set O2

K(G(x0), DG(x0)h) is convex. Then the second order growth condition (3.13)
holds if and only if the second order sufficient condition (3.20) is satisfied with A(h) =
O2
K(G(x0), DG(x0)h).

Proof. The implication (3.20)⇒(3.13) follows from Theorem 3.2, while the con-
verse is a consequence of Theorem 3.1 and the discussion following the statement of
equation (3.13).

Recall that the inner second order tangent sets are always convex, and hence in
the case O2

K(G(x0), DG(x0)h) = T 2
K(G(x0), DG(x0)h) the assumed convexity of the

outer second order tangent set automatically holds.
At first glance the second order regularity concept, introduced in Definition 3,

may seem to be rather technical. Nevertheless it is possible to verify the second
order regularity in a number of particular situations. It holds, for example, when
0 ∈ T 2

K(y, d) for every d ∈ TK(y), since then T 2
K(y, d) = TTK(y)(d). This occurs, for

instance, when K is a polyhedral set. We discuss in the next subsections several other
situations where the second order regularity holds. In particular, we show that the

480 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

cone Sn+ of n×n positive semidefinite matrices is second order regular (at every point
y ∈ Sn+).

4.1. Sets defined by smooth and convex constraints. Second order regular-
ity is preserved when taking inverse images through twice continuously differentiable
mappings satisfying Robinson’s constraint qualification.

Proposition 4.2. Let K be a closed convex subset of Y and G : X → Y be a
twice continuously differentiable mapping. If Robinson’s constraint qualification (2.11)
holds and K is (outer) second order regular at G(x0) in the direction DG(x0)h with
respect to the linear mapping M := DG(x0), then the set G−1(K) is (outer) second
order regular at x0 in the direction h.

Proof. Let xk := x0 + tkh + 1
2
t2krk ∈ G−1(K) be such that tk ↓ 0 and tkrk → 0.

By Proposition 2.3 and the Robinson–Ursescu stability theorem, we obtain for some
constant L and all k large enough

dist
(
rk, O

2
G−1(K)(x0, h)

)
= dist

(
rk, DG(x0)−1

[
O2
K(G(x0), DG(x0)h)−D2G(x0)(h, h)

])
≤ Ldist

(
DG(x0)rk +D2G(x0)(h, h), O2

K(G(x0), DG(x0)h)
)
.

Now, a second order expansion of G(xk) gives

G(xk) = G(x0) + tkDG(x0)h+ 1
2
t2k
(
DG(x0)rk +D2G(x0)(h, h)

)
+ o(t2k).

Since G(xk) ∈ K, the assumed (outer) second order regularity of K implies

dist
(
DG(x0)rk +D2G(x0)(h, h), O2

K(G(x0), DG(x0)h)
)→ 0

and therefore dist(rk, O
2
G−1(K)(x0, h))→ 0, as had to be proved.

Consider the set

F := {x ∈ X : gi(x) ≤ 0, i = 1, . . . , p; hj(x) = 0, j = 1, . . . , q},

defined by a finite number of constraints. Suppose that the functions gi and hj are
twice continuously differentiable. As a straightforward consequence of Proposition 4.2
and the fact that polyhedral sets are second order regular, we obtain that the set F
is second order regular at every point x0 ∈ F satisfying the Mangasarian–Fromovitz
constraint qualification. Another direct consequence of Proposition 4.2 is the following
result.

Corollary 4.3. Let K1, . . . ,Kn be closed convex sets which are second order
regular at a point y0 ∈ K1 ∩ · · · ∩ Kn in a direction d ∈ TK1

(y0) ∩ · · · ∩ TKn(y0).
If there exists a point in Kn which belongs to the interior of the remaining Ki’s,
i = 1, . . . , n − 1, then the intersection K1 ∩ · · · ∩Kn is second order regular at y0 in
the direction d.

Proof. It suffices to apply Proposition 4.2 with G : Y → Y n given by G(y) =
(y, . . . , y) and K = K1 × · · · ×Kn. It is easily seen that K is second order regular at
(y0, . . . , y0) in the direction (d, . . . , d).

In order to check Robinson’s constraint qualification we take ȳ ∈ Y and ε > 0
such that ȳ ∈ Kn and ȳ + 2εBY ⊂ K1 ∩ · · · ∩ Kn−1. If u1, . . . , un ∈ εBY , letting
y = ȳ + un we have ki := y − ui ∈ ȳ + 2εBY ⊂ Ki for all i = 1, . . . , n− 1. Therefore,
if we set kn := ȳ ∈ Kn we have ui = y − ki ∈ y − Ki for all i = 1, . . . , n and then
[εBY]n ⊂ G(Y)−K, which proves Robinson’s constraint qualification.

SECOND ORDER OPTIMALITY CONDITIONS 481

Returning to the case of sets defined by inequality constraints, we observe that
when the constraint functions are convex one may relax the differentiability assump-
tions.

Proposition 4.4. Let K := {y : h(y) ≤ 0}, where h(·) is a convex function which
is continuous at a point y0. Suppose that the Slater condition holds and that h(y0) = 0.
Then K is outer second-order regular at y0 if and only if, for any d ∈ TK(y0) satisfying
h′(y0, d) = 0 and any path y(t) ∈ K of the form y(t) = y0 + td+ 1

2
t2r(t), t ≥ 0, with

tr(t)→ 0 as t ↓ 0, the inequality

lim sup
t↓0

h′′−(y0; d, r(t)) ≤ 0(4.2)

holds.
Proof. Since h is convex and continuous at y0, it is directionally differentiable at

y0. Consider a direction d ∈ TK(y0) and a sequence yk := y0 + tkd+ 1
2
t2krk ∈ K with

tk ↓ 0 and tkrk → 0. It follows from d ∈ TK(y0) that h′(y0, d) ≤ 0. Since h′(y0, d) < 0
implies that O2

K(y0, d) = Y , we only need to consider the case h′(y0, d) = 0.
Because of the Slater condition, there is a point ȳ ∈ Y such that h(ȳ) < 0. By

convexity of h(·) we then have that h(y0 + t(ȳ − y0)) < 0 for any t ∈ (0, 1) and hence
a point ȳ where h(ȳ) < 0 can be chosen arbitrarily close to y0. Therefore we can
assume that h(·) is continuous at ȳ.

Assume that (4.2) holds. For α > 0 let wα := rk + α(ȳ − y0). By convexity we
get for all t > 0 small enough

h(y0 + td+ 1
2
t2wα) ≤ (1− 1

2
αt2)h(y0 + td+ 1

2
t2rk) + 1

2
αt2h(ȳ + td+ 1

2
t2rk).

Since h(y0) = 0 and h′(y0, d) = 0, dividing by 1
2
t2 and letting t→ 0+ we deduce

h′′−(y0; d,wα) ≤ h′′−(y0; d, rk) + αh(ȳ),

and by virtue of (4.2) we deduce h′′−(y0; d, rk + α(ȳ − y0)) < 0 for all k sufficiently
large. Proposition 2.1 implies that rk + α(ȳ − y0) ∈ O2

K(y0, d) so that

lim sup
k→∞

dist(rk, O
2
K(y0, d)) ≤ α‖ȳ − y0‖.

Since α can be made arbitrarily small, we obtain that K is second order regular.
Conversely, assume that K is second order regular. Let tk ↓ 0 be a sequence

through which the upper limit (4.2) is attained as a limit, and let rk := r(tk). Set
εk := dist(rk, O

2
K(y0, d)) + 1/k, so that εk → 0, and choose r̃k ∈ O2

K(y0, d) such
that ‖rk − r̃k‖ < εk. Since εk tends to 0, with no loss of generality we may assume
that for all k we have ȳ + 2εkα

−1BY ⊂ K. Choose a sequence τ` ↓ 0 such that
y0 + τ`d+ 1

2
τ2
` r̃k + o(τ2

l) ∈ K and therefore y0 + τ`d+ 1
2
τ2
` rk ∈ K + 1

2
εkτ

2
`BY . Then,

for all α > 0 and wα := rk + α(ȳ − y0) we get

y0 + τ`d+ 1
2
τ2
` wα = (1− 1

2
ατ2

`)(y0 + τ`d+ 1
2
τ2
` rk) + 1

2
ατ2

` (ȳ + τ`d+ 1
2
τ2
` rk)

⊂ (1− 1
2
ατ2

`)(K + 1
2
εkτ

2
`BY) + 1

2
ατ2

` (ȳ + τ`d+ 1
2
τ2
` rk)

= (1− 1
2
ατ2

`)K + 1
2
ατ2

`

[
ȳ + τ`d+ 1

2
τ2
` rk + (1− 1

2
ατ2

`)
εk
α
BY

]
.

Since ȳ + 2εkα
−1BY ⊂ K we deduce y0 + τ`d + 1

2
τ2
` wα ∈ K. By Proposition 2.1,

h′′−(y0, d, wα) ≤ 0. Since h is continuous at y0, it is locally Lipschitz continuous.

482 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

Therefore, h′′−(y0, d, ·) is globally Lipschitz continuous with the same constant, say, L,
and h′′−(y0, d, rk) ≤ L‖wα − rk‖ = αL‖ȳ − y0‖, from which

lim sup
t↓0

h′′−(y0, d, r(t)) = lim
k
h′′−(y0, d, rk) ≤ αL‖ȳ − y0‖.

Since α may be taken arbitrarily small, the conclusion follows.
Let us derive now some criteria which allow us to check condition (4.2), assuming

that h is convex and continuous at y0. We first observe that this condition is satisfied
whenever

h(y0 + td+ 1
2
t2r(t)) ≥ h(y0) + th′(y0, d) + 1

2
t2h′′−(y0; d, r(t)) + o(t2)(4.3)

for all r(t) such that tr(t) → 0 as t ↓ 0. This holds, for instance, when h is twice
continuously differentiable.

A nondifferentiable (at zero) function satisfying (4.3) is the Euclidean norm
h(y) := ‖y‖. Many problems of robust optimization boil down to the minimization of
a sum of Euclidean norms subject to linear constraints (see, e.g., [4]), say,

∑m
i=1 ‖Aix‖,

where Ai are qi×n matrices. Let us consider for simplicity the unconstrained problem.
Introducing slack variables zi, the problem reduces to the minimization of

∑m
i=1 zi,

subject to the constraints

‖Aix‖ − zi ≤ 0, 1 ≤ i ≤ m.
Set h(y) = ‖y‖. Note that this is a twice continuously differentiable function at
y0 6= 0. If y0 = 0, we obtain h′(0, d) = ‖d‖. If d = 0, then h′′(0; d,w) = ‖w‖,
otherwise h′′(0; d,w) = 〈d,w〉/‖d‖. In both cases (4.3) is easily checked. Therefore
hi(x, z) = ‖Aix‖ − zi also satisfies (4.3) and the Slater condition is trivially satisfied.

Note also that if the functions {hi : i = 1, ...,m} are convex and second order
directionally differentiable and satisfy (4.2), then h :=

∑n
i=1 hi satisfies (4.2) as well.

On the other hand it follows from Corollary 4.3 that the set

K = {y ∈ Y : hi(y) ≤ 0, i = 1, ...,m}
is also second order regular, provided the Slater condition holds for the function
h(y) := max{hi(y) : 1 ≤ i ≤ m}. This result can also be derived directly, as follows.
Let y0 be such that h(y0) = 0. It is not difficult to show that h(·) is second order
directionally differentiable with

h′(y0, d) = max{h′i(y0, d) : i ∈ I1(y0)},
h′′(y0; d,w) = max{h′′i (y0; d,w) : i ∈ I2(y0, d)},

where I1(y) := {i : hi(y) = h(y)} and I2(y) := {i ∈ I1(y) : h′i(y, d) = h′(y, d)}. Since
hi(·) satisfy (4.2), we have that for y(t) := y0 + td + 1

2
t2r(t), such that h(y(t)) ≤ 0,

tr(t)→ 0 and for d satisfying h′(y0, d) = 0,

h′′(y0; d, r(t)) = max
i∈I2(y0,d)

h′′i (y0; d, r(t)) ≤ o(t2).

It then follows, assuming the Slater condition holds (i.e., there exists ȳ such that
hi(ȳ) < 0, i = 1, ...,m), that the set K is second order regular with

T 2
K(y0, d) = O2

K(y0, d) = {w ∈ Y : h′′i (y0, d, w) ≤ 0, i ∈ I2(y0, d)} .

SECOND ORDER OPTIMALITY CONDITIONS 483

4.2. Semi-infinite and semidefinite programming. Let us consider now the
case of semi-infinite programming with Y := C(Ω) and K := C+(Ω) and with Ω being
a compact metric space. For a function y ∈ C+(Ω) its contact set is defined as

∆(y) := {ω ∈ Ω : y(ω) = 0}.(4.4)

It is well known that d ∈ TK(y) if and only if d(ω) ≥ 0 for all ω ∈ ∆(y) (e.g., [39]).
Denote

∆∗(y, d) := {ω ∈ ∆(y) : d(ω) = 0}.(4.5)

Note that if the set ∆∗(y, d) is empty, then d belongs to the interior of TK(y), and
hence in that case T 2

K(y, d) = Y .
Suppose that Ω is a smooth compact manifold of finite dimension n. Consider a

twice continuously differentiable function y ∈ K with a nonempty contact set and a
function d ∈ TK(y). A general formula for T 2

K(y, d) is given in [14]. We derive now
a particular case of that formula by direct arguments in the case where ∆(y) is a
smooth submanifold of Ω. Moreover, we show that in such a case the second order
regularity condition holds. These derivations are similar to the analyses in [38] and
[5, Part III].

Since Ω is a smooth manifold, by using a local system of coordinates we identify an
open neighborhood of a point ω̄ ∈ Ω with an open subset of Rn. Such an identification
will not effect our local analysis and will simplify the presentation. Moreover, since
∆(y) is a smooth submanifold of Ω, for each ω̄ ∈ ∆(y) we can choose such a local
system of coordinates that ∆(y) is locally represented by a linear subspace of Rn in
that system of coordinates. We denote by T∆(y)(ω) ⊂ Rn the tangent space to ∆(y)
at ω ∈ ∆(y) and by N(ω) its normal complement in Rn, i.e., N(ω) is a linear space
orthogonal to T∆(y)(ω) and such that T∆(y)(ω)+N(ω) = Rn. Due to the above choice
of local coordinates, these sets T∆(y)(ω) and N(ω) are constant in the chosen system
of local coordinates.

For a point ω ∈ Ω we define its projection onto ∆(y) to be a point ω̂ ∈ ∆(y) closest
to ω with respect to the Euclidean distance in the chosen system of coordinates of Ω.
This operation is well defined in the vicinity of ω̄ and of course depends on the choice
of a local system of coordinates. Let V (ω) be a matrix whose columns form a basis
of the linear space N(ω). Consider the following second order growth condition: for
any ω̄ ∈ ∆(y), there exists a local system of coordinates of the type described above
such that

y(ω) ≥ cdist(ω,∆(y))2 for all ω ∈ Ω ∩N(4.6)

for some c > 0 and a neighborhood N of ω̄. Note that this condition does not depend
on the system of coordinates (although the value of the constant c does of course)
and is satisfied if and only if the matrix

U(ω) := V (ω)T∇2y(ω)V (ω)(4.7)

is positive definite for every ω ∈ ∆(y) (see [38]).
Theorem 4.5. Let y ∈ K := C+(Ω) be a twice continuously differentiable func-

tion, and let d ∈ TK(y) be continuously differentiable. Suppose that the set Ω is a
smooth compact manifold, that ∆(y) is a smooth submanifold of Ω, and that the second
order growth condition (4.6) holds for some c > 0 and with N being a neighborhood of

484 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

∆(y). Then the set K is second order directionally differentiable at y in the direction
d with

T 2
K(y, d) =

{
h ∈ C(Ω) : h(ω) ≥ A(ω)T [U(ω)]−1A(ω) for all ω ∈ ∆∗(y, d)

}
,(4.8)

where A(ω) := V (ω)T∇d(ω) and U(ω) is given in (4.7).
Moreover, let M(x) :=

∑m
i=1 xiψi(·) be a linear mapping from Rm into C(Ω) such

that the functions ψi(·), i = 1, ...,m, are Lipschitz continuous on Ω. Then the set K
is second order regular at y in the direction d and with respect to M .

Proof. We already observed that when ∆∗(y, d) is empty we have O2
K(y, d) =

T 2
K(y, d) = Y and the result holds trivially, so we may also assume that ∆∗(y, d) 6= ∅.

Consider a path ȳt(·) := y(·)+ td(·)+ 1
2
t2h(·) and the corresponding min-function

ν(t) := minω∈Ω ȳt(ω). Since dist(ȳt,K) = max{0,−ν(t)}, we have h ∈ T 2
K(y, d) if and

only if lim inft↓0 ν(t)/t2 ≥ 0 and h ∈ O2
K(y, d) if and only if lim supt↓0 ν(t)/t2 ≥ 0.

We shall prove that in fact the limit limt↓0 ν(t)/t2 exists so that both second order
tangent sets coincide.

Let ω̄t be a minimizer of ȳt(ω) over Ω, and let the sequence tn → 0+ be such
that t−2ν(t) attains its lower limit. Let us denote ω̄n := ω̄tn . Extracting if necessary
a subsequence, we can assume that ω̄n → ω̄0 ∈ Ω. Since ∆∗(y, d) 6= ∅, we have
ν(tn) ≤ O(t2n), from which it follows that ω̄0 ∈ ∆∗(y, d) (see [38]).

For n large enough, ω̄n can be described in terms of a local system of coordinates
containing ω̄0 in which the submanifold ∆(y) coincides with an affine space. To avoid
heavy notation we will identify elements of Ω close to ω̄0 with the corresponding
vector of coordinates. Denote by ω̂n the projection of ωn onto ∆(y) (in the given
local system). Then δn := t−1

n (ω̄n − ω̂n) is orthogonal to ∆(y) at the point ω̂n, i.e.,
δn ∈ N(ω̂n). Because of the second order growth condition (4.6) we get

‖ω̄n − ω̂n‖ = dist(ω̄n,∆(y)) = O(tn).(4.9)

By expanding ȳn(ω̄n) at ω̂n, and since y(ω̂n) = 0 and ∇y(ω̂n) = 0, we obtain

ν(tn) = ȳn(ω̄n) = ȳn(ω̂n) + 1
2
t2n∇2y(ω̂n)(δn, δn) + t2n∇d(ω̂n)δn + o(t2n).

Since y(ω̂n) = 0 and d(ω̂n) ≥ 0, it follows that

ν(tn) ≥ 1
2
t2nh(ω̂n) + 1

2
t2n∇2y(ω̂n)(δn, δn) + t2n∇d(ω̂n)δn + o(t2n).(4.10)

Since ω̂n → ω̂0, the continuity of the mapping

ω 7→ min
δ∈N(ω)

{h(ω) +∇2y(ω)(δ, δ) + 2∇d(ω)δ}

leads to

lim inf
t↓0

ν(t)

t2/2
≥ min
ω∈∆∗(y,d)

min
δ∈N(ω)

{h(ω) +∇2y(ω)(δ, δ) + 2∇d(ω)δ}.(4.11)

On the other hand, for any ω ∈ ∆∗(y, d) and δ ∈ N(ω) we have that ν(t) ≤
ȳt(ω + tδ). Again using local coordinates, by expanding the right-hand side of this
inequality, and since y(ω) = 0, ∇y(ω) = 0, d(ω) = 0, and h(ω+ tδ) = h(ω) + o(1), we
obtain that

ν(t) ≤ 1
2
t2{h(ω) +∇2y(ω)(δ, δ) + 2∇d(ω)δ}+ o(t2),(4.12)

SECOND ORDER OPTIMALITY CONDITIONS 485

which combined with (4.11) leads to

lim
t↓0

ν(t)

t2/2
= min
ω∈∆∗(y,d)

min
δ∈N(ω)

{h(ω) +∇2y(ω)(δ, δ) + 2∇d(ω)δ}.(4.13)

It follows that O2
K(y, d) = T 2

K(y, d) and h ∈ T 2
K(y, d) if and only if for every ω ∈

∆∗(y, d),

h(ω) + min
δ∈N(ω)

{∇2y(ω)(δ, δ) + 2∇d(ω)δ} ≥ 0.(4.14)

By calculating the minimum in (4.14) we obtain (4.8). We point out that, because
of the second order growth condition (4.6), the minimum on δ ∈ N(ω) is attained for
‖δ‖ ≤ ‖∇d‖∞/c.

The proof of second order regularity involves similar arguments. Let Ψ(ω) :=
(ψ1(ω), ..., ψm(ω))T , and consider tk ↓ 0 and yk(·) := y(·) + tkd(·) + 1

2
t2khk(·) ∈ K,

where hk ∈ C(Ω) are such that hk(·) = xTk Ψ(·) + ak(·) with C(Ω) 3 ak → a and
tkxk → 0. Consider also νk := minω∈Ω yk(ω). Similarly to (4.12) we have that, given
a system of local coordinates, for every ω ∈ ∆∗(y, d) and δ ∈ N(ω),

νk ≤ 1
2
t2k
[
hk(ω + tkδ) +∇2y(ω)(δ, δ) + 2∇d(ω)δ

]
+ o(t2k).(4.15)

Moreover, since tkxk → 0 and Ψ(·) is Lipschitz continuous on Ω we have that

xTk Ψ(ω + tkδ) = xTk Ψ(ω) + o(1).

Also ak(ω + tkδ) = ak(ω) + o(1) and hence

t2khk(ω + tkδ) = t2khk(ω) + o(t2k).(4.16)

Since yk ∈ K and hence νk ≥ 0, we then obtain from (4.15) and (4.16) that

hk(ω) +∇2y(ω)(δ, δ) + 2∇d(ω)δ + o(1) ≥ 0,(4.17)

where (due to compactness of Ω) the term o(1) can be taken uniformly in ω ∈ ∆∗(y, d)
and ‖δ‖ ≤ ‖∇d‖∞/c. By using formula (4.14), we obtain from (4.17) that hk +o(1) ∈
O2
K(y, d), which completes the proof.

It follows from the above theorem that for semi-infinite programs with constraints
of the form g(x, ω) ≥ 0, ω ∈ Ω, there is no gap between the corresponding second
order necessary and sufficient conditions under the following conditions:

(i) g(·, ω) is twice differentiable with ∇2
xxg(x, ω) being continuous on X × Ω,

(ii) Robinson’s constraint qualification holds,
(iii) g(x0, ·) satisfies the second order growth condition (4.6),
(iv) Ω is a smooth compact manifold and ∆(g(x0, ·)) is a smooth submanifold of

Ω,
(v) g(x0, ·) is twice continuously differentiable and the functions ψi(·) = ∂g

∂xi
(x0, ·)

are continuously differentiable.
Note that since Ω is compact, the last assumption (v) implies that the functions

ψi(·) are Lipschitz continuous on Ω. Also in the case of semi-infinite programming,
Robinson’s constraint qualification (postulated in the above condition (ii)) is equiv-
alent to the extended Mangasarian–Fromovitz condition, that is, there exists h ∈ X
such that hT∇xg(x0, ω) > 0 for all ω ∈ ∆0 := ∆(g(x0, ·)) (e.g., [39]). We also observe
that when the function g(·, ω) is concave for every fixed ω ∈ Ω, the feasible set

Φ := {x ∈ X : g(x, ω) ≥ 0 for all ω ∈ Ω}

486 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

is convex and Robinson’s constraint qualification is equivalent to the Slater condition:
there exists x̄ ∈ X such that g(x̄, ω) > 0 for all ω ∈ Ω.

Combining Theorem 4.5 with Propositions 2.3 and 4.2 we deduce that, under
assumptions (i)–(v) above, the set Φ is second order regular at x0 and also second
order directionally differentiable with

T 2
Φ(x0, h) = {u ∈ X : ∇xg(x0, ω)u+ γ(h, ω) ≥ 0 for all ω ∈ ∆1(h)} ,(4.18)

where

γ(h, ω) := min
δ∈N(ω)

∇2g(x0, ω)((h, δ), (h, δ)),

∆0 := ∆(g(x0, ·)), and ∆1(h) := {ω ∈ ∆0 : ∇xg(x0, ω)h = 0}. This formula may also
be derived from Proposition 2.1 by using the characterization of second order direc-
tional derivatives of the min-function ϕ(x) := minω∈Ω g(x, ω) given in [38, Theorem
4.1].

As an application, consider the example of semidefinite programming where

K = Sn+ := {Z ∈ Sn : g(Z, ω) ≥ 0 for all ω ∈ Ω}
with g(Z, ω) := ωTZω and Ω := {ω ∈ Rn : ‖ω‖ = 1}. In this example the set Ω
is a sphere, hence a smooth compact manifold. For a positive semidefinite matrix
Z the corresponding contact set ∆(Z) := {ω ∈ Ω : ωTZω = 0} is given by {ω ∈
Ω : Zω = 0}, which is a smooth submanifold of Ω. It is also not difficult to show
that the corresponding second order growth condition holds (cf. [38]) and that the
Lipschitz condition on functions ψi is automatically satisfied. Combining Theorem
4.5 and Proposition 2.3, we obtain the following result.

Corollary 4.6. For any n = 1, 2, ..., the cone Sn+ of symmetric positive semidef-
inite n×n matrices is second order directionally differentiable and second order regular
at every point Z ∈ Sn+.

An expression for the second order tangent sets and the corresponding second
order optimality conditions for semidefinite optimization problems are given explicitly
in [41].

5. Composite optimization. As we mentioned in the introduction, an alter-
native approach to derivation of second order optimality conditions is to consider
composite functions as in the problem (1.2) and that such problems can be investi-
gated in the form (1.3). In this transformation the corresponding convex function is
replaced by its epigraph. In this section we translate results obtained in the previous
sections into the framework of composite optimization and compare them with results
discussed in some recent publications. We assume throughout this section that the
function g(·) in (1.2) is convex, proper, and lower semicontinuous and the mapping
F : X → Y is continuously differentiable.

Let K := epi(g) and G(x, c) := (F (x), c). Consider a point (x0, c0) ∈ X ×R such
that F (x0) ∈ dom(g) and c0 = g(F (x0)), where dom(g) := {y ∈ Y : g(y) < +∞} is
the domain of g. Note that DG(x0, c0)(h, c) = (DF (x0)h, c). Therefore Robinson’s
constraint qualification (2.11) at (x0, c0) becomes

0 ∈ int{F (x0) +DF (x0)X − dom(g)}.(5.1)

Note that if g(·) is continuous at the point y0 := F (x0), then dom(g) contains a neigh-
borhood of y0, and hence in that case constraint qualification (5.1) holds. Robinson’s

SECOND ORDER OPTIMALITY CONDITIONS 487

constraint qualification (5.1) can be also written in the following equivalent form [45]:

Y = DF (x0)X −Rdom(g)(F (x0)),(5.2)

where RA(y) := ∪{t(A − y) : t ≥ 0} denotes the radial cone to the convex set A at
y ∈ A. By taking the polar cone of both sides of (5.2), and since the polar of RA(y)
is NA(y), we obtain that (5.2) implies the following condition:

{0} = [DF (x0)X]⊥ ∩Ndom(g)(F (x0)).(5.3)

If the space Y is finite dimensional, then (5.2) and (5.3) are equivalent. Constraint
qualification (5.3) was used in [33] (in the finite dimensional case) and in [11], while
(5.2) has been used, for instance, in [13, 27].

The Lagrangian of (1.3) is

L(x, c, λ, γ) := c+ 〈λ, F (x)〉+ γc.(5.4)

The tangent cone to epi(g) at the point (F (x0), c0) is given by

Tepi(g)(F (x0), c0) = {(d, c) : g↓(F (x0), d) ≤ c}.(5.5)

Consequently the first order necessary condition (3.2) can be written in the form

[DF (x0)]∗λ = 0, γ = −1, 〈λ, d〉 ≤ g↓(F (x0), d) for all d ∈ Y.

Since the epigraph of g↓(F (x0), ·) coincides with the topological closure of the epigraph
of g′(F (x0), ·), we have that the condition 〈λ, d〉 ≤ g↓(F (x0), d) for all d ∈ Y is
equivalent to λ ∈ ∂g(F (x0)), where ∂g(F (x0)) is the subdifferential of g(·) at F (x0).
Therefore the above first order necessary condition can be written in the following
form: there exists λ ∈ Y ∗ such that

[DF (x0)]∗λ = 0, λ ∈ ∂g(F (x0)).(5.6)

We obtain that if x0 is a locally optimal solution of (1.2), then under constraint
qualification (5.1) the set Λ(x0) of Lagrange multipliers satisfying (5.6) is nonempty
and bounded. In the above form (5.6), first order necessary conditions in composite
optimization were used in a number of publications [11, 13, 21, 26, 33].

Definition 4. Let g(y) be a proper lower semicontinuous convex function with
a finite value at a point y0 ∈ Y . We say that g(·) is (outer) second order regular at
y0 if the set K := epi(g) is (outer) second order regular at the point (y0, g(y0)).

The set epi(g) is defined by the constraint h(y, c) ≤ 0, where h(y, c) := g(y)− c.
Since g is proper, and hence its domain dom(g) is nonempty, we can find ȳ and c̄ such
that h(ȳ, c̄) < 0, i.e., the Slater condition always holds in the present situation. Now
Proposition 4.4 implies the following result.

Proposition 5.1. Let g(y) be a proper lower semicontinuous convex function.
If g is finite and continuous at a point y0 ∈ Y , then g is outer second order regular
at y0 if and only if, for every d ∈ Y and every path r : R+ → Y satisfying tr(t) → 0
as t ↓ 0, the inequality

g
(
y0 + td+ 1

2
t2r(t)

) ≥ g(y0) + tg′(y0, d) + 1
2
t2g′′−(y0; d, r(t)) + o(t2)(5.7)

holds.

488 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

Let y ∈ dom(g) be such that g↓(y, d) is finite. Then it follows from Proposition
2.1 that

O2
epi(g)((y, g(y)), (d, g↓(y, d))) =

{
(w, c) : g↓↓− (y; d,w) ≤ c} .(5.8)

Denote T := O2
epi(g)((y, g(y)), (d, g↓(y, d))), and ψ(·) := g↓↓− (y; d, ·). Then for λ ∈

Λ(x0) the corresponding sigma term becomes

σ((λ,−1), T) = supc,w{〈λ,w〉 − c : ψ(w) ≤ c}
= supw{〈λ,w〉 − ψ(w)} = ψ∗(λ),

(5.9)

where ψ∗ denotes the conjugate function of ψ.
Let us also note that the critical cone here can be written in the form

C(x0, c0) = {(h, c) : g↓(F (x0), DF (x0)h) ≤ c, c = 0} ,
provided constraint qualification (5.1) holds. Moreover, by the first order necessary
conditions, g↓(F (x0), DF (x0)h) ≥ 0 for any h ∈ X. Therefore this motivates us to
consider the cone

C(x0) := {h : g↓(F (x0), DF (x0)h) = 0} .(5.10)

Since g↓(F (x0), ·) is lower semicontinuous, this cone is closed. Combining Theorems
3.1 and 3.2 we get the following result.

Theorem 5.2. Suppose that g(y) is a proper lower semicontinuous convex func-
tion, that F : X → Y is a twice continuously differentiable mapping, that F (x0) ∈
dom(g), and that constraint qualification (5.1) holds. Then,

(i) (second order necessary condition) let x0 be a locally optimal solution of (1.2),
then for any h ∈ C(x0) and any convex function φ(·) ≥ g↓↓− (F (x0);DF (x0)h, ·) the
following inequality holds:

sup
λ∈Λ(x0)

{〈λ,D2
xxF (x0)(h, h)〉 − φ∗(λ)} ≥ 0;(5.11)

(ii) (second order sufficient condition) let x0 be a stationary point of (1.2), i.e., it
satisfies the first order necessary condition (5.6), and suppose that g is outer second
order regular at y0 := F (x0) and that

sup
λ∈Λ(x0)

{〈λ,D2
xxF (x0)(h, h)〉 − ψ∗(λ)} > 0 for all h ∈ C(x0) \ {0},(5.12)

where ψ(·) := g↓↓− (F (x0);DF (x0)h, ·). Then for some α > 0 and all x in a neighbor-
hood of x0,

g(F (x)) ≥ g(F (x0)) + α‖x− x0‖2,(5.13)

and hence x0 is a locally optimal solution of (1.2).
It follows that if g↓↓− (F (x0);DF (x0)h, ·) is convex and g is outer second order

regular at F (x0), then there is no gap between second order necessary and sufficient
conditions in the above theorem.

The second order optimality conditions of Theorem 5.2 are essentially equivalent
to those obtained via second order (epi)subderivatives in [34, 13, 36], but they apply
under different conditions.

SECOND ORDER OPTIMALITY CONDITIONS 489

For instance, in [34] (and subsequent work by the author) the function g is as-
sumed to be piecewise linear-quadratic convex, a situation covered by Theorem 5.2
since such functions are second order regular. In order to check this we observe that
any twice continuously differentiable convex function, in particular a quadratic convex
function g(y), is second order regular (see, e.g., Proposition 4.2 or 5.1). Now, if K is
a polyhedral convex subset of Y and since the epigraph of the function g(y) + IK(y)
is given by the intersection of the epigraph of g and K ×R, it follows from Corollary
4.3 that g(y)+ IK(y) is also second order regular. Finally, the epigraph of a piecewise
linear-quadratic convex function is given by the union of a finite number of epigraphs
of functions of the form g(y)+IK(y), with g being quadratic and K being polyhedral.
It can be easily verified that union of a finite number of second order regular sets is
also second order regular, from which the conclusion follows.

The results in [34] were extended in [13] beyond the class of piecewise linear-
quadratic functions. The regularity condition used in that extension does not allow
us to cover the second order regular case as in Theorem 5.2. (Among other things it
requires some kind of local radiality of the domain of g, which is certainly not needed
in our analysis.) However, it is also not clear whether second order regularity is weak
enough to recover the results in [13].

The comparison with the results in [21] is more involved, since the optimality
conditions are expressed in terms of lower second order epiderivatives instead of the
parabolic ones as we express them. Of course, under suitable regularity assumptions
both types of conditions can be shown to be equivalent thanks to the duality relation
existing between both types of derivatives. However, in the general settings of [21]
such duality relation cannot be ensured and the results are not comparable. The
only exception concerns [21, Corollary 4], which is in fact a slight extension of results
in [13], but, as in that paper, the regularity condition on which it is based is not
comparable with second order regularity.

It is also possible to show that the second order regularity of g is a sufficient (but
not necessary) condition for g to be parabolically regular. (See [36] for a discussion
of the concept of parabolic regularity.) A detailed study of the relation between the
concepts of second order regularity and parabolic regularity is given in the forthcoming
book [10].

6. Extensions to nonisolated minima. Little is known about second order
optimality conditions for nonisolated minima. A characterization of the second order
growth condition is given in [8], under a constraint qualification, for smooth convex
optimization problems with finitely many constraints. In [7] some sufficient conditions
are stated for nonlinear programming problems. It is relatively easy to formulate a
second order necessary condition that generalizes a result in [7].

Let S ⊂ G−1(K) be a set of optimal solutions (minimizers) of the problem (P),
and let TS(x) := lim supt↓0 t

−1(S − x) be the contingent cone to S at x. It is easily
checked that if x ∈ S and h ∈ X, then dist(x + th, S) ≥ tdist(h, TS(x)) + o(t)
for t > 0. Suppose that Robinson’s constraint qualification holds at every point
x ∈ S and that S is compact. We have that if the second order growth condition
holds at S, then for any feasible path x(t) of the form (3.4) with x0 ∈ S, f(x(t)) ≥
f(x0) + ct2 dist(h, TS(x)) + o(t2) for some c > 0 and t > 0 small enough. It then
follows by the arguments used in the proof of Theorem 3.1 that a necessary condition
for the second order growth (at S) is that there exists c > 0 such that for all x ∈ S
and h ∈ C(x),

490 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

sup
λ∈Λ(x)

{D2
xxL(x, λ)(h, h)− σ(λ, T (x, h))} ≥ 2ct2 dist(h, TS(x)),(6.1)

where T (x, h) is a convex subset ofO2
K(G(x), DG(x)h). Recall that the set of proximal

normals to S at x ∈ S is defined as

NS(x) := {h ∈ X; dist(x+ th, S) = t‖h‖ for some t > 0},
and set N ε

S(x) := {h ∈ X; dist(h,NS(x)) ≤ ε}. As dist(h, TS(x)) = ‖h‖ whenever
h ∈ NS(x), a consequence of (6.1), and therefore a necessary condition for quadratic
growth (see [7]), is that for ε > 0 small enough

sup
λ∈Λ(x)

{D2
xxL(x, λ)(h, h)− σ(λ, T (x, h))} ≥ c‖h‖2 for all h ∈ C(x) ∩N ε

S(x).(6.2)

Definition 5. We say that the set S satisfies a property of uniform approxima-
tion of critical cones if for every ε > 0 there exists α > 0 such that for all x ∈ S
and h ∈ X satisfying Df(x)h ≤ α‖h‖ and DG(x)h ∈ TK(G(x)) + α‖h‖BY , we have
dist(h,C(x)) ≤ ε‖h‖.

Definition 6. We say that K is uniformly regular with respect to the set S
and the mapping G(x) if for x ∈ S and h ∈ C(x), O2

K(G(x), DG(x)h) is an upper
second order approximation set for K at the point G(x) in the direction DG(x)h
with respect to DG(x) uniformly over S. That is, if xk ∈ S, hk ∈ C(xk), tk ↓ 0,
and rk = DG(xk)zk + ak are sequences such that {ak} is convergent, tkzk → 0 and
G(xk) + tkDG(xk)hk + 1

2
t2krk ∈ K, then

lim
k→∞

dist(rk, O
2
K(G(xk), DG(xk)hk)) = 0.(6.3)

Theorem 6.1. Let S ⊂ G−1(K) satisfy the property of uniform approximation
of critical cones, and suppose that Robinson’s constraint qualification holds at every
point x ∈ S, that S is compact, that K is uniformly regular with respect to the set
S and the mapping G(x), and that O2

K(G(x), DG(x)h) = T 2
K(G(x), DG(x)h) for all

x ∈ S and h ∈ C(x) \ TS(x). Then condition (6.2) is necessary and sufficient for the
second order growth at S.

Proof. We already observed that the condition is necessary. It suffices therefore
to prove that it is sufficient. Let xk be a sequence of feasible points xk ∈ G−1(K)
converging to a point x0 ∈ S and such that (3.16) holds. Let x̂k be a projection
of xk onto S, i.e., x̂k ∈ S and ‖xk − x̂k‖ = dist(xk, S). Set tk := ‖xk − x̂k‖ and

ĥk := (xk− x̂k)/tk. Then ĥk ∈ NS(x̂k). From the property of uniform approximation

of critical cones, there exists hk such that hk ∈ C(x̂k) and ‖hk − ĥk‖ → 0, hence
for all ε > 0, hk ∈ N ε

S(x̂k) for large enough k. Then xk = x̂k + tkhk + o(tk). The
remainder of the proof is similar to the one of Theorem 3.2.

It was proved in [8] that the property of uniform approximation of critical cones is
satisfied for finitely constrained convex optimization problems. Whether this property
holds in more general settings is an open problem.

Acknowledgment. The authors thank the two referees for their useful remarks.

REFERENCES

[1] A. Ben-Tal, M. Teboulle, and J. Zowe, Second order necessary optimality conditions for
semi-infinite programming problems, in Semi-infinite Programming, Lecture Notes in Con-
trol and Inform. Sci. 15, R. Hettich, ed., Springer-Verlag, Berlin, 1979, pp. 17–30.

SECOND ORDER OPTIMALITY CONDITIONS 491

[2] A. Ben-Tal, Second order and related extremality conditions in nonlinear programming, J.
Optim. Theory Appl., 31 (1980), pp. 143–165.

[3] A. Ben-Tal and J. Zowe, A unified theory of first and second order conditions for extremum
problems in topological vector spaces, Math. Programming Study, 19 (1982), pp. 39–76.

[4] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Oper. Res.
Lett., to appear.

[5] J. F. Bonnans and R. Cominetti, Perturbed optimization in Banach spaces I: A general theory
based on a weak directional constraint qualification, II: A theory based on a strong direc-
tional qualification, III: Semi-infinite optimization, SIAM J. Control Optim., 34 (1996),
pp. 1151–1171, 1172–1189, and 1555–1567.

[6] J. F. Bonnans, R. Cominetti, and A. Shapiro, Sensitivity analysis of optimization problems
under second order regular constraints, Math. Oper. Res., to appear.

[7] J. F. Bonnans and A. D. Ioffe, Second-order sufficiency and quadratic growth for non isolated
minima, Math. Oper. Res., 20 (1995), pp. 801–817.

[8] J. F. Bonnans and A. D. Ioffe, Quadratic growth and stability in convex programming prob-
lems with multiple solutions, J. Convex Anal., 2 (1995), pp. 41–57.

[9] J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour,
SIAM Rev., 40 (1998), pp. 228–264.

[10] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-
Verlag, New York, to appear.

[11] J. V. Burke and R. A. Poliquin, Optimality conditions for non-finite valued convex composite
functions, Math. Programming, 57 (1992), pp. 103–120.

[12] R. Cominetti, Metric regularity, tangent sets and second order optimality conditions, Appl.
Math. Optim., 21 (1990), pp. 265–287.

[13] R. Cominetti, On pseudo-differentiability, Trans. Amer. Math. Soc., 324 (1991), pp. 843–865.
[14] R. Cominetti and J-P. Penot, Tangent sets to unilateral convex sets, C. R. Acad. Sci. Sér. I

Math., 321 (1995), pp. 1631–1636.
[15] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained

Minimization Techniques, Wiley, New York, 1968.
[16] R. P. Hettich and H. Th. Jongen, Semi-infinite programming: Conditions of optimality and

applications, in Optimization Techniques, Proc. 8th IFIP Conf. on Optimization Tech-
niques, Würzburg, Part 2, J. Stoer, ed., Springer-Verlag, New York, 1977.

[17] R. Hettich and P. Zencke, Numerische Methoden der Approximation und Semi-infiniten
Optimierung, Teubner, Stuttgart, 1982.

[18] R. Hettich and K. O. Kortanek, Semi-infinite programming: Theory, methods and applica-
tions, SIAM Rev., 35 (1993), pp. 380–429.

[19] A. D. Ioffe, Necessary and sufficient conditions for a local minimum. 3: Second order condi-
tions and augmented duality, SIAM J. Control Optim., 17 (1979), pp. 266–288.

[20] A. D. Ioffe, On some recent developments in the theory of second order optimality conditions,
in Optimization, Lecture Notes in Math. 1405, S. Dolecki, ed., Springer-Verlag, Berlin,
1989, pp. 55–68.

[21] A. D. Ioffe, Variational analysis of a composite function: A formula for the lower second
order epi-derivative, J. Math. Anal. Appl., 160 (1991), pp. 379–405.

[22] A. D. Ioffe, On sensitivity analysis of nonlinear programs in Banach spaces: The approach
via composite unconstrained optimization, SIAM J. Optim., 4 (1994), pp. 1–43.

[23] H. Kawasaki, An envelope-like effect of infinitely many inequality constraints on second order
necessary conditions for minimization problems, Math. Programming, 41 (1988), pp. 73–
96.

[24] S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces, J.
Optim. Theory Appl., 20 (1976), pp. 81–110.

[25] Zs. Pales and V. M. Zeidan, Nonsmooth optimum problems with constraints, SIAM J. Control
Optim., 32 (1994), pp. 1476–1502.

[26] J. P. Penot, Optimality Conditions for Minimax Problems, Semi-infinite Programming Prob-
lems and Their Relatives, Report 92/16, UPRA, Laboratoire de Math. Appl., Av. de
l’Université, 64000 Pau, France, 1992.

[27] J. P. Penot, Optimality conditions in mathematical programming and composite optimization,
Math. Programming, 67 (1994), pp. 225–245.

[28] S. M. Robinson, First order conditions for general nonlinear optimization, SIAM J. Appl.
Math., 30 (1976), pp. 597–607.

[29] S. M. Robinson, Stability theory for systems of inequalities, Part II: Differentiable nonlinear
systems, SIAM J. Numer. Anal., 13 (1976), pp. 497–513.

[30] S. M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. Res.,

492 J. F. BONNANS, R. COMINETTI, AND A. SHAPIRO

1 (1976), pp. 130–143.
[31] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[32] R. T. Rockafellar, Conjugate Duality and Optimization, CBMS-NSF Regional Conference

Series in Applied Mathematics 16, SIAM, Philadelphia, PA, 1974.
[33] R. T. Rockafellar, First and second-order epi-differentiability in nonlinear programming,

Trans. Amer. Math. Soc., 307 (1988), pp. 75–108.
[34] R. T. Rockafellar, Second-order optimality conditions in nonlinear programming obtained

by way of epi-derivatives, Math. Oper. Res., 14 (1989), pp. 462–484.
[35] R. T. Rockafellar, Nonsmooth analysis and parametric optimization, in Methods of Noncon-

vex Analysis, Lecture Notes in Math. 1446, A. Cellina, ed., Springer-Verlag, Berlin, 1990,
pp. 137–151.

[36] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1997.
[37] A. Shapiro, Second-order derivatives of extremal-value functions and optimality conditions

for semi-infinite programs, Math. Oper. Res., 10 (1985), pp. 207–219.
[38] A. Shapiro, Perturbation theory of nonlinear programs when the set of optimal solutions is

not a singleton, Appl. Math. Optim., 18 (1988), pp. 215–229.
[39] A. Shapiro, On Lipschitzian stability of optimal solutions of parametrized semi-infinite pro-

grams, Math. Oper. Res., 19 (1994), pp. 743–752.
[40] A. Shapiro and M. K. H. Fan, On eigenvalue optimization, SIAM J. Optim., 5 (1995), pp. 552–

569.
[41] A. Shapiro, First and second order analysis of nonlinear semidefinite programs, Math. Pro-

gramming, Series B, 77 (1997), pp. 301–320.
[42] C. Ursescu, Multifunctions with convex closed graph, Czechoslovak Math. J., 25 (1975),

pp. 438–441.
[43] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[44] W. Wetterling, Definitheitsbedingungen fürrelative Extrema bei Optimieungs- und

Approximation-saufgaben, Numer. Math., 15 (1879), pp. 122–136.
[45] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem

in Banach spaces, Appl. Math. Optim., 5 (1979), pp. 49–62.

STABLE SET POLYTOPES FOR A CLASS OF CIRCULANT GRAPHS∗

GEIR DAHL†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 493–503

Abstract. We study the stable set polytope P (Gn) for the graph Gn with n nodes and edges
[i, j] with j ∈ {i + 1, i + 2}, i = 1, . . . , n and where nodes n + 1 and 1 (resp., n + 2 and 2) are
identified. This graph coincides with the antiweb W̄ (n, 3). A minimal linear system defining P (Gn)
is determined. The system consists of certain rank inequalities with some number theoretic flavor.
A characterization of the vertices of a natural relaxation of P (Gn) is also given.

Key words. polyhedral combinatorics, stable sets, circulant graphs

AMS subject classifications. 90C27, 05C85, 52B11

PII. S1052623497321973

1. Introduction. Let n ≥ 3 be a positive integer, and let Cn = (ci,j) ∈ Rn,n
be the (3, n)-circulant matrix; i.e., for i = 1, . . . , n we have ci,j = 1 if i ≤ j ≤ i + 2,
where n+1 and 1 (resp., n+2 and 2) are identified (modulo n calculation of indices).
We let 0, 1, and 2 denote a vector of suitable dimension with all components being
0, 1, and 2, respectively. In this paper we are concerned with the polytope

Pn = {x ∈ Rn : Cnx ≤ 1, x ≥ 0}(1.1)

and its integer hull, i.e., the convex hull of the integral points in Pn. These objects
relate to stable sets. Let V = {1, . . . , n} and consider the circulant graph Gn = (V,E)
with node set V and edge set E consisting of the edges [i, i+1] and [i, i+2] for i ∈ V .
It is useful to imagine the nodes of V placed consecutively along a circle so that node
1 and n are adjacent; see Fig. 1.1. The graph Gn coincides with the antiweb W̄ (n, 3).
We recall from [10] that the web W (n, k) is defined as the graph on n nodes with edges
[i, j] for j = i+ k, . . . , i+ n− k. The antiweb W̄ (n, k) is the complement of W (n, k),
i.e., the graph on n nodes containing precisely those edges that are not in W (n, k). A
stable set in a graph is a subset S of nodes such that no pair of nodes in S are adjacent.
A stable set S in Gn is a set of nodes such that the distance between consecutive nodes
is at least 3. Let Sn denote the set of all stable sets in Gn. Then the integral points
in Pn coincide with the incidence vectors of sets in Sn, so the integer hull of Pn equals
the stable set polytope P (Gn) associated with the graph Gn. Pn may be viewed as the
relaxation of P (Gn) consisting of nonnegativity constraints and clique constraints.
Note that P (Gn) is full dimensional because it contains the origin and the coordinate
vectors. Moreover, each nonnegativity constraint xj ≥ 0 defines a facet of P (Gn)
which is called a trivial facet. Each clique inequality xi +xi+1 +xi+2 ≤ 1 also defines
a facet of P (Gn), and we call it a clique facet.

The purpose of this paper is to study the polytopes Pn and P (Gn). We determine
all the vertices of Pn and a minimal linear system of inequalities defining P (Gn). This
system contains, apart from the inequalities defining Pn, certain inequalities with
(0, 1)-coefficients called the 1-interval inequalities. These inequalities are of interest

∗Received by the editors May 28, 1997; accepted for publication (in revised form) March 12, 1998;
published electronically March 17, 1999.

http://www.siam.org/journals/siopt/9-2/32197.html
†University of Oslo, Department of Informatics, P.O. Box 1080, Blindern, 0316 Oslo, Norway

(geird@ifi.uio.no).

493

494 GEIR DAHL

Fig. 1.1. The graph G8.

for stable sets in general graphs; they also produce facets via the procedure of lifting.
The work was motivated by a study of spanning trees (in a given graph H) satisfying a
“2-hop constraint”; see [2]. This constraint says that each node or one of its neighbors
is adjacent to a given root node. An interesting special case is when H is a wheel,
i.e., a cycle with an additional root node joined to all the cycle nodes. Then a certain
integer linear programming model for finding a minimum-cost 2-hop spanning tree
has as its linear relaxation the polytope Pn, and the vertices of P (Gn) correspond
to incidence vectors of 2-hop spanning trees. In particular, the results of the present
paper lead to completeness results for polytopes associated with 2-hop spanning trees
(see [2]).

Consider a weighted stable set problem in Gn: for given numbers wj , j ∈ V find
a stable set S in Gn with

∑
j∈S wj largest possible. This problem may be solved

in polynomial time as follows. Choose j ∈ V . Any stable set S satisfies (i) j ∈ S,
(ii) j + 1 ∈ S, or (iii) j, j + 1 6∈ S. Thus the weighted stable set problem may be
solved by finding an optimal stable set for each of these three cases and comparing
the solutions. Each of the three subproblems may be solved by linear programming
since deleting proper columns results in a totally unimodular coefficient matrix. The
existence of an efficient algorithm for solving the weighted stable set problem in Gn
is a motivation for seeking a complete linear description of P (Gn).

A survey of the stable set problem and stable set polytopes is given in [4, Chapter
9]. Complete linear descriptions of stable set polytopes are known for certain classes of
graphs, such as bipartite graphs, interval graphs, and chordal graphs; all these classes
are perfect graphs so nonnegativity constraints and clique constraints suffice to de-
scribe the corresponding stable set polytopes. Furthermore, for series-parallel graphs
the stable set polytopes are described by nonnegativity constraints, edge constraints,
and odd circuit constraints; for a proof see [7]. For graph theory and polyhedral
theory used in this paper, see [8] and [9]. A (0, 1)-matrix is called an interval matrix
provided that in each row the 1’s occur consecutively. A well-known fact is that every
interval matrix is totally unimodular (see [8]). If aTx ≤ α is a valid inequality for a
polytope P , we say that each point in P ∩ {x : aTx = α} is a root of the inequality
aTx ≤ α (or the corresponding face of P). The incidence vector χT ∈ Rn of a subset
T of {1, . . . , n} is the vector where χTj equals 1 if j ∈ T and 0 otherwise.

STABLE SET POLYTOPES 495

2. The polytope Pn. It is clear that the incidence vector of each stable set in
Gn is a vertex of Pn. In this section we determine the remaining vertices.

Certain subsets of the node set V are of interest in what follows. We shall call
a subset of consecutive nodes in V an interval and note that, e.g., {n − 1, n, 1} is
an interval (the modulo n calculation). Any strict subset T of V corresponds to a
partition of V into nonempty, consecutive, disjoint intervals I1, J1, I2, J2, . . . , It, Jt,
where T = ∪ts=1Is. Note that the intervals Js are determined by the intervals Is. We
then write T = I1 + · · ·+It. A 1-interval set is a subset T being the union of intervals
I1, . . . , It separated by just one node, i.e., |Js| = 1 for all s ≤ t.

Consider a 1-interval set T = I1 + · · · + It satisfying |Is| ∈ {1, 2} for s ≤ t.
Associated with T is the point xT ∈ Rn given by xTj = 1/2 for j ∈ T and xTj = 0

otherwise, i.e., xT = (1/2)χT . A point xT for which t (also equal to the number of
zeros in xT) is odd will be called an odd 1/2-string.

Proposition 2.1. The vertices of Pn are the incidence vectors of stable sets in
Gn, all odd 1/2-strings, and, provided that n is not a multiple of 3, the vector with
all components equal to 1/3.

Proof. Let x be a nonintegral vertex of P (Gn). We establish several properties of
x, eventually showing that x must be an odd 1/2-string or have all components equal
to 1/3.

Property 1: For each i ≤ n we have that xi < 1 and that either xi or xi+1 is
positive. If xi = xi+1 = 0, the (n − 2)-dimensional vector x′ with the remaining
components of x must be a vertex of the polytope defined by C′x′ ≤ 1, x′ ≥ 0, where
C′ is the matrix obtained from C by deleting columns i and i+ 1. But C′ is totally
unimodular because it is obtained from an interval matrix by column permutations.
(The property of total unimodularity is preserved under permutations of columns or
rows.) This implies that x′ is integral (in fact (0, 1)) and so is x, a contradiction.
Therefore, either xi or xi+1 is positive. Similarly, if xi = 1, then xi−2 = xi−1 =
xi+1 = xi+2 = 0, the remaining components are determined from an interval matrix
(deleting the columns i − 2, . . . , i + 2 and one row in C), and we again arrive at the
desired contradiction.

By Property 1 the support T of x (i.e., the indices of nonzero components) is
either V or a 1-interval set T = I1 + · · · + It. Consider first the case when T = V .
Then all variables in x are positive and therefore Cnx = 1 (as there must be n active
inequalities). But Cn is nonsingular if and only if n is not a multiple of 3, and in
that case we see that x = (1/3, . . . , 1/3). In the remaining part of the proof we may
assume that T 6= V .

Property 2: If i 6∈ T , then the equation xi−1 + xi + xi+1 = 1 holds. Otherwise we
would again have that all components in x except the ith were determined by a to-
tally unimodular matrix (deleting the assumed nonactive constraint). A contradiction
arises.

Property 3: |Is| ≤ 2 for all s ≤ t. To prove this we determine an upper bound on
the number of nonredundant, active clique inequalities in x. If |Is| = 1, say Is = {i},
then the clique inequality xi−1 + xi + xi+1 ≤ 1 is not active because that would give
xi = 1 (as xi−1 = xi+1 = 0); this is a contradiction due to Property 1. If |Is| = 2, say
Is = {i, i+ 1}, then xi−1 + xi + xi+1 ≤ 1 and xi + xi+1 + xi+2 ≤ 1 are equivalent, so
one of them is redundant. Finally, if |Is| > 2, say Is = {i, i + 1, . . . , j}, then neither
inequality xi−1 +xi+xi+1 ≤ 1 nor xj−1 +xj +xj+1 ≤ 1 is active, for that would give
that either xi+2 or xj−2 was 0. Note that all the mentioned inactive or redundant
inequalities are distinct. Let m1 and m2 be the number of intervals Is with |Is| equal

496 GEIR DAHL

to 1 and 2, respectively. The number m3 of intervals Is with |Is| ≥ 3 clearly satisfies
m3 = t − m1 − m2. Our discussion shows that an upper bound on the number of
active, nonredundant clique inequalities in x is n−(m1 +m2 +2m3) = n−t−m3. But
x has n− t positive components to be determined by the active clique constraints, so
n− t−m3 ≥ n− t, which implies that m3 = 0 and Property 3 follows.

The counting argument just given also shows that, except for those special con-
straints mentioned in the paragraph above, all other clique constraints are active in
x. From this we deduce that the nonzero components of x must alternate between α
and 1 − α, where 0 < α < 1. The number of nonzeros n − t must be odd, otherwise
we could write x as the midpoint of two different solutions in Pn similar to x (with
α replaced by α − ε and α + ε, respectively, for suitably small ε). Finally, as n − t
is odd, one of the active clique inequalities gives that α = 1 − α, i.e., α = 1/2. This
means that x is an odd 1/2-string and the proof is complete.

3. Rank facets of P (Gn). In this section we study the stable set polytope
P (Gn) and valid inequalities for P (Gn) of the form x(T) ≤ α for T ⊆ V ; such
inequalities are called rank (or canonical) inequalities. Clearly, we may restrict the
attention to α = α(T) := max{|S∩T | : S is a stable set in Gn}, which is the stability
number in the subgraph Gn[T] of Gn induced by T .

First we consider how to compute α(T) for a given subset T of V . In [6] a
polynomial algorithm is given for computing the stability number of a claw-free graph,
i.e., a graph with no induced subgraph isomorphic to the star K1,3. The algorithm
is based on a reduction to a matching problem. Since Gn is claw free, the subgraph
Gn[T] is also claw free and the algorithm of [6] could be used to determine α(T).
However, the special structure of Gn makes it possible to determine α(T) by a simple
greedy algorithm which is discussed in the following.

Let A ∈ Rm,n be a (0, 1)-matrix. Following [3] we say that A is greedy if the
greedy algorithm correctly solves the linear program

max{cTx : Ax ≤ b, 0 ≤ x ≤ u}(3.1)

for all b ∈ Rm and c,u ∈ Rn with c1 ≥ c2 ≥ · · · ≥ cn. The greedy algorithm for
(3.1) determines a solution x′ as follows: for j = 1, . . . , n let x′j be the maximum
real number r such that (x′1, . . . , x

′
j−1, r, 0, . . . , 0) is feasible in (3.1). Note that x′ is

integral whenever both u and b are integral, so the greedy algorithm also solves the
integer LP corresponding to (3.1). It was shown in [5] that A is greedy if and only if
neither of the following two submatrices is a submatrix of A:[

1 1 0
1 0 1

]
,

[
1 0 1
1 1 0

]
.

An immediate consequence of this result is that every interval matrix is greedy. Now,
consider the circulant matrix Cn defined in the introduction. The matrix C′ obtained
from Cn by deleting columns j and j + 1 and permuting the columns suitably is an
interval matrix and therefore greedy. In particular, for each u ∈ {0, 1}n−2 we can
solve the integer program

max{1Tx′ : C′x′ ≤ 1, 0 ≤ x′ ≤ u, x′ is integral}(3.2)

by the greedy algorithm. We see that (3.2) is the stable set problem in the subgraph
of Gn induced by the nodes {k : uk = 1 and k 6= j, j + 1}.

STABLE SET POLYTOPES 497

For T ⊆ V and j ∈ T define

αj(T) = max{|S ∩ T | : S ∈ Sn, j ∈ S}.(3.3)

The following greedy algorithm determines αj(T): initially let S = {j}, s := j, and
choose k ∈ {s+ 3, . . . , j − 3} “smallest possible” with k ∈ T and add k to S. Repeat
this process for s := k until no more k can be found. The correctness of this algorithm
follows from the discussion above.

We can calculate α(T) as follows. If T = V , we obtain α(T) = α(Gn) = bn/3c.
Assume next that T 6= V , say j ∈ T but j + 1 6∈ T . We determine the number
α′ := max{|S ∩ T | : S ∈ Sn, j 6∈ S} = max{|S ∩ T | : S ∈ Sn, j, j + 1 6∈ S}
by removing nodes j and j + 1 from the graph and using the greedy algorithm in
the interval graph we then obtain starting in j + 2. We then calculate αj(T) using
the greedy algorithm above and conclude that α(T) = max{α′, αj(T)}. We call this
procedure for finding α(T) the α-GREEDY algorithm (with start in node j). It is
used in some proofs later.

We now calculate α(T) for certain interesting 1-interval sets.

Lemma 3.1. Let T = I1 + · · ·+ It be a 1-interval set satisfying, for s = 1, . . . , t,
|Is| ≡ 1(mod 3), say |Is| = 3ks + 1, where ks is a nonnegative integer. Then α(T) =∑t
s=1 ks + bt/2c or, equivalently, α(T) = n/3 − t/6 when t is even and α(T) =

n/3− t/6− 1/2 when t is odd.

Proof. The result may be found by the α-GREEDY algorithm, but we give an
alternative proof here. Let s ∈ {1, . . . , t}. We note that α(Is) = ks+ 1 and that there
is a unique maximum stable set S in Is and, moreover, S contains both of the end
points of the interval Is. The next observation is that α(Is ∪ Is+1) = ks + ks+1 + 1
and every maximum stable set in Is ∪ Is+1 must contain both of the end points
of (exactly) one of the two intervals. One such stable set, say Ss, contains ks + 1
nodes in Is (and therefore the two end points) but it does not contain the “right-
hand end node” of Is+1. Assume now that t is even, and let S be the union of
such sets S1, S3, . . . , St−1. From the construction we see that S is a stable set in
Gn. Furthermore, |S| =

∑t
s=1 ks + t/2 so we conclude that α(T) ≥ ∑t

s=1 ks + t/2.
Moreover, this is an equality; otherwise, for some s, Is and Is+1 would contain ks + 1
and ks+1 + 1 nodes, respectively. This is a contradiction as explained above. Using∑t
s=1(3ks + 2) = n we conclude that α(T) = n/3− t/6 for t even. Finally, if t is odd,

similar arguments lead to α(T) =
∑t
s=1 ks+(t−1)/2 = n/3− t/6−1/2 and the proof

is complete.

Recall that when T = V we have α(T) = α(Gn) = bn/3c. Therefore the inequality

x(V) ≤ bn/3c(3.4)

is valid for P (Gn); this is the antiweb inequality introduced in [10]. It is easy to see
that this inequality is nonredundant if and only if n is not a multiple of 3. In the
remaining discussion we consider rank inequalities x(T) ≤ α(T) for which T 6= V .

Lemma 3.2. Let T = I1 + · · · + It be a strict subset of V (where Is are disjoint
intervals) such that x(T) ≤ α(T) is a facet of P (Gn) different from each trivial and
clique facet. Then the following holds:

(i) T is a 1-interval set;
(ii) |Is| ≡ 1 (mod 3) for s = 1, . . . , t;
(iii) t is odd and t ≥ 3.

(3.5)

498 GEIR DAHL

Proof. (i) Let F be the facet of P (Gn) defined by x(T) ≤ α(T). Assume that
i, i + 1 6∈ T for some i ≤ n. We may assume that i − 1 ∈ T (otherwise another i
could be chosen). Consider the clique K = {i− 3, i− 2, i− 1}. Since F is not a clique
facet, F has a root S with S ∩K = ∅. Note that S \ {i, i+ 1} is also a root of F as
i, i + 1 6∈ T , so we may assume that i, i + 1 6∈ S. Let S′ = S ∪ {i − 1}, and observe
that S′ is a stable set in Gn. But |S′ ∩ T | = |S ∩ T | + 1 = α + 1, which contradicts
the validity of x(T) ≤ α(T). Thus, for each i ≤ n, T contains either i or i + 1 and
therefore T is a 1-interval set.

(ii) Assume that |Is| ≡ 2 (mod 3), and let Is = {l, . . . , r}. Using the α-GREEDY
algorithm starting in node l − 2 it is easy to see that α(T) = α(T ∪ {r + 1}) (as we
find an optimal stable set not containing the node r + 1). But then x(T) ≤ α(T) is
the sum of the two valid inequalities x(T ∪{r+ 1}) ≤ α(T ∪{r+ 1}) and −xr+1 ≤ 0,
which contradicts that x(T) ≤ α(T) defines a facet of P (Gn). This proves that
|Is| 6≡ 2 (mod 3).

Assume next that |Is| ≡ 0 (mod 3), say |Is| = 3k for some k ≥ 1. Let Is =
{l, . . . , r}. There is a root S of x(T) ≤ α(T) such that S ∩ Is consists of the k nodes
l + 1, l + 4, . . . , r − 1. Note that S ∩ {l − 1, l, r, r + 1} = ∅. Thus the incidence
vector of S \ Is must maximize x(T \ Is) over the set of stable sets in Gn. Therefore
x(T \Is) ≤ |(S\Is)∩T | is a valid inequality for P (Gn). But x(Is) ≤ k is clearly a valid
inequality as well, and if we add these two inequalities we obtain x(T) ≤ |S| = α(T).
This contradicts that x(T) ≤ α(T) is nonredundant, and (ii) follows.

(iii) Assume that t is even. From the proof of Lemma 3.1 (and (ii)) it is clear that
α(T) equals the sum of the stability numbers α(Is ∪ Is+1) for all s ≤ t being odd. As
above, this means that the rank inequality x(T) ≤ α(T) is redundant, a contradiction.
Therefore, t must be odd. Furthermore, one can check that α(V \ {i}) = α(V) for
each i ∈ V . This implies that the rank inequality x(V \{i}) ≤ α(V \{i}) is redundant
as it is the sum of the rank inequality x(V) ≤ α(V) and the inequality −xi ≤ 0.
Therefore t cannot be 1, so t ≥ 3.

Our next result characterizes all the nonredundant rank inequalities in an explicit
way.

Theorem 3.3. Let T = I1 + · · ·+ It ⊆ V be a strict subset of V . Then the rank
inequality x(T) ≤ α(T) defines a facet of P (Gn) if and only if (3.5) holds.

Proof. Due to Lemma 3.2 we need to show only the sufficiency of the conditions.
Therefore, assume that (3.5) holds. Let |Is| = 3ks + 1 for s ≤ t. If S is a stable set
in Gn and |S ∩ Is| = ks + 1 (|S ∩ Is| = ks), we say that Is is closed (open). From the
proof of Lemma 3.1 and (3.5) it follows that a stable set is a root of x(T) ≤ α(T) if
and only if the intervals Is alternate between being closed and open, except for one s
where both Is and Is+1 are open. For instance, for t = 5, we could have I1, I3, and
I5 open while I2 and I4 are both closed.

The face F of P (Gn) induced by x(T) ≤ α(T) is contained in some facet of
P (Gn); consider that such a facet is induced by the valid inequality

∑n
j=1 bjxj ≤

β. We shall prove that (b1, . . . , bm) is a positive multiple of χT . This is done by
exploiting symmetries of the stable sets of cardinality ks on Is. Let s ≤ t, and
let Is = {l, l + 1, . . . , r}. Let i satisfy (if any) i, i + 1 ∈ Is. Consider the two
(possibly empty) intervals T1 = {l, l + 1, . . . , i − 3} and T2 = {i + 4, i + 5, . . . , r}.
One can check that α(T1) + α(T2) = ks − 1. Furthermore, there is a stable set S in
T1 ∪ T2 with |S| = ks − 1 such that |S ∩ {l, r}| ≤ 1, say r 6∈ S. Therefore we can
augment S into a stable set in Gn with |S ∩ T | = α(T) − 1 by adding nodes to S
such that suitable intervals become open and closed. This means that the incidence

STABLE SET POLYTOPES 499

vectors of both S ∪ {i} and S ∪ {i + 1} are roots of x(T) ≤ α(T) and therefore∑
j bjχ

S∪{i}
j =

∑
j bjχ

S∪{i+1}
j , which gives bi = bi+1. This implies that bj has the

same value, say βs, for all j ∈ Is.
Assume that k ∈ Is and k + 2 ∈ Is+1 (so k + 1 6∈ T). Choose a root S of

x(T) ≤ α(T) for which both Is and Is+1 are open. Using the α-GREEDY algorithm
we find that α(T \ {k − 2, k − 1, . . . , k + 4}) = α(T)− 1. Arguments similar to those
given above then give that bk = bk+2, so βs = βs+1. Since s is arbitrary, we have
shown that (b1, . . . , bn) is a multiple of χT , and therefore x(T) ≤ α(T) induces a facet
of P (Gn).

When T is a 1-interval set we call the rank inequality x(T) ≤ α(T) a 1-interval
inequality. Note that for the nonredundant 1-interval inequalities the value of α(T)
is known; see Lemma 3.1.

4. Completeness. In this section we determine a complete and nonredundant
linear description of the stable set polytope P (Gn). Recall that each facet defining
inequality aTx ≤ α which does not define a trivial facet must have nonnegative
coefficients. The following result generalizes Lemma 3.2.

Lemma 4.1. Let aTx ≤ α define a facet Fa of P (Gn) which is not a trivial,
clique, or antiweb facet. Define M = maxjaj, and let T = {j ≤ n : aj = M}. Then
the following statements hold:

(i) T is a 1-interval set, say T = I1 + · · ·+ It, where t ≥ 2, and
(ii) |Is| ≡ 1 (mod 3) for s = 1, . . . , t.
Proof. (i) We first note that T 6= V (otherwise aTx ≤ α would be equivalent to

the antiweb inequality). We may then choose i ∈ T such that i− 1 6∈ T and therefore
ai−1 < M . Since Fa is not a clique facet there is a root S of Fa with S ∩ K = ∅,
where K = {i, i + 1, i + 2} (otherwise Fa would be contained in the facet induced
by the clique inequality x(K) ≤ 1). Thus there is an interval I = {l + 1, . . . , r − 1}
satisfying l, r ∈ S, K ⊆ I, and S ∩ I = ∅. We may assume that S is chosen such that
|I| is minimal.

We observe that l ∈ T , i.e., al = M . Otherwise, S′ = (S \ {l}) ∪ {i} would be a
stable set whose incidence vector violates aTx ≤ α. Therefore l 6= i− 1 as i− 1 6∈ T .
In fact we must have l = i − 2; otherwise we could add the node i to S and violate
the inequality aTx ≤ α.

Thus we have shown that if i ∈ T and i − 1 6∈ T , then i − 2 ∈ T . This clearly
implies that T is a 1-interval set T = I1 + · · · + It. If t = 1, then T = V \ {i} for
some i and it is easy to see that aTx ≤ α is implied by the antiweb inequality and
the trivial inequality −xi ≤ 0. It follows that t ≥ 2 and (i) holds.

(ii) Assume that |Is| ≡ 2 (mod 3) for some s ≤ t, and let Is = {l, . . . , r}. Let S
be a root of Fa with l − 1 ∈ S (such a root exists, otherwise Fa would be contained
in the hyperplane given by xl−1 = 0). This implies that S also contains the set
{j ∈ Is : j ≡ l− 1 mod (3)}∪ {r+ 1} (i.e., nodes l+ 2, l+ 5, . . . lying in T plus r+ 1).
Otherwise the distance between two consecutive nodes in S would be at least 4, and
we could modify S by replacing l−1 by l, l+2 by l+3, etc. This produces a stable set
violating aTx ≤ α because al−1 < al. Thus each root containing l − 1 also contains
r + 1. Due to symmetry, we conclude that a root of Fa contains l − 1 if and only if
it contains r + 1. But this means that Fa is contained in the hyperplane given by
xl−1 − xr+1 = 0, contradicting that Fa is a facet. This proves that |Is| 6≡ 2 (mod 3)
for all s ≤ t.

Assume that |Is| ≡ 0 (mod 3) for some s ≤ t, say |Is| = 3k. Let Is = {l, . . . , r}.
We observe, using similar arguments to those of the previous paragraph, that for each

500 GEIR DAHL

root S of Fa we have (a) S contains at most one of the nodes l− 1 and r+ 1 and (b)
if S contains either l − 1 or r + 1, then |S ∩ Is| = k.

Furthermore, because |Is| = 3k, x(Is) ≤ k is a valid inequality for P (Gn) obtained
by adding k clique inequalities for nodes in Is (xi+xi+1+xi+2 ≤ 1, xi+3+xi+4+xi+5 ≤
1, etc.). Therefore there must be a root S of Fa satisfying x(Is) ≤ k with strict
inequality, i.e., |S ∩ Is| ≤ k − 1. This implies, due to the observation above, that
|S ∩ {l − 1, . . . , r + 1}| = k. Let S′ be the set obtained from S by replacing the (at
most) k − 1 nodes in S ∩ Is by the k nodes l + 1, . . . , r − 1. Then S′ is a stable set
which violates aTx ≤ α (by an amount which is not smaller than M). This proves
that |Is| 6≡ 0 (mod 3) for all s ≤ t and the proof is complete.

The next result concerns projection of facets. It gives a simple procedure for pro-
ducing facets for P (Gn−3) from those of P (Gn). The technique has some resemblance
to a shrinking result given in [1].

Consider an inequality

n∑
j=1

ajxj ≤ α(4.1)

which defines a facet Fa of P (Gn) which is different from each trivial, clique, or
antiweb facet. (The procedure also works for the antiweb facet, but this is not of
importance here.) As before, let M = maxjaj and T = {j ≤ n : aj = M}. From
Lemma 4.1 we have that T is a 1-interval set T = I1 + · · · + It with t ≥ 2 and
|Is| ≡ 1 (mod 3) for each s. Consider the interval Is and let |Is| = 3k + 1. Our
procedure may be applied whenever k ≥ 1. Assume, for notational simplicity, that
Is = {n− 3k, . . . , n} so that, in particular, 1 6∈ T . We then have the following result.

Lemma 4.2. The inequality

n−3∑
j=1

ajxj ≤ α−M(4.2)

is valid for P (Gn−3). Moreover it defines a facet of P (Gn−3).

Proof. Assume that there is a stable set S in Gn−3 with
∑n−3
j=1 ajχ

S
j > α −M .

Consider first the case when n − 3 6∈ S. Then S cannot contain both the nodes 1
and n − 4 (because S is stable). Consider 1 6∈ S; the other case is treated similarly.
Then S′ = S ∪ {n − 1} is a stable set in Gn and

∑n
j=1 ajχ

S′
j > α −M + M = α,

which contradicts that (4.1) is valid for P (Gn). Consider the remaining case when
n− 3 ∈ S. Then 1, 2 6∈ S and therefore S ∪{n} is a stable set in Gn and its incidence
vector violates (4.1). It follows, by contradiction, that (4.2) is valid for P (Gn−3).

Assume that there is a root S of (4.1) with S ∩ {n − 3, n − 2, n − 1, n} = ∅. If
1 ∈ S, we could violate (4.1) by replacing 1 by n, so we conclude that 1 6∈ S. But
this is also impossible, for then we could add the node n− 1 and violate (4.1). Thus
every root of (4.1) contains either one or two nodes in the set {n− 3, n− 2, n− 1, n}.

Since (4.1) defines a facet of P (Gn) there is a nonsingular matrix B ∈ Rn,n with
rows being the incidence vectors of stable sets that are roots of (4.1). (Because 0 is
not a root of the inequality, the affine rank and the linear rank of the roots coincide.)
The columns of B = (bi,j) correspond to the nodes 1, . . . , n. As shown above, each
row of B contains one or two 1’s in positions n−3, n−2, n−1, n and, after a reordering
of rows, we may assume that all the rows with two 1’s in the mentioned positions are
the last rows of B. Let B′ = (b′i,j) ∈ Rn,n−3 be the matrix obtained by replacing the

STABLE SET POLYTOPES 501

last four columns of B by a single column with ith entry being 1 if
∑n
j=n−3 bi,j equals

2 and 0 otherwise. By this construction it is clear that each row of B′ is the incidence
vector of a stable set in Gn−3.

We claim that rank(B′) = n − 3. To prove this, let b1, . . . ,bn−4 ∈ Rn be the
first n− 4 columns of B′ and B (these columns are equal in the two matrices). These
vectors are linearly independent as B is nonsingular. Assume that the last column
bT =

[
0T ,1T

]
of B′ lies in the span L of the vectors b1, . . . ,bn−4. Then −b also

lies in L and there is an x′ ∈ Rn−4 such that[
b1, . . . ,bn−4

]
x′ =

[
0
−1

]
.

Thus, with xT =
[

(x′)T , 1, 1, 1, 1
]
, we obtain that

Bx =

[
0
−1

]
+

[
1
2

]
= 1

due to the structure of the last four columns of B. On the other hand, the rows of B
are the incidence vectors of roots of aTx ≤ α, so Ba = α1. Since B is nonsingular
we conclude that αx = a and therefore aj = α for n− 3 ≤ j ≤ n. Thus the inequality
aTx ≤ α has the form

n−4∑
j=1

ajxj + α
n∑

j=n−3

xj ≤ α.

Inserting the stable set χn−1 we conclude that aj = 0 for 2 ≤ j ≤ n − 4. This
contradicts the form of aTx ≤ α, where T = I1 + · · ·+ It with t ≥ 2 and aj positive
(and maximal) for each j ∈ T . This proves that the columns of B′ are linearly
independent and it follows that B′ has rank n − 3. Thus there are n − 3 linearly
independent rows of B′, and since all these are roots of (4.2) we have shown that
(4.2) defines a facet of P (Gn−3).

Theorem 4.3. For each n the stable set polytope P (Gn) is the solution set of the
nonnegativity constraints, the clique inequalities, the antiweb inequality (3.4), and the
nonredundant 1-interval inequalities described in Theorem 3.3.

Proof. Let aTx ≤ α be a facet defining inequality for P (Gn) which is neither
a nonnegativity constraint, a clique inequality, nor the antiweb constraint. We shall
prove that the inequality is a positive multiple of some 1-interval inequality.

Due to Lemma 4.1 the inequality aTx ≤ α may be written as

M
∑
j∈T

xj +
∑
j 6∈T

ajxj ≤ α,(4.3)

where T = I1 + . . .+ It is a 1-interval set and M = maxjaj . Recall also from Lemma
4.1 that |Is| ≡ 1 (mod 3) for s = 1, . . . , t. By repeated application of the reduction
procedure of Lemma 4.2, say p times, we get an inequality

M
∑
j∈T ′

xj +
∑
j 6∈T ′

ajxj ≤ α− pM(4.4)

which defines a facet of P (Gn−3p). Here T ′ is a 1-interval set for which each interval
consists of exactly one node. Thus, the coefficients in this inequality alternate between

502 GEIR DAHL

M and numbers strictly smaller than M . We show that all of the numbers different
from M are equal to 0.

Let i ∈ T ′. Since (4.4) is not a clique facet, there is a root S of this inequality with
S ∩ {i, i+ 1, i+ 2} = ∅. Note that ai+1 < ai = ai+2 = M as T ′ is a 1-interval set. S
cannot contain i−1 or i+3 (both outside T ′), for then we could modify S by replacing
that node by i or i+2 and violate (4.4). Thus S∩{i−1, i, i+1, i+2, i+3} = ∅, which
implies that S ∪ {i + 1} is a stable set. But since S is a root, we see that ai+1 = 0.
This shows that ai = 0 for each i 6∈ T ′ and therefore (4.4) is a positive multiple of a
1-interval inequality with all intervals of length 1 (the right-hand side must have the
proper value, otherwise the inequality would be redundant). This also proves that the
original inequality (4.3) is M times a 1-interval inequality (in particular, α = Mα(T))
and the theorem follows.

Examples. When n = 9 the minimal linear system for P (G9) consists of non-
negativity and clique constraints as well as the following 1-interval inequalities:

x2 +x4 +x6 +x7 +x8 +x9 ≤ 2
x2 +x4 +x5 +x6 +x7 +x9 ≤ 2
x2 +x3 +x4 +x5 +x7 +x9 ≤ 2

x1 +x3 +x5 +x7 +x8 +x9 ≤ 2
x1 +x3 +x5 +x6 +x7 +x8 ≤ 2
x1 +x3 +x4 +x5 +x6 +x8 ≤ 2
x1 +x2 +x4 +x6 +x8 +x9 ≤ 2
x1 +x2 +x3 +x5 +x7 +x9 ≤ 2
x1 +x2 +x3 +x4 +x6 +x8 ≤ 2.

These inequalities correspond to 1-interval sets with three intervals of cardinalities 4,
1, and 1. Consider next n = 16. Then the antiweb inequality x(V) ≤ 5 defines a facet
of P (G16). The inequality

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x9 + x11 + x13 + x15 ≤ 4

is the 1-interval inequality for T = I1 + · · · + I5, where I1 = {1, . . . , 7}, I2 = {9},
I3 = {11}, I4 = {13}, I5 = {15}. It defines a facet of P (G16). Similarly, the 1-
interval T = I1 + · · ·+ I5 with I1 = {1, 2, 3, 4}, I2 = {6, 7, 8, 9}, I3 = {11}, I4 = {13},
I5 = {15} gives the inequality

x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x11 + x13 + x15 ≤ 4.

In fact, the 1-interval sets that correspond to facets of P (G16) all consist of t = 5
intervals with cardinalities either 7, 1, 1, 1, 1 or 4, 4, 1, 1, 1. The minimal linear system
for P (G16) consists of 48 inequalities corresponding to 1-interval sets in addition to
the antiweb inequality, 16 clique inequalities, and 16 nonnegativity constraints.

REFERENCES

[1] F. Barahona and A.R. Mahjoub, Compositions of graphs and polyhedra II: Stable sets, SIAM
J. Discrete Math., 7 (1994), pp. 359–371.

[2] G. Dahl, The 2-hop spanning tree problem, Oper. Res. Lett., to appear.
[3] U. Faigle, A.J. Hoffman, and W. Kern, A characterization of nonnegative box-greedy ma-

trices, SIAM J. Discrete Math., 9 (1996), pp. 1–6.
[4] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial

Optimization, Springer-Verlag, Berlin, 1988.
[5] A. Hoffman, A.W.J. Kolen, and M. Sakarovitch, Totally-balanced and greedy matrices,

SIAM J. Alg. Discrete Methods, 6 (1985), pp. 721–730.
[6] L. Lovász and M.D. Plummer, Matching Theory, North–Holland, Amsterdam, 1986.

STABLE SET POLYTOPES 503

[7] A.R. Mahjoub, On the stable set polytope of a series-parallel graph, Math. Programming, 40
(1988), pp. 53–57.

[8] G. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley, New
York, 1988.

[9] A. Schrijver, Theory of linear and integer programming, John Wiley, Chichester, 1986.
[10] L.E. Trotter, A class of facet producing graphs for vertex packing polyhedra, Discrete Math.,

12 (1975), pp. 373–388.

SOLVING THE TRUST-REGION SUBPROBLEM USING THE
LANCZOS METHOD∗

NICHOLAS I. M. GOULD† , STEFANO LUCIDI‡ , MASSIMO ROMA‡ , AND

PHILIPPE L. TOINT§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 504–525

Abstract. The approximate minimization of a quadratic function within an ellipsoidal trust
region is an important subproblem for many nonlinear programming methods. When the number of
variables is large, the most widely used strategy is to trace the path of conjugate gradient iterates
either to convergence or until it reaches the trust-region boundary. In this paper, we investigate
ways of continuing the process once the boundary has been encountered. The key is to observe that
the trust-region problem within the currently generated Krylov subspace has a very special structure
which enables it to be solved very efficiently. We compare the new strategy with existing methods.
The resulting software package is available as HSL VF05 within the Harwell Subroutine Library.

Key words. trust-region subproblem, Lanczos method, conjugate gradients, preconditioning

AMS subject classifications. 90C20, 90C30, 65K05, 65F10

PII. S1052623497322735

1. Introduction. Trust-region methods for unconstrained minimization are
blessed with both strong theoretical convergence properties and a good reputation
in practice. The main computational step in these methods is to find an approximate
minimizer of some model of the true objective function within a “trust” region for
which a suitable norm of the correction lies within a given bound. This restriction is
known as the trust-region constraint, and the bound on the norm is its radius. The
radius is adjusted so that successive model problems mimic the true objective within
the trust region.

The most widely used models are quadratic approximations to the objective func-
tion, as these are simple to manipulate and may lead to rapid convergence of the
underlying method. From a theoretical point of view, the norm which defines the
trust region is irrelevant so long as it is “uniformly” related to the `2-norm. From a
practical perspective, this choice certainly affects the subproblem and thus the meth-
ods one can consider when solving it. The most popular practical choices are the `2-
and `∞-norms and weighted variants thereof. In our opinion, it is important that the
choice of norm reflects the underlying geometry of the problem; simply picking the
`2-norm may not be adequate when the problem is large and the eigenvalues of the
Hessian of the model widely spread. We believe that weighting the norm is essential
for many large-scale problems.

In this paper, we consider the solution of the quadratic-model trust-region sub-
problem in a weighted `2-norm. We are interested in solving large problems and thus
cannot rely solely on factorizations of the matrices involved. We thus concentrate on

∗Received by the editors June 11, 1997; accepted for publication (in revised form) March 27, 1998;
published electronically March 17, 1999. This research was supported in part by British Council–
MURST grant ROM/889/95/53.

http://www.siam.org/journals/siopt/9-2/32273.html
†Department for Computation and Information, Rutherford Appleton Laboratory, Chilton, Ox-

fordshire, OX11 0QX, England (n.gould@rl.ac.uk).
‡Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza,” via Buonarroti

12-00185, Roma, Italy (lucidi@dis.uniroma1.it, roma@dis.uniroma1.it).
§Department of Mathematics, Facultés Universitaires ND de la Paix, 61, rue de Bruxelles, B-5000

Namur, Belgium (pht@math.fundp.ac.be).

504

SOLVING THE TRUST-REGION SUBPROBLEM 505

iterative methods. If the model of the Hessian is known to be positive definite and
the trust-region radius sufficiently large that the trust region constraint is inactive
at the unconstrained minimizer of the model, the obvious way to solve the problem
is to use the preconditioned conjugate-gradient method. Note that the role of the
preconditioner here is the same as the role of the norm used for the trust-region,
namely, to change the underlying geometry so that the Hessian in the rescaled space
is better conditioned. Thus, it will come as no surprise that the two should be inti-
mately connected. Formally, we shall require that the weighting in the `2-norm and
the preconditioning be performed by the same matrix.

When the radius is smaller than a critical value, the unconstrained minimizer of
the model will no longer lie within the trust region and thus the required solution
will lie on the trust-region boundary. The simplest strategy in this case is to consider
the piecewise linear path connecting the conjugate-gradient iterates and to stop at
the point where this path leaves the trust region. Such a strategy was first proposed
independently by Steihaug [22] and Toint [23], and we shall refer to the terminating
point as the Steihaug–Toint point. Remarkably, it is easy to establish the global
convergence of a trust-region method based on such a simple strategy. The key is that
global convergence may be proved provided that the accepted estimate of the solution
has a model value no larger than at the Cauchy point (see [14]). The Cauchy point is
simply the minimizer of the model within the trust region along the preconditioned
steepest-descent direction. As the first segment on the piecewise-linear conjugate-
gradient path gives precisely this point, and as the model value is monotonically
decreasing along the entire path, the Steihaug–Toint strategy ensures convergence.

If the model Hessian is indefinite, the solution must also lie on the trust-region
boundary. This case may also be simply handled using preconditioned conjugate
gradients. Once again the piecewise linear path is followed until either it leaves the
trust region or a segment with negative curvature is found. (A vector p is a direction of
negative curvature if the inner product 〈p,Hp〉 < 0, where H is the model Hessian.)
In the latter case, the path is continued downhill along this direction of negative
curvature as far as the constraint boundary. This variant was proposed in [22], while
[23] suggests simply returning to the Cauchy point. As before, global convergence is
ensured at either of these terminating points, as the objective function values there
are no larger than at the Cauchy point. For consistency with the previous paragraph,
we shall continue to refer to the terminating point in Steihaug’s algorithm as the
Steihaug–Toint point, although strictly Toint’s point in this case may be different.

The Steihaug–Toint method is basically unconcerned with the trust region until
it blunders into its boundary and stops. This is rather unfortunate, particularly as
considerable experience has shown that this frequently happens during the first few,
and often the first, iteration(s) when negative curvature is present. The resulting step
is then barely, if at all, better than the Cauchy direction, and this may lead to a
slow but globally convergent algorithm in theory and a barely convergent method in
practice. In this paper, we consider an alternative which aims to avoid this drawback
by trying harder to solve the subproblem when the boundary is encountered, while
maintaining the efficiencies of the conjugate-gradient method so long as the iterates
lie interior. The mechanism we use is the Lanczos method.

The paper is organized as follows. In section 2 we formally define the problem
and any notation that we will use. The basis of our new method is given in section 3,
while in section 4, we will review basic properties of the preconditioned conjugate-
gradient and Lanczos methods. Our new method is given in detail in section 5. Some

506 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

numerical experiments demonstrating the effectiveness of the approach are given in
section 6, and a number of conclusions and perspectives are drawn in the final section.

2. The trust-region subproblem and its solution. Let M be a symmetric
positive-definite easily invertible approximation to the symmetric matrix H. Further-
more, define the M -norm of a vector as

‖s‖2M = 〈s,Ms〉,

where 〈·, ·〉 is the usual Euclidean inner product. In this paper, we consider the
M -norm trust-region problem

minimize
s∈Rn

q(s) ≡ 〈g, s〉+ 1
2 〈s,Hs〉 subject to ‖s‖M ≤ ∆(2.1)

for some vector g and radius ∆ > 0.

A global solution to the problem is characterized by the following result.

Theorem 2.1 (see [4], [20]). Any global minimizer sM of q(s) subject to ‖s‖M ≤ ∆
satisfies the equation

H(λM)sM = −g,(2.2)

where H(λM) ≡ H + λM is positive semidefinite, λM ≥ 0, and λM(‖sM‖M −∆) = 0.
If H(λM) is positive definite, sM is unique.

This result is the basis of a series of related methods for solving the problem
which are appropriate when forming factorizations of H(λ) ≡ H + λM for a number
of different values of λ is realistic. Then either the solution lies interior, and hence
λM = 0 and sM = −H+g, or the solution lies on the boundary and λM satisfies the
nonlinear equation

‖H(λ)+g‖M = ∆,(2.3)

where H+ denotes the pseudoinverse of H. Equation (2.3) is straightforward to solve
using a safeguarded Newton iteration, except in the so-called hard case for which
g lies in the null-space of H(λM). In this case, an additional vector in the range-
space of H(λM) may be required if a solution on the trust-region boundary is sought.
Goldfeldt, Quandt, and Trotter [5], Hebden [7], and Gay [4] all proposed algorithms
of this form. The most sophisticated algorithm to date, that by Moré and Sorensen
[9], is available as subroutine GQTPAR in the MINPACK-2 package and guarantees that
a nearly optimal solution will be obtained after a finite number of factorizations.

While such algorithms are appropriate for large problems with special Hessian
structure—such as for band matrices—the demands of a factorization at each iteration
limit their applicability for general large problems. It is for this reason that methods
which do not require factorizations are of interest.

Throughout this paper, we shall denote the k by k identity matrix by Ik and its jth
column by ej . A set of vectors {qi} are said to be M -orthonormal if 〈qi,Mqj〉 = δij ,
the Kronecker delta, and the matrix Qk = (q0 · · · qk) formed from these vectors is an
M -orthonormal matrix. The set of vectors {pi} are H-conjugate (or H-orthogonal)
if 〈pi, Hpj〉 = 0 for i 6= j.

SOLVING THE TRUST-REGION SUBPROBLEM 507

3. A new algorithm for large-scale trust-region subproblems. To set the
scene for this paper, we recall that the Cauchy point may be defined as the solution
to the problem

minimize
s ∈ span{M−1g}

q(s) ≡ 〈g, s〉+ 1
2 〈s,Hs〉 subject to ‖s‖M ≤ ∆,(3.1)

that is, as the minimizer of q within the trust region where s is restricted to the one-
dimensional subspace span

{
M−1g

}
. The dogleg methods (see [3], [13]) aim to solve

the same problem over a particular two-dimensional subspace (a one-dimensional arc),
while [19] does the same over a general two-dimensional subspace. In each of these
cases the solution is easy to find as the search space is small. The difficulty with the
general problem (2.1) is that the search space <n is large. This leads immediately to
the possibility of solving a compromise problem

minimize
s ∈ S

q(s) subject to ‖s‖M ≤ ∆,(3.2)

where S is a specially chosen subspace of <n.
Now consider the Steihaug–Toint algorithm at an iteration k before the trust-

region boundary is encountered. In this case, the point sk+1 is the solution to (3.2)
with the set

(3.3)

S = Kk def
= span

{
M−1g, (M−1H)M−1g, (M−1H)2M−1g, . . . , (M−1H)kM−1g

}
,

the Krylov space generated by the starting vector M−1g, and matrix M−1H. That is,
the Steihaug–Toint algorithm gradually widens the search space using the very efficient
preconditioned conjugate-gradient method. However, as soon as the Steihaug–Toint
algorithm moves across the trust-region boundary, the terminating point sk+1 no
longer necessarily solves the problem (3.2) over the set (3.3); indeed it is very unlikely
to do so when k > 0. (As the iterates generated by the method increase in M -norm,
once an iterate leaves the trust region, the solution to (3.2)–(3.3), and thus (2.1), must
lie on the boundary. See [22, Theorem 2.1] for details.) Can we do better? Yes, by
recalling that the preconditioned conjugate-gradient and Lanczos methods generate
different bases for the same Krylov space.

4. The preconditioned conjugate-gradient and Lanczos methods. The
preconditioned conjugate-gradient and Lanczos methods may be viewed as efficient
techniques for constructing different bases for the same Krylov space, Kk. The
conjugate-gradient method aims for an H-conjugate basis, while the Lanczos method
obtains an M -orthonormal basis.

Algorithm 4.1 (the preconditioned conjugate-gradient method). Set g0 = g,
and let v0 = M−1g0 and p0 = −v0. For j = 0, 1, . . . , k − 1, perform the iteration

αj = 〈gj , vj〉/〈pj , Hpj〉,(4.1)

gj+1 = gj + αjHpj ,(4.2)

vj+1 = M−1gj+1,(4.3)

βj = 〈gj+1, vj+1〉/〈gj , vj〉,(4.4)

pj+1 = −vj+1 + βjpj .(4.5)

508 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

Algorithm 4.2 (preconditioned Lanczos method). Set t0 = g, w−1 = 0, and,
for j = 0, 1, . . . , k, perform the iteration

yj = M−1tj ,(4.6)

γj =
√
〈tj , yj〉,(4.7)

wj = tj/γj ,(4.8)

qj = yj/γj ,(4.9)

δj = 〈qj , Hqj〉,(4.10)

tj+1 = Hqj − δjwj − γjwj−1.(4.11)

The conjugate-gradient method generates the basis

Kk = span {p0, p1, . . . , pk}(4.12)

from Algorithm 4.1, while the Lanczos method generates the basis

Kk = span {q0, q1, . . . , qk}(4.13)

from Algorithm 4.2. The Lanczos iteration is often written in the more compact form

HQk −MQkTk = γk+1wk+1e
T
k+1 and(4.14)

QTkMQk = Ik+1,(4.15)

where Qk is the matrix (q0 · · · qk) and the matrix

Tk =

δ0 γ1

γ1 δ1 ·
· · ·
· δk−1 γk

γk δk

(4.16)

is tridiagonal. It then follows directly that

QTkHQk = Tk,(4.17)

QTk g = γ0e1, and(4.18)

g = My0 = γ0Mq0.(4.19)

The two methods are intimately related. In particular, so long as the conjugate-
gradient iteration does not break down, the Lanczos vectors may be recovered from
the conjugate-gradient iterates as

qk = σkvk/
√
〈gk, vk〉, where σk = −sign(αk−1)σk−1 and σ0 = 1,

while the Lanczos tridiagonal may be expressed as

Tk =

1
α0

√
β0

|α0|√
β0

|α0|
1
α1

+ β0

α0

√
β1

|α1|√
β1

|α1|
1
α2

+ β1

α1
·

· · ·
· 1

αk−1
+ βk−2

αk−2

√
βk−1

|αk−1|√
βk−1

|αk−1|
1
αk

+ βk−1

αk−1

.(4.20)

SOLVING THE TRUST-REGION SUBPROBLEM 509

The conjugate-gradient iteration may break down if 〈pj , Hpj〉 = 0, which can occur
only if H is not positive definite, and will stop if 〈gj , vj〉 = 0. On the other hand, the
Lanczos iteration can fail only if Kj is an invariant subspace for M−1H.

If q(s) is convex in the manifold Kj+1, the minimizer sj+1 of q in this manifold
satisfies

sj+1 = sj + αjpj(4.21)

so long as the initial value s0 = 0 is chosen. Thus this estimate easily recurs from
the conjugate-gradient iteration. The minimizers in successive manifolds may also be
easily obtained using the Lanczos process, although the conjugate-gradient iteration
is slightly less expensive and thus preferred.

The vector gj+1 in the conjugate-gradient method gives the gradient of q(s) at
sj+1. It is quite common to stop the method as soon as this gradient is sufficiently
small, and the method naturally records the M−1-norm of the gradient, ‖gk+1‖M−1 =
〈gj , vj〉. This norm is also available in the Lanczos method as

gk+1 = γk+1〈ek+1, hk〉wk+1 and ‖gk+1‖M−1 = γk+1|〈ek+1, hk〉|,(4.22)

where hk solves the tridiagonal linear system Tkhk + γ0e1 = 0. The last component,
〈ek+1, hk〉, of hk is available as a further by-product.

5. The truncated Lanczos approach. Rather than use the preconditioned
conjugate-gradient basis {p0, p1, . . . , pk} for S, we shall use the equivalent Lanczos
M -orthonormal basis {q0, q1, . . . , qk}. The Lanczos basis has previously been used
by [10]—to convexify the quadratic model—and [8]—to compute good directions of
negative curvature—within linesearch-based methods for unconstrained minimization.
We shall consider vectors of the form

s ∈ S = {s ∈ <n | s = Qkh}

and seek

sk = Qkhk,(5.1)

where sk solves the problem

minimize
s ∈S

q(s) ≡ 〈g, s〉+ 1
2 〈s,Hs〉 subject to ‖s‖M ≤ ∆.(5.2)

It then follows directly from (4.15), (4.17), and (4.18) that hk solves the problem

minimize
h ∈ Rk+1

〈h, γ0e1〉+ 1
2 〈h, Tkh〉 subject to ‖h‖2 ≤ ∆.(5.3)

There are a number of crucial observations to be made here. First, it is important
to note that the resulting trust-region problem involves the two-norm rather than
the M -norm. Second, as Tk is tridiagonal, it is feasible to use the Moré–Sorensen
algorithm to compute the model minimizer even when n is large. Third, having found
hk, the matrix Qk is needed to recover sk, and thus the Lanczos vectors will either
need to be saved on backing store or regenerated. As we shall see, we need only Qk
once we are satisfied that continuing the Lanczos process will give little extra benefit.
Fourth, one would hope that as a sequence of such problems may be solved, and as Tk

510 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

only changes by the addition of an extra diagonal and superdiagonal entry, solution
data from one subproblem may be useful for starting the next. We consider this issue
in section 5.2.

The basic trust-region solution classification theorem, Theorem 2.1, shows that

(Tk + λkIk+1)hk = −γ0e1,(5.4)

where Tk + λkIk+1 is positive semidefinite, λk ≥ 0, and λk(‖hk‖2 − ∆) = 0. What
does this tell us about sk? First, using (4.17), (4.18), and (5.4) we have

QTk (H + λkM)sk = QTk (H + λkM)Qkhk = (Tk + λkIk+1)hk = −γ0e1 = −QTk g

and additionally that

λk(‖sk‖M −∆) = 0 and λk ≥ 0.(5.5)

Comparing these with the trust-region classification theorem, we see that sk is the
Galerkin approximation to sM from the space spanned by Qk.

We may then ask how good the approximation is. In particular, what is the error
(H + λkM)sk + g? The simplest way of measuring this error would be to calculate
hk and λk by solving (5.3), then to recover sk as Qkhk, and finally to substitute sk
and λk into (H +λM)s+ g. However, this is inconvenient as it requires that we have
easy access to Qk. Fortunately there is a far better way.

Theorem 5.1.

(H + λkM)sk + g = γk+1〈ek+1, hk〉wk+1(5.6)

and

‖(H + λkM)sk + g‖M−1 = γk+1|〈ek+1, hk〉|.(5.7)

Proof. We have that

Hsk = HQkhk
= MQkTkhk + γk+1〈ek+1, hk〉wk+1 from (4.14)
= −MQk(λkhk + γ0e1) + γk+1〈ek+1, hk〉wk+1 from (5.4)
= −λkMQkhk − γ0MQke1 + γk+1〈ek+1, hk〉wk+1

= −λkMsk − γ0Mq0 + γk+1〈ek+1, hk〉wk+1

= −λkMsk − g + γk+1〈ek+1, hk〉wk+1 from (4.19).

This then directly gives (5.6). Equation (5.7) follows from the M−1-orthonormality
of wk+1.

Therefore we can indirectly measure the error (in the M−1-norm) knowing simply
γk+1 and the last component of hk, and we do not need sk or Qk at all. Observant
readers will notice the strong similarity between this error estimate and the estimate
(4.22) for the gradient of the model in the Lanczos method, but this is not at all
surprising as the two methods are aiming for the same point if the trust-region radius
is large enough. An interpretation of (5.7) is also identical to that of (4.22). The error
will be small when either γk+1 or the last component of hk is small.

We now consider the problem (5.3) in more detail. We say that a symmetric tridi-
agonal matrix is reducible if one or more of its off-diagonal entries is zero; otherwise
it is irreducible. We then have the following preliminary result.

SOLVING THE TRUST-REGION SUBPROBLEM 511

Lemma 5.2 (see also [11, Theorem 7.9.5]). Suppose that the tridiagonal matrix
T is irreducible and that v is an eigenvector of T . Then the first component of v is
nonzero.

Proof. By definition

Tv = θv(5.8)

for some eigenvalue θ. Suppose that the first component of v is zero. Considering
the first component of (5.8), we have that the second component of v is zero as T is
tridiagonal and irreducible. Repeating this argument for the ith component of (5.8),
we deduce that the (i+1)st component of v is zero for all i and hence that v = 0. But
this contradicts the assumption that v is an eigenvector, and so the first component
of v cannot be zero.

This immediately yields the following useful result.

Theorem 5.3. Suppose that Tk is irreducible. Then the hard case cannot occur
for the subproblem (5.3).

Proof. Suppose the hard case occurs. Then, by definition, γ0e1 is orthogonal to
vk, the eigenvector corresponding to the leftmost eigenvalue, −θk, of Tk. Thus, the
first component of vk is zero, which, following Lemma 5.2, contradicts the assumption
that vk is an eigenvector. Thus the hard case cannot occur.

This result is important as it suggests that the full power of the Moré–Sorensen
[9] algorithm is not needed to solve (5.3). We shall return to this in section 5.2. We
also have an immediate corollary.

Corollary 5.4. Suppose that Tn−1 is irreducible. Then the hard case cannot
occur for the original problem (2.1).

Proof. When k = n − 1, the columns of Qn−1 form a basis for <n. Thus the
problems (2.1) and (5.2) are identical and (5.2) and (5.3) are related through a non-
singular transformation. The result then follows directly from Theorem 5.3 in the
case k = n− 1.

Thus, if the hard case occurs for (2.1), the Lanczos tridiagonal must become
reducible at some stage.

Theorem 5.5. Suppose that Tk is irreducible, that hk and λk satisfy (5.4), and
that Tk + λkIk+1 is positive semidefinite. Then Tk + λkIk+1 is positive definite.

Proof. Suppose that Tk +λkIk+1 is singular. Then there is a nonzero eigenvector
vk for which (Tk + λkIk+1)vk = 0. Hence, combining this with (5.4) reveals that

0 = 〈hk, (Tk + λkIk+1)vk〉 = 〈vk, (Tk + λkIk+1)hk〉 = −γ0〈vk, e1〉

and hence that the first component of vk is zero. But this contradicts Lemma 5.2.
Hence Tk + λkIk+1 is both positive semidefinite and nonsingular and thus positive
definite.

This result implies that (5.4) has a unique solution. We now consider this solution.

Theorem 5.6. Suppose that 〈ek+1, hk〉 = 0. Then Tk is reducible.

Proof. Suppose that Tk is irreducible. As the (k + 1)st component of hk is zero,
then from the irreducibility of Tk and the (k + 1)st equation of (5.4), we deduce that
the kth component of hk is zero. Repeating this argument for the (i+ 1)st equation
of (5.4), we deduce that the ith component of hk is zero for 1 ≤ i ≤ k and hence
that hk = 0. But this contradicts the first equation of (5.4), and thus Tk must be
reducible.

512 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

Thus we see that of the two possibilities suggested by Theorem 5.1 for obtaining
an sk for which (H + λkM)sk + g = 0, it will be the possibility γk+1 = 0 that occurs
before 〈ek+1, hk〉 = 0.

Theorem 5.7. Suppose that the hard case does not occur for (2.1), and that
γk+1 = 0. Then sk solves (2.1).

Proof. If γk+1 = 0, the Krylov space Kk is an invariant subspace of M−1H, and by
construction the first basis element of this space is M−1g. As the hard case does not
occur for (2.1), this space must also contain at least one eigenvector corresponding to
the leftmost eigenvalue, −θ, of M−1H. Thus one of the eigenvalues of Tk must be −θ,
and λk ≥ θ as Tk + λkIk+1 is positive semidefinite. But this implies that H + λkM is
positive semidefinite, which combines with (5.1), (5.5), and Theorem 5.1 with γk+1 = 0
to show that sk satisfies the optimality conditions shown in Theorem 2.1.

Thus we see that in the easy case, the required solution will be obtained from the
first irreducible block of the Lanczos tridiagonal. It remains for us to consider the
hard case. In view of Corollary 5.4, this case can only occur when Tk is reducible.
Suppose therefore that Tk reduces into ` blocks of the form

Tk =

Tk1

Tk2

·
Tk`

 ,(5.9)

where each of the Tki defines an invariant subspace for M−1H and where the last
block Tk` is the first to yield the leftmost eigenvalue, −θ, of M−1H. Then there are
two cases to consider.

Theorem 5.8. Suppose that the hard case occurs for (2.1), that Tk is as described
by (5.9), and that the last block Tk` is the first to yield the leftmost eigenvalue, −θ, of
M−1H. Then,

1. if θ ≤ λk1
, a solution to (2.1) is given by sk = Qk1

hk1
, where hk1

solves the
positive-definite system

(Tk1 + λk1Ik1+1)hk1 = −γ0e1;

2. if θ > λk1
, a solution to (2.1) is given by sk = Qkhk, where

hk =

h
0
·
0
αu

 ,(5.10)

h is the solution of the nonsingular tridiagonal system

(Tk1 + θIk1+1)h = −γ0e1,

u is an eigenvector of Tk` corresponding to −θ, and α is chosen so that

‖hk1‖22 + α2‖u||22 = ∆2.

Proof. In case 1, H + λk1
M is positive semidefinite as λk1

≥ θ and the remaining
optimality conditions are satisfied as γk1+1 = 0 and hk1

solves (5.2). That Tk1
+

λk1Ik1+1 is positive definite follows from Theorem 5.5. In case 2, H + θM is positive

SOLVING THE TRUST-REGION SUBPROBLEM 513

semidefinite. Furthermore, as θ > λk1
, it is easy to show that ‖h‖2 < ‖hk1

‖2 ≤ ∆
and hence that there is a root α for which ‖sk‖M = ‖hk‖2 = ∆. Finally, as each Qki
defines an invariant subspace, HQki = MQkiTki . Writing s = Qk1

h and v = Qk`u,
we therefore have

Hs = HQk1
h = MQk1

Tk1
h = MQk1

(−θh− γ0e1) = −θMs− g
and

Hv = HQk`u = MQk`Tk`u = −θMQk`u = −θMv.

Thus (H + θM)sk = −g and sk satisfies all optimality conditions for (5.2).
Notice that to obtain sk as described in this theorem, we require only the Lanczos

vectors corresponding to blocks one and, perhaps, ` of Tk.
We do not claim that solving the problem as outlined in Theorem 5.8 is realistic,

as it relies on our being sure that we have located the leftmost eigenvalue of M−1H.
With Lanczos-type methods, one cannot normally guarantee that all eigenvalues,
including the leftmost, will be found unless one ensures that all invariant subspaces
have been investigated, and this may prove to be very expensive for large problems. In
particular, the Lanczos algorithm, Algorithm 4.2, terminates each time an invariant
subspace has been determined and must be restarted using a vector q which is M -
orthonormal to the previous Lanczos directions. Such a vector may be obtained
from the Gram–Schmidt process by reorthonormalizing a suitable vector—a vector
with some component M -orthogonal to the existing invariant subspaces, perhaps a
random vector—with respect to the previous Lanczos directions, which means that
these directions will have to be regenerated or reread from backing store. Thus, while
this form of the solution is of theoretical interest, it is unlikely to be of practical
interest if a cheap approximation to the solution is all that is required.

5.1. The algorithm. We may now outline our algorithm, Algorithm 5.1, the
generalized Lanczos trust-region (GLTR) method. We stress that, as our goal is
merely to improve upon the value delivered by the Steihaug–Toint method, we do
not use the full power of Theorem 5.8 and are content just to investigate the first
invariant subspace produced by the Lanczos algorithm. In almost all cases, this
subspace contains the global solution to the problem, and the complications and costs
required to implement a method based on Theorem 5.8 are, we believe, prohibitive in
our context.

Algorithm 5.1 (the GLTR method). Let s0 = 0, g0 = g, v0 = M−1g0, γ0 =√〈v0, g0〉, and p0 = −v0. Set the flag INTERIOR as true. For k = 0, 1, . . . until
convergence, perform the iteration

αk = 〈gk, vk〉/〈pk, Hpk〉
Obtain Tk from Tk−1 using (4.20)
If INTERIOR is true, but αk ≤ 0 or ‖sk + αkpk‖M ≥ ∆

reset INTERIOR to false.
If INTERIOR is true

sk+1 = sk + αkpk
else

solve the tridiagonal trust-region subproblem (5.3) to obtain hk
end if
gk+1 = gk + αkHpk
vk+1 = M−1gk+1

514 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

If INTERIOR is true
test for convergence using the residual ‖gk+1‖M−1

else
test for convergence using the value γk+1|〈ek+1, hk〉|

end if
βk = 〈gk+1, vk+1〉/〈gk, vk〉
pk+1 = − vk+1 + βkpk

If INTERIOR is false, recover sk = Qkhk by rerunning the recurrences or obtaining Qk
from backing store.

When recovering sk = Qkhk by rerunning the recurrences, economies can be made
by saving the αi and βi during the first pass and reusing them during the second. A
potentially bigger savings may be made if one is prepared to accept a slightly inferior
value of the objective function. The idea is simply to save the value of q at each
iteration. On convergence, one looks back through this list to find an iteration, `,
say, for which a required percentage of the best value was obtained, recompute h`,
and then accept s` = Q`h` as the required estimate of the solution. If the required
percentage occurs at an iteration before the boundary is encountered, both the final
point before the boundary and the Steihaug–Toint point are suitable and available
without the need for the second pass.

We note that we have used the conjugate-gradient method (Algorithm 4.1) to
generate the Lanczos vectors. If the inner-product 〈pk, Hpk〉 proves to be tiny, it is
easy to continue using the Lanczos method (Algorithm 4.2) itself; the vectors

qj = vj/
√
〈gj , vj〉 and wj = gj/

√
〈gj , vj〉

required to continue the Lanczos recurrence (4.11) are directly calculable from the
conjugate-gradient method.

At each stage of both the Steihaug–Toint algorithm and our GLTR method (Algo-
rithm 5.1), we need to calculate ‖sk +αpk‖M . This issue is not discussed by Steihaug
as it is implicitly assumed that M is available. However, it may be the case that all
that is actually available is a procedure which returns M−1v for a given input v, and
thus M is unavailable. Fortunately this is not a significant drawback as it is possible
to calculate ‖sk + αpk‖M from available information.

To see this, observe that

‖sk + αpk‖2M = ‖sk‖2M + 2α〈sk,Mpk〉+ α2‖pk‖2M(5.11)

and thus that we can find ‖sk+1‖2M from ‖sk‖2M so long as we already know 〈sk,Mpk〉
and ‖pk‖2M . But it is straightforward to show that these quantities may be calculated
from the pair of recurrences

〈sk,Mpk〉 = βk−1

(〈sk−1,Mpk−1〉+ αk−1‖pk−1‖2M
)

and(5.12)

‖pk‖2M = 〈gk, vk〉+ β2
k−1‖pk−1‖2M ,(5.13)

where, of course, 〈gk, vk〉 has already been calculated as part of the preconditioned
conjugate-gradient method.

5.2. Solving the irreducible tridiagonal trust-region subproblem. In
view of Theorem 5.3, the irreducible tridiagonal trust-region subproblem (5.3) is,
in theory, easier to solve than the general problem. This is so both because the Hes-
sian is tridiagonal (and thus very inexpensive to factorize) and because the hard case

SOLVING THE TRUST-REGION SUBPROBLEM 515

cannot occur. We should be cautious here because the so-called almost hard case—
which occurs when g only has a tiny component in the range-space of H(λM)—may
still happen, and the trust-region problem in this case is naturally ill conditioned and
thus likely to be difficult to solve.

The Moré–Sorensen [9] algorithm is based on being able to form factorizations
of the model Hessian (which is certainly the case here as Tk + λIk+1 is tridiagonal),
but does not try to calculate the leftmost eigenvalue of the pencil H + λM . In the
tridiagonal case, computing the extreme eigenvalues is straightforward, particularly
if a sequence of related problems is to be solved. Thus, rather than using the Moré–
Sorensen algorithm, we prefer the following method.

We restrict ourselves to the case where the solution lies on the trust-region
boundary—we will only switch to this approach when the conjugate-gradient iter-
ation leaves the trust region. The basic iteration is identical to that proposed in [9],
namely, to apply Newton’s method to

φ(λ)
def
=

1

‖hk(λ)‖2 −
1

∆
= 0,(5.14)

where

(Tk + λIk+1)hk(λ) = −γ0e1,(5.15)

to find the required root λk. Recalling that we denote the leftmost eigenvalue of
Tk by −θk, the main difference between our approach and Moré and Sorensen’s is
that we always start from some point in the interval [max(0, θk), λk]—this interval is
characterized by both Tk + λIk+1 being positive definite and ‖hk(λ)‖2 ≥ ∆—as then
the resulting Newton iteration is globally linearly, and asymptotically quadratically,
convergent without any further safeguards. The Newton iteration is performed using
Algorithm 5.2.

Algorithm 5.2 (Newton’s method to solve φ(λ) = 0). Let λ > θk and ∆ > 0
be given.

1. Factorize Tk + λIk+1 = BDBT , where B and D are unit bidiagonal and
diagonal matrices, respectively.

2. Solve BDBTh = −γ0e1.
3. Solve Bw = h.
4. Replace λ by

λ+

(‖h‖2 −∆

∆

)(‖h‖22
‖w‖2D−1

)
.

The Newton correction in step 4 of this algorithm is given by

λ− φ(λ)

φ′(λ)
= λ+

(‖h‖2 −∆

∆

)(‖h‖22
〈h, (Tk + λIk+1)−1h〉

)
,

while the exact form given is obtained by using the identity

〈h, (Tk + λIk+1)−1h〉 = 〈h,B−TD−1B−1h〉 = 〈B−1h,D−1B−1h〉 = ‖w‖2D−1 ,

where w is as computed in step 3. It is slightly more efficient to pick B to be unit
upper-bidiagonal rather than unit lower-bidiagonal, as then step 2 simplifies to BTh =
−γ0D

−1e1 because of the structure of the right-hand side.

516 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

To obtain a suitable starting value, two possibilities are considered. First, we
attempt to use the solution value λk−1 from the previous subproblem. Recall that Tk
is merely Tk−1 with an appended row and column. As we already have a factorization
of Tk−1 + λk−1Ik, it is trivial to obtain that of Tk + λk−1Ik+1 and thus to determine
if the latter is positive definite. If Tk + λk−1Ik+1 turns out to be positive definite,
hk(λk−1) is computed from (5.15), and if ‖hk(λk−1)‖2 ≥ ∆, λk−1 is used to start the
Newton iteration.

Second, if λk−1 is unsuitable, we monitor Tk to see if it is indefinite. This is trivial,
as, for instance, the matrix is positive definite so long as all of the αi, 0 ≤ i ≤ k,
generated by the conjugate-gradient method are positive. If Tk is positive definite,
we start the Newton iteration with the value λ = 0, which by assumption gives
‖hk(0)‖2 ≥ ∆ as the unconstrained solution lying outside the trust region. Otherwise,
we determine the leftmost eigenvalue, −θk, of Tk and start with λ = θ + ε, where ε
is a small positive number chosen to make Tk + λk−1Ik+1 numerically “just” positive
definite. By this we mean that its BDBT factorization should exist, but that ε should
be as small as possible. We have found that a value (1 + θk)ε0.5m , where εm is the unit
roundoff, is almost always suitable, but we have added the precaution of multiplying
this value by increasing powers of 2 so long as the factorization fails.

If we need to compute the leftmost eigenvalue of Tk, we use an iteration based
upon the last-pivot function proposed by Parlett and Reid [12]. The last-pivot func-
tion, δk(θ), is simply the value of the last diagonal entry of the BDBT factor Dk(λ)
of Tk − θIk+1. This value will be zero, and the other diagonal entries positive, when
θ = θk and δk(θ) > 0 for θ > θk. An interval of uncertainty [θl, θu] is placed around
the required root. The initial interval is given by the Gersgorin bounds on the left-
most eigenvalue. When it is known, the leftmost eigenvalue, −θk−1, of Tk−1 may
be used to improve the lower bound because of the Cauchy interlacing property of
the eigenvalues of Tk−1 and Tk (see, for instance, [11, Theorem 10.1.2]). Given an
initial estimate of θk, an improvement may be sought by applying Newton’s method
to δk(θ); the derivative of δk is easy to obtain by recurrence. However, as Parlett and
Reid point out,

δk(θ) =
det(Tk − θIk+1)

det(Tk−1 − θIk)

and thus has a pole at θ = θk−1. Hence it is better to choose the new point by fitting
the model

δM

k (θ) =
(θ − a)(θ − b)
θ − θk−1

(5.16)

to the function and derivative value at the current θ and then to pick the new iterate
as the larger root of δM

k (θ). If the new iterate lies outside the interval of uncertainty,
it is replaced by the midpoint of the interval. The interval is then contracted by
computing δk at the new iterate and replacing the appropriate endpoint by the iterate.
The iteration is stopped if the length of the interval or the value of δk(θk) is small.

If θk−1 is known, the initial iterate chosen as θk−1 + ε for some small positive
ε ≤ θk − θk−1, and successive iterates generated from (5.16), the iterates converge
globally, and asymptotically superlinearly, from the left. If the Newton iteration
is used, the required root is frequently obscured and the scheme resorts to interval
bisection. Thus the Parlett–Reid scheme is preferred.

SOLVING THE TRUST-REGION SUBPROBLEM 517

Other means of locating the required eigenvalue based on using the determinant
det(Tk − θIk+1) instead of δk(θ) were tried, but proved to be less reliable because of
the huge numerical range (and thus potential overflow) of the determinant.

6. Numerical experiments. The algorithm sketched in sections 5.1 and 5.2 has
been implemented as a Fortran-90 module, HSL VF05, within the Harwell Subroutine
Library [6].

As our main interest is in using the methods described in this paper within a
trust-region algorithm, we are particularly concerned with two issues. First, can we
obtain significantly better values of the model by finding better approximations to
its solution than the Steihaug–Toint method? And second, do better approximations
to the minimizer of the model necessarily translate into fewer iterations of the trust-
region method? In this section, we address these outstanding questions.

Throughout, we will consider the basic problem of minimizing an objective f(x)
of n real variables x. We shall use the following standard trust-region method.

Algorithm 6.1 (standard trust-region algorithm).
0. An initial point x0 and an initial trust-region radius ∆0 are given, as are

constants εg, η1, η2, γ1, and γ2, which are required to satisfy the conditions

0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 ≤ γ2.(6.1)

Set k = 0.
1. Stop if ‖∇xf(xk)‖2 ≤ εg.
2. Define a second-order Taylor series model qk and a positive-definite precon-

ditioner Mk. Compute a step sk to “sufficiently reduce the model” qk within
the trust region ‖s‖Mk

≤ ∆k.
3. Compute the ratio

ρk =
f(xk)− f(xk + sk)

qk(xk)− qk(xk + sk)
.(6.2)

If ρk ≥ η1, let xk+1 = xk + sk; otherwise let xk+1 = xk.
4. Set

∆k+1 =

 γ2∆k if ρk ≥ η2,
∆k if ρk ∈ [η1, η2),
γ1∆k if ρk < η1.

(6.3)

Increment k by one, and go to step 1.
We choose the specific values εg = 0.00001, η1 = 0.01, η2 = 0.95, γ1 = 0.5, and

γ2 = 2 and set an upper limit of n iterations. The step sk in step 2 is computed
using either Algorithm 5.1 or the Steihaug–Toint algorithm. Convergence in both
algorithms for the subproblem occurs as soon as

‖gk+1‖M−1 ≤ min(0.1, ‖g0‖0.1M−1)‖g0‖M−1(6.4)

or if more than n iterations have been performed. In addition, of course, the Steihaug–
Toint algorithm terminates as soon as the boundary is crossed.

All our tests were performed on an IBM RISC System/6000 3BT workstation with
64 Megabytes of RAM; the codes are all double precision Fortran-90, compiled under
xlf90 with -O optimization, and IBM library BLAS are used. The test examples
we consider are the larger examples from the CUTE test set [1] for which negative

518 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

curvature is frequently encountered. Tests were terminated if more than 30 CPU
minutes elapsed.

6.1. Can we get much better model values than Steihaug–Toint? We
first consider problems of the form (2.1). Our test examples are generated by run-
ning Algorithm 6.1 on the CUTE set for 10 iterations and taking the trust-region
subproblem at iteration 10 as our example. The idea here is to simulate the kind of
subproblems which occur in practice, not those which result at the starting point for
the algorithm, as such points frequently have special (favorable) properties.

Our aim is to see whether there is any significant advantage in continuing the
minimization of the trust-region subproblem once the boundary of the trust region
has been encountered. We ran HSL VF05 to convergence, stopping when ‖gk+1‖M−1 ≤
max(10−15, 10−5‖g0‖M−1) or more than n iterations had been performed.

In all of the experiments reported here, the best value found was in fact the
optimum value—a factorization of H + λM was used to confirm that the matrix
was positive semidefinite, while the algorithm ensured that the remaining optimality
conditions held—although, of course, there is no guarantee that this will always be
the case. We measured the iteration (ST) and the percentage (ratio) of the optimal
value obtained at the point at which the Steihaug–Toint method left the trust region,
as well as the number of iterations taken to achieve 10%, 90%, and 99% of the optimal
reduction (10%, 90%, 99%, respectively).

The results of these experiments are summarized in Table 6.1. In this table we
give the name of each example used, along with its dimension n, and the statis-
tics “ratio”(expressed in the form x(y) as a shorthand for x × 10y), “ST,” “10%,”
“90%,” and “99%” as just described. Some of the problems had interior solutions,
in which case the “ratio” and “ST” statistics are absent (as indicated by a dash).
We considered both the unpreconditioned method (M = In) and a variety of stan-
dard preconditioners—a band preconditioner with semibandwidth of 5, and modified
incomplete and sparse Cholesky factorizations, with the modifications as proposed
in [18]—used by the LANCELOT package (see [2, Chapter 3]). The Cholesky factor-
ization methods both failed for the problem MSQRTALS for which the Hessian matrix
required too much storage.

We make a number of observations.
1. On some problems, the Steihaug–Toint point gives a model value which is a

good approximation to the optimal value.
2. On other problems, a few extra iterations beyond the Steihaug–Toint point

pay handsome dividends.
3. Getting to within 90% or even 99% of the best value very rarely requires

many more iterations than to find the Steihaug–Toint point.
In conclusion, based on these numbers, we suggest that a good strategy would

be to perform a few (say, 5) iterations beyond the Steihaug–Toint point and accept
the improved point only if its model value is significantly better (as this will cost a
second pass to compute the Lanczos vectors). We shall consider this further in the
next section.

6.2. Do better values than Steihaug–Toint imply a better trust-region
method? We now consider how the methods we have described for approximately
solving the trust-region subproblem perform within a trust-region algorithm. Of par-
ticular interest is the question whether solving the subproblem more accurately re-
duces the number of trust-region iterations or more particularly the cost of solving
the problem—the number of iterations is of concern if the evaluation of the objective

SOLVING THE TRUST-REGION SUBPROBLEM 519

Table 6.1
A comparison of the number of iterations required to achieve a given percentage of the optimal

model value for a variety of preconditioners. See the text for a key to the data.

No preconditioner 5 band
Example n Ratio ST 10% 90% 99% Ratio ST 10% 90% 99%
BROYDN7D 1000 9(-1) 1 1 2 2 8(-3) 3 4 8 19
BRYBND 1000 3(-5) 23 24 28 39 5(-5) 1 2 6 17
CHAINWOO 1000 4(-5) 15 16 20 31 8(-1) 1 1 2 2
COSINE 1000 8(-1) 1 1 2 2 2(-13) 1 2 6 17
CRAGGLVY 1000 - - 1 2 3 - - 1 1 1
DIXMAANA 1500 - - 1 1 1 - - 1 1 1
DQRTIC 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
EIGENALS 930 8(-1) 1 1 2 2 8(-1) 1 1 2 2
FREUROTH 1000 - - 1 4 5 8(-1) 1 1 2 2
GENROSE 1000 8(-3) 8 9 9 10 8(-1) 1 1 2 2
HYDC20LS 99 5(-6) 23 25 29 40 8(-1) 1 1 3 3
MANCINO 100 8(-1) 1 1 2 5 8(-1) 1 1 2 2
MSQRTALS 1024 1(-1) 12 11 23 49 1(-5) 1 2 6 17
NCB20B 1000 3(-5) 65 66 70 81 2(-4) 96 97 101 112
NONCVXUN 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
NONCVXU2 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
SENSORS 100 7(-1) 1 1 2 7 7(-6) 1 2 6 16
SINQUAD 5000 1 3 2 2 2 6(-3) 11 11 12 13
SPARSINE 1000 4(-1) 44 1 50 54 8(-1) 1 1 2 2
SPMSRTLS 1000 4(-2) 5 5 6 7 2(-7) 1 2 6 17

Incomplete Cholesky Modified Cholesky
Example n Ratio ST 10% 90% 99% Ratio ST 10% 90% 99%
BROYDN7D 1000 6(-6) 1 2 6 17 6(-3) 2 3 7 18
BRYBND 1000 8(-1) 1 1 2 2 - - 1 1 1
CHAINWOO 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
COSINE 1000 8(-1) 1 1 2 2 7(-20) 1 2 6 17
CRAGGLVY 1000 - - 1 1 1 - - 1 1 1
DIXMAANA 1500 5(-1) 1 1 4 11 3(-11) 1 2 6 17
DQRTIC 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
EIGENALS 930 1(-4) 1 2 6 17 2(-10) 1 2 6 17
FREUROTH 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
GENROSE 1000 8(-1) 1 1 2 2 2(-7) 1 2 6 17
HYDC20LS 99 8(-1) 1 1 2 2 4(-1) 1 1 5 14
MANCINO 100 8(-1) 1 1 2 2 8(-1) 1 1 2 2
MSQRTALS 1024 factorization failure factorization failure
NCB20B 1000 1(-6) 2 3 7 18 2(-4) 3 4 8 19
NONCVXUN 1000 8(-1) 1 1 2 2 3(-5) 1 2 6 17
NONCVXU2 1000 7(-2) 1 2 6 17 3(-6) 1 2 6 17
SENSORS 100 8(-1) 1 1 2 2 7(-14) 1 2 6 16
SINQUAD 5000 - - 2 2 2 - - 1 1 1
SPARSINE 1000 5(-4) 1 2 6 17 1E(-10) 1 2 6 17
SPMSRTLS 1000 3(-7) 1 2 6 17 8E(-14) 1 2 6 17

function and its derivatives is the dominant cost, as then there is a direct correlation
between the number of iterations and the overall cost of solving the problem.

In Tables 6.2 and 6.3, we compare the Steihaug–Toint scheme with the GLTR
algorithm (Algorithm 5.1) run to high accuracy. We exclude the problem HYDC20LS

for our reported results, as no method succeeded in solving the problem in fewer than
our limit of n iterations, and the problems BROYDN7D and SPMSRTLS, as a number of
different local minima were found. In these tables, in addition to the name and dimen-
sion of each example, we give the number of objective function (“#f”) and derivative
(“#g”) values computed, the total number of matrix-vector products (“#prod”) re-
quired to solve the subproblems, and the total CPU time required in seconds. We
compare the same preconditioners M as we used in the previous section. We indi-
cate those cases where one or another method performs at least 10% better than its
competitor by highlighting the relevant figure in bold.

520 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

Table 6.2
A comparison of the Steihaug–Toint and exact model minimization techniques within a trust-

region method, using a variety of preconditioners, for unconstrained minimization (part 1). See the
text for a key to the data.

No preconditioner Steihaug–Toint Model optimum
Example n #f #g #prods CPU #f #g #prods CPU
BRYBND 1000 13 13 80 0.9 13 13 80 1.0
CHAINWOO 1000 > n iterations 865 577 34419 145.02
COSINE 1000 11 11 14 0.1 11 11 14 0.1
CRAGGLVY 1000 19 19 130 1.0 19 19 130 0.9
DIXMAANA 1500 13 13 12 0.3 13 13 17 0.3
DQRTIC 1000 43 43 83 0.3 43 43 91 0.3
EIGENALS 930 68 56 1303 68.2 52 45 1107 57.3
FREUROTH 1000 17 17 34 0.4 17 17 34 0.4
GENROSE 1000 859 777 6092 28.8 773 642 24466 82.2
MANCINO 100 25 24 29 21.0 26 24 67 21.6
MSQRTALS 1024 44 34 7795 486.0 32 27 6009 373.6
NCB20B 1000 40 25 2057 92.3 27 16 7533 327.8
NONCVXUN 1000 492 466 177942 1017.9 > 1800 seconds
NONCVXU2 1000 414 381 3582 26.2 335 283 6987 44.0
SENSORS 100 20 19 37 6.4 20 19 140 8.8
SINQUAD 5000 182 114 363 24.3 161 106 382 24.6
SPARSINE 1000 15 15 3790 31.5 15 15 4143 34.4

5 band Steihaug–Toint Model optimum
Example n #f #g #prods CPU #f #g #prods CPU
BRYBND 1000 29 25 42 2.1 29 25 44 2.1
CHAINWOO 1000 146 99 145 4.8 191 123 196 6.3
COSINE 1000 21 15 20 0.4 21 15 30 0.5
CRAGGLVY 1000 22 22 21 1.1 22 22 21 1.1
DIXMAANA 1500 13 13 14 0.5 13 13 16 0.6
DQRTIC 1000 54 54 53 0.9 54 54 53 1.0
EIGENALS 930 56 43 171 75.2 53 42 222 75.8
FREUROTH 1000 20 18 19 0.8 20 18 17 0.8
GENROSE 1000 > n iterations > n iterations
MANCINO 100 91 72 90 87.2 52 43 90 52.2
MSQRTALS 1024 88 62 9793 700.2 73 52 19416 1292.2
NCB20B 1000 28 18 827 41.2 23 14 4775 214.4
NONCVXUN 1000 > n iterations > n iterations
NONCVXU2 1000 > n iterations > n iterations
SENSORS 100 33 29 38 12.2 45 38 197 19.3
SINQUAD 5000 239 154 753 67.0 203 133 806 65.4
SPARSINE 1000 46 37 3289 32.4 64 50 3678 36.9

We observe the following:
1. The use of different M leads to radically different behavior. Different precon-

ditioners appear to be particularly suited to different problems. Surprisingly,
perhaps, the unpreconditioned algorithm often performs the best overall.

2. In the unpreconditioned case, the model-optimum variant frequently requires
significantly fewer function evaluations than the Steihaug–Toint method. How-
ever, the extra algebraic costs per iteration often outweigh the reduction in
the numbers of iterations. The advantage in function calls for the other pre-
conditioners is less pronounced.

Ideally, one would like to retain the advantage in numbers of function calls while
reducing the cost per iteration. As we noted in section 6.1, one normally gets a good
approximation to the optimal model value after a modest number of iterations. More-
over, while the Steihaug–Toint point often gives a significantly suboptimal value, a few
extra iterations usually suffice to give a large percentage of the optimum. Thus, we
next investigate both of these issues in the context of an overall trust-region method.

In Tables 6.4 and 6.5, we compare the number of function evaluations (#f) and
the CPU time taken to solve the problem for the Steihaug–Toint (“ST”) method

SOLVING THE TRUST-REGION SUBPROBLEM 521

Table 6.3
A comparison of the Steihaug–Toint and exact model minimization techniques within a trust-

region method, using a variety of preconditioners, for unconstrained minimization (part 2). See the
text for a key to the data.

Incomplete Cholesky Steihaug–Toint Model optimum
Example n #f #g #prods CPU #f #g #prods CPU
BRYBND 1000 55 18 54 3.9 59 37 61 7.7
CHAINWOO 1000 174 115 173 8.1 183 121 309 10.3
COSINE 1000 22 17 26 0.8 22 19 49 1.2
CRAGGLVY 1000 22 22 21 1.5 22 22 21 1.5
DIXMAANA 1500 16 14 15 0.8 32 23 37 1.8
DQRTIC 1000 54 54 53 0.9 54 54 53 1.1
EIGENALS 930 76 52 76 94.6 89 60 112 111.1
FREUROTH 1000 > n iterations > n iterations
GENROSE 1000 948 629 951 35.5 496 322 847 23.5
MANCINO 100 29 27 30 125.0 31 28 32 130.1
MSQRTALS 1024 factorization failure factorization failure
NCB20B 1000 34 18 48 23.2 54 28 150 41.2
NONCVXUN 1000 > n iterations > n iterations
NONCVXU2 1000 > n iterations > n iterations
SENSORS 100 49 41 48 24.8 44 37 136 24.8
SINQUAD 5000 77 52 89 542.6 78 50 121 526.7
SPARSINE 1000 90 75 3465 89.1 135 109 4974 130.3
Modified Cholesky Steihaug–Toint Model optimum

Example n #f #g #prods CPU #f #g #prods CPU
BRYBND 1000 15 15 14 2.2 59 37 61 7.7
CHAINWOO 1000 178 119 177 7.6 183 121 309 10.3
COSINE 1000 41 25 40 1.1 22 19 49 1.2
CRAGGLVY 1000 23 23 33 1.4 22 22 21 1.6
DIXMAANA 1500 35 23 34 1.3 32 23 37 1.8
DQRTIC 1000 54 54 53 1.2 54 54 53 1.1
EIGENALS 930 133 92 132 167.8 89 60 112 111.0
FREUROTH 1000 > n iterations > n iterations
GENROSE 1000 462 332 463 16.5 496 322 847 23.4
MANCINO 100 31 28 30 129.3 31 28 32 130.1
MSQRTALS 1024 factorization failure factorization failure
NCB20B 1000 38 23 81 26.1 54 28 150 41.2
NONCVXUN 1000 > n iterations > n iterations
NONCVXU2 1000 > n iterations > n iterations
SENSORS 100 97 67 97 40.6 44 37 136 24.8
SINQUAD 5000 14 14 13 99.4 78 50 121 527.1
SPARSINE 1000 324 176 796 852.6 135 109 4974 130.4

with a number of variations on our basic GLTR method (Algorithm 5.1). The basic
requirement is that we compute a model value which is at least 90% of the best
value found during the first pass of the GLTR method. If this value is obtained
by an iterate before that which gives the Steihaug–Toint point, the Steihaug–Toint
point is accepted. Otherwise, a second pass is performed to recover the first point at
which 90% of the best value was observed. The other ingredient is the choice of the
stopping rule for the first pass. One possibility is to stop this pass as soon as the test
(6.4) is satisfied. We denote this strategy by “90%best.” The other possibility is to
stop when either (6.4) is satisfied or at most a fixed number of iterations beyond the
Steihaug–Toint point have occurred. We refer to this as “90%(ST+k),” where k gives
the number of additional iterations allowed. We investigate the cases k = 1, 5, and
10. Once again, we compare the same preconditioners M as we used in the previous
section. We highlight in bold those entries which are at least 10% better than the
competition.

The conclusions are as broad as before. Each method has its successes and failures,
and there is no clear overall best method or preconditioner, although the unprecondi-
tioned version performs surprisingly well. Restricting the number of iterations allowed

522 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

Table 6.4
A comparison of a variety of GLTR techniques within a trust-region method, using a variety

of preconditioners, for unconstrained minimization (part 1). See the text for a key to the data.

No preconditioner ST 90%(ST+1) 90%(ST+5) 90%(ST+10) 90%best
Example n #f CPU #f CPU #f CPU #f CPU #f CPU
BRYBND 1000 13 0.9 13 0.9 13 0.9 13 1.0 13 1.0
CHAINWOO 1000 > n its. 902 61.8 915 81.8 884 87.9 887 112.5
COSINE 1000 11 0.1 11 0.2 11 0.1 11 0.1 11 0.1
CRAGGLVY 1000 19 1.0 19 0.9 19 0.9 19 0.9 19 1.0
DIXMAANA 1500 13 0.3 13 0.3 13 0.3 13 0.3 13 0.3
DQRTIC 1000 43 0.3 43 0.3 43 0.3 43 0.3 43 0.3
EIGENALS 930 68 68.2 59 61.5 66 71.0 61 71.4 62 69.7
FREUROTH 1000 17 0.4 17 0.4 17 0.4 17 0.4 17 0.4
GENROSE 1000 859 28.8 748 38.9 721 48.1 738 57.3 728 60.0
MANCINO 100 25 21.0 24 20.2 24 20.2 24 20.4 24 20.4
MSQRTALS 1024 44 486.0 45 558.8 35 394.2 45 569.8 62 824.4
NCB20B 1000 40 92.3 40 104.7 45 141.1 33 104.6 30 182.3
NONCVXUN 1000 492 1017.9 368 861.3 > 1800 secs. > 1800 secs. 433 1198.6
NONCVXU2 1000 414 26.2 263 24.4 272 29.7 270 31.4 292 36.2
SENSORS 100 20 6.4 23 7.3 21 8.1 21 8.0 21 8.1
SINQUAD 5000 182 24.3 152 20.8 152 21.7 152 21.4 152 21.5
SPARSINE 1000 15 31.5 16 36.4 16 36.5 16 36.5 16 36.6

5 band ST 90%(ST+1) 90%(ST+5) 90%(ST+10) 90%best
Example n #f CPU #f CPU #f CPU #f CPU #f CPU
BRYBND 1000 29 2.1 29 2.1 29 2.1 29 2.1 29 2.1
CHAINWOO 1000 146 4.8 159 5.1 159 5.1 159 5.2 159 5.1
COSINE 1000 21 0.4 21 0.5 21 0.4 21 0.4 21 0.5
CRAGGLVY 1000 22 1.1 22 1.0 22 1.1 22 1.1 22 1.1
DIXMAANA 1500 13 0.5 13 0.6 13 0.6 13 0.6 13 0.6
DQRTIC 1000 54 0.9 54 0.9 54 1.0 54 1.0 54 1.0
EIGENALS 930 56 75.2 79 97.9 80 98.7 80 98.6 80 98.4
FREUROTH 1000 20 0.8 20 0.8 20 0.8 20 0.9 20 0.8
GENROSE 1000 > n its. > n its. > n its. > n its. > n its.
MANCINO 100 91 87.2 52 51.8 52 51.8 52 52.0 52 51.8
MSQRTALS 1024 88 700.2 97 756.7 73 704.9 74 844.7 79 981.5
NCB20B 1000 28 41.2 28 43.0 28 53.7 29 58.6 25 88.3
NONCVXUN 1000 > n its. > n its. > n its. > n its. > n its.
NONCVXU2 1000 > n its. > n its. > n its. > n its. > n its.
SENSORS 100 33 12.2 41 15.7 44 18.2 44 18.3 44 18.0
SINQUAD 5000 239 67.0 221 61.4 232 67.0 232 66.8 232 66.6
SPARSINE 1000 46 32.4 62 37.6 78 38.4 65 30.9 65 31.0

after the Steihaug–Toint point has been found appears to curb the worst behavior of
the unrestricted method.

7. Perspectives and conclusions. We have considered a number of methods
which aim to find a better approximation to the solution of the trust-region subprob-
lem than that delivered by the Steihaug–Toint scheme. These methods are based on
solving the subproblem within a subspace defined by the Krylov space generated by
the conjugate-gradient and Lanczos methods. The Krylov subproblem has a number
of useful properties which lead to its efficient solution. The resulting algorithm is
available as a Fortran-90 module, HSL VF05 [6].

We must admit to being slightly disappointed that the new method did not per-
form uniformly better than the Steihaug–Toint scheme, and we were genuinely sur-
prised that a more accurate approximation does not appear to significantly reduce
the number of function evaluations within a standard trust-region method, at least
in the tests we performed. While this may limit the use of the methods developed
here, it also calls into question a number of other recent eigensolution-based proposals
for solving the trust-region subproblem (see [15], [16], [17], [21]). While these authors
demonstrate that their methods provide an effective means of solving the subproblem,

SOLVING THE TRUST-REGION SUBPROBLEM 523

Table 6.5
A comparison of a variety of GLTR techniques within a trust-region method, using a variety

of preconditioners, for unconstrained minimization (part 2). See the text for a key to the data.

Incomplete Cholesky ST 90%(ST+1) 90%(ST+5) 90%(ST+10) 90%best
Example n #f CPU #f CPU #f CPU #f CPU #f CPU
BRYBND 1000 55 3.9 56 4.2 56 4.3 56 4.3 56 5.0
CHAINWOO 1000 174 8.1 199 9.7 199 10.1 199 10.2 199 10.1
COSINE 1000 22 0.8 45 1.9 45 1.9 45 1.9 45 2.0
CRAGGLVY 1000 22 1.5 22 1.6 22 1.6 22 1.5 22 1.6
DIXMAANA 1500 16 0.8 32 1.7 32 1.7 32 1.7 32 1.7
DQRTIC 1000 54 0.9 54 1.0 54 1.1 54 1.1 54 1.1
EIGENALS 930 76 94.6 77 97.2 74 97.2 74 97.3 74 96.8
FREUROTH 1000 > n its. > n its. > n its. > n its. > n its.
GENROSE 1000 948 35.5 500 22.4 499 23.0 499 23.0 499 23.0
MANCINO 100 29 125.0 31 129.6 31 130.1 31 129.7 31 129.9
MSQRTALS 1024 fact. failure fact. failure fact. failure fact. failure fact. failure
NCB20B 1000 34 23.2 40 27.2 40 27.7 40 27.6 40 27.4
NONCVXUN 1000 > n its. > n its. > n its. > n its. > n its.
NONCVXU2 1000 > n its. > n its. > n its. > n its. > n its.
SENSORS 100 49 24.8 45 25.6 55 28.8 55 29.0 55 28.8
SINQUAD 5000 77 542.6 68 484.2 68 484.1 68 485.4 68 489.0
SPARSINE 1000 90 89.1 144 117.8 177 143.1 177 138.7 177 138.9
Modified Cholesky ST 90%(ST+1) 90%(ST+5) 90%(ST+10) 90%best

Example n #f CPU #f CPU #f CPU #f CPU #f CPU
BRYBND 1000 15 2.2 15 2.2 15 2.3 15 2.2 15 2.2
CHAINWOO 1000 178 7.6 176 7.9 176 7.9 176 7.8 176 8.0
COSINE 1000 41 1.1 41 1.3 41 1.3 41 1.3 41 1.3
CRAGGLVY 1000 23 1.4 23 1.4 23 1.4 23 1.5 23 1.5
DIXMAANA 1500 35 1.3 35 1.5 35 1.4 35 1.4 35 1.4
DQRTIC 1000 54 1.2 54 1.2 54 1.3 54 1.3 54 1.3
EIGENALS 930 133 167.8 113 123.5 63 85.4 63 85.5 63 86.2
FREUROTH 1000 > n its. > n its. > n its. > n its. > n its.
GENROSE 1000 462 16.5 434 18.8 434 19.3 434 19.1 434 19.1
MANCINO 100 31 129.3 64 232.3 77 275.9 77 275.5 77 275.6
MSQRTALS 1024 fact. failure fact. failure fact. failure fact. failure fact. failure
NCB20B 1000 38 26.1 33 22.8 33 26.8 33 26.8 33 26.4
NONCVXUN 1000 > n its. > n its. > n its. > n its. > n its.
NONCVXU2 1000 > n its. > n its. > n its. > n its. > n its.
SENSORS 100 97 40.6 72 32.6 66 32.0 66 31.9 66 31.9
SINQUAD 5000 14 99.4 14 99.9 14 100.0 14 99.7 14 99.7
SPARSINE 1000 324 852.6 254 738.1 361 1047.5 363 1063.7 363 1063.6

they make no effort to evaluate whether this is actually useful within a trust-region
method. The results given in this paper suggest that this may not in fact be the case.
This also leads to the interesting question as to whether it is possible to obtain useful
low-accuracy solutions with these methods. We believe that further testing is needed
to confirm the trends we have observed here.

We should not pretend that the formulae given in this paper are exact or even
accurate in floating-point arithmetic. Indeed, it is well known that the floating-
point matrices Qk from the Lanczos method quickly lose M -orthonormality (see, for
instance, [11, Section 13.3]). Despite this, the method as given appears to be capable
of producing usable approximate solutions to the trust-region subproblem. We are
currently investigating why this should be so.

One further possibility, which we have not considered so far, is to find an estimate
λ using the first pass of Algorithm 5.1 and then to compute the required s by min-
imizing the unconstrained model 〈g, s〉 + 1

2 〈s, (H + λM)s〉 using the preconditioned
conjugate-gradient method. The advantage of doing this is that any instability in the
first pass does not necessarily reappear in this auxiliary calculation. The disadvan-
tages are that it may require more work than simply using (5.1) and that λ must be

524 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

computed sufficiently large to ensure that H + λM is positive semidefinite.

Acknowledgments. We would like to thank John Reid for his helpful advice on
computing eigenvalues of tridiagonal matrices and Jorge Moré for his useful comments
on the Moré–Sorensen [9] method. Many thanks are also due to Jorge Nocedal and
two anonymous referees.

REFERENCES

[1] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint, CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[2] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT: A Fortran Package for Large-
Scale Nonlinear Optimization (Release A), Springer Series in Computational Mathematics
17, Springer-Verlag, Heidelberg, Berlin, New York, 1992.

[3] J. E. Dennis and H. H. W. Mei, Two new unconstrained optimization algorithms which use
function and gradient values, J. Optim. Theory Appl., 28 (1979), pp. 453–482.

[4] D. M. Gay, Computing optimal locally constrained steps, SIAM J. Sci. Statist. Comput., 2
(1981), pp. 186–197.

[5] S. M. Goldfeldt, R. E. Quandt, and H. F. Trotter, Maximization by quadratic hill-
climbing, Econometrica, 34 (1966), pp. 541–551.

[6] Harwell Subroutine Library, A Catalogue of Subroutines (Release 13), AEA Technology,
Harwell, Oxfordshire, England, 1998, to appear.

[7] M. D. Hebden, An Algorithm for Minimization Using Exact Second Derivatives, Tech. Rep.
T. P. 515, AERE Harwell Laboratory, Harwell, UK, 1973.

[8] S. Lucidi and M. Roma, Numerical experience with new truncated Newton methods in large
scale unconstrained optimization, Comput. Optim. Appl., 7 (1997), pp. 71–87.

[9] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,
4 (1983), pp. 553–572.

[10] S. G. Nash, Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal., 21
(1984), pp. 770–788.

[11] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice–Hall, Englewood Cliffs, NJ,
1980; reprinted by SIAM, Philadelphia, PA, 1998.

[12] B. N. Parlett and J. K. Reid, Tracking the progress of the Lanczos algorithm for large
symmetric eigenproblems, J. Inst. Math. Appl., 1 (1981), pp. 135–155.

[13] M. J. D. Powell, A new algorithm for unconstrained optimization, in Nonlinear Programming,
J. B. Rosen, O. L. Mangasarian, and K. Ritter, eds., Academic Press, London, New York,
1970, pp. 31–65.

[14] M. J. D. Powell, Convergence properties of a class of minimization algorithms, in Nonlinear
Programming 2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic
Press, London, New York, 1975, pp. 1–27.

[15] F. Rendl, R. J. Vanderbei, and H. Wolkowicz, Max-min eigenvalue problems, primal-dual
interior point algorithms, and trust region subproblems, Optim. Methods Softw., 5 (1995),
pp. 1–16.

[16] F. Rendl and H. Wolkowicz, A semidefinite framework for trust region subproblems with
applications to large scale minimization, Math. Programming, Series B, 77 (1997), pp. 273–
299.

[17] S. A. Santos and D. C. Sorensen, A New Matrix-Free Algorithm for the Large-Scale Trust-
Region Subproblem, Tech. Rep. TR95-20, Department of Computational and Applied Math-
ematics, Rice University, Houston, Texas, 1995.

[18] R. B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J. Sci. Statist.
Comput., 11 (1990), pp. 1136–1158.

[19] G. A. Shultz, R. B. Schnabel, and R. H. Byrd, A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties, SIAM J. Numer.
Anal., 22 (1985), pp. 47–67.

[20] D. C. Sorensen, Newton’s method with a model trust modification, SIAM J. Numer. Anal., 19
(1982), pp. 409–426.

SOLVING THE TRUST-REGION SUBPROBLEM 525

[21] D. C. Sorensen, Minimization of a large-scale quadratic function subject to a spherical con-
straint, SIAM J. Optim., 7 (1997), pp. 141–161.

[22] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[23] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, London, New York, 1981,
pp. 57–88.

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE
FUNCTION∗

FRANÇOIS OUSTRY†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, pp. 526–549

Abstract. In this paper we apply the U-Lagrangian theory to the maximum eigenvalue function
λ1 and to its precomposition with affine matrix-valued mappings. We first give geometrical interpre-
tations of the U-objects that we introduce. We also show that the U-Lagrangian of λ1 has a Hessian
which can be explicitly computed; the second-order development of the U-Lagrangian provides a
second-order development of λ1 along a characteristic smooth manifold: the set of symmetric ma-
trices whose maximal eigenvalues have a fixed multiplicity. The same results can be obtained when
we precompose λ1 with an affine matrix-valued mapping A, provided that this mapping satisfies a
regularity condition (transversality condition). We show that the Hessian of the U-Lagrangian of
λ1 ◦A coincides with the reduced Hessian encountered in sequential quadratic programming. Finally,
we use the U-Lagrangian to derive second-order algorithms for minimizing λ1 ◦A.

Key words. eigenvalue optimization, convex optimization, generalized derivative, second-order
derivative

AMS subject classifications. Primary, 15A18, 52A41; Secondary, 65K10, 49J52

PII. S1052623496311776

1. Introduction.

1.1. Motivation. Optimization problems involving eigenvalues of symmetric
matrices arise in many applications. (For a tutorial survey and numerous references,
see [26].) Here, we focus our attention on the particular model problem

(P) inf
x∈Rm

λ1(A(x)),

where λ1(·) is the maximum eigenvalue function and the mapping

A : Rm 3 x 7→ A0 +A · x(1.1)

is affine: A0 is a given real n × n symmetric matrix and A is a linear operator from
Rm to the space of n× n symmetric matrices.

Affine mappings A(·) cover a large class of engineering applications: control theory
(see, e.g., [9] and the references therein), combinatorial optimization (e.g., [3], [37]),
and structural design (see, e.g., [7], [10]).

The function f := λ1 ◦ A is usually not differentiable when the maximum eigen-
value of A(x) is multiple; yet f has a strong structure which can be exploited for
algorithmic perspectives:

(s1) f is the composite function of λ1 and an affine mapping;
(s2) λ1 is a max-function over a compact set: from Rayleigh’s variational formu-

lation we have, for all A ∈ Sn,

λ1(A) = max
q∈Rm,‖q‖=1

qTAq ;

(s3) f is convex.

∗Received by the editors November 8, 1996; accepted for publication (in revised form) March
23, 1998; published electronically March 17, 1999. This work was done at ENSTA-INRIA and was
partially supported by a scholarship from DRET.

http://www.siam.org/journals/siopt/9-2/31177.html
†INRIA Rhone-Alpes, ZIRST, 655 avenue de l’Europe, 38330 Montbonnot Saint-Martin, France

(Francois.Oustry@inria.fr).

526

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 527

The structural information (s3), obviously implied by (s1) and (s2), needs to be
emphasized since it is the minimal hypothesis required to get a global complexity theory
[30]. Without any additional structure, convex analysis and nonsmooth optimization
techniques [19] are the appropriate tools to minimize f : simple ε-descent methods as
in [11] and [40] or more advanced bundle methods as in [23], [42], and [16] can be
implemented.

Apart from this approach, which will be referred to as the classical one, a distin-
guished methodology consists of transforming the initial problem into a more struc-
tured one. This is the aim of interior-point methods. As Nesterov explains [31],
path-following and potential reduction methods can be seen as a process that trans-
forms the initial problem into an equivalent one which can be solved “easily” thanks
to an addition of structure. Self-concordance is used to obtain the polynomiality of
interior-point schemes. This is proved in a general framework in [32], [33] and more
specifically in the framework of semidefinite programming (which includes (P)) in
[2], [3], [20], [29], [45], [9, Chapter II, Notes and References]. Yet it seems that the
initial transformation has a price: some local information is lost. Intuitively we un-
derstand that the “smoothing effect” of interior-point methods slightly modifies the
local (second-order) information of the problem. In order to speed up the convergence
of these schemes, long-step strategies [28], [34] or some geometrical information [41],
[5] are then needed.

In this paper we address the following question: for a given structure {s1, s2(, s3)},
what is the local information that is available to increase the speed of convergence
of classical nonsmooth methods? This question was partially answered in the 1980s.
Using sensitivity analysis results for eigenvalues and eigenprojections of [21], [24], as
well as the pioneering work of [14], Overton introduced in [36] a local metric which
enables him to obtain a quadratically converging algorithm for (P). This approach
was then developed further in [37], [39], [38], [44], and [13]. Roughly speaking, as-
sume that the multiplicity r of λ1(A(x∗)) at an optimal point x∗ is known; then the
approach consists of minimizing the maximum eigenvalue subject to the constraint
that its multiplicity is r. A local C2-parametrization of (P) is then used to develop a
successive quadratic programming method. In [39, page 102], the authors explain that
two subspaces are playing a crucial role at x: the subspace parallel to the affine hull
of ∂f(x) and its orthogonal complement. In fact, they show that while second-order
information is needed in the first subspace, a first-order approximation is enough in
the second one. Our motivation here, therefore, is to prove that the recent theory of
U-Lagrangians [25] formalizes these observations and enables us to insert the geomet-
rical approach proposed by Overton in a convex analysis framework. This will give
us a better understanding of the method. Since our point of view remains simulta-
neously local and conceptual, the comparison with interior-point methods cannot be
completely achieved here. The next step, which is the subject of another paper [35],
consists of showing that the U-Lagrangian theory can be used to derive second-order
bundle methods which enjoy the following properties:

1. a minimizing sequence is always generated (global);
2. the rate of convergence (of the sequence of iterates) is asymptotically quadratic

when some nondegeneracy assumptions hold (local).

Note that similar work has been under investigation in the discrete minimax context
[27].

Our paper is organized as follows. After recalling some useful results from the
U-Lagrangian theory in section 2 and from differential geometry in section 3, we give

528 FRANÇOIS OUSTRY

our main result in section 4: the U-Lagrangian of the maximum eigenvalue is a C∞

convex function. For practical (i.e., numerical) application, we also show how its first-
and second-order derivatives can be explicitly computed. Then in section 5 we come
back to the space of decision variables Rm and establish chain rules to obtain the first-
and second-order derivatives of the U-Lagrangian of the composite function λ1 ◦ A.
To go further than first order, an additional condition is needed: the transversality
condition from differential geometry. Finally, we present a conceptual scheme which
coincides, in a more implementable version, with the superlinear algorithm described
in [38, Iteration 4].

1.2. Basic notation and terminology. Our notation closely follows that of
[19] and [3].

• Rm, m-dimensional Euclidean space;
• 〈x, y〉, scalar product of x, y ∈ Rm;
• ‖x‖ :=

√〈x, x〉, Euclidean norm of x ∈ Rm;
• U⊥, orthogonal subspace of the subspace U ;
• u⊕ v, direct sum of u ∈ U and v ∈ U⊥;
• projU : Rm → U , projection operator onto the subspace U of Rm;
• proj∗U : U → Rm, canonical injection U 3 u 7→ u⊕ 0 ∈ Rm;
• 〈·, ·〉U , scalar product induced by 〈·, ·〉 in U ;
• ‖ · ‖U , norm induced by ‖ · ‖ in U ;
• affC, affine hull of the nonempty set C ⊂ Rm;
• riC, relative interior of the convex set C;
• spanC, linear subspace generated by the nonempty set C ⊂ Rm;
• x+ C, sum of the singleton {x} ⊂ Rm and the set C ⊂ Rm;
• B(x, δ), open ball centered at x ∈ Rm with radius δ > 0;
• Sn, space of n× n symmetric matrices;
• S+

n , cone of positive semidefinite matrices;
• A � 0, the matrix A ∈ Sn is a positive definite matrix;
• trA :=

∑n
i=1Aii, trace of the matrix A ∈ Sn;

• A •B := trAB, Fröbenius scalar product of A,B ∈ Sn;
• ‖A‖ :=

√
A •A, Fröbenius norm of A ∈ Sn;

• A†, Moore–Penrose inverse of A;
• λ1(A) ≥ · · · ≥ λn(A), eigenvalues of A ∈ Sn in decreasing order;
• E1(A), first eigenspace of A ∈ Sn, i.e., the eigenspace associated with λ1(A);
• Q1(A), orthonormal basis of E1(A), i.e., a matrix whose columns are or-

thonormal and generate E1(A);
• A∗ : Sn → Rm, adjoint operator of the linear operator A : Rm → Sn;
• Mr := {A ∈ Sn : λ1(A) = · · · = λr(A) > λr+1(A)}, set of symmetric

matrices whose maximum eigenvalue has a given multiplicity r; this is a C∞-
submanifold of Sn (see [6]).

Additional notation from differential geometry will be given in section 3.

2. The U-Lagrangian of a convex function. We briefly recall here the theory
developed in [25]. Let f : Rm → R be a finite-valued convex function. For a given
x ∈ Rm, we start by defining a decomposition of the space Rm = U(x) ⊕ V(x). The
subspaces U(x) and V(x) are equivalently defined as follows.

Definition 2.1.
(i) V(x) is the subspace parallel to aff ∂f(x) and U(x) = V(x)⊥.
(ii) For any g ∈ ri ∂f(x), U(x) and V(x) are, respectively, the normal and tangent

cones to ∂f(x) at g.

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 529

Given g ∈ ∂f(x), define the U-Lagrangian of f at x by

U(x) 3 u 7→ LU (u) := min
v∈V(x)

{f(x+ u⊕ v)− 〈projV(x) g, v〉V(x)}.(2.1)

Associated with (2.1) we have the set of minimizers (possibly empty)

U(x) 3 u ↪→ w(u) := Argminv∈V(x){f(x+ u⊕ v)− 〈projV(x) g, v〉V(x)} ⊂ V(x).(2.2)

These definitions make sense (recall [25, Lemma 3.1]), and we have the following
result.

Theorem 2.2 (see [25, Theorems 3.1–3.2]). The function LU of (2.1) is convex.
In addition, if g ∈ ri ∂f(x), the set w(u) defined in (2.2) is not empty and the following
properties hold:

(i) Its subdifferential is

∂LU (u) = projU(x)[∂f(x+ u⊕ v) ∩ (g + U(x))] ,(2.3)

where v is taken arbitrarily in w(u).
(ii) When u = 0, we have w(0) = {0} and LU (0) = f(x). Moreover, LU is

differentiable at 0 and

∇LU (0) = projU(x) g .(2.4)

We now prove another result in the framework of multifunctions.
Corollary 2.3. With the notation above, the following hold:
(i) The multifunction u ↪→ ∂LU (u) is continuous at u = 0:

lim
u→0

∂LU (u) = {∇LU (0)} .(2.5)

(ii) For all u ∈ U(x), we have

∂f(x+ u⊕ v)∩ (g+U(x)) = ∂LU (u)⊕{projV(x) g} for all v ∈ w(u) .(2.6)

(iii) Denoting by ∂f(x+ u⊕ w(u)) ∩ (g + U(x)) the right-hand side of (2.6), the
multifunction u ↪→ ∂f(x+ u⊕ w(u)) ∩ (g + U(x)) is continuous at 0:

lim
u→0

∂f(x+ u⊕ w(u)) ∩ (g + U(x)) = {g} .(2.7)

Proof. (i) From Theorem 2.2, LU is convex; then from [19, Theorem VI.6.2.4], ∂LU
is outer semicontinuous. This, with the differentiability of LU at u = 0, implies that
all the subgradients at u tend to ∇LU (0) when u tends to 0. The inner semicontinuity
then follows: ∂LU is actually continuous at 0.

(ii) This is a direct consequence of (2.3).
(iii) This is straightforward from (i) and (ii).
With no additional assumptions, we can go beyond first-order analysis.
Theorem 2.4 (see [25, Corollary 3.3]).

sup
v∈w(u)

‖v‖ = o(‖u‖) .(2.8)

We will often use a weaker (first-order) version of Theorem 2.4.

530 FRANÇOIS OUSTRY

Corollary 2.5. The multifunction u ↪→ w(u) is continuous at u = 0:

lim
u→0

w(u) = {0} .

Proof. From Theorem 2.4, w(u) ⊂ w(0) + B(0, o(‖u‖)). This proves the outer
semicontinuity of w at 0. Now use the fact that w(0) is a singleton to get the inner
semicontinuity.

Note that the function u 7→ LU (u) depends not only on x but also on g. In
what follows, we use the notation LU (x, g;u) and ∇LU (x, g;u), and since there is no
confusion, ∇ will always mean derivation with respect to u. In this sense, as is done
for the classical Lagrangian, we will call (x, g) a primal-dual pair.

3. Some differential geometry. For the convenience of the reader we recall
some basic concepts from differential geometry. We assume only that the definitions
of C∞-manifolds and C∞-submanifolds are known. (To get a solid understanding of
the essentials, refer to Hicks [17].) Sometimes we will omit the prefix C∞ (C2 would
be enough for our purposes). We give here some more notation.

• S and T are two Euclidean spaces;
• TM(A) and NM(A) are, respectively, the tangent and normal spaces to the

submanifold M at A ∈M;
• kerD and rangeD are, respectively, the kernel and the range of the linear

operator D : S → T ;
• φ : B(Â, δ0)→ T with δ0 > 0 is a C∞-map;
• Dφ(A) is the differential of φ at A ∈ B(Â, δ0).

Definition 3.1 (regular value). We say that Z ∈ T is a regular value of φ if
for each A ∈ φ−1(Z) := {Ω ∈ B(Â, δ0) : φ(Ω) = Z}, Dφ(A) is surjective.

Theorem 3.2 (submersion theorem). Let Z be a regular value of φ. Then
the level set φ−1(Z) is a submanifold of S whose tangent space is Tφ−1(Z)(A) =
ker Dφ(A).

Proof. The proof can be found in a more general framework in Abraham, Marsden,
and Ratiu [1, Theorem 3.5.4].

Definition 3.3 (local equation of a submanifold). Assume that 0 is a regular
value of φ andM∩B(Â, δ0) = φ−1(0). Then we say that φ(A) = 0 is a local equation
of M in B(Â, δ0).

Observe that, via Theorem 3.2,

TM(A) = ker Dφ(A) for all A ∈M∩B(Â, δ0) .(3.1)

The next theorem and its corollary introduce the idea of tangential parametrization
of a manifold. This concept is not standard in differential geometry, yet it will be
interesting in our U-context.

Theorem 3.4. Let φ(A) = 0 be a local equation of M in B(Â, δ0). Then, there
exists a scalar δ such that 0 < δ ≤ δ0 and a unique map

v : TM(Â) ∩B(0, δ)→ NM(Â)

such that, for all (u, v) ∈ (TM(Â),NM(Â)),(‖u‖ ≤ δ, ‖v‖ ≤ δ and φ(Â+ u⊕ v) = 0
)⇒ v = v(u) .(3.2)

The map v is C∞, and at u = 0 we have

Dv(0) = 0 .(3.3)

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 531

Proof. For Â ∈M∩B(Â, δ0), consider the C∞-map

ψ : (TM(Â),NM(Â)) 3 (u, v) 7→ φ(Â+ u⊕ v).

Then the partial differential Dvψ(0, 0) is given by

Dvψ(0, 0) = Dφ(Â) ◦ proj∗
NM(Â)

.

Now, 0 is a regular value of φ and Â ∈ φ−1(0). Hence the implicit function theorem
(see, e.g., [1, Theorem 2.5.7]) applies: there exists a map v(·) satisfying (3.2) and such
that, for all u ∈ B(0, δ),

Dv(0) = −[Dvψ(0, 0)]−1[Duψ(0, 0)],

where

Duψ(0, 0) = Dφ(Â) ◦ proj∗
TM(Â)

.

To derive (3.3), recall that TM(Â) = ker Dφ(Â).
We isolate the following consequence of Theorem 3.4 for the purpose of our U-

analysis in section 4.
Corollary 3.5. Let Â ∈M; then there exists δ > 0 such that

projNM(Â) d = v(projTM(Â) d)(3.4)

for all d ∈ B(0, δ) satisfying Â+ d ∈M.
Proof. Take δ < δ0 given by Theorem 3.4 and d ∈ B(0, δ) to obtain

max
{
‖projTM(Â) d‖TM(Â)

, ‖projNM(Â) d‖NM(Â)

}
≤ ‖d‖ ≤ δ.

Since A+ d ∈M can be written

φ
(
Â+ projTM(Â) d⊕ projNM(Â) d

)
= 0,

the conclusion follows using Theorem 3.4.
In other words, Corollary 3.5 says that the map

πÂ : TM(Â) ∩B(0, δ) 3 u 7→ Â+ u⊕ v(u)

covers a whole neighborhood of Â in M. This enables us to call πÂ a tangential

parametrization of the submanifold M at Â.
We now consider a C∞-map A : Rm → S, and we address the following question:

when is the set A−1(M) a C∞-submanifold of Rm?
Definition 3.6 (transversal map). Let x̂ ∈ Rm; the C∞ map A(·) is said to

be transversal to the submanifold M at x̂ if A(x̂) ∈ M and the range of DA(x̂) is
transversal to the subspace TM(A(x̂)), i.e.,

range DA(x̂) + TM(A(x̂)) = S.(3.5)

Theorem 3.7. Let x̂ ∈ A−1(M) ⊂ Rm. If A(·) is transversal to M at x̂,
then A−1(M) is a C∞-submanifold in a neighborhood of x̂, i.e., there exists ρ > 0

532 FRANÇOIS OUSTRY

such that B(x̂, ρ) ∩ A−1(M) is a C∞-submanifold of Rm. Moreover, for all x ∈
B(x̂, ρ) ∩A−1(M), we have

TA−1(M)(x) = [DA(x)]−1TM(A(x)) .(3.6)

Proof. Apply a local version of the transversal mapping theorem (see, e.g., [1,
Theorem III.5.12]).

When A(·) is transversal to M at x̂, we derive a local equation of A−1(M).
Theorem 3.8. Let x̂ ∈ A−1(M) ⊂ Rm be such that A(·) is transversal to M at

x̂, and let φ(A) = 0 be a local equation of M in a neighborhood of A(x̂). Then there
exists ρ > 0 such that

(i) the map A(·) is transversal to M at x ∈ B(x̂, ρ),
(ii) the equation φ(A(x)) = 0 is a local equation of A−1(M) ∩B(x̂, ρ).
Proof. (i) By a composition rule, we have

D(φ ◦A)(x̂) = Dφ(A(x̂)) ◦DA(x̂) .(3.7)

The transversality of A(·) to M at x̂ is then equivalent to the surjectivity of D(φ ◦
A)(x̂); by continuity, this holds in a whole neighborhood of x̂. Hence (i) follows.

(ii) Now define ϕ : B(x̂, ρ) 3 x 7→ φ(A(x)); from (i), 0 is a regular value of ϕ. It
is now obvious that

A−1(M) ∩B(x̂, ρ) = ϕ−1(0),

hence, according to Definition 3.3, ϕ(x) = 0 is a local equation of A−1(M)∩
B(x̂, ρ).

4. U-Lagrangian of the maximum eigenvalue function.

4.1. The subspaces U and V. We now study the maximum eigenvalue function
Sn 3 A 7→ λ1(A) ∈ R. To apply the results of section 2, we identify the space Sn
with R

n(n+1)
2 . As far as notation is concerned, we replace lowercase by capital letters

to stress the fact that we work now with spaces of matrices. At a point A ∈ Sn, we
consider the subspaces U(A) and V(A) of Definition 2.1. Let r ≥ 1 be the multiplicity
of λ1(A), i.e., A lies on the submanifold Mr (see section 1.2). Let Q1(A) be an
orthonormal basis of E1(A) (see section 1.2); then a well-known description of ∂λ1(A)
can be obtained.

Theorem 4.1 (see [37, Theorem 3], [18, Theorem 3.1]).

∂λ1(A) = {Q1(A)ZQ1(A)T : Z ∈ S+
r , trZ = 1}.(4.1)

We also have an explicit formulation for the relative interior of ∂λ1(A).
Proposition 4.2. The relative interior of ∂λ1(A) has the expression

ri ∂λ1(A) = {Q1(A)ZQ1(A)T : Z ∈ Sr, Z � 0, trZ = 1}.(4.2)

Proof. Use (4.1) to write

ri ∂λ1(A) = ri {Q1(A)ZQ1(A)T : Z ∈ S+
r , trZ = 1}

= Q1(A)ri {Z ∈ S+
r , trZ = 1}Q1(A)T (by [19, Proposition III.2.1.12])

= Q1(A){Z ∈ Sr, Z � 0, trZ = 1}Q1(A)T (by [19, Proposition III.2.1.10]).

This completes the proof.

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 533

We are now in a position to give a characterization of the subspaces U(A) and
V(A).

Theorem 4.3. The subspaces U(A) and V(A) are, respectively, characterized by

U(A) =

{
U ∈ Sn : Q1(A)TUQ1(A)− 1

r
tr (Q1(A)TUQ1(A))Ir = 0

}
(4.3)

and

V(A) = {Q1(A)ZQ1(A)T : Z ∈ Sr, trZ = 0}.(4.4)

Proof. Take an element of ri ∂λ1(A), for instance, its center Cr := 1
rQ1(A)Q1(A)T .

By Definition 2.1 (ii), U(A) is the normal cone to ∂λ1(A) at Cr; then U ∈ U(A) means
for all Z ∈ Z := {Z ∈ S+

r , trZ = 1}, it holds that

0 ≥ U • (Q1(A)ZQ1(A)T − Cr) = U •Q1(A)[Z − Ir/r]Q1(A)T ,

which is in turn equivalent to

max
Z∈Z

Q1(A)TUQ1(A) • Z ≤ 1

r
trQ1(A)TUQ1(A).

Given that the support function of Z is the maximum eigenvalue function (see, for
instance, [19, Section VI.5.1] and [18, Section 2.1]), the inequality above is equivalent
to

rλ1(Q1(A)TUQ1(A)) ≤ trQ1(A)TUQ1(A).

Therefore Q1(A)TUQ1(A) is a homothety:

Q1(A)TUQ1(A)− 1

r
tr (Q1(A)TUQ1(A))Ir = 0;

this is the right-hand side of (4.3).
On the other hand, V(A) is the subspace parallel to aff (∂λ1(A)) (see Defini-

tion 2.1 (i)). Then, relaxing the positivity constraint in (4.1), we see that V(A) is
contained in the right-hand side of (4.4). The converse is straightforward:

Q1(A){Z ∈ Sr : trZ = 0}Q1(A)T ⊂ U(A)⊥ = V(A).

4.2. Tangential parametrization ofMr. Several parametrizations of the sub-
manifoldMr can be found in recent independent works; for instance, a matrix expo-
nential formulation is used in [38]. Here we follow the approach of [44] and complete
it by defining a tangential parametrization (see section 3) of Mr. This approach is
quite natural and relies on perturbation theory applied to linear operators in finite-
dimensional spaces (see [22, Chapter II]): let Â ∈ Mr; thus by continuity, for any
A ∈ Sn close enough to Â the eigenvalues (λ1(A))i=1,...,r remain close to λ1(Â) and

greater than λr+1(Â). In other words, in a neighborhood of Â, we have a separation
between the first r eigenvalues and the others. For a matrix A in such a neighborhood,
we can then define the following objects.

Definition 4.4.
(i) The set of r first eigenvalues of A is called the λ1(Â)-group at A.

(ii) The subspace spanned by the r first eigenvectors of A is called the total eigen-
space for the λ1(Â)-group at Â; we denote it by Etot(A).

534 FRANÇOIS OUSTRY

(iii) The value λ̂(A) := 1
r

∑r
i=1 λi(A) is the weighted mean of the λ1(Â)-group at

A.
One usually says that “eigenvectors are not continuous,” which is true if we con-

sider E1(A). Yet this difficulty can be overcome when dealing with the stable subspace
Etot(A). In fact we can build a C∞-map to track an orthonormal basis of Etot(A)
in a neighborhood of Â. This is stated in the following theorem (see section 1.2 and
section 3 for the notation).

Theorem 4.5. Take Â ∈Mr and choose an orthonormal basis Q1(Â) of E1(Â) =
Etot(Â). Then there exist δ > 0 and a map Qtot : B(Â, δ)→ Rn×r such that

(i) for all A ∈ B(Â, δ), the columns of Qtot(A) form an orthonormal basis of
Etot(A) and Qtot(Â) = Q1(Â),

(ii) Qtot is C∞ and, in particular,

DQtot(Â) ·H = (λ1(Â)In − Â)†HQtot(Â) for all H ∈ Sn.(4.5)

Proof. See [44, page 6].
We derive the following technical result.
Corollary 4.6. The functions Λtot : B(Â, δ) 3 A 7→ Qtot(A)TAQtot(A) and

λ̂ : B(Â, δ) 3 A 7→ 1
r

∑r
i=1 λi(A) are C∞. In particular, for A ∈ Mr ∩ B(Â, δ) and

for all H ∈ Sn,

DΛtot(A) ·H = Qtot(A)THQtot(A)(4.6)

and

Dλ̂(A) ·H =
1

r
trQtot(A)THQtot(A).(4.7)

Proof. The fact that Λtot is C∞ is a consequence of Theorem 4.5 (i); λ̂ is C∞ as

well, since λ̂(A) = 1
r tr Λtot(A). Now, for A ∈ Mr ∩ B(Â, δ) and for all H ∈ Sn, we

have

DΛtot(A)·H = Qtot(A)THQtot(A)+[DQtot(A)·H]TAQtot(A)+Qtot(A)TA[DQtot(A)·H].

From Theorem 4.5 (i), A ∈Mr implies Etot(A) = E1(A) andAQtot(A) = λ1(A)Qtot(A).
Then we obtain for all A ∈Mr ∩B(Â, δ),

DΛtot(A) ·H −Qtot(A)THQtot(A) = ∆TAQtot(A) +Qtot(A)TA∆
= λ1(A)(∆TQtot(A) +Qtot(A)T∆)
= 0,

where we have set ∆ := DQtot(A)·H and used the normality ofQtot(A) (i.e., differenti-

ate Qtot(A)TQtot(A) = Ir). Thus (4.6) is proved. The differential of λ̂ is obtained by
composition with the linear operator tr .

Now let us introduce the subspace

H := {Z ∈ Sr : trZ = 0}(4.8)

equipped with the induced Fröbenius product and consider the map

φ : B(Â, δ0) 3 A 7→ Qtot(A)TAQtot(A)− 1

r
tr (Qtot(A)TAQtot(A))Ir ∈ H.(4.9)

The following theorem gives a local equation of Mr (see section 3 with S = Sn,
M =Mr, and T = H).

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 535

Theorem 4.7.
(i) The map φ of (4.9) is C∞; in particular, for all A ∈Mr ∩B(Â, δ0), we have

Dφ(A) ·H = Qtot(A)THQtot(A)− 1

r
tr (Qtot(A)THQtot(A))Ir(4.10)

for all H ∈ Sn.
(ii) The equation φ(A) = 0 is a local equation (see Definition 3.3) of the subman-

ifold Mr on B(Â, δ0), and for all A ∈Mr ∩B(Â, δ0), we have

TMr (A) = ker Dφ(A).

Proof. (i) Since φ(A) = Λtot(A) − λ̂(A)Ir for all A ∈ Mr ∩ B(Â, δ0), apply
Corollary 4.6 to prove.

(ii) For all A ∈ Mr ∩ B(Â, δ0), clearly φ(A) = 0. Conversely, if A ∈ B(Â, δ0)
and φ(A) = 0, this means that Λtot(A) is a homothety. In other words, the r first
eigenvalues of A are equal to λ1(A) and, since the λ1(Â)-group (see Definition 4.4 (iii))
is well separated from the other eigenvalues of A ∈ B(Â, δ0), the multiplicity of λ1(A)
is exactly r. According to Definition 3.3, it remains to show that 0 is a regular
value of φ, which means, via Definition 3.1, to show that Dφ(A) is surjective for all
A ∈ Mr ∩ B(Â, δ0). Let Z ∈ H; then, using (4.10) we have Dφ(A) · H = Z, where
H = Qtot(A)ZQtot(A)T , and we are done.

We are now in a position to establish the first link between convex analysis and
differential geometry.

Corollary 4.8. At Â ∈ Mr, the subspaces U(Â) and V(Â) of Definition 2.1
are, respectively, the tangent and normal spaces to the submanifold Mr at Â.

Proof. By construction, Qtot(Â) = Q1(Â). Now, from Theorem 4.7 (ii), TMr (Â) =
ker Dφ(Â), i.e., together with (4.10),

TMr
(Â) =

{
H ∈ Sn : Q1(Â)THQ1(Â)− 1

r
tr (Q1(Â)THQ1(Â))Ir = 0

}
,

which is exactly the right-hand side of (4.3). It follows that TMr
(Â) = U(Â) and

NMr
(Â) = V(Â).

From Theorem 4.7, we also deduce the following corollary.
Corollary 4.9. There exists δ > 0 and a unique C∞ map

V : U(Â) ∩B(0, δ)→ V(Â)

such that the map

πÂ : U(Â) ∩B(0, δ) 3 U 7→ Â+ U ⊕ V (U)(4.11)

is a tangential parametrization of the submanifold Mr.
Proof. From Corollary 4.8, we know that the subspaces U(Â) and V(Â) are,

respectively, the tangent and normal spaces to the submanifoldMr at Â. Now apply
Theorem 3.4 to get the C∞ map V : B(0, δ) ⊂ U(Â) → V(Â) and Corollary 3.5 to
obtain the tangential parametrization πÂ.

4.3. The U-Lagrangian of λ1. For Â ∈Mr, take Ĝ ∈ ri ∂λ1(Â). Then, recall-
ing (2.1) and (2.2), we define the U-Lagrangian LU (Â, Ĝ;U) and the corresponding
set of minimizers W (U). We start with an easy result.

536 FRANÇOIS OUSTRY

Proposition 4.10. The convex function LU (Â, Ĝ; ·) is differentiable at U = 0
and its gradient is given by

∇LU (Â, Ĝ; 0) = projU(Â) Ĝ.(4.12)

Proof. Rewrite Theorem 2.2 (i) in this matrix context.
To go further, we need another strong link between convex analysis and differential

geometry.
Theorem 4.11. There exists η > 0 such that for all U ∈ B(0, η) ⊂ U(Â) the set

W (U) of (2.2) is a singleton:

W (U) = {V (U)} for all U ∈ B(0, η) ,(4.13)

where V (·) is the map defined in Corollary 4.9.
Proof. Let U ∈ U(Â), V ∈ W (U), and G ∈ ∂λ1(Â+ U ⊕ V) ∩ [Ĝ+ U(Â)]. From

(4.1), G ∈ ∂λ1(Â+ U ⊕ V) implies the complementarity condition

(λ1(A+ U ⊕ V)In − [A+ U ⊕ V])G = 0,

which in turn implies the rank condition

rank(λ1(A+ U ⊕ V)In − [A+ U ⊕ V]) + rankG ≤ n .(4.14)

Furthermore, at U = 0, G = Ĝ ∈ ri ∂λ1(Â); then use (4.2) to see that the following
strict complementarity condition holds (see Remark 6.6):

rank(λ1(Â)In − Â) = (n− r) and rank Ĝ = r.

Then, by continuity of eigenvalues, together with Corollary 2.3 (iii) and Corollary 2.5,
there exists η > 0 such that

rank(λ1(A+ U ⊕ V)In − [A+ U ⊕ V]) ≥ n− r and rankG ≥ r
for all U ∈ B(0, η) and all (V,G) ∈W (U)× ∂λ1(Â+ U ⊕W (U)) ∩ [Ĝ+ U(Â)] .

Together with inequality (4.14), we obtain

rank(λ1(A+ U ⊕ V)In − [A+ U ⊕ V]) = n− r and rankG = r

for all U ∈ B(0, η) and all (V,G) ∈W (U)× ∂λ1(Â+ U ⊕W (U)) ∩ [Ĝ+ U(Â)] .

Then, taking η small enough, we have

A+ U ⊕W (U) ⊂ B(Â, δ) ∩Mr ,

where δ is the radius introduced in Corollary 3.5. This enables us to apply Corol-
lary 3.5 and to derive (4.13).

From now on, we follow the path πÂ(U) ∈ Mr of (4.11). On the manifold Mr

and close enough to Â, the first and total eigenspaces coincide. Hence, a natural
choice for an orthonormal basis mapping in a neighborhood of U = 0 is

U(Â) 3 U → Q1(πÂ(U)) := Qtot(πÂ(U)).

This leads us to our main theoretical result.
Theorem 4.12. There exists ρ > 0 such that the U-Lagrangian LU (Â, Ĝ; ·) is

C∞ on B(0, ρ) ⊂ U(Â). In particular,

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 537

(i) the gradient at U ∈ B(0, ρ) is

∇LU (Â, Ĝ;U) = projU(x)Q1(πÂ(U))Z(U)Q1(πÂ(U))T ,(4.15)

where Z(U) is characterized by{
Z(U) ∈ {Z ∈ Sr, trZ = 1} ,
Q1(πÂ(U))Z(U)Q1(πÂ(U))T − Ĝ ∈ U(Â) ;

(4.16)

(ii) the Hessian at U = 0 is

∇2LU (Â, Ĝ; 0) = projU(Â) ◦H(Â, Ĝ) ◦ projU(Â)
∗ ,(4.17)

where H(Â, Ĝ) is the symmetric operator defined by

H(Â, Ĝ) · Y = ĜY [λ1(Â)In − Â]† + [λ1(Â)In − Â]†Y Ĝ(4.18)

for all Y ∈ Sn.
Proof. Because λ1(A) = λ̂(A) for all A ∈ Mr close enough to Â, Theorem 4.11,

together with (2.1), gives

LU (Â, Ĝ;U) = λ̂(πÂ(U))− 〈projV(Â) Ĝ, V (U)〉V(Â) for all U ∈ B(0, ρ),(4.19)

where ρ := min{ηTh. 4.11, δCor 4.9}. Then LU (Â, Ĝ; ·) is C∞ on B(0, ρ).
(i) Now recall (4.1) and (2.3) to obtain

∂LU (U) = projU(Â){Q1(πÂ(U))ZQ1(πÂ(U))T :

Q1(πÂ(U))ZQ1(πÂ(U))T − Ĝ ∈ U(Â), Z ∈ S+
r , trZ = 1} .

From Corollary 4.8, U(Â) = TMr
(Â), i.e., U(Â) = ker Dφ(Â). Then the conditions

Q1(πÂ(U))ZQ1(πÂ(U))T − Ĝ ∈ U and trZ = 1 become

Dφ(Â) · (Q1(πÂ(U))ZQ1(πÂ(U))T − Ĝ) = 0 and trZ = 1 .(4.20)

Now let us consider the change of variable Z = 1
r Ir + Ω with Ω ∈ H of (4.8). Then,

introducing

Dφ(πÂ(U))∗ : H 3 Ω 7→ Q1(πÂ(U))ΩQ1(πÂ(U))T ∈ Sn,

we obtain together with (4.20)

Dφ(Â) ◦Dφ(πÂ(U))∗ · Ω = Dφ(Â) · Ĝ+
1

r
Dφ(Â) · (Q1(πÂ(U))Q1(πÂ(U))T).(4.21)

Since Dφ(Â) is surjective (Theorem 4.7 (ii)), Dφ(Â) ◦Dφ(Â)∗ is invertible. By conti-
nuity, Dφ(Â) ◦Dφ(πÂ(U))∗ is also invertible for U small enough. Then invert (4.21)
to obtain the solution Ω(U) and

U(Â) ∩B(0, ρ) 3 U 7→ Z(U) :=
1

r
Ir + Ω(U)(4.22)

as C∞-maps.

538 FRANÇOIS OUSTRY

(ii) To calculate the second-order term, we need to differentiate (4.15) at U = 0;
since we apply a fixed linear operator (projU(Â)) to a product of three matrices, we
obtain the sum of three terms. One of these terms is

projU(Â)Q1(Â)[DZ(0) ·H]Q1(Â)T ,

which is 0: indeed DZ(0) ·H = DΩ(0) ·H ∈ H from (4.22) and therefore

Q1(Â)[DZ(0) ·H]Q1(Â)T ∈ V(Â).

To calculate the other two terms (which are adjoint to each other), first note, together
with (3.3), that

DπÂ(0) ·H = H + DV (0) ·H = H.

Using (4.5), we finally obtain (4.17).
Then a second-order development of λ1 along the manifold Mr can be derived.
Corollary 4.13. Let D ∈ Sn be such that Â+D ∈Mr and ‖D‖ → 0; then

λ1(Â+D) = λ1(Â) + Ĝ •D+
1

2
projU(Â)D • ∇2LU (Â, Ĝ; 0) · (projU(Â)D) + o(‖D‖2).

Proof. For D small enough such that Â + D ∈ Mr, apply Corollary 3.5 and set
U = projU(Â)D, V = V (U) = projV(Â)D. To obtain the second-order development,
apply Theorem 4.12:

LU (Â, Ĝ;U) = λ1(Â) +∇LU (Â, Ĝ; 0) • U
+ 1

2U • ∇2LU (Â, Ĝ; 0) · U + o(‖U‖2)

= λ1(Â+ U ⊕ V (U))− projV(Â) Ĝ • V (U).

Finally, remember (3.3) (or (2.8)): V = O(‖U‖2) = O(‖D‖2), and the proof is com-
plete.

Note here that, along the lines of [38] and [12], the operator H(Â, Ĝ) has a pre-
cise geometrical interpretation: it is the second covariant derivative in the Euclidean
metric of the function

λ̂1(M) :=
1

r

r∑
i=1

λi(M),

which is smooth near Â ∈Mr and coincides with λ1 on Mr.

5. Composition with an affine operator. The function we want to minimize
in problem (P) is in fact the convex function

f : Rm 3 x 7→ λ1(A(x)),

where A : Rm 3 x 7→ A(x) ∈ Sn has the form of (1.1). In this section we obtain
results for f similar to those in section 4 for λ1. Yet we will see that, in order to
obtain the existence of the U-Hessian, we will need an additional assumption, which is
not surprising after we realize that composing with operators amounts to intersecting
submanifolds.

Let us start by recalling the following chain rule.

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 539

Theorem 5.1. Let x̂ ∈ Rm; then

∂f(x̂) = A∗∂λ1(A(x̂))(5.1)

and

ri ∂f(x̂) = A∗ri ∂λ1(A(x̂)).(5.2)

Proof. Apply, for example, the chain rule given in [19, Theorem VI.4.2.1] to obtain
(5.1) and the calculus rule [19, Proposition III.2.1.12] to obtain (5.2).

Now we want to obtain chain rules for the subspaces U(x̂) and V(x̂) of Defini-
tion 2.1. To stress the dependence of these subspaces on f , we use the notation Uf (x̂)
and Vf (x̂).

Theorem 5.2. Let x̂ ∈ Rm; then

Vf (x̂) = A∗Vλ1(A(x̂))(5.3)

and

Uf (x̂) = A−1Uλ1
(A(x̂)).(5.4)

Proof. Taking the affine hull of the right- and left-hand sides in (5.1), we obtain,
because A is linear,

aff ∂f(x̂) = A∗aff ∂λ1(A(x̂)).

With Definition 2.1 (i), this gives (5.3). Write Uf (x̂) = Vf (x̂)⊥ and deduce

Uf (x̂) = {u ∈ Rm : A(u) ∈ Vλ1
(A(x̂))⊥},

which is exactly (5.4).
Now, take ĝ ∈ ri ∂f(x̂) and define the U-Lagrangian of f at (x̂, ĝ) according to

(2.1); in what follows, we denote it by LU,f (x, g; ·). From Theorem 2.2, LU,f (x̂, ĝ; ·)
is differentiable at u = 0. We can prove the following composition rule.

Theorem 5.3. Let Ĝ ∈ ri ∂λ1(A(x̂)) be such that ĝ = A∗ · Ĝ. Then,

∇LU,f (x̂, ĝ; 0) = [projUf (x̂) ◦ A∗ ◦ proj∗Uλ1
(A(x̂))] · ∇LU,λ1

(A(x̂), Ĝ; 0),(5.5)

where Uf (x̂) is given by (5.4).

Proof. First the existence of Ĝ is assured by (5.2). This Ĝ is not unique, yet the
composition rule we are going to prove does not depend on the choice of Ĝ, given that
all candidates have the same projection onto Uλ1(A(x̂)). Using (2.4),

∇LU,f (x̂, ĝ; 0) = projUf (x̂)ĝ

= projUf (x̂)(A∗ · Ĝ)

= projUf (x̂) ◦ A∗ · (projUλ1
(A(x̂)) Ĝ⊕ projVλ1

(A(x̂)) Ĝ)

= projUf (x̂) ◦ A∗ · (projUλ1
(A(x̂)) Ĝ⊕ 0),

since, from (5.3),

A∗ · (0⊕ projVλ1
(A(x̂)) Ĝ) ∈ Vf (x̂) = Uf (x̂)⊥.

540 FRANÇOIS OUSTRY

Finally, from (4.12),

projUλ1
(A(x̂)) Ĝ⊕ 0 = proj∗Uλ1

(A(x̂))∇LU,λ1
(A(x̂), Ĝ; 0),

and (5.5) follows.
Here as in section 4, we would like to identify a characteristic C∞-manifold. A

natural idea (in this composition framework) is to examine the set of vectors x ∈ Rm
such that λ1(A(x)) has a fixed multiplicity r, namely, to consider A−1(Mr). The
difficulty is that, even in the affine case, some catastrophe may appear. To ensure
that A−1(Mr) is a smooth manifold in a neighborhood of x̂, we need to assume that
A(·) is transversal to Mr at x̂. In view of Corollary 4.8, Definition 3.6 becomes as
follows.

Definition 5.4. We say that the transversality condition (T) holds at x̂ if

rangeA+ Uλ1(A(x̂)) = Sn.(5.6)

This condition allows us to obtain a local equation ofWr := A−1Mr via a simple
composition rule.

Theorem 5.5. If (T) is satisfied at x̂, then there exists ρ > 0 such that ϕ(x) = 0,
where ϕ : B(x̂, ρ) 3 x 7→ φ(A(x)) ∈ Sr and φ is given by (4.9), is a local equation of
Wr ∩B(x̂, ρ). Moreover, for all x ∈ B(x̂, ρ), we have

TWr (x) = ker Dϕ(x).

Proof. From Theorem 4.7, the map φ of (4.9) defines a local equation of Mr.
Then, from Theorem 3.8, there exists ρ > 0 such that φ ◦ A defines a local equation
of Wr ∩B(x̂, ρ). Furthermore, from (3.1), we have that for all x ∈ B(x̂, ρ), TWr

(x) =
ker Dϕ(x).

Now Corollaries 4.8 and 4.9 can be easily extended to the space of decision vari-
ables.

Theorem 5.6. Assume (T) is satisfied at x̂ and take ĝ ∈ ri ∂f(x̂). Then
(i) the subspaces Uf (x̂) and Vf (x̂) are, respectively, the tangent and normal

spaces to Wr at x̂,
(ii) there exist ρ > 0 and a C∞-map v : Uf (x̂) ∩ B(0, ρ) → Vf (x̂) such that the

map

px̂ : Uf (x̂) ∩B(0, ρ) 3 u 7→ x̂+ u⊕ v(u)(5.7)

is a tangential parametrization of Wr.
Proof. (i) From (3.6),

TWr (x̂) = A−1TMr (A(x̂)),

which is exactly the right-hand side of (5.4). Then Uf (x̂) = TWr
(x̂) and Vf (x̂) =

NWr
(x̂).
(ii) As was done in the proof of Corollary 4.9, just apply Theorem 3.4 and Corol-

lary 3.5.
The following result is relevant when coming to algorithmic considerations (see

section 6).
Corollary 5.7. Assume (T) is satisfied at x̂. Then, the map Wr 3 x 7→

projUf (x) is C∞ in a neighborhood of x̂.

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 541

Proof. From Theorem 3.8, there exists ρ > 0 such that the transversality condition
(T) holds in Wr ∩B(x̂, ρ). Then, together with Theorems 5.6 (i) and 5.5, we have

Uf (x) = ker Dϕ(x)

and then

projUf (x) = I −Dϕ(x)∗[Dϕ(x)Dϕ(x)∗]−1Dϕ(x),

where I is the identity operator on Rm. This proves that the mapWr 3 x 7→ projUf (x)

is C∞ on B(x̂, ρ) ∩Wr.
To obtain the analogue of Theorem 4.11 in the space of decision variables, the

following lemma will be useful.
Lemma 5.8. Assume (T) is satisfied at x̂. Then,
(i) the set [A∗]−1ĝ ∩ ∂λ1(A(x̂)) is a singleton,

(ii) the multifunction Uf (x̂) 3 u ↪→ Γ(u) defined by

Γ(u) :=
⋃

v∈w(u)

{
[A∗]−1[∂f(x̂+ u⊕ v) ∩ (ĝ + U(x̂))] ∩ ∂λ1(A(x̂+ u⊕ v))

}
is continuous at 0:

lim
u→0

Γ(u) = {Ĝ},

where Ĝ is the unique element of [A∗]−1ĝ ∩ ∂λ1(A(x̂)).
Proof. (i) Take two subgradients G and G′ in ∂λ1(A(x̂)) such that A∗ ·G = A∗ ·G′;

then observe in Sn that

G−G′ ∈ Vλ1
(A(x̂)) ∩ kerA∗ = [Uλ1

(A(x̂)) + rangeA]⊥

= {0} (by transversality condition (5.6)).

(ii) Let us consider G ∈ lim extu→0 Γ(u): there exists a sequence {uk, Gk}k (see,
e.g., [19, A.5]) such that

Gk ∈ Γ(uk) , uk → 0 and Gk → G when k → +∞.

Hence, there exists a sequence {vk}k such that for all k

vk ∈ w(uk) , Gk ∈ ∂λ1(A(x̂+ uk ⊕ vk)), and A∗ ·Gk ∈ ∂f(x̂+ uk ⊕ vk)∩(ĝ+U(x̂)).

By the continuity at 0 of the set-valued maps w(·) (Corollary 2.5) and of ∂f(x̂+ · ⊕ w(·))∩
(ĝ+U(x̂)) (Corollary 2.3) at 0 and the closedness of the graph of ∂λ1(·) (Proposition
VI.6.2.1 in [19]), we obtain

lim
k→+∞

vk = 0 , G ∈ ∂λ1(A(x̂)), and A∗ ·G ∈ ∂f(x̂) ∩ (ĝ + U(x̂)).

The unicity implies G = Ĝ and then lim extu→0 Γ(u) = {Ĝ} = Γ(0). This proves
the outer semicontinuity of Γ at 0. Because Γ(0) is a singleton, the continuity
follows.

We are now in a position to give the analogues of Theorem 4.11 in the space of
decision variables Rm.

542 FRANÇOIS OUSTRY

Theorem 5.9. Assume (T) is satisfied at x̂ and take ĝ ∈ ri ∂f(x̂). Then there
exists η > 0 such that for all u ∈ B(0, η) ⊂ Uf (x̂), the set w(u) of (2.2) is a singleton:

w(u) = {v(u)} for all u ∈ B(0, η),

where v(·) is the C∞-map defined in Theorem 5.6 (ii).
Proof. Let u ∈ Uf (x̂), v ∈ w(u), and

G ∈ [A∗]−1[∂f(x̂+ u⊕ v) ∩ (ĝ + U(x̂))] ∩ ∂λ1(A(x̂+ u⊕ v)).

From Corollary 2.5 and Lemma 5.8 (ii), we show (as we did for Theorem 4.11) that
the strict complementarity condition holds:{

(λ1(A(x̂+ u⊕ v))In −A(x̂+ u⊕ v))G = 0 ,
rank(λ1(A(x̂+ u⊕ v))In −A(x̂+ u⊕ v)) = n− r and rankG = r

for all v ∈ w(u) and all G ∈ [A∗]−1[∂f(x̂+ u⊕ v) ∩ ĝ + U(x̂)] ∩ ∂λ1(A(x̂+ u⊕ v))

provided u is small enough. Hence, for all u ∈ B(0, η) and η small enough, we have
the inclusion

x̂+ u⊕ w(u) ⊂ Wr ∩B(x̂, δ),

where δ is the radius that was introduced in Corollary 3.5. We conclude using Corol-
lary 3.5.

There is no longer an obstacle to getting the desired second-order chain rule for
LU,f .

Theorem 5.10. Assume (T) is satisfied at x̂ and take ĝ ∈ ri ∂f(x̂). Then the
U-Lagrangian LU,f (x̂, ĝ; ·) is C∞. Moreover, at u = 0,

∇2LU,f (x̂, ĝ; 0) = projUf (x̂) ◦ A∗ ◦H(A(x̂), Ĝ) ◦ A ◦ proj∗Uf (x̂),(5.8)

where Ĝ is the unique subgradient of ∂λ1(A(x̂)) such that ĝ = A∗Ĝ and the operator
H(A(x̂), Ĝ) is given by (4.18) (with Â = A(x̂)). This can also be written

∇2LU,f (x̂, ĝ; 0) = B(x̂)∗ ◦ ∇2LU,λ1(A(x̂), Ĝ; 0) ◦B(x̂),(5.9)

where B(x̂) = projUλ1
(A(x̂)) ◦ A ◦ proj∗Uf (x̂) and Uf (x̂) is given by (5.4).

Proof. Similarly to the proof of Theorem 4.12, use Theorem 5.9 to get, in a
neighborhood of u = 0,

LU,f (x̂, ĝ;u) = λ̂(px̂(u))− 〈ĝ, v(u)〉Vf (x̂),

where (px̂) is defined by (5.7). Then we use the transversality condition at u = 0,
together with continuity arguments, to prove that the operator Dϕ(x̂) ◦ Dϕ(px̂(u))∗

is invertible for u small enough. There exists a C∞ map Uf (x̂) 3 u 7→ Z(u) defined
in a neighborhood of u = 0 such that

∇LU,f (x̂, ĝ;u) = projUf (x̂) ◦ A∗ ·
(
Q1(A(px̂(u)))Z(u)Q1(A(px̂(u)))T

)
.(5.10)

To obtain the differential at u = 0 of the right-hand side of (5.10), we use exactly the
same idea as in the proof of Theorem 4.12: for all h ∈ Uf (x̂),

projUf (x̂) ◦ A∗ ·
(
Q1(A(px̂(u)))[DZ(0) · h]Q1(A(px̂(u)))T

)
= 0.

Then (5.8) follows similarly to (4.17).

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 543

Finally, the composition rule (5.9) is obtained after observing that (5.4) implies

range (A ◦ proj∗Uf (x̂)) = proj∗Uλ1
(A(x̂)) Uλ1

(A(x̂)).

Due to (4.17) the operator H(A(x̂), Ĝ) can be replaced in (5.8) by

proj∗Uλ1
(A(x̂)) ◦ ∇2LU,λ1(A(x̂), Ĝ; 0) ◦ projUλ1

(A(x̂)),

and we are done.
Finally, we give a second-order development of f = λ1 ◦A along the manifoldWr.
Corollary 5.11. With the assumptions of Theorem 5.10, we have for x̂+d ∈ Wr

and d→ 0 that

f(x̂+ d) = f(x̂) + 〈ĝ, d〉+ 1

2
〈projUf (x̂)d,∇2LU,f (x̂, ĝ; 0) · (projUf (x̂)d)〉Uf (x̂) + o(‖d‖2).

Proof. Use the same proof as for Corollary 4.13.

6. Link with the SQP approach.

6.1. The Hessians. Let us consider a primal-dual pair (Â, Ĝ) ∈ Sn× ri ∂λ1(Â).
We have seen in Theorem 4.12 that the Hessian of the U-Lagrangian LU (Â, Ĝ; ·) at
U = 0 is the operator induced in Uλ1

(Â) by H(Â, Ĝ) of (4.18). Actually, more can be
said about this operator.

Theorem 6.1. For all Â ∈ Mr and G ∈ ∂λ1(Â), the symmetric operator
H(Â, Ĝ) defined by (4.18) satisfies the following properties:

(i) Vλ1
(Â) ⊂ kerH(Â, Ĝ),

(ii) span ∂λ1(Â) ⊂ kerH(Â, Ĝ),
(iii) H(Â, Ĝ) is positive semidefinite.
Proof. (i) Consider a spectral decomposition of Â:

Â = λ1(Â)Q1(Â)Q1(Â)T +Q2Λ2Q
T
2 ,

where Q1(Â) is an orthonormal basis of E1(Â), Q2 is an orthonormal basis of E1(Â)⊥,
and Λ2 = diag (λr+1(Â), . . . , λn(Â)). The Moore–Penrose inverse of λ1(Â)In−Â (see,
e.g., [15, Section 5.5.4]) can then be written

[λ1(Â)In − Â]† = Q2[λ1(Â)In−r − Λ2]−1QT2 .

We have therefore

[λ1(Â)In − Â]†Q1(Â) = 0.(6.1)

Take now Y ∈ Vλ1(Â); from (4.4), it has the form Y = Q1(Â)ZQ1(Â)T for some
Z ∈ H of (4.8). Use then (4.18) and (6.1) to obtain H(Â, Ĝ) · Y = 0 and conclude.

(ii) Use

span ∂λ1(Â) = Q1(Â)SrQ1(Â)T ,

together with (4.18) and (6.1) again, to obtain the desired result.
(iii) The operator induced in U(Â) by H(Â, Ĝ) is the Hessian of a convex function

(the U-Lagrangian); then it is positive semidefinite. Together with (i) we obtain the
positive semidefiniteness of H(Â, Ĝ).

Corollary 6.2. A∗ ◦H(Â, Ĝ) ◦ A is positive semidefinite .

544 FRANÇOIS OUSTRY

Proof. This is straightforward from Theorem 6.1 (iii).
It is then legitimate to ask the following question: Is A∗ ◦H(Â, Ĝ)◦A the Hessian

of a convex function? The answer is yes provided the transversality condition holds:
it is the Hessian introduced in SQP.

Theorem 6.3. Suppose (T) is satisfied at x̂; take ĝ ∈ ri ∂f(x̂) and Ĝ ∈ [A∗]−1ĝ∩
∂λ1(Â), where Â = A(x̂). Then A∗ ◦H(Â, Ĝ) ◦ A coincides with the matrix (3.11) of
[44].

Proof. With the notation of Theorem 4.12, once Q1(Â) is chosen there exists a
unique Ẑ = Z(0) ∈ S+

r , tr Ẑ = 1, such that Q1(Â)ẐQ1(Â)T = Ĝ. Then, taking
Z as the new dual variable, we see that H(Â, Ĝ) is the Hessian of the Lagrangian
introduced in [44] at the primal-dual pair (Â, Ẑ).

6.2. U-Newton algorithm. The theory developed thus far strongly suggests
the following algorithmic application: near a solution of (P), minimize the second-
order development of the U-Lagrangian of f . Here we present first a conceptual
algorithm which relies on this simple idea. In section 6.3, we will show how it can
lead to a more implementable scheme in a SQP context.

Let us consider a minimum point x∗ and call r the multiplicity of λ1(A(x∗)).
Given x ∈ B(x∗, ρ) for some ρ > 0, we need to compute some x+ superlinearly closer
to x∗. We consider the following conceptual algorithm.

Algorithm 6.4.

V-step. Compute x̂ ∈ Wr, a solution of

min{‖x̂− x‖ : x̂ ∈ Wr}.(6.2)

Dual-step. Compute

g(x̂) := proj∂f(x̂)(0).(6.3)

U-step. Solve

min
u∈U(x̂)

〈u,∇LU,f (x̂, g(x̂); 0)〉Uf (x̂) +
1

2
〈u,∇2LU,f (x̂, g(x̂); 0)u〉Uf (x̂) .(6.4)

Update. Set x+ = x̂+ u.
To make sure that x+ is well defined, we introduce some additional conditions.
Definition 6.5 (strict complementarity (SC)). We say that the strict comple-

mentarity holds at x∗ if 0 ∈ ri ∂f(x∗).
Remark 6.6. In view of Theorem 5.1, (SC) at x∗ is equivalent to the existence of

G∗ ∈ ri ∂λ1(A(x∗)) such that A∗(G∗) = 0. From Proposition 4.2, G∗ ∈ S+
n satisfies

[f(x∗)In −A(x∗)]G∗ = 0 and rankG∗ = r, which can be written

[f(x∗)In −A(x∗)]G∗ = 0 and [f(x∗)In −A(x∗)] +G∗ � 0.

This is what is called the strict complementarity condition (see [4]) in semidefinite
programming.

Definition 6.7 (strict second-order condition (SSOC)). We say that the strict
second-order condition holds at x∗ if (T) and (SC) are satisfied at x∗ and the Hessian
of LU,f (x∗, 0; ·) is positive definite at u = 0.

Remark 6.8. The (SSOC) is natural in a Newton context. It plays a paramount
role in the sensivity analysis of semidefinite programs; see the recent works [43] and
[8].

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 545

The following proposition will be used as a preliminary result to get Theorem 6.10
and for a reformulation of the Dual-step of Algorithm 6.4 to get Algorithm 6.12.

Proposition 6.9. Let x̂ ∈ Wr ∩ B(x∗, ρ). Then g(x̂) of (6.3) satisfies the
following.

(i)

g(x̂) = A∗ · (Q1(A(x̂))ZQ1(A(x̂))T),

where Z is a solution of

min
Z∈S+

r , trZ=1
‖A∗ · (Q1(A(x̂))ZQ1(A(x̂))T)‖2.(6.5)

(ii) If (T) holds at x∗, then the following minimization program

min
Z∈Sr, trZ=1

‖A∗ · (Q1(A(x̂))ZQ1(A(x̂))T)‖2(6.6)

has a unique solution Z(x̂) for ρ small enough; moreover, the map

Wr ∩B(x∗, ρ) 3 x̂ 7→ Z(x̂) ∈ Sr
is C∞.

(iii) If (T) and (SC) hold, then Z(x̂) � 0 for ρ small enough. Consequently Z(x̂)
is also the unique solution of (6.5) and

g(x̂) ∈ ri ∂f(x̂) .(6.7)

Proof. (i) Use (4.1) and (5.1) to rewrite the projection problem (6.3) in the form
(6.5).

(ii) Write the optimality condition of (6.6) and use the transversality condition at
x∗ to obtain, via the implicit function theorem, the uniqueness and desired regularity.

(iii) Recall Definition 6.5: 0 ∈ ri ∂f(x∗). This, together with (4.2) and (5.2),
implies

∃Z∗ ∈ Sr such that trZ∗ = 1, Z∗ � 0, and 0 = A∗ · (Q1(A(x∗))Z∗Q1(x∗)T).

Furthermore, Z∗ is a feasible point for (6.6) and ‖A∗ · (Q1(A(x∗))Z∗Q1(x∗)T)‖ = 0.
Hence, Z∗ is optimal for (6.6) and Z(x∗) = Z∗ � 0. Because the map Z(·) is contin-
uous, we have Z(x̂) � 0 for x̂ in a neighborhood of x∗. Now, in this neighborhood,
since Z(x̂) is optimal for (6.6) and feasible for (6.5), it is optimal for (6.5). Finally,
using again (4.2) and (5.2), we derive (6.7) easily.

This enables us to show that Algorithm 6.4 is well defined when (SSOC) holds.
Theorem 6.10. Suppose (SSOC) holds at x∗. Then there exists ρ > 0 such that

for all x ∈ B(x∗, ρ) the point x+ constructed by Algorithm 6.4 is well defined.
Proof. Several ambiguities appear when following Algorithm 6.4.
First, we need to show that (6.2) has a nonempty solution set. Since (T) is

satisfied at x∗, we can define from Theorem 5.5 a local equation ϕ(x) = 0 in B(x∗, ρ)
for some ρ > 0. Then, for ρ small enough,

Wr ∩ B̄(x∗, ρ) = ϕ−1(0) ∩ B̄(x∗, ρ)

is compact in Rm. Then (6.2) has at least one solution.

546 FRANÇOIS OUSTRY

Next, to define the U-Lagrangian at the primal-dual pair (x̂, g(x̂)), we need to
ensure that g(x̂) ∈ ri ∂f(x̂) for ρ small enough. This is Proposition 6.9 (iii).

The last point consists of showing that the quadratic program (6.4) is well posed.
For that purpose, it is sufficient to realize that

B(x∗, ρ)∩Wr 3 x̂ 7→ ∇2LU,f (x̂, g(x̂); 0) = projUf (x̂)◦A∗◦H(A(x̂), G(x̂))◦A◦proj∗Uf (x̂)

with G(x̂) := Qtot(A(x̂))Z(x̂)Qtot(A(x̂))T and H(A(x̂), G(x̂)) given by (4.18) is con-
tinuous: indeed the map x̂ 7→ H(A(x̂), G(x̂)) is continuous in a neighborhood of x∗,
as well as (see Corollary 5.7) the map x̂ 7→ projUf (x̂). Therefore, ∇2LU,f (x̂, g(x̂); 0) is
positive definite for all x̂ ∈ B(x∗, ρ) ∩Wr and ρ small enough.

6.3. Practical considerations. One practical difficulty of Algorithm 6.4 is the
computation of x̂. To overcome this, we proceed in two steps.

First observe the following.
Proposition 6.11. Assume (SSOC) holds at x∗. Then, for ρ small enough, the

Dual-step, the U-step, and the Update of Algorithm 6.4 are equivalent to the following
steps.

Dual-step. Compute a solution Z ∈ Sr of (6.6) and set

G(x̂) := Q1(A(x̂))ZQ1(A(x̂))T .

U-step. Compute a solution d ∈ Rm of

minA(d) •G(x̂) +A(d) •H(A(x̂), G(x̂)) · V (x) + 1
2A(d) •H(A(x̂), G(x̂)) · A(d)

V (x) +A(d) ∈ Uλ1(A(x̂)) ,

where V (x) := A(x)−A(x̂).
Update. Set x+ = x+ d.
Proof. The Dual-step is simply reformulated in the space of symmetric matrices:

in view of Proposition 6.9 we have

g(x̂) = A∗ ·G(x̂) for x̂ in a neighborhood of x∗.

Then, apply the chain rules (5.5), (5.9), and (4.17) and make the change of variable
d := x̂− x+ u in (6.4) to obtain the desired U-step and Update.

Second, we consider the simplest approximation of A(x̂) by setting the first r
eigenvalues of A(x) equal to λ1(A(x)) without affecting eigenvectors. More formally,
for x ∈ B(x∗, ρ) and ρ small enough, let Qtot(A(x)) be an orthonormal basis of
Etot(A(x)) and Λtot(A(x)) = Qtot(A(x))TA(x)Qtot(A(x)); then we take as an ap-
proximation of A(x̂) the following matrix Â(x) ∈Mr:

Â(x) = λ1(A(x))Qtot(A(x))Qtot(A(x))T +A(x)−Qtot(A(x))Λtot(A(x))Qtot(A(x))T .

According to Theorem 6.1 (ii), this approximation satisfies

A(x)− Â(x) ∈ span ∂λ1(Â(x)) ⊂ kerH(Â(x), Ĝ(x)).

Then, in view of Proposition 6.11, we replace Algorithm 6.4 by the following approx-
imation.

Algorithm 6.12. Let x ∈ B(x∗, ρ).
V-step. Compute Qtot(A(x)), Λtot(A(x)), Â(x), and

V̂ (x) := A(x)− Â(x).

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 547

Dual-step. Compute a solution Z ∈ Sr of

min
Z∈Sr, trZ=1

‖A∗ · (Q1(Â(x))ZQ1(Â(x))T)‖2,

and set

Ĝ(x) := Q1(Â(x))ZQ1(Â(x))T .

U-step. Compute the solution d ∈ Rm of

minA(d) • Ĝ(x) + 1
2A(d) •H(Â(x), Ĝ(x)) · A(d)

V̂ (x) +A(d) ∈ Uλ1
(Â(x)).

Update. Set x+ = x+ d.
Algorithm 6.12 is exactly the algorithm described in [44, Section 4] or, with

some slight differences in the Hessian matrix H(Â(x), Ĝ(x)), the one described in
[38, Iteration 4]. It is a more implementable version of Algorithm 6.4 and enjoys the
following property of quadratic rate of convergence.

Theorem 6.13. If (SSOC) holds at x∗, then there exists ρ > 0 and C > 0 such
that for all x ∈ B(x∗, ρ), x+ defined by Algorithm 6.12 satisfies

‖x+ − x∗‖ ≤ C‖x− x∗‖2.
Proof. See, e.g., [44, Section 6].

Acknowledgments. I wish to thank Claude Lemaréchal, my advisor, for the
numerous and fruitful discussions we had together. I am also indebted to Claudia
Sagastizábal, Jean-Charles Gilbert, and Laurent El Ghaoui for their careful reading
and suggestions for improving the paper.

REFERENCES

[1] R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and Applications,
Applied Mathematical Sciences 75, 2nd ed., Springer-Verlag, Berlin, 1988.

[2] F. Alizadeh, Combinatorial Optimization with Interior Point Methods and Semi-Definite Ma-
trices, Ph.D. thesis, University of Minnesota, Minneapolis, MN, 1991.

[3] F. Alizadeh, Optimization over the positive-definite cone: Interior-point methods and combi-
natorial applications, in Advances in Optimization and Parallel Computing, Panos Parda-
los, ed., North–Holland, Amsterdam, 1992.

[4] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Complementarity and nondegeneracy
in semidefinite programming, Math. Programming Ser. B, 77 (1997), pp. 111–128.

[5] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods
for semidefinite programming: Convergence rates, stability and numerical results, SIAM
J. Optim., 8 (1998), pp. 746–768.

[6] V. I. Arnold, On matrices depending on parameters, Russian Math. Surveys, 26 (1971),
pp. 29–43.

[7] M. P. Bendsøe, A. Ben-Tal, and J. Zowe, Optimization methods truss geometry and topology
design, Structural Optimization, 7 (1994), pp. 141–159.

[8] J. F. Bonnans, R. Cominetti, and A. Shapiro, Sensivity Analysis of Optimization Problems
Under Second Order Regular Constraints, Technical Report 2989, INRIA, Le Chesnay,
France, 1996.

[9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory, Studies in Applied Mathematics 15, SIAM, Philadelphia, PA,
1994.

[10] S. J. Cox and M. L. Overton, The optimal design of columns against buckling, SIAM J.
Math. Anal., 23 (1992), pp. 287–325.

548 FRANÇOIS OUSTRY

[11] J. Cullum, W. E. Donath, and P. Wolfe, The minimization of certain nondifferentiable
sums of eigenvalues of symmetric matrices, Math. Programming Study, 3 (1975), pp. 35–
55.

[12] A. Edelman, T. Arias, and S. T. Smith, The geometry of algorithms with orthogonality
constraints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303–353.

[13] M. K. H. Fan, A quadratically convergent local algorithm on minimizing the largest eigenvalue
of a symmetric matrix, Linear Algebra Appl., (1993), pp. 231–253.

[14] R. Fletcher, Semi-definite matrix constraints in optimization, SIAM J. Control Optim., 23
(1985), pp. 493–522.

[15] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press, Balti-
more, MD, 1989.

[16] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM
J. Optim., submitted.

[17] N. J. Hicks, Notes on Differential Geometry, Van Nostrand, Princeton, NJ, 1965.
[18] J.-B. Hiriart-Urruty and D. Ye, Sensivity analysis of all eigenvalues of a symmetric matrix,

Numer. Math., 70 (1995), pp. 45–72.
[19] J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms,

Springer-Verlag, Berlin, 1993.
[20] F. Jarre, An interior-point method for minimizing the maximum eigenvalue of a linear com-

bination of matrices, SIAM J. Control Optim., 31 (1993), pp. 1360–1377.
[21] T. Kato, Perturbation theory of matrices, J. Assoc. Comput. Mach., 5 (1958), p. 104.
[22] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
[23] K. C. Kiwiel, A linearization algorithm for optimizing control systems subject to singular

value inequalities, IEEE Trans. Automat. Control, AC-31 (1986), pp. 595–602.
[24] P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer. Math., 6 (1964),

pp. 377–387.
[25] C. Lemaréchal, F. Oustry, and C. Sagastizábal, The U-Lagrangian of a convex function,

Trans. Amer. Math. Soc. (1996), to appear.
[26] A. S. Lewis and M. L. Overton, Eigenvalue optimization, Acta Numerica, 5 (1996), pp. 149–

190.
[27] R. Mifflin and C. Sagastizábal, VU-derivatives for convex max-functions, Math. Oper. Res.

(1997), submitted.
[28] A. Nemirovsky, On Normal Self-concordant Barriers and Long-step Interior Point Methods,

Technical report, Optimization Laboratory, Faculty of Industrial Engineering and Manage-
ment, Technion, Israel Institute of Technology, Technion City, Haifa, Israel, 1997.

[29] A. Nemirovski and P. Gahinet, The projective method for solving linear matrix inequalities,
Math. Programming Ser. B, 77 (1997), pp. 163–190.

[30] A. Nemirovsky and D. Yudin, Problem Complexity and Method Efficiency in Optimization,
John Wiley, New York, 1983.

[31] Yu. Nesterov, Interior-point methods: An old and new approach to nonlinear programming,
Math. Programming, 79 (1997), pp. 285–297.

[32] Yu. Nesterov and A. Nemirovsky, A General Approach to Polynomial-time Algorithms
Design for Convex Programming, Technical report, Centr. Econ. & Math. Inst., USSR
Academy of Sciences, Moscow, USSR, 1988.

[33] Yu. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Pro-
gramming, SIAM Stud. Appl. Math. 13, SIAM, Philadelphia, PA, 1994.

[34] Yu. Nesterov and M. J. Todd, Self-scaled cones and interior-points methods in nonlinear
programming, Math. Oper. Res., 22 (1997), pp. 1–42.

[35] F. Oustry, A second-order bundle method to minimize the maximum eigenvalue function,
Math. Programming (1997), submitted.

[36] M. L. Overton, On minimizing the maximum eigenvalue of a symmetric matrix, SIAM J.
Matrix Anal. Appl., 9 (1988), pp. 256–268.

[37] M. L. Overton, Large-scale optimization of eigenvalues, SIAM J. Optim., 2 (1992), pp. 88–120.
[38] M. L. Overton and R. S. Womersley, Second derivatives for optimizing eigenvalues of

symmetric matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 667–718.
[39] M. L. Overton and X. Ye, Toward second-order methods for structured nonsmooth optimiza-

tion, in Advances in Optimization and Numerical Analysis, S. Gomez and J.-P. Hennart,
eds., Kluwer Academic Publishers, Norwell, MA, 1994, pp. 97–109.

[40] E. Polak and Y. Wardi, Nondifferentiable optimization algorithm for designing control sys-
tems having singular value inequalities, Automatica, 18 (1982), pp. 267–283.

[41] F. A. Potra and R. Sheng, A superlinearly convergent primal-dual infeasible-interior-point
algorithm for semidefinite programming, SIAM J. Optim. 8 (1998), pp. 1007–1028.

THE U-LAGRANGIAN OF THE MAXIMUM EIGENVALUE FUNCTION 549

[42] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth func-
tion: Conceptual idea, convergence analysis, numerical results, SIAM J. Optim., 2 (1992),
pp. 121–152.

[43] A. Shapiro, First and second order analysis of nonlinear semidefinite programs, Math. Pro-
gramming Ser. B, 77 (1997), pp. 301–320.

[44] A. Shapiro and M. K. H. Fan, On eigenvalue optimization, SIAM J. Optim., 5 (1995), pp. 552–
568.

[45] L. Vandenberghe and S. Boyd, Primal-dual potential reduction method for problems involving
matrix inequalities, Math. Programming, Series B, 69 (1995), pp. 205–236.

POLYNOMIAL CONVERGENCE OF A NEW FAMILY
OF PRIMAL-DUAL ALGORITHMS

FOR SEMIDEFINITE PROGRAMMING∗

RENATO D. C. MONTEIRO† AND TAKASHI TSUCHIYA‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 551–577

Abstract. This paper establishes the polynomial convergence of a new class of primal-dual
interior-point path-following feasible algorithms for semidefinite programming (SDP) whose search
directions are obtained by applying Newton’s method to the symmetric central path equation

(PXPT)1/2(P−TSP−1)(PXPT)1/2 − µI = 0,

where P is a nonsingular matrix. Specifically, we show that the short-step path-following algorithm
based on the Frobenius norm neighborhood and the semilong-step path-following algorithm based on
the operator 2-norm neighborhood have O(

√
nL) and O(nL) iteration-complexity bounds, respec-

tively. When P = I, this yields the first polynomially convergent semilong-step algorithm based on a
pure Newton direction. Restricting the scaling matrix P at each iteration to a certain subset of non-
singular matrices, we are able to establish an O(n3/2L) iteration complexity for the long-step path-
following method. The resulting subclass of search directions contains both the Nesterov–Todd di-
rection and the Helmberg–Rendl–Vanderbei–Wolkowicz/Kojima–Shindoh–Hara/Monteiro direction.

Key words. semidefinite programming, interior-point methods, polynomial complexity, path-
following methods, primal-dual methods

AMS subject classifications. 65K05, 90C25, 90C30

PII. S1052623496312836

1. Introduction. Several authors have discussed generalizations of interior-point
algorithms for linear programming (LP) to the context of semidefinite programming
(SDP). The landmark work in this direction is due to Nesterov and Nemirovskii
[22, 23], where a general approach for using interior-point methods for solving con-
vex programs is proposed, based on the notion of self-concordant functions. (See their
book [25] for a comprehensive treatment of this subject.) They show that the problem
of minimizing a linear function over a convex set can be solved in “polynomial time”
as long as a self-concordant barrier function for the convex set is known. In particular,
Nesterov and Nemirovskii show that linear programs, convex quadratic programs with
convex quadratic constraints, and semidefinite programs all have explicit and easily
computable self-concordant barrier functions, and hence can be solved in “polynomial
time.” On the other hand, Alizadeh [1] extends Ye’s projective potential reduction
algorithm [37] for LP to SDP and argues that many known interior-point algorithms
for LP can also be transformed into algorithms for SDP in a mechanical way. Since
then many authors have proposed interior-point algorithms for solving SDP prob-
lems, including Alizadeh, Haeberly, and Overton [2], Freund [3], Helmberg et al. [4],

∗Received by the editors December 1, 1996; accepted for publication (in revised form) February
17, 1998; published electronically April 19, 1999.

http://www.siam.org/journals/siopt/9-3/31283.html
†School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

30332 (monteiro@isye.gatech.edu). The work of this author was based on research supported by the
Office of Naval Research under grant N00014-94-1-0340 and the National Science Foundation under
grants INT-9600343 and CCR-9700448.
‡The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-Ku, Tokyo, 106, Japan

(tsuchiya@sun312.ism.ac.jp). This author’s research was supported in part by the Grant-in-Aid for
Encouragement of Young Scientists (A) 08780227 (1996) of the Ministry of Education, Science and
Culture of Japan.

551

552 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

Jarre [5], Kojima, Shida, and Shindoh [10], Kojima, Shindoh, and Hara [11], Lin and
Saigal [12], Luo, Sturm, and Zhang [13], Monteiro [15, 16], Monteiro and Tsuchiya
[19], Monteiro and Zhang [21], Nesterov and Nemirovskii [24], Nesterov and Todd
[26, 27], Potra and Sheng [29], Sturm and Zhang [30], Tseng [35], Vandenberghe and
Boyd [36], and Zhang [38]. Most of these more recent works are concentrated on
primal-dual methods.

The first algorithms for SDP which are extensions of well-known primal-dual LP
algorithms, such as the long-step path-following algorithm of Kojima, Mizuno, and
Yoshise [7] and Tanabe [31, 32], the short-step path-following algorithm of Kojima,
Mizuno, and Yoshise [6] and Monteiro and Adler [17, 18], and the predictor-corrector
algorithm of Mizuno, Todd, and Ye [14], use one of the following three search di-
rections: (i) the Alizadeh–Haeberly–Overton (AHO) direction proposed in [2]; (ii)
a direction independently proposed by Helmberg et al. [4] and Kojima, Shindoh,
and Hara [11], and later rediscovered by Monteiro [15], which we refer to as the
HRVW/KSH/M direction; and (iii) the Nesterov–Todd (NT) direction introduced in
[26, 27]. Application of Newton’s method to the central path equation XS = σµI
results in an equation of the form

X∆S + ∆XS = σµI −XS,(1.1)

which in general yields nonsymmetric directions. The AHO direction corresponds to
the symmetric equation obtained by symmetrizing both sides of (1.1).

Another way of symmetrizing (1.1) is first to apply a similarity transformation
P (·)P−1 to both sides of (1.1) and then to symmetrize it. Such an approach was first
introduced by Monteiro [15] for the cases P = X−1/2 and P = S1/2. The resulting
directions were found to be equivalent to two special directions of the KSH family of
directions introduced earlier by Kojima, Shindoh, and Hara [11] using a different
approach. The second direction (with P = S1/2), which is the HRVW/KSH/M
direction, was also proposed by Helmberg et al. [4] independently from [11]. (For
simplicity, we refer to the first direction with P = X−1/2 as the HRVW/KSH/M
dual direction. We use the term HRVW/KSH/M directions to refer to both of them.)
To unify the NT direction and the HRVW/KSH/M directions, Zhang [38] formally
introduced the above scaling and symmetrization scheme for a general nonsingular
scaling matrix P , which leads to a class of search directions parametrized by P , usually
referred to as the Monteiro and Zhang (MZ) family. Subsequently, Todd, Toh, and
Tütüncü [34] and Kojima, Shida, and Shindoh [8] showed that the NT direction is a
member of the MZ family and the KSH family, respectively. In contrast, it is known
that the AHO direction does not belong to the KSH family.

Unified convergence analyses for the MZ family have been given by Monteiro and
Zhang [21] and Monteiro [16]. In the paper [21], iteration-complexity bounds are de-
rived for the long-step primal-dual path-following method based on a subclass of the
MZ family of search directions, which contains the NT and HRVW/KSH/M direc-
tions but not the AHO direction. In particular, it is shown that the corresponding
algorithms based on the NT and the HRVW/KSH/M directions perform O(nL) and
O(n3/2L) iterations, respectively, to reduce the duality gap by a factor of at least
2−O(L). (The O(n3/2L) iteration-complexity bound for the HRVW/KSH/M direc-
tions was in fact obtained earlier by Monteiro [15].) More recently, Monteiro [16]
proves the polynomiality of the short-step primal-dual path-following algorithm and
the Mizuno–Todd–Ye predictor-corrector–type algorithm based on any member of the
MZ family, thus obtaining as a by-product the important result that Frobenius-norm–
type algorithms based on the AHO direction are polynomially convergent.

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 553

Unified analyses for the KSH family of directions are provided in Kojima, Shindoh,
and Hara [11] and Monteiro and Tsuchiya [19]. The paper [11] introduces the KSH
family and establishes: (1) the polynomiality of the short-step path-following (feasible)
method based on the two KSH/HRVW/M directions (both members of the KSH
family); and (2) the polynomiality of a potential reduction (feasible and infeasible)
algorithm based on any direction of the KSH family. Using techniques developed
in Monteiro [16], the paper [19] extends the result (1) above to any direction of the
KSH family. It also proves polynomial convergence of a Mizuno–Todd–Ye predictor-
corrector-type algorithm for semidefinite linear complementarity problems based on
the whole KSH family.

This paper considers primal-dual path-following methods for SDP based on the
Newton direction for the symmetric central path equation

X1/2SX1/2 − µI = 0.(1.2)

This pure Newton direction is quite natural in view of the fact that the neighborhoods
of the central path used to develop polynomially convergent algorithms are all based
on the eigenvalues of the left-hand side of (1.2). (We use the qualifier “pure Newton”
for those directions that are Newton directions with respect to a central path equation
of the form Φ(X,S) = µI, where the map Φ(·, ·) is independent of the current iterate
or any parameter.) In contrast, these neighborhoods have no connection with the
eigenvalues of the left-hand side of the central path equation XS + SX − µI = 0
used to derive the AHO direction. Even though it is possible to define central path
neighborhoods based on the eigenvalues of XS + SX, primal-dual path-following
methods based on these neighborhoods are not known to be polynomially convergent.
The polynomial convergence result obtained in [16] for the short-step path-following
method using the AHO direction is based on the Frobenius norm neighborhood defined
in terms of the left-hand side of (1.2).

We consider two primal-dual SDP algorithms based on the above Newton direc-
tion: (1) a short-step path-following method based on the Frobenius norm neighbor-
hood; and (2) a semilong-step path-following method based on the operator norm
neighborhood, which in terms of the eigenvalues of X1/2SX1/2 is equivalent to the
infinity norm neighborhood for LP. We establish that algorithms (1) and (2) have
iteration-complexity bounds of O(

√
nL) and O(nL), respectively, to reduce the du-

ality gap by a factor of 2−O(L). It should be noted that nothing is known regarding
the polynomial convergence of the semilong-step path-following algorithm using the
AHO direction.

We also introduce a family of search directions which consists of the Newton
directions applied to all the central path equations of the form

(PXPT)1/2(P−TSP−1)(PXPT)1/2 − µI = 0,

where P is a nonsingular matrix. We argue that this new family, referred to as the
MT family, is related to the above Newton direction in the same way as the MZ
family is related to the AHO direction, and we show that the iteration-complexity
bounds of algorithms (1) and (2) above extend to any member of the MT family.
Finally, we show that the long-step path-following method based on a subclass of
the MT family, called the MT∗ subclass, has O(n3/2L) iteration-complexity bound,
and hence does not depend on the choice of the sequence of scaling matrices {P k}.
In contrast, the iteration-complexity bound obtained in Monteiro and Zhang [21] for
the long-step path-following algorithm based on the MZ∗ subclass of the MZ family

554 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

depends on a certain condition number determined by the choice of {P k}. Like
the MZ∗ subclass, the MT∗ subclass also contains both the NT direction and the
HRVW/KSH/M directions.

This paper is organized as follows. In section 2, we introduce the SDP problem
and the associated assumptions and derive the Newton direction for the central path
equation (1.2). We also give some existence results for this Newton direction and
state a generic primal-dual algorithm based on it. In section 3, we state and prove
technical results which are used in the polynomial convergence analysis of section 4.
In section 4, we establish the polynomiality of the short-step and the semilong-step
path-following algorithms based on the Newton direction for (1.2). In section 5, we
introduce the MT family of search directions and generalize the convergence analysis of
the short-step and semilong-step algorithms of section 4 to any member of this family.
In section 6, we introduce the MT∗ subclass of directions and give the convergence
analysis of the long-step path-following algorithm based on these directions. Finally,
we end the paper with some concluding remarks in section 7.

1.1. Notation and terminology. The following notation is used throughout
the paper. The superscript T denotes transpose. <p denotes the p-dimensional Eu-
clidean space. The set of all p× q matrices with real entries is denoted by <p×q. The
set of all symmetric p × p matrices is denoted by Sp. For Q ∈ Sp, Q � 0 means
Q is positive semidefinite and Q � 0 means Q is positive definite. The trace of a
matrix Q ∈ <p×p is denoted by Tr Q ≡ ∑n

i=1Qii. For a matrix Q ∈ <p×p with all
real eigenvalues, we denote its eigenvalues by λi[Q], i = 1, . . . , p, and its largest and
smallest eigenvalue by λmax[Q] and λmin[Q], respectively. Given P and Q in <p×q, the
inner product between them in the vector space <p×q is defined as P •Q ≡ Tr PTQ.
The Euclidean norm and its associated operator norm are both denoted by ‖ · ‖;
hence, ‖Q‖ ≡ max‖u‖=1 ‖Qu‖ for any Q ∈ <p×p. The Frobenius norm of Q ∈ <p×p
is ‖Q‖F ≡ (Q • Q)1/2. Sp+ and Sp++ denote the set of all matrices in Sp which are
positive semidefinite and positive definite, respectively.

2. The SDP problem and preliminary discussion. In this section, we de-
scribe the SDP problem considered in this paper, state our assumptions, and derive
the Newton direction for the central path equation (1.2). We also give some existence
results for this Newton direction and state a generic primal-dual algorithm based on
it.

2.1. The SDP problem. This subsection describes the SDP problem and the
corresponding assumptions. It also contains some notation and terminology that are
used throughout our presentation.

We consider the SDP problem

(P) min{C •X : Ai •X = bi, i = 1, . . . ,m, X � 0}(2.1)

and its associated dual SDP problem

(D) max

{
bT y :

m∑
i=1

yiAi + S = C, S � 0

}
,(2.2)

where C ∈ Sn, Ai ∈ Sn, i = 1, . . . ,m, and b = (b1, . . . , bm)T ∈ <m are the data, and
X ∈ Sn+ and (S, y) ∈ Sn+ ×<m are the primal and dual variables, respectively.

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 555

The set of interior feasible solutions of (2.1) and (2.2) is

F 0(P) ≡ {X ∈ Sn : Ai •X = bi, i = 1, . . . ,m, X � 0},

F 0(D) ≡
{

(S, y) ∈ Sn ×<m :
m∑
i=1

yiAi + S = C, S � 0

}
,

respectively. Throughout this paper, we assume that F 0(P) × F 0(D) 6= ∅ and that
the matrices Ai, i = 1, . . . ,m, are linearly independent. Under the first assumption,
it is well known that both (2.1) and (2.2) have optimal solutions X∗ and (S∗, y∗) such
that C • X∗ = bT y∗; i.e., the optimal values of (2.1) and (2.2) coincide. This last
condition, called the strong duality, can be alternatively expressed as X∗ • S∗ = 0
or X∗S∗ = 0. Hence, the set of primal and dual optimal solutions consists of all the
solutions (X,S, y) ∈ Sn+ × Sn+ ×<m to the following optimality system:

XS = 0,(2.3a)
m∑
i=1

yiAi + S − C = 0,(2.3b)

Ai •X − bi = 0, i = 1, . . . ,m,(2.3c)

where (2.3a) is called the complementarity equation. It is well known that for every
ν > 0, the perturbed system

XS = νI,(2.4a)
m∑
i=1

yiAi + S − C = 0,(2.4b)

Ai •X − bi = 0, i = 1, . . . ,m,(2.4c)

has a unique solution, denoted (Xν , Sν , yν), and that the limit limν→0(Xν , Sν , yν)
exists and is a solution of (2.3) (e.g., see Kojima, Shindoh, and Hara [11]). The set
of all solutions (Xν , Sν , yν) with ν > 0 is known as the central path.

It is known that for each V ∈ Sn+, there exists a unique U ∈ Sn+ such that U2 = V .

The matrix U is called the square root of V and is denoted by V 1/2. Using the square
root X1/2, (2.4a) can be alternatively expressed in the following symmetric form:

X1/2SX1/2 = νI, (X,S, y) ∈ F0(P)×F0(D).(2.5)

The path-following algorithms studied in this paper are all based on one of the
following three centrality measures of a point (X,S) ∈ Sn+ × Sn+:

dF (X,S) ≡
∥∥∥X1/2SX1/2 − µI

∥∥∥
F

=

[
n∑
i=1

(λi[XS]− µ)
2

]1/2

,

d∞(X,S) ≡
∥∥∥X1/2SX1/2 − µI

∥∥∥ = max
i=1,...,n

|λi[XS]− µ| ,

d−∞(X,S) ≡
∥∥∥X1/2SX1/2 − µI

∥∥∥
−∞

= max (0, µ− λmin[XS]) ,

where µ ≡ (X • S)/n = (
∑n
i=1 λi[XS])/n, and ‖ · ‖−∞ is defined as

‖Q‖−∞ ≡ max (0, λmax[−Q]) for Q ∈ Sn.

556 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

Note that ‖ · ‖−∞ is a seminorm in the sense that it satisfies

‖αQ‖−∞ = α‖Q‖−∞, ‖Q+R‖−∞ ≤ ‖Q‖−∞ + ‖R‖−∞(2.6)

for every Q,R ∈ Sn and α > 0. Clearly, we have

‖Q‖−∞ ≤ ‖Q‖ ≤ ‖Q‖F ,(2.7)

and for γ > 0,

λmin[XS] ≥ (1− γ)µ ⇐⇒ d−∞(X,S) ≤ γµ.
The short-step, semilong-step, and long-step path-following methods are based

on the following central path neighborhoods, respectively:

NF (γ) ≡ {(X,S, y) ∈ F0(P)×F0(D) : dF (X,S) ≤ γµ},(2.8a)

N∞(γ) ≡ {(X,S, y) ∈ F0(P)×F0(D) : d∞(X,S) ≤ γµ},(2.8b)

N−∞(γ) ≡ {(X,S, y) ∈ F0(P)×F0(D) : d−∞(X,S) ≤ γµ},(2.8c)

where γ > 0 is a given constant.

2.2. The Newton direction and the generic algorithm. In this subsection,
we derive the Newton direction for system (2.4b), (2.4c), and (2.5) and state a generic
primal-dual method based on it. We end the subsection by giving some existence
results for this Newton direction.

We start with the following technical result.
Lemma 2.1. For every A ∈ Sn++ and H ∈ Sn, the equation

AU + UA = H(2.9)

has a unique solution U ∈ Sn. Moreover, this solution satisfies

‖AU‖F ≤ ‖H‖F /
√

2.(2.10)

Proof. The first part of the lemma follows from the fact that the linear map
ΦA : Sn → Sn defined by ΦA(U) = AU + UA is an isomorphism. Indeed, since
ΦA has the same domain and codomain, it suffices to show that ΦA is one-to-one, or
equivalently that AU + UA = 0 implies U = 0. In turn, this last implication follows
from the fact that any solution U of (2.9) satisfies (2.10) (simply set H = 0 in (2.10)
to conclude that U = 0). To show the last claim, we square both sides of (2.9) to
obtain

2‖AU‖2F + 2Tr [UAUA] = ‖H‖2F .
Since Tr [UAUA] = ‖A1/2UA1/2‖2F ≥ 0, (2.10) follows.

Throughout this paper, we denote the unique solution U of (2.9) by 〈〈H〉〉A.
Lemma 2.2. Let θ : Sn++ → Sn++ denote the square root function θ(X) = X1/2.

Then, θ is an analytic function, and

θ′(X)H = 〈〈H〉〉X1/2 for every X ∈ Sn++ and H ∈ Sn,
where θ′(X) is the derivative of θ at X and θ′(X)H is the linear map θ′(X) evaluated
at H.

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 557

Proof. Observe that the inverse function of θ is the analytic function given by
θ−1(A) = A2 for A ∈ Sn++. Clearly, the derivative (θ−1)′(A) of θ−1 is equal to the
function ΦA defined in the proof of Lemma 2.1. Since ΦA is an isomorphism for every
A ∈ Sn++, it follows from the inverse function theorem that θ is analytic and

θ′(X) =
[
(θ−1)′(X1/2)

]−1

= Φ−1
X1/2 .

Hence, θ′(X)H = Φ−1
X1/2(H) = 〈〈H〉〉X1/2 .

Using Lemma 2.2, it is now easy to see that the Newton direction (∆X,∆S,∆y)
for system (2.5) is the solution of the following system of linear equations:

(2.11a)

〈〈∆X〉〉X1/2SX1/2 +X1/2S〈〈∆X〉〉X1/2 +X1/2∆SX1/2 = H,
m∑
i=1

∆yiAi + ∆S = R,(2.11b)

Ai •∆X = ri, i = 1, . . . ,m,(2.11c)

where

H ≡ νI −X1/2SX1/2,(2.12a)

R ≡ C −
m∑
i=1

yiAi − S,(2.12b)

ri ≡ bi −Ai •X, i = 1, . . . ,m.(2.12c)

Let U ≡ 〈〈∆X〉〉X1/2 . Then, in terms of U , we can write (2.11a) as two equivalent
equations:

USX1/2 +X1/2SU +X1/2∆SX1/2 = νI −X1/2SX1/2,(2.13)

UX1/2 +X1/2U = ∆X.(2.14)

We next state the generic primal-dual feasible algorithm that will be studied in
this paper.

Algorithm I.
Let (X0, S0, y0) ∈ F0(P)×F0(D), µ0 ≡ (X0 • S0)/n and set k = 0.
Repeat until µk ≤ 2−Lµ0 do

(1) Let (X,S, y) = (Xk, Sk, yk) and µ ≡ (X • S)/n;
(2) Choose a centrality parameter σ = σk ∈ [0, 1];
(3) Compute the solution (∆Xk,∆Sk,∆yk) of system (2.11) with

H ≡ σµI −X1/2SX1/2 and (R, r) = (0, 0);
(4) Choose a stepsize αk > 0 such that

(Xk+1, Sk+1, yk+1) = (Xk, Sk, yk) + αk(∆Xk,∆Xk,∆yk) ∈ Sn++;
(5) Set µk+1 ≡ (Xk+1 • Sk+1)/n and increment k by 1.

End
The complete specification of Algorithm I depends on the choices of the initial

point (X0, S0, y0) and the sequences {σk} and {αk}. These elements will be specified
later when we discuss specific instances of the above algorithm. In general, the initial
iterate (X0, S0, y0) is chosen within one of the neighborhoods (2.8a)–(2.8b), and the

558 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

sequences {σk} and {αk} are chosen so that the subsequent iterates lie in the same
neighborhood and converge to an optimal solution of (2.1) and (2.2).

The following lemma establishes some important bounds on the Newton direction
(2.11) and yields as a consequence Theorem 2.4, which establishes the nonsingularity
of system (2.11) for any (X,S, y) ∈ N∞(γ) for γ ∈ (0, 1/

√
2).

Lemma 2.3. Suppose that γ ∈ [0, 1/
√

2) and that (X,S, y) ∈ Sn++×Sn++×<m is
such that d∞(X,S) ≤ γµ. If (∆X,∆S,∆y) is a solution of (2.11) with (R, r) = (0, 0)
and H ∈ Sn, then

max
{
µ
∥∥∥X−1/2∆XX−1/2

∥∥∥
F
,
∥∥∥X1/2∆SX1/2

∥∥∥
F

}
≤ ‖H‖F

(1−√2γ)
.(2.15)

Proof. Multiplying (2.14) on the left and on the right by X−1/2 and using in-
equality (2.10) of Lemma 2.1, we conclude that∥∥∥UX−1/2

∥∥∥
F
≤
∥∥X−1/2∆XX−1/2

∥∥
F√

2
.(2.16)

Since (R, r) = (0, 0), it follows from (2.11b) and (2.11c) that

∆X •∆S = 0.(2.17)

By (2.11a) and (2.14), we have

µX−1/2∆XX−1/2 +X1/2∆SX1/2 = H − UX−1/2(X1/2SX1/2 − µI)

− (X1/2SX1/2 − µI)X−1/2U.

Taking the Frobenius norm of both sides of this equality and using (2.16) and (2.17),
we obtain

max
{
µ
∥∥∥X−1/2∆XX−1/2

∥∥∥
F
,
∥∥∥X1/2∆SX1/2

∥∥∥
F

}
≤
(
µ2
∥∥∥X−1/2∆XX−1/2

∥∥∥2

F
+
∥∥∥X1/2∆SX1/2

∥∥∥2

F

)1/2

=
∥∥∥H − UX−1/2(X1/2SX1/2 − µI)− (X1/2SX1/2 − µI)X−1/2U

∥∥∥
F

≤ ‖H‖F + 2
∥∥∥UX−1/2

∥∥∥
F

∥∥∥X1/2SX1/2 − µI
∥∥∥

≤ ‖H‖F +
√

2γµ
∥∥∥X−1/2∆XX−1/2

∥∥∥
F
,(2.18)

which clearly implies that

µ
∥∥∥X−1/2∆XX−1/2

∥∥∥
F
≤ ‖H‖F

(1−√2γ)
.

Using this last inequality to bound the right-hand side of (2.18), we obtain
(2.15).

Theorem 2.4. If (X,S, y) ∈ Sn++ × Sn++ × <m is such that d∞(X,S) < µ/
√

2
then, for every (H,R, r) ∈ Sn × Sn ×<m, system (2.11) has a unique solution.

Proof. In terms of (∆X,∆S,∆y), the left-hand side of system (2.11) is a linear
function from the space Sn × Sn × <m into itself. The lemma easily follows from

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 559

the fact that this linear map is an isomorphism. To prove this fact, it is sufficient
to show that this map is one-to-one, or equivalently that (∆X,∆S,∆y) = (0, 0, 0) is
the only solution of system (2.11) with (H,R, r) = (0, 0, 0). Indeed, it follows from
Lemma 2.3 that (∆X,∆S) = (0, 0). Using the linear independence of the matrices
Ai, i = 1, . . . ,m, we conclude that ∆y = 0.

Note that the above result holds for both feasible and infeasible points. In par-
ticular, it implies the well-definedness of the Newton direction (2.11) for any point in
N∞(γ), where γ < 1/

√
2. By slightly modifying Lemma 2.3, it is possible to establish

the nonsingularity of system (2.11) for any point (X,S, y) ∈ Sn++ × Sn++ × <m such

that ‖X1/2SX1/2 − νI‖ ≤ γν for some ν ∈ < and γ < 1/
√

2. This yields a larger
region of points since ν is not constrained to be equal to µ.

3. Technical results. In this section, we develop technical results which will be
used in section 4 to establish the polynomial convergence of two specific instances of
Algorithm I, namely, the short-step and the semilong-step path-following algorithms.
The main novelty of the analysis of this paper is the use of second- or third-order
Taylor expansions to analyze the behavior of the centrality measure when a Newton
step is taken (see Lemma 3.3).

Let (X,S, y) ∈ Sn++×Sn++×<m denote the current iterate and let (∆X,∆S,∆y)
denote the Newton direction for system (2.5) at the point (X,S, y), that is, the solution
of (2.11) with (R, r) = (0, 0) and H = σµI −X1/2SX1/2, where µ ≡ (X • S)/n and
σ ∈ [0, 1]. Define

(Xα, Sα, yα) ≡ (X,S, y) + α(∆X,∆S,∆y),(3.1)

µ(α) ≡ Xα • Sα
n

,(3.2)

φ(α) ≡ X1/2
α SαX

1/2
α − µ(α)I.(3.3)

Lemma 3.1. We have

µ(α) = (1− α+ ασ)µ.

Proof. By (3.1) and the fact that ∆X •∆S = 0, we have

Xα • Sα = X • S + α (S •∆X +X •∆S).(3.4)

Using (2.13), (2.14), and the fact that ν = σµ, we obtain

S •∆X +X •∆S = Tr[S∆X +X∆S]

= Tr[S(UX1/2 +X1/2U) +X∆S]

= Tr[X1/2SU + USX1/2 +X1/2∆SX1/2]

= Tr[σµI −X1/2SX1/2]

= nσµ−X • S.(3.5)

The lemma now follows by substituting this equality into (3.4) and using the relations
(3.2) and X • S = nµ.

To study how the centrality measures for the points (Xα, Sα, yα) vary, we will
use either the second- or the third-order Taylor expansions of the function φ(α). The
following lemma gives expressions for the derivatives of this function.

560 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

Lemma 3.2. For every α ∈ < such that (Xα, Sα) ∈ Sn++ × Sn++, we have

φ′(α) = U (1)
α SαX

1/2
α +X1/2

α SαU
(1)
α +X1/2

α ∆SX1/2
α + (1− σ)µI,(3.6)

φ′′(α) = U (2)
α SαX

1/2
α +X1/2

α SαU
(2)
α + 2U (1)

α ∆SX1/2
α(3.7)

+ 2X1/2
α ∆SU (1)

α + 2U (1)
α SαU

(1)
α ,

φ′′′(α) = U (3)
α SαX

1/2
α +X1/2

α SαU
(3)
α + 3U (2)

α ∆SX1/2
α + 3X1/2

α ∆SU (2)
α

+ 3U (2)
α SαU

(1)
α + 3U (1)

α SαU
(2)
α + 6U (1)

α ∆SU (1)
α ,(3.8)

where

U (1)
α ≡ d

dα
[X1/2

α], U (2)
α ≡ d2

dα2
[X1/2

α], U (3)
α ≡ d3

dα3
[X1/2

α],

and U
(1)
α , U

(2)
α , and U

(3)
α satisfy

X1/2
α U (1)

α + U (1)
α X1/2

α = ∆X,(3.9)

X1/2
α U (2)

α + U (2)
α X1/2

α = −2U (1)
α U (1)

α ,(3.10)

X1/2
α U (3)

α + U (3)
α X1/2

α = −3
(
U (1)
α U (2)

α + U (2)
α U (1)

α

)
.(3.11)

Also,

U
(1)
0 = U.(3.12)

Proof. Expressions (3.6), (3.8), and (3.8) follow immediately from (3.3) and

Lemma 3.1. Observe that X
1/2
α = θ(X + α∆X), where θ is the function defined

in Lemma 2.2. It follows from this lemma that U
(1)
α = θ′(Xα)∆X = 〈〈∆X〉〉

X
1/2
α

, or

equivalently that (3.9) holds. Expressions (3.10) and (3.11) now follow by differentiat-
ing (3.9) once and twice, respectively. Since, by Lemma 2.1, U is uniquely determined

by (2.14), it follows from (3.9) with α = 0 that U = U
(1)
0 .

The analysis of this paper strongly relies on the following simple result.
Lemma 3.3. For every α ∈ [0, 1], we have

‖φ(α)‖· ≤ (1− α) ‖φ(0)‖· +
1

2
α2 sup

ξ∈[0,α]

‖φ′′(ξ)‖F ,(3.13)

‖φ(α)‖· ≤ (1− α) ‖φ(0)‖· +
1

2
α2 ‖φ′′(0)‖· +

1

6
α3 sup

ξ∈[0,α]

‖φ′′′(ξ)‖F ,(3.14)

where ‖ · ‖· represents one of the norms ‖ · ‖F or ‖ · ‖ or the seminorm ‖ · ‖−∞.
Proof. By (3.6) with α = 0, (3.12), (2.13), and (3.3), we have

φ′(0) = USX1/2 +X1/2SU +X1/2∆SX1/2 + (1− σ)µI

= σµI −X1/2SX1/2 + (1− σ)µI = −φ(0).(3.15)

The lemma now follows from this last equality, relations (2.6) and (2.7), and the two
higher-order Taylor integral formulae:

φ(α) = φ(0) + αφ′(0) + α2

∫ 1

0

(1− t)φ′′(tα)dt,

φ(α) = φ(0) + αφ′(0) +
1

2
α2φ′′(0) + α3

∫ 1

0

(1− t)2

2
φ′′′(tα)dt.

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 561

The analysis of section 4 is based on the inequality (3.13). Hence, in the remain-
ing part of the section, we derive bounds for the second derivative φ′′(α). The other
inequality (3.14) will be used in the analysis of section 6 to establish the polynomi-
ality of the long-step path-following method based on the new family of directions
introduced in section 5.

To simplify notation, we let

∆̂X ≡ X−1/2∆XX−1/2, ∆̂S ≡ S−1/2∆SS−1/2,(3.16)

DX
α ≡ X1/2X−1/2

α , DS
α ≡ S1/2S−1/2

α .(3.17)

Observe that DX
α and DS

α are only well defined when Xα ∈ Sn++ and Sα ∈ Sn++,
respectively.

Lemma 3.4. Let τ ∈ (0, 1) be given. The following statements hold:

(a) If α > 0 is such that α‖∆̂X‖ ≤ τ , then Xα ∈ Sn++, DX
α is well defined and

max
{∥∥DX

α

∥∥ ,∥∥(DX
α)−1

∥∥} ≤ 1√
1− τ .(3.18)

(b) If α > 0 is such that α‖∆̂S‖ ≤ τ , then Sα ∈ Sn++, DS
α is well defined and

max
{∥∥DS

α

∥∥ ,∥∥(DS
α)−1

∥∥} ≤ 1√
1− τ .(3.19)

Proof. We prove only (a), since the proof of (b) is similar. Let α > 0 satisfy-

ing α‖∆̂X‖ ≤ τ be given. Clearly, I + α∆̂X ∈ Sn++, and hence Xα = X1/2(I +

α∆̂X)X1/2 ∈ Sn++ and DX
α is well defined. By (3.17), we have[

DX
α (DX

α)T
]−1

= X−1/2XαX
−1/2 = X−1/2(X + α∆X)X−1/2 = I + α∆̂X.

Hence, ∥∥(DX
α)−1

∥∥2
= λmax

[
I + α∆̂X

]
≤ 1 + α‖∆̂X‖ ≤ 1

1− α‖∆̂X‖
≤ 1

1− τ
and∥∥DX

α

∥∥2
= λmax

[(
I + α∆̂X

)−1
]

=
1

λmin

[
I + α∆̂X

] ≤ 1

1− α‖∆̂X‖
≤ 1

1− τ ;

that is, (3.18) holds.

Lemma 3.5. Let τ ∈ (0, 1) be given. If α > 0 is such that α max{‖∆̂X‖, ‖∆̂S‖} ≤
τ , then ∥∥∥X1/2

α S1/2
α

∥∥∥ ≤ ∥∥X1/2S1/2
∥∥

1− τ .(3.20)

Proof. By (3.17), (3.18), and (3.19), we have∥∥∥X1/2
α S1/2

α

∥∥∥ =
∥∥∥(DX

α)−1X1/2S1/2(DS
α)−T

∥∥∥ ≤ ∥∥(DX
α)−1

∥∥ ∥∥(DS
α)−1

∥∥ ∥∥∥X1/2S1/2
∥∥∥

≤
∥∥X1/2S1/2

∥∥
1− τ .

562 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

Lemma 3.6. Let τ ∈ (0, 1) be given. If α > 0 is such that α‖∆̂X‖ ≤ τ , then∥∥∥U (1)
α X−1/2

α

∥∥∥
F
≤ ‖∆̂X‖F√

2(1− τ)
,(3.21)

∥∥∥U (2)
α X−1/2

α

∥∥∥
F
≤ ‖∆̂X‖2F√

2(1− τ)2
,(3.22)

∥∥∥U (3)
α X−1/2

α

∥∥∥
F
≤ 3√

2

‖∆̂X‖3F
(1− τ)3

.(3.23)

Proof. Multiplying (3.9) on the left and on the right byX
−1/2
α and using inequality

(2.10) of Lemma 2.1 and relation (3.18), we obtain (3.21) as follows:∥∥∥U (1)
α X−1/2

α

∥∥∥
F
≤ 1√

2

∥∥∥X−1/2
α ∆XX−1/2

α

∥∥∥
F

=
1√
2

∥∥∥(DX
α)T ∆̂XDX

α

∥∥∥
F
≤ ‖∆̂X‖F√

2(1− τ)
.

Multiplying (3.10) on the left and on the right by X
−1/2
α and using inequality (2.10)

of Lemma 2.1 and relation (3.21), we obtain (3.22) as follows:∥∥∥U (2)
α X−1/2

α

∥∥∥
F
≤
√

2
∥∥∥X−1/2

α U (1)
α U (1)

α X−1/2
α

∥∥∥
F
≤
√

2
∥∥∥(U (1)

α)X−1/2
α

∥∥∥2

F
≤ ‖∆̂X‖2F√

2(1− τ)2
.

Finally, multiplying (3.11) on the left and on the right by X
−1/2
α and using inequality

(2.10) of Lemma 2.1 and relations (3.21) and (3.22), we obtain (3.23) as follows:∥∥∥U (3)
α X−1/2

α

∥∥∥
F
≤ 3√

2

∥∥∥X−1/2
α U (1)

α U (2)
α X−1/2

α +X−1/2
α U (2)

α U (1)
α X−1/2

α

∥∥∥
F

≤ 6√
2

∥∥∥U (2)
α X−1/2

α

∥∥∥
F

∥∥∥U (1)
α X−1/2

α

∥∥∥
F
≤ 3√

2

‖∆̂X‖3F
(1− τ)3

.

Lemma 3.7. Let constants τ ∈ (0, 1) and γ ∈ (0, 1/
√

2) be given. Suppose that
(X,S, y) ∈ N∞(γ) and that α > 0 satisfies

α max
{
‖∆̂X‖, ‖∆̂S‖

}
≤ τ.

Then, ∥∥∥U (1)
α ∆SX1/2

α

∥∥∥
F
≤ ‖H‖2F√

2(1− τ)2(1−√2γ)2µ
,(3.24) ∥∥∥U (1)

α SαU
(1)
α

∥∥∥
F
≤ (1 + γ)‖H‖2F

2(1− τ)4(1−√2γ)2µ
,(3.25) ∥∥∥U (2)

α SαX
1/2
α

∥∥∥
F
≤ (1 + γ)‖H‖2F√

2(1− τ)4(1−√2γ)2µ
.(3.26)

Proof. Using Lemma 2.3, (3.18), and (3.21), we obtain∥∥∥U (1)
α ∆SX1/2

α

∥∥∥
F
≤
∥∥∥U (1)

α X−1/2
α

∥∥∥
F

∥∥∥X1/2
α ∆SX1/2

α

∥∥∥
≤
∥∥∥U (1)

α X−1/2
α

∥∥∥
F

∥∥(DX
α)−1

∥∥2
∥∥∥X1/2∆SX1/2

∥∥∥
≤ ‖∆̂X‖F ‖H‖F√

2(1− τ)2(1−√2γ)
≤ ‖H‖2F√

2(1− τ)2(1−√2γ)2µ
.

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 563

In addition, using Lemma 2.3, relations (3.20), (3.21), and (3.22), and the fact that∥∥X1/2S1/2
∥∥2 ≤ (1 + γ)µ whenever (X,S, y) ∈ N∞(γ), we obtain∥∥∥U (1)

α SαU
(1)
α

∥∥∥
F
≤
∥∥∥U (1)

α X−1/2
α

∥∥∥2

F

∥∥∥X1/2
α S1/2

α

∥∥∥2

≤ ‖∆̂X‖2F
∥∥X1/2S1/2

∥∥2

2(1− τ)4

≤ (1 + γ)‖H‖2F
2(1− τ)4(1−√2γ)2µ

,

and ∥∥∥U (2)
α SαX

1/2
α

∥∥∥
F
≤
∥∥∥U (2)

α X−1/2
α

∥∥∥
F

∥∥∥X1/2
α S1/2

α

∥∥∥2

≤ ‖∆̂X‖2F
∥∥X1/2S1/2

∥∥2

√
2(1− τ)4

≤ (1 + γ)‖H‖2F√
2(1− τ)4(1−√2γ)2µ

.

The following result gives the desired bound on the second derivative φ′′(α).
Lemma 3.8. Let a constant γ ∈ (0, 1/

√
2) be given. Suppose that (X,S, y) ∈

N∞(γ) and α > 0 is such that

α max
{
‖∆̂X‖, ‖∆̂S‖

}
≤ 1

2
.(3.27)

Then, (Xα, Sα, yα) ∈ F0(P)×F0(D) and

‖φ′′(α)‖F ≤ 80
‖H‖2F

(1−√2γ)2µ
.

Proof. It is easy to see that (3.27) and the fact that (X,S, y) ∈ F0(P) × F0(D)
imply that (Xα, Sα) ∈ F0(P) × F0(D). It follows from (3.8) and Lemma 3.7 with
τ = 1/2 that

‖φ′′(α)‖F ≤ 2
∥∥∥U (2)

α SαX
1/2
α

∥∥∥
F

+ 2
∥∥∥U (1)

α SαU
(1)
α

∥∥∥
F

+ 4
∥∥∥U (1)

α ∆SX1/2
α

∥∥∥
F

≤
(

16
√

2(1 + γ) + 16(1 + γ) + 8
√

2
) ‖H‖2F

(1−√2γ)2µ

≤ 80
‖H‖2F

(1−√2γ)2µ
,

where the last inequality follows from the fact that γ < 1/
√

2.
We end this section by stating without proof the following well-known result.
Lemma 3.9. The following statements hold:
(a) if (X,S, y) ∈ NF (γ), then

‖H‖F ≤
[
γ2 + (1− σ)2n

]1/2
µ;(3.28)

(b) if (X,S, y) ∈ N∞(γ), then

‖H‖F ≤
[
γ2 + (1− σ)2

]1/2√
nµ;(3.29)

(c) if (X,S, y) ∈ N−∞(γ), then

‖Ĥ‖F ≤
(

1− 2σ +
σ2

1− γ
)1/2√

nµ,(3.30)

where Ĥ ≡ HX−1/2S−1/2.

564 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

4. Path-following algorithms based on the pure Newton direction. Based
on the results developed in section 3, we now prove polynomiality of the short-step
and the semilong-step path-following algorithms based on the pure Newton direction
(2.11).

Theorem 4.1. Let γ ∈ (0, 1/
√

2) and δ ∈ (0, 1) be constants satisfying

40 (γ2 + δ2)

(1−√2γ)2
≤
(

1− δ√
n

)
γ.(4.1)

Suppose that (X,S, y) ∈ NF (γ) and let (∆X,∆S,∆y) denote the solution of system
(2.11) with (H,R, r) given by (2.12), ν ≡ σµ, σ ≡ 1 − δ/√n, and µ ≡ (X • S)/n.
Then,

(a) (X1, S1, y1) ≡ (X + ∆X,S + ∆S, y + ∆y) ∈ NF (γ);
(b) X1 • S1 = (1− δ/√n)(X • S).
Proof. Statement (b) is an immediate consequence of Lemma 3.1 and the defini-

tion of σ. By Lemma 3.9(a) and the definition of σ, we have

‖H‖F ≤ (γ2 + δ2)1/2µ.(4.2)

Using Lemma 2.3, relations (4.1) and (4.2), and the fact that γ < 1/
√

2, we obtain

max{‖∆̂X‖, ‖∆̂S‖} ≤ max

{∥∥∥X−1/2∆XX−1/2
∥∥∥
F
,
∥∥∥X−1/2S−1/2

∥∥∥2 ∥∥∥X1/2∆SX1/2
∥∥∥
F

}
≤ 1

(1− γ)µ
max

{
µ
∥∥∥X−1/2∆XX−1/2

∥∥∥
F
,
∥∥∥X1/2∆SX1/2

∥∥∥
F

}
≤ ‖H‖F

(1− γ)(1−√2γ)µ
≤ (γ2 + δ2)1/2

(1− γ)(1−√2γ)

≤ 1

1− γ
(γ

40

)1/2

≤ 1

2
.

Hence, it follows from Lemma 3.8 and relations (4.1) and (4.2) that (X1, S1, y1) ∈
F0(P)×F0(D) and

sup
ξ∈[0,1]

‖φ′′(ξ)‖F ≤ 80
γ2 + δ2

(1−√2γ)2
µ ≤ 2γ

(
1− δ√

n

)
µ.

This inequality together with relation (3.13) and Lemma 3.1 (both with α = 1) imply
that∥∥∥X1/2

1 S1X
1/2
1 − µ(1)I

∥∥∥
F

= ‖φ(1)‖ ≤ 1

2
sup
ξ∈[0,1]

‖φ′′(ξ)‖F ≤ γ
(

1− δ√
n

)
µ = γµ(1).

Hence, (X1, S1, y1) ∈ NF (γ).
As an immediate consequence of Theorem 4.1, we have the following polynomial

convergence result for the short-step path-following algorithm obtained from Algo-
rithm I by letting (X0, S0, y0) ∈ NF (γ), σk = 1− δ/√n, and αk = 1 for every k ≥ 0.

Corollary 4.2 (polynomiality of short-step path-following algorithm). Suppose
that γ ∈ (0, 1/

√
2) and δ ∈ (0, 1) are constants satisfying (4.1). For Algorithm I,

assume that (X0, S0, y0) ∈ NF (γ), σk = 1−δ/√n, and αk = 1 for every k ≥ 0. Then,
every iterate (Xk, Sk, yk) generated by Algorithm I is in the neighborhood NF (γ) and

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 565

satisfies Xk • Sk = (1 − δ/√n)k(X0 • S0). Moreover, Algorithm I terminates in at
most O(

√
nL) iterations.

We now consider the semilong-step path-following algorithm based on the neigh-
borhood N∞(γ). It is the special case of Algorithm I for which (X0, S0, y0) is selected
in N∞(γ), and the sequences {σk} and {αk} are defined as

σk ≡ σ̄,(4.3a)

αk ≡ max
{
α ∈ [0, 1] : (Xk, Sk, yk) + α(∆Xk,∆Sk,∆yk) ∈ N∞(γ)

}
(4.3b)

for every k ≥ 0, where σ̄ is a prespecified constant in (0, 1).
Theorem 4.3. Suppose that (X,S, y) ∈ N∞(γ) for some given constant γ ∈

(0, 1/
√

2), and that (∆X,∆S,∆y) denote the solution of (2.11) with (H,R, r) given
by (2.12), ν = σµ, σ ∈ (0, 1), and µ ≡ (X • S)/n. Let

α̃ ≡ σγ(1−√2γ)2

40n [γ2 + (1− σ)2]
.(4.4)

Then for any α ∈ [0, α̃], we have
(a) (Xα, Sα, yα) ∈ N∞(γ),
(b) Xα • Sα = (1− α+ ασ)(X • S).
Proof. Statement (b) is an immediate consequence of Lemma 3.1. Using Lemma

2.3, relations (3.29) and (4.4), and the fact that γ < 1/
√

2, we obtain

α̃ max
{
‖∆̂X‖, ‖∆̂S‖

}
≤ α̃ max

{∥∥∥X−1/2∆XX−1/2
∥∥∥
F
,∥∥∥X−1/2S−1/2

∥∥∥2 ∥∥∥X1/2∆SX1/2
∥∥∥
F

}
≤ α̃

(1− γ)µ
max

{
µ
∥∥∥X−1/2∆XX−1/2

∥∥∥
F
,
∥∥∥X1/2∆SX1/2

∥∥∥
F

}
≤ α̃ ‖H‖F

(1− γ)(1−√2γ)µ
≤ α̃ [γ2 + (1− σ)2]1/2

√
n

(1− γ)(1−√2γ)

≤ σγ(1−√2γ)

40
√
n(1− γ)[γ2 + (1− σ)2]1/2

≤ σ

40
√
n
≤ 1

2
.

Hence, it follows from Lemma 3.8 and Lemma 3.9(b) and relation (4.4) that (Xα, Sα, yα) ∈
F0(P)×F0(D) for any α ∈ [0, α̃], and

α̃ sup
ξ∈[0,α̃]

‖φ′′(ξ)‖F ≤ 80α̃
γ2 + (1− σ)2

(1−√2γ)2
nµ = 2σγµ.

This inequality together with (3.14) and Lemma 3.1 imply that for every α ∈ [0, α̃],∥∥∥X1/2
α SαX

1/2
α − µ(α)I

∥∥∥ = ‖φ(α)‖ ≤ (1− α)‖φ(0)‖+
1

2
α2 sup

ξ∈[0,α]

‖φ′′(ξ)‖F

≤ (1− α)γµ+
1

2
αα̃ sup

ξ∈[0,α̃]

‖φ′′(ξ)‖F
≤ (1− α)γµ+ ασγµ = γµ(α).

Hence, (Xα, Sα, yα) ∈ N∞(γ) for every α ∈ [0, α̃]; that is, (a) holds.

566 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

As an immediate consequence of Theorem 4.3, we have the following polynomial
convergence result for the semilong-step path-following algorithm based on the pure
Newton direction (2.11).

Corollary 4.4 (polynomiality of semilong-step path-following algorithm). Let
constants γ ∈ (0, 1/

√
2) and σ̄ ∈ (0, 1) be given. For Algorithm I, assume that

(X0, S0, y0) ∈ N∞(γ) and that the sequences {σk} and {αk} are chosen according
to (4.3). Then, the sequence of iterates {(Xk, Sk, yk)} ⊂ N∞(γ) generated by Algo-
rithm I satisfies Xk • Sk ≤ (1− η̄)k(X0 • S0) for all k ≥ 0, where

η̄ ≡ σ̄(1− σ̄)γ(1−√2γ)2

40n [γ2 + (1− σ̄)2]
.

Moreover, if the quantity max{γ−1, (1−√2γ)−1, σ̄−1, (1− σ̄)−1} is independent of n,
then the method terminates in at most O(nL) iterations.

5. A family of “scaled” Newton directions. In this section we introduce
a new family of search directions which arises by computing the Newton direction
(2.11) with respect to a scaled problem and mapping the direction back to the original
space. Each direction of the family is then associated with the scaling matrix chosen
to construct the scaled problem.

For the purpose of simplifying the notation in this and the next section, we assume
that the variables for the original primal and dual problems are now X̃ and (S̃, ỹ) and

that their associated data are C̃ ∈ Sn, Ãi ∈ Sn, i = 1, . . . ,m, and b̃ = (̃b1, . . . , b̃m) ∈
<m; that is, we assume that these problems are

(P̃) min{C̃ • X̃ : Ãi • X̃ = b̃i, i = 1, . . . ,m, X̃ � 0},

(D̃) max

{
b̃T ỹ :

m∑
i=1

ỹiÃi + S̃ = C̃, S̃ � 0

}
.

Given a nonsingular matrix P̃ , consider the following change of variables:

X ≡ P̃ X̃P̃T , (S, y) ≡ (P̃−T S̃P̃−1, ỹ).(5.1)

Letting

C ≡ P̃−T C̃P̃−1, (Ai, bi) ≡ (P̃−T ÃiP̃−1, b̃i) for i = 1, . . . ,m,

problems (P̃) and (D̃) can be written in terms of these new variables as problems (P)

and (D) of section 2. It can be easily verified that if (X,S, y) and (X̃, S̃, ỹ) in Sn++ ×
Sn++ × <m are related according to (5.1), then dF (X̃, S̃) = dF (X,S), d∞(X̃, S̃) =

d∞(X,S), d−∞(X̃, S̃) = d−∞(X,S). Letting ÑF (γ), Ñ∞(γ), Ñ−∞(γ) denote the

neighborhoods associated with the pair of problems (P̃ , D̃), the above observation
immediately implies that

(X̃, S̃, ỹ) ∈ ÑF (γ)⇐⇒ (X,S, y) ∈ NF (γ),(5.2a)

(X̃, S̃, ỹ) ∈ Ñ∞(γ)⇐⇒ (X,S, y) ∈ N∞(γ),(5.2b)

(X̃, S̃, ỹ) ∈ Ñ−∞(γ)⇐⇒ (X,S, y) ∈ N−∞(γ).(5.2c)

Moreover, if (X̃ν , S̃ν , ỹν) denote the point on the central path with parameter ν > 0

for the pair (P̃ , D̃), then (Xν , Sν , yν) = (P̃ X̃ν P̃
T , P̃−T S̃ν P̃−1, ỹν).

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 567

The matrix P̃ also determines a scaled Newton direction (with parameter σ > 0)

as follows. An interior feasible point (X̃, S̃, ỹ) for (P̃ , D̃) determines an interior feasible
point (X,S, y) for (P,D) as in (5.1). At the scaled point (X,S, y), the pure Newton
direction (2.11) is computed and the resulting direction (∆X,∆S,∆y) is mapped back

into the original space to yield the scaled Newton direction (∆X̃,∆S̃,∆ỹ) as follows:

(∆X̃,∆S̃,∆ỹ) ≡ (P̃−1∆XP̃−T , P̃T∆SP̃ ,∆y).(5.3)

Hence, (∆X̃,∆S̃,∆ỹ) is a solution of

νI −X1/2SX1/2 = 〈〈P̃∆X̃P̃T 〉〉X1/2SX1/2 +X1/2S〈〈P̃∆X̃P̃T 〉〉X1/2

+X1/2P̃−T∆S̃P̃−1X1/2,

C̃ −
m∑
i=1

ỹiÃi − S̃ =
m∑
i=1

∆ỹiÃi + ∆S̃,(5.4)

b̃i − Ãi • X̃ = Ãi •∆X̃, i = 1, . . . ,m,

where X ≡ P̃ X̃P̃T and S ≡ P̃−T S̃P̃−1.
Observe that the scaled Newton direction at the point (X̃, S̃, ỹ) depends on P̃ ,

and as P̃ varies over the set of nonsingular matrices, we obtain a family of search
directions, which we refer to as the MT family. Several observations are in order with
respect to this family. It includes both the NT direction and the two HRVW/KSH/M

directions. Indeed, if P̃ = X̃−1/2 then X = I, S = X̃1/2S̃X̃1/2, 〈〈P̃∆X̃P̃T 〉〉X1/2 =

(X̃−1/2∆X̃X̃−1/2)/2, and the first equation of system (5.4) reduces to

νI − X̃1/2S̃X̃1/2 =
1

2

(
X̃−1/2∆X̃S̃X̃1/2 + X̃1/2S̃∆X̃X̃−1/2

)
+ X̃1/2∆S̃X̃1/2,

which corresponds to the HRVW/KSH/M dual direction. If P̃ = S̃1/2, then X =

S̃1/2X̃S̃1/2, S = I,

〈〈P̃∆X̃P̃T 〉〉X1/2SX1/2 +X1/2S〈〈P̃∆X̃P̃T 〉〉X1/2

= 〈〈S̃1/2∆X̃S̃1/2〉〉X1/2X1/2 +X1/2〈〈S̃1/2∆X̃S̃1/2〉〉X1/2 = S̃1/2∆X̃S̃1/2,

and the first equation of system (5.4) becomes

νI − S̃1/2X̃S̃1/2 = S̃1/2∆X̃S̃1/2 + (S̃1/2X̃S̃1/2)1/2S̃−1/2∆S̃S̃−1/2(S̃1/2X̃S̃1/2)1/2,

which is the equation corresponding to the NT direction. After the release of the first
version of this paper, Todd [33] showed that the HRVW/KSH/M direction is also

in the MT family and can be obtained by taking P̃ = (S̃X̃S̃)1/2 so that SXS = I.

Needless to say, we observe that if P̃ = I then system (5.4) reduces to system (2.11),
and hence it corresponds to the (pure) Newton direction considered in section 2.

Another possible choice is to take P̃ to be the NT scaling matrix satisfying
P̃ X̃P̃T = P̃−T S̃P̃−1, so that X = S holds. Like the NT and HRVW/KSH/M di-
rections, the resulting direction can be shown to have the scaling invariance property
discussed in [34]. This direction is referred to as the MTW direction in [33].

The results obtained in section 2 for the pure Newton direction (2.11)–(2.12) can
be extended to the whole MT family due to the fact that any member of this family

568 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

reduces to the Newton direction (2.11)–(2.12) in the scaled space and the fact that
the duality gap and the centrality measures remain invariant. In what follows, we
summarize these results.

Corollary 5.1. If (X̃, S̃, ỹ) ∈ Sn++ ×Sn++ ×<m is such that d∞(X̃, S̃) < µ̃/
√

2

where µ̃ ≡ (X̃ • S̃)/n, then system (5.4) has a unique solution.

Proof. Due to the invariance of the duality gap and the centrality measure d∞(·, ·),
the assumption implies that d∞(X,S) < µ/

√
2. Since the direction (∆X,∆S,∆y) ≡

(P̃∆X̃P̃T , P̃−T∆S̃P̃−1,∆ỹ) is a solution of (2.11), the corollary follows immediately
from Theorem 2.4.

The generic primal-dual feasible algorithm based on the MT family of directions
is stated next.

Algorithm II.

Let (X̃0, S̃0, ỹ0) ∈ F0(P̃)×F0(D̃), µ̃0 ≡ (X̃0 • S̃0)/n and set k = 0.
Repeat until µ̃k ≤ 2−Lµ̃0, do

(1) Let (X̃, S̃, ỹ) = (X̃k, S̃k, ỹk) and µ̃ ≡ (X̃ • S̃)/n;
(2) Choose a centrality parameter σ = σk ∈ [0, 1] and a nonsingular

matrix P̃ = P k;

(3) Compute the solution (∆X̃k,∆S̃k,∆ỹk) of system (5.4) with

X ≡ P̃ X̃P̃T , S ≡ P̃−T S̃P̃−1, and ν ≡ σµ̃;
(4) Choose a stepsize αk > 0 such that

(X̃k+1, S̃k+1, ỹk+1) = (X̃k, S̃k, ỹk) + αk(∆X̃k,∆X̃k,∆ỹk) ∈ Sn++;

(5) Set µ̃k+1 ≡ (X̃k+1 • S̃k+1)/n and increment k by 1.
End

The following two results follow immediately from Theorems 4.1 and 4.3, the
equivalences in (5.2), and the invariance of the duality gap and the centrality measures.

Corollary 5.2 (polynomiality of short-step path-following algorithm for the
MT family). Suppose that γ ∈ (0, 1/

√
2) and δ ∈ (0, 1) are constants satisfying (4.1).

For Algorithm II, assume that (X̃0, S̃0, ỹ0) ∈ ÑF (γ), σk = 1 − δ/√n, and αk = 1

for every k ≥ 0. Then, every iterate (X̃k, S̃k, ỹk) generated by Algorithm II is in

the neighborhood ÑF (γ) and satisfies X̃k • S̃k = (1 − δ/√n)k(X̃0 • S̃0). Moreover,
Algorithm II terminates in at most O(

√
nL) iterations.

Corollary 5.3 (polynomiality of semilong-step path-following algorithm for the
MT family). Let constants γ ∈ (0, 1/

√
2) and σ̄ ∈ (0, 1) be given. For Algorithm II,

assume that (X̃0, S̃0, ỹ0) ∈ N∞(γ) and that the sequences {σk} and {αk} are chosen
according to

σk = σ̄,

αk = max
{
α ∈ [0, 1] : (X̃k, S̃k, ỹk) + α(∆X̃k,∆S̃k,∆ỹk) ∈ Ñ∞(γ)

}
.

Then, the sequence of iterates {(X̃k, S̃k, ỹk)} ⊂ N∞(γ) generated by Algorithm II

satisfies X̃k • S̃k ≤ (1− η̄)k(X̃0 • S̃0) for all k ≥ 0, where

η̄ ≡ σ̄(1− σ̄)γ(1−√2γ)2

40n [γ2 + (1− σ̄)2]
.

Moreover, if the quantity max{γ−1, (1−√2γ)−1, σ̄−1, (1− σ̄)−1} is independent of n,
then the method terminates in at most O(nL) iterations.

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 569

6. Long-step method based on a subclass of the MT family. In this
section we consider a subclass of the MT family whose members are well defined
at every point (X̃, S̃, ỹ) ∈ Sn++ × Sn++ × <m. Moreover, we establish an O(n3/2L)
iteration-complexity bound for a long-step path-following feasible algorithm based on
this subclass of the MT family. The analysis of this section is based on the third-
order derivative inequality (3.14) and hence is more involved than the one presented
in sections 3 and 4. It is possible to derive polynomial convergence for the long-
step path-following algorithm using second-order derivative inequality (3.13), but the
iteration-complexity bound obtained is worse than theO(n3/2L) bound obtained using
(3.14).

We first describe the subclass of the MT family, which we refer to as the MT∗

family. The members of the MT∗ family at a point (X̃, S̃, ỹ) ∈ Sn++ × Sn++ × <m
consists of all the members of the MT family corresponding to those scaling matrices
P̃ satisfying

X1/2S + SX1/2 = (P̃ X̃P̃T)1/2(P̃−T S̃P̃−1) + (P̃−T S̃P̃−1)(P̃ X̃P̃T)1/2 � 0.(6.1)

The next two results imply that any member of the MT∗ family is well defined
for any point (X̃, S̃, ỹ) ∈ Sn++ × Sn++ ×<m.

Lemma 6.1. Suppose that (X,S, y) ∈ Sn++ × Sn++ × <m is such that X1/2S +

SX1/2 � 0. If (∆X,∆S,∆y) is a solution of system (2.11) with (R, r) = (0, 0) and
H ∈ Sn, then ∥∥∥S1/2U

∥∥∥
F
≤ ‖Ĥ‖F ,(6.2) ∥∥∥X−1/2∆XX−1/2

∥∥∥
F
≤ 2√

λmin

‖Ĥ‖F ,(6.3)

∥∥∥X1/2∆SS−1/2
∥∥∥
F
≤ 3

(
λmax

λmin

)1/2

‖Ĥ‖F ,(6.4)

where λmin ≡ λmin[XS], λmax ≡ λmax[XS], U ≡ 〈〈∆X〉〉X1/2 , and Ĥ ≡ HX−1/2S−1/2.
Proof. It follows from (R, r) = (0, 0), (2.11b), and (2.11c) that ∆X • ∆S =

Tr (∆X∆S) = 0, which together with (2.14) imply that

Tr (UX1/2∆S) = 0.(6.5)

Multiplying (2.13) on the left by U and on the right by X−1/2, taking the trace of
both sides of the equality, and using (6.5), we obtain

Tr (U2S) + Tr
(
UX1/2SUX−1/2

)
= Tr

(
UHX−1/2

)
.(6.6)

Since UX−1/2U � 0 and, by assumption, X1/2S + SX1/2 � 0, we have

Tr
(
UX1/2SUX−1/2

)
= Tr

(
UX−1/2UX1/2S

)
=

1

2
Tr
[
UX−1/2U

(
X1/2S + SX1/2

)]
≥ 0.

Relation (6.6) together with the last inequality and the fact that Tr U2S = ‖S1/2U‖2F
imply that

‖S1/2U‖2F ≤ Tr
(
UHX−1/2

)
= Tr

(
S1/2UĤ

)
≤ ‖S1/2U‖F ‖Ĥ‖F ,

570 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

from which (6.2) immediately follows. To show (6.3), observe that by (2.14) we have

X−1/2U + UX−1/2 = X−1/2∆XX−1/2,

which together with (6.2) and the fact that ‖X−1/2S−1/2‖2 = 1/λmin[XS] imply∥∥∥X−1/2∆XX−1/2
∥∥∥
F
≤ 2‖X−1/2U‖F ≤ 2‖X−1/2S−1/2‖ ‖S1/2U‖F ≤ 2√

λmin

‖Ĥ‖F ;

that is, (6.3) holds. To show (6.4), we multiply (2.13) on the right by X−1/2S−1/2

and rearrange to obtain

X1/2∆SS−1/2 = Ĥ − US1/2 −X1/2SUX−1/2S−1/2.

Taking the Frobenius norm of both sides of the last equality and using the triangle
inequality, relation (6.2) and the fact that ‖X1/2S1/2‖2 = λmax and ‖X−1/2S−1/2‖2 =
1/λmin, we obtain∥∥∥X1/2∆SS−1/2

∥∥∥
F
≤ ‖Ĥ‖F + ‖S1/2U‖F + ‖X1/2SUX−1/2S−1/2‖F
≤ 2‖Ĥ‖F + ‖X1/2S1/2‖ ‖S1/2U‖F ‖X−1/2S−1/2‖

≤
[

2 +

(
λmax

λmin

)1/2
]
‖Ĥ‖F ≤ 3

(
λmax

λmin

)1/2

‖Ĥ‖F .

Theorem 6.2. If (X,S, y) ∈ Sn++ × Sn++ ×<m is such that X1/2S + SX1/2 � 0
then, for every (H,R, r) ∈ Sn × Sn ×<m, system (2.11) has exactly one solution. In

particular, for any (X̃, S̃, ỹ) ∈ Sn++×Sn++×<m and any nonsingular matrix P̃ ∈ <n×n
satisfying (6.1), system (5.4) has exactly one solution.

Proof. The proof of the first part is analogous to that of Theorem 2.4. The
only difference is that Lemma 6.1 should be invoked in place of Lemma 2.3. The
second part follows from the fact that (∆X̃,∆S̃,∆ỹ) is a solution of (5.4) if and only

if (∆X,∆S,∆y) ≡ (P̃∆X̃P̃T , P̃−T∆S̃P̃−1,∆ỹ) is a solution of (2.11) with (H,R, r)
given by (2.12).

Lemma 6.3. If (X,S, y) ∈ F0(P) × F0(D) is such that X1/2S + SX1/2 � 0,
then

‖S1/2U
(2)
0 ‖ ≤

2√
λmin

‖Ĥ‖2F .

Proof. Multiplying (3.10) on the left by X−1/2 and on the right by S1/2, setting
α = 0 and using (3.12), we obtain

U
(2)
0 S1/2 +X−1/2U

(2)
0 X1/2S1/2 = −2X−1/2UUS1/2.(6.7)

Using the assumption that X1/2S + SX1/2 � 0, we have(
U

(2)
0 S1/2

)
•
(
X−1/2U

(2)
0 X1/2S1/2

)
= Tr

(
U

(2)
0 X−1/2U

(2)
0 X1/2S

)
=

1

2
Tr
[
U

(2)
0 X−1/2U

(2)
0

(
X1/2S + SX1/2

)]
≥ 0.

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 571

Taking the Frobenius norm of both sides of (6.7) and using the last inequality together
with (6.2) and the fact that ‖X−1/2S−1/2‖2 = 1/λmin, we obtain

‖S1/2U
(2)
0 ‖F ≤

(
‖S1/2U

(2)
0 ‖2F + ‖X−1/2U

(2)
0 X1/2S1/2‖2F

)1/2

≤ ‖U (2)
0 S1/2 +X−1/2U

(2)
0 X1/2S1/2‖F = 2‖X−1/2UUS1/2‖F

≤ 2‖X−1/2S−1/2‖ ‖S1/2U‖2F ≤
2√
λmin

‖Ĥ‖2F .

Lemma 6.4. Let τ ∈ (0, 1) be given. If α > 0 is such that

α max
{
‖∆̂X‖, ‖∆̂S‖

}
≤ τ,

then ∥∥∥U (2)
α ∆SX1/2

α

∥∥∥
F
≤ 6

√
2

(1− τ)3

λmax

λ
3/2
min

‖Ĥ‖3F ,(6.8) ∥∥∥U (1)
α ∆SU (1)

α

∥∥∥
F
≤ 6

(1− τ)3

λmax

λ
3/2
min

‖Ĥ‖3F ,(6.9) ∥∥∥U (2)
α SαU

(1)
α

∥∥∥
F
≤ 4

(1− τ)5

λmax

λ
3/2
min

‖Ĥ‖3F ,(6.10)

∥∥∥U (3)
α SαX

1/2
α

∥∥∥
F
≤ 12

√
2

(1− τ)5

λmax

λ
3/2
min

‖Ĥ‖3F .(6.11)

Proof. Using (3.18), (3.21), (3.22), Lemma 6.1, and the fact that ‖X1/2S1/2‖ =√
λmax, we obtain∥∥∥U (2)
α ∆SX1/2

α

∥∥∥
F
≤
∥∥∥U (2)

α X−1/2
α

∥∥∥
F

∥∥∥X1/2
α ∆SX1/2

α

∥∥∥
≤ ‖∆̂X‖2F√

2(1− τ)2

∥∥(DX
α)−1

∥∥2
∥∥∥X1/2∆SX1/2

∥∥∥
F

≤ ‖∆̂X‖2F√
2(1− τ)3

∥∥∥X1/2∆SS−1/2
∥∥∥
F

∥∥∥X1/2S1/2
∥∥∥ ≤ 6

√
2

(1− τ)3

λmax

λ
3/2
min

‖Ĥ‖3F

and∥∥∥U (1)
α ∆SU (1)

α

∥∥∥
F
≤
∥∥∥U (1)

α X−1/2
α

∥∥∥2

F

∥∥∥X1/2
α ∆SX1/2

α

∥∥∥
≤ ‖∆̂X‖

2
F

2(1− τ)2

∥∥(DX
α)−1

∥∥2
∥∥∥X1/2∆SX1/2

∥∥∥
F

≤ ‖∆̂X‖
2
F

2(1− τ)3

∥∥∥X1/2∆SS−1/2
∥∥∥
F

∥∥∥X1/2S1/2
∥∥∥ ≤ 6

(1− τ)3

λmax

λ
3/2
min

‖Ĥ‖3F .

Also, using (3.20), (3.21), (3.22), (3.23), and Lemma 6.1, we obtain∥∥∥U (2)
α SαU

(1)
α

∥∥∥
F
≤
∥∥∥U (2)

α X−1/2
α

∥∥∥
F

∥∥∥U (1)
α X−1/2

α

∥∥∥
F

∥∥∥X1/2
α S1/2

α

∥∥∥2

≤ ‖∆̂X‖
3
F

∥∥X1/2S1/2
∥∥2

2(1− τ)5
≤ 4

(1− τ)5

λmax

λ
3/2
min

‖Ĥ‖3F

572 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

and ∥∥∥U (3)
α SαX

1/2
α

∥∥∥
F
≤
∥∥∥U (3)

α X−1/2
α

∥∥∥
F

∥∥∥X1/2
α S1/2

α

∥∥∥2

≤ 3‖∆̂X‖3F
∥∥X1/2S1/2

∥∥2

√
2(1− τ)5

≤ 12
√

2

(1− τ)5

λmax

λ
3/2
min

‖Ĥ‖3F .

Lemma 6.5. If (X,S, y) ∈ F0(P)×F0(D) is such that X1/2S+SX1/2 � 0, then

‖φ′′(0)‖F ≤ 18

(
λmax

λmin

)1/2

‖Ĥ‖2F .

In addition, if α > 0 is such that αmax{‖∆̂X‖, ‖∆̂S‖} ≤ 1/2, then (Xα, Sα, yα) ∈
F0(P)×F0(D) and

‖φ′′′(α)‖F ≤ 3000
λmax

λ
3/2
min

‖Ĥ‖3F .

Proof. Using (3.8) with α = 0, (3.12), (6.2), (6.4), and Lemma 6.3, we obtain

‖φ′′(0)‖F ≤ 2‖X1/2SU
(2)
0 ‖F + 2‖USU‖F + 4‖X1/2∆SU‖F

≤ 2‖X1/2S1/2‖ ‖S1/2U
(2)
0 ‖F + 2‖S1/2U‖2F + 4‖X1/2∆SS−1/2‖F ‖S1/2U‖F

≤ 4

(
λmax

λmin

)1/2

‖Ĥ‖2F + 2‖Ĥ‖2F + 12

(
λmax

λmin

)1/2

‖Ĥ‖2F

≤ 18

(
λmax

λmin

)1/2

‖Ĥ‖2F .

Since αmax{‖∆̂X‖, ‖∆̂S‖} ≤ 1/2 and (X,S, y) ∈ F0(P)×F0(D), we have (Xα, Sα) ∈
F0(P)×F0(D). It follows from (3.8) and Lemma 6.4 with τ = 1/2 that

‖φ′′′(α)‖F ≤ 2
∥∥∥U (3)

α SαX
1/2
α

∥∥∥
F

+ 6
∥∥∥U (2)

α SαU
(1)
α

∥∥∥
F

+6
∥∥∥U (2)

α ∆SX1/2
α

∥∥∥
F

+ 6
∥∥∥U (1)

α ∆SU (1)
α

∥∥∥
F

≤
(

768
√

2 + 768 + 288
√

2 + 288
) λmax

λ
3/2
min

‖Ĥ‖3F ≤ 3000
λmax

λ
3/2
min

‖Ĥ‖3F .

Theorem 6.6. Let γ, σ ∈ (0, 1) be given. Suppose that (X,S, y) ∈ N−∞(γ)
satisfies X1/2S+SX1/2 � 0 and (∆X,∆S,∆y) is the solution of (2.11) with (H,R, r)
given by (2.12) and µ ≡ (X • S)/n. Let

α̂ ≡ σγ(1− γ)1/2

30n3/2ζ
,(6.12)

where ζ ≡ 1− 2σ + σ2/(1− γ) = (1− σ)2 + γσ2/(1− γ). Then for any α ∈ [0, α̂], we
have:

(a) (Xα, Sα, yα) ∈ N−∞(γ);
(b) Xα • Sα = (1− α+ ασ)(X • S).

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 573

Proof. Statement (b) is an immediate consequence of Lemma 3.1. Using Lemma
6.1, relations (3.30) and (6.12), and the fact that γ ≤ 1 and ζ ≥ γσ2/(1 − γ), we
obtain

α̂ max
{
‖∆̂X‖, ‖∆̂S‖

}
≤ α̂ max

{∥∥∥X−1/2∆XX−1/2
∥∥∥
F
,∥∥∥X−1/2S−1/2

∥∥∥∥∥∥X1/2∆SS−1/2
∥∥∥
F

}
≤ α̂max

{
2√
λmin

‖Ĥ‖F , 3λ
1/2
max

λmin
‖Ĥ‖F

}

≤ α̂max

{
2√

(1− γ)µ
(ζnµ)1/2, 3

(nµ)1/2

(1− γ)µ
(ζnµ)1/2

}

≤ max

{
σγ

15n
√
ζ
,

σγ

10(ζ(1− γ)n)1/2

}
≤ 1

2
.

Hence, it follows from Lemma 6.5, Lemma 3.9(c), and the fact that λmin ≥ (1− γ)µ
and λmax ≤ nµ that (Xα, Sα, yα) ∈ F0(P)×F0(D) for any α ∈ [0, α̂], and

‖φ′′(0)‖F ≤ 18
n1/2

(1− γ)1/2
ζnµ,

sup
ξ∈[0,α̃]

‖φ′′′(ξ)‖F ≤ 3000
n

(1− γ)3/2
(ζn)3/2µ.

These two inequalities together with (3.14), (6.12), Lemma 3.1, and the fact that
γ ≤ 1 and ζ ≥ γσ2/(1− γ) imply that for every α ∈ [0, α̃],∥∥∥X1/2

α SαX
1/2
α − µ(α)I

∥∥∥
−∞

= ‖φ(α)‖−∞
≤ (1− α)‖φ(0)‖−∞

+α

[
1

2
α̂‖φ′′(0)‖F +

1

6
α̂2 sup

ξ∈[0,α]

‖φ′′′(ξ)‖F
]

≤ (1− α)γµ

+α

[
9α̂

n1/2

(1− γ)1/2
ζnµ+ 500α̂2 n

(1− γ)3/2
(ζn)3/2µ

]
≤ (1− α)γµ+ α

[
3

10
σγµ+

5σ2γ2µ

9(1− γ)1/2n1/2ζ1/2

]
≤ (1− α)γµ+ ασγµ

[
3

10
+

5γ1/2

9n1/2

]
≤ (1− α)γµ+ ασγµ = γµ(α).

Hence, (Xα, Sα, yα) ∈ N−∞(γ) for every α ∈ [0, α̃]; that is, (a) holds.
Corollary 6.7 (polynomiality of long-step path-following algorithm for the

MT* family). Let constants γ, σ̄ ∈ (0, 1) be given. For Algorithm II, assume that

(X̃0, S̃0, ỹ0) ∈ N−∞(γ) and that the sequences {σk} and {αk} are chosen according
to

σk = σ̄,

αk = max
{
α ∈ [0, 1] : (X̃k, S̃k, ỹk) + α(∆X̃k,∆S̃k,∆ỹk) ∈ Ñ−∞(γ)

}
.

574 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

Then, the sequence of iterates {(X̃k, S̃k, ỹk)} ⊂ N−∞(γ) generated by Algorithm II

satisfies X̃k • S̃k ≤ (1− η̄)k(X̃0 • S̃0) for all k ≥ 0, where

η̄ ≡ σ̄(1− σ̄)γ(1− γ)1/2

30n3/2ζ̄
,

and ζ̄ ≡ 1− 2σ̄+ σ̄2/(1− γ). Moreover, if the quantity max{γ−1, (1− γ)−1, σ̄−1, (1−
σ̄)−1} is independent of n, then the method terminates in at most O(n3/2L) itera-
tions.

Proof. One step of the algorithm in the scaled space is analyzed by Theorem 6.6.
By translating the result into the terms of the original space using the invariance of
µ and d−∞ and (5.2c), the result readily follows.

We have thus established an O(n3/2L) iteration complexity for the long-step path-
following feasible algorithm based on any member of the MT∗ family. A natural ques-
tion is whether our approach yields better iteration complexities for the special cases
in which X = I (the HRVW/KSH/M dual direction), SXS = I (the HRVW/KSH/M
direction), S = I (the NT direction), and X = S (the MTW direction). Unfortu-
nately, our approach does not seem to yield the O(nL) iteration-complexity bound
that has been obtained in Monteiro and Zhang [21] for the NT direction nor to im-
prove the O(n3/2L) iteration-complexity bound for the HRVW/KSH/M dual direction
obtained in Monteiro [15]. For the MTW direction, we can show that the long-step al-
gorithm has an O(n11/8L) iteration-complexity bound, slightly improving the general
O(n3/2L) bound. We omit the proof of this claim here.

7. Concluding remarks. We proposed a new family of primal-dual interior-
point methods for SDP. The method is based on the application of Newton’s method
to the equation

(P̃ X̃P̃T)1/2(P̃−T S̃P̃−1)(P̃ X̃P̃T)1/2 − νI = 0

for some ν > 0 and scaling nonsingular matrix P̃ . We proved existence of the Newton
direction for any (X̃, S̃, ỹ) ∈ Ñ∞(γ) with γ ∈ (0, 1/

√
2), and established an O(

√
nL)

iteration-complexity bound for the short-step path-following algorithm and an O(nL)
iteration-complexity bound for the semilong-step path-following algorithm. Further-
more, we showed that for any interior feasible point (X̃, S̃, ỹ), the Newton direction

corresponding to those scaling matrices P̃ satisfying

(P̃−T S̃P̃−1)(P̃ X̃P̃T)1/2 + (P̃ X̃P̃T)1/2(P̃−T S̃P̃−1) � 0

always exists, and we established an O(n3/2L) iteration-complexity bound for the
long-step path-following algorithm based on this subclass of scaling matrices. This
subclass yields two well-known search directions, namely, the HRVW/KSH/M dual

direction when P̃ = X̃−1/2, the HRVW/KSH/M direction when P̃ = (S̃X̃S̃)1/2, and

the NT direction when P̃ = S̃1/2.
It is possible to derive a symmetric MT family based on the central path equation

S1/2XS1/2 − νI = 0, obtained from the one in section 2 by interchanging the role
of X and S. It is easy to see that the symmetric MT family obtained by applying
Newton’s method to this equation (in the scaled space) has similar properties to
the one studied in this paper and that it contains the NT direction and the two
HRVW/KSH/M directions.

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 575

It is interesting to compare the MZ family and the MT family in light of the
motivation used in section 5 to derive the MT family. We know that search directions
of the MT family correspond to the Newton direction for the central path equation
X1/2SX1/2 − νI = 0 in the scaled space for an appropriate choice of P̃ . In a similar
vein, it is easy to see that search directions of the MZ family correspond to the Newton
direction for the central path equation XS + SX − νI = 0 in the scaled space for
an appropriate choice of P̃ . This observation indicates the existence of a natural
association of the MT family with the (pure) Newton direction of section 2 and of the
MZ family with the (pure) Newton AHO direction.

Based on the theoretical results obtained so far, the pure Newton direction of
section 2 has clear advantages over the AHO direction in the sense that polynomial
convergence of the semilong-step path-following algorithm is only known for the former
direction. So far this is the only pure Newton path-following algorithm which is
polynomially convergent and is based on a wide neighborhood of the central path.

The MT∗ family also has theoretical advantages over the MZ∗ family based on
the results so far. While for the MZ∗ family, the iteration-complexity bound depends
on a certain condition number associated with the sequence {P k} of scaling matrices,
the corresponding bound for the MT∗ family does not depend on this sequence.

After the release of this paper, Monteiro and Zanjácomo [20] have reported
promising computational results for algorithms based on the pure Newton direction
(2.11) and two other pure Newton directions based on the central path equations:

S1/2XS1/2 = νI,

LTSXLS = νI,

respectively, where LS denotes the Cholesky lower triangular factor of S, that is,
S = LSL

T
S with LS lower triangular.

Finally, we mention that an interesting topic for future study would be to de-
velop algorithms based on the pure Newton direction (2.11) that are superlinearly or
quadratically convergent. We refer the reader to [9, 13, 29, 28], where quadratically
convergent SDP algorithms based on other primal-dual directions are developed under
the presence of strict complementarity and/or nondegeneracy assumptions.

REFERENCES

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[2] F. Alizadeh, J.-P. Haeberly, and M. Overton, Primal-dual interior-point methods for
semidefinite programming: Convergence rates, stability and numerical results, SIAM J.
Optim., 8 (1998), pp. 746–768.

[3] R. M. Freund, Complexity of an Algorithm for Finding an Approximate Solution of a Semidef-
inite Program with No Regularity Condition, Working paper OR 302-94, Operations Re-
search Center, Massachusetts Institute of Technology, Cambridge, MA, December 1994.

[4] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, An interior-point method
for semidefinite programming, SIAM J. Optim, 6 (1996), pp. 342–361.

[5] F. Jarre, An interior-point method for minimizing the maximum eigenvalue of a linear com-
bination of matrices, SIAM J. Control. Optim., 31 (1993), pp. 1360–1377.

[6] M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear
complementarity problems, Math. Programming, 44 (1989), pp. 1–26.

[7] M. Kojima, S. Mizuno, and A. Yoshise, A primal-dual interior point algorithm for lin-
ear programming, in Progress in Mathematical Programming: Interior Point and Related
Methods, N. Megiddo, ed., Springer-Verlag, New York, 1989, pp. 29–47.

[8] M. Kojima, M. Shida, and S. Shindoh, A Note on the Nesterov-Todd and the Kojima-Shindoh-
Hara Search Directions in Semidefinite Programming, Optim. Methods Softw., to appear.

576 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

[9] M. Kojima, M. Shida, and S. Shindoh, A predictor-corrector interior-point algorithm for the
semidefinite linear complementarity problem using the Alizadeh–Haeberly–Overton search
direction, SIAM J. Optim., 9 (1999), pp. 444–465.

[10] M. Kojima, M. Shida, and S. Shindoh, Local convergence of predictor-corrector infeasible-
interior-point algorithms for SDPs and SDLCPs, Math. Programming, 80 (1998), pp.
129–160.

[11] M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the monotone semidefinite
linear complementarity problem in symmetric matrices, SIAM J. Optim., 7 (1997), pp. 86–
125.

[12] C.-J. Lin and R. Saigal, A Predictor-Corrector Method for Semi-Definite Programming,
Working paper, Dept. of Industrial and Operations Engineering, The University of Michi-
gan, Ann Arbor, 1995.

[13] Z.-Q. Luo, J. F. Sturm, and S. Zhang, Superlinear convergence of a symmetric primal-dual
path-following algorithm for semidefinite programming, SIAM J. Optim., 8 (1998), pp.
59–81.

[14] S. Mizuno, M. J. Todd, and Y. Ye, On adaptive step primal-dual interior–point algorithms
for linear programming, Math. Oper. Res., 18 (1993), pp. 945–981.

[15] R. D. C. Monteiro, Primal-dual path-following algorithms for semidefinite programming,
SIAM J. Optim., 7 (1997), pp. 663–678.

[16] R. D. C. Monteiro, Polynomial convergence of primal-dual algorithms for semidefinite pro-
gramming based on Monteiro and Zhang family of directions, SIAM J. Optim., 8 (1998),
pp. 59–81.

[17] R. D. C. Monteiro and I. Adler, Interior path-following primal-dual algorithms. Part I:
Linear programming, Math. Programming, 44 (1989), pp. 27–41.

[18] R. D. C. Monteiro and I. Adler, Interior path-following primal-dual algorithms. Part II:
Convex quadratic programming, Math. Programming, 44 (1989), pp. 43–66.

[19] R. D. C. Monteiro and T. Tsuchiya, Polynomiality of primal-dual algorithms for semidefinite
linear complementarity problems based on the Kojima-Shindoh-Hara family of directions,
Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, 1996; Math. Programming, to appear.

[20] R. D. C. Monteiro and P. R. Zanjácomo, Implementation of Primal-Dual Methods for
Semidefinite Programming Based on Monteiro and Tsuchiya Newton Directions and Their
Variants, Tech. Report, School of ISyE, Georgia Institute of Technology, Atlanta, 1997;
Optim. Math. Softw., to appear.

[21] R. D. C. Monteiro and Y. Zhang, A unified analysis for a class of path-following primal-dual
interior-point algorithms for semidefinite programming, Math. Programming, 81 (1998),
pp. 281–299.

[22] Y. E. Nesterov and A. S. Nemirovskii, A general approach to the design of optimal meth-
ods for smooth convex functions minimization, Ekonomika i Matem. Metody, 24 (1988),
pp. 509–517 (in Russian). (English transl.: Matekon: Translations of Russian and East
European Math. Economics.)

[23] Y. E. Nesterov and A. S. Nemirovskii, Self-Concordant Functions and Polynomial Time
Methods in Convex Programming, Preprint, Central Economic & Mathematical Institute,
USSR Acad. Sci. Moscow, USSR, 1989.

[24] Y. E. Nesterov and A. S. Nemirovskii, Optimization over Positive Semidefinite Matrices:
Mathematical Background and User’s Manual, Tech. report, Central Economic & Mathe-
matical Institute, USSR Acad. Sci. Moscow, USSR, 1990.

[25] Y. E. Nesterov and A. S. Nemirovskii, Interior Point Methods in Convex Programming:
Theory and Applications, SIAM, Philadelphia, 1994.

[26] Y. E. Nesterov and M. Todd, Primal-dual interior-point methods for self-scaled cones, SIAM
J. Optim., 8 (1998), pp. 324–364.

[27] Y. E. Nesterov and M. Todd, Self-scaled barriers and interior-point methods for convex
programming, Math. Oper. Res., 22 (1997), pp. 1–42.

[28] F. A. Potra and R. Sheng, On the Local Convergence of a Predictor-Corrector Method for
Semidefinite Programming, Reports on Computational Mathematics 98, Dept. of Mathe-
matics, The University of Iowa, Iowa City, 1997.

[29] F. A. Potra and R. Sheng, A superlinearly convergent primal-dual infeasible-interior-point
algorithm for semidefinite programming, SIAM J. Optim., 8 (1998), pp. 1007–1028.

[30] J. F. Sturm and S. Zhang, Symmetric Primal-Dual Path-Following Algorithms for Semidefi-
nite Programming, Report 9554/A, Econometric Institute, Erasmus University, Rotterdam,
the Netherlands, November 1995.

[31] K. Tanabe, Complementarity-enforcing centered Newton method for mathematical program-

A NEW FAMILY OF PRIMAL-DUAL ALGORITHMS FOR SDP 577

ming: Global methods, in New Method for Linear Programming, K. Tone, ed., Cooperative
Research Report 5, Institute of Statistical Mathematics, Tokyo, Japan, 1987, pp. 118–144.

[32] K. Tanabe, Centered Newton method for mathematical programming, in System Modelling and
Optimization, M. Iri and K. Yajima, eds., Springer-Verlag, Tokyo, Japan, 1988, pp. 197–
206.

[33] M. Todd, On the Search Directions in Interior-Point Methods for Semidefinite Programming,
Tech. Report 1205, School of Operations Research and Industrial Engineering, Cornell
University, Ithaca, NY, October, 1997.

[34] M. J. Todd, K. C. Toh, and R. H. Tütüncü, On the Nesterov-Todd direction in semidefinite
programming, SIAM J. Optim., 8 (1998), pp. 769–796.

[35] P. Tseng, Search directions and convergence analysis of some infeasible path-following methods
for the monotone semi-definite LCP, Optim. Methods Softw., 9 (1998), pp. 245–268.

[36] L. Vandenberghe and S. Boyd, A primal-dual potential reduction method for problems in-
volving matrix inequalities, Math. Programming, 69 (1995), pp. 205–236.

[37] Y. Ye, A class of projective transformations for linear programming, SIAM J. Comput., 19
(1990), pp. 457–466.

[38] Y. Zhang, On extending some primal-dual interior–point algorithms from linear programming
to semidefinite programming, SIAM J. Optim., 8 (1998), pp. 365–386.

PRACTICAL UPDATE CRITERIA FOR REDUCED HESSIAN SQP:
GLOBAL ANALYSIS∗

Y. F. XIE† AND R. H. BYRD‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 578–604

Abstract. In this paper, a new update criterion is proposed to improve the Nocedal–Overton
update criterion for reduced Hessian successive quadratic programming (SQP). Global and R-linear
convergence is proved for the new criterion and the Nocedal–Overton criterion using nonorthogonal
basis matrices, which allow efficient implementations of the reduced Hessian SQP for solving large-
scale equality constrained problems.

Key words. constrained optimization, nonlinear programming, quasi-Newton methods, reduced
Hessian algorithms, successive quadratic programming

AMS subject classifications. 49, 65

PII. S105262349427861X

1. Introduction. In this paper, we consider some critical issues in efficiently
solving nonlinearly constrained optimization problems by reduced Hessian successive
quadratic programming (SQP).

SQP algorithms have proven to be very efficient for solving small and medium
size equality constrained optimization problems,

min f(x)
s.t. c(x) = 0,

(1.1)

where f : Rn → R1 and c : Rn → Rt for positive integers n and t, with n > t (see
Han [8] and Powell [14]). The reduced Hessian approach allows us to use SQP for a
significant class of very large problems, especially when implemented with generalized
basis matrices.

Given an approximate solution xk, an SQP algorithm computes a search direction
dk from the quadratic programming problem:

min gTk d+ 1
2d
TMkd

s.t. c(xk) +ATk d = 0,

where gk = ∇f(xk), Ak = ∇c(xk) ≡ (∇c1(xk), . . . ,∇ct(xk)), and the matrix Mk

approximates the Hessian Gk = ∇2
xxL(xk, λk) of the Lagrangian function of (1.1),

L(x, λ), which has the form

L(x, λ) = f(x) + λT c(x),(1.2)

where λ is a Lagrange multiplier. The Lagrange multiplier can be estimated at xk by

λk = −(Ak)−1
L gk,(1.3)

∗Received by the editors December 13, 1994; accepted for publication (in revised form) March 10,
1998; published electronically April 19, 1999.

http://www.siam.org/journals/siopt/9-3/27861.html
†NOAA, ERL/FSL, Forecast Systems Laboratory, 325 Broadway, Boulder, CO 80303

(xiey@fsl.noaa.gov). This author was supported by Air Force Office of Scientific Research grant
AFOSR-90-0109 and National Science Foundation grant CCR-8920519.
‡Department of Computer Science, Campus Box 430, University of Colorado, Boulder, CO 80309.

This author was supported in part by Air Force Office of Scientific Research grant AFOSR-90-0109,
Army Research Office grant DAAL 03-91-G-0151, and National Science Foundation grant CCR-
9101795.

578

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 579

where (Ak)−1
L is a left inverse of Ak, giving an approximate solution to gk +Akλ = 0.

Then a new approximation to the solution x∗ is given by

xk+1 = xk + αkdk,(1.4)

where some line search strategy is used to determine step length αk and ensure con-
vergence. (Alternatively, a trust region can be used instead of a line search, but
this paper will focus on the more widely used line search approach.) Although SQP
methods are among the best approaches for small and medium size problems, the
applicability of this approach for very large problems is limited because of the need
to store and manipulate an n× n matrix Mk, which cannot be expected to be sparse
if a quasi-Newton update is used.

However, reduced Hessian SQP (RHSQP) algorithms, which use a matrix Bk
to approximate ZTk GkZk where Zk is a null space basis, can potentially be very
efficient for solving large-scale constrained optimization problems (i.e., n is very large),
especially for the problems where n− t is small relative to n.

RHSQP algorithms have two advantages compared with the other SQP algo-
rithms:

• It is natural to use quasi-Newton methods to approximate the reduced Hessian
matrix ZTk GkZk because this matrix is positive definite when xk is close to
the solution of (1.1) and the second-order sufficient optimality condition holds
at the solution.
• It is more efficient to store an (n − t) × (n − t) matrix Bk than to store an
n×n matrix Mk. Thus for a given n, a larger t requires less space for storing
Bk. This is an important advantage for solving large-scale problems.

How to update the matrix Bk by quasi-Newton methods is an important issue,
and many update strategies have been proposed; see, for example, [2], [3], [6], [7],
[10], and [11]. Among these update strategies, there are two principal approaches,
and others are slight variations of these two. One uses exact null space information
[3] and the other uses full step information [11]. We call them the null space secant
update strategy and the step secant update strategy, respectively.

To ensure the accuracy of the step secant update strategy, Nocedal and Overton
suggest an update criterion [11], under which Bk is updated. In order to improve the
numerical performance of the step secant update strategy using the Nocedal–Overton
criterion, a new update criterion is proposed in this paper.

For the methods using these two update strategies, several convergence results
have been established. For the RHSQP algorithms using the null space secant up-
date strategy, Coleman and Conn [3] have proved two-step Q-superlinear convergence
assuming x1 and B1 are sufficiently close to x∗ and ZT∗ ∇2

xxL(x∗, λ∗)Z∗, respectively,
and Byrd and Nocedal [2] have shown its global convergence and R-linear and two-
step Q-superlinear convergence with the l1 and Fletcher merit functions. For the step
secant update strategy with the Nocedal–Overton update criterion (2.12), Nocedal
and Overton [11] established local two-step Q-superlinear convergence for x1 and B1

sufficiently close to x∗ and ZT∗ ∇2
xxL(x∗, λ∗)Z∗, respectively; however, no global and

R-linear convergence was proved. All of these analyses assume Zk is an orthonormal
basis of null(ATk).

A general basis Zk of null(Ak) has been used by Fletcher [5], Gabay [6], and
Gilbert [7]. Fletcher has discussed his successive linear programming algorithm using
any basis of null(Ak). Gabay and Gilbert use general bases to discuss RHSQP.
Gabay’s update strategy is equivalent to the step secant update strategy, but he used

580 Y. F. XIE AND R. H. BYRD

Powell’s damping technique to ensure positive definiteness. It is difficult to prove
superlinear convergence without assuming that {Bk} and {B−1

k } are bounded for the
Powell damped technique. Although Gilbert [7] has discussed general Zk in his global
analysis, his longitudinal path strategy may cost more gradient evaluations.

Because of the complexity of the analysis, superlinear convergence will be dis-
cussed in a second paper subsequent to this one. This paper is devoted to proposing a
new update criterion and to proving the global and R-linear convergence for the step
secant update strategy with two commonly used merit functions. All of these results
are proved without requiring orthogonality of the basis matrix Zk and without assum-
ing that {Bk} and {B−1

k } are bounded. In the next section, the new update criterion
used in the step secant update strategy is introduced, and the general RHSQP algo-
rithms and the merit functions used to force global convergence are described. The
global convergence analysis will be presented in section 3. The R-linear convergence
will be established in section 4. The numerical experiments are presented in section
5.

In the rest of the paper, the following notation is used:

S1 = {j | Bj+1 = BBFGS(Bj , sj , yj)},
S2 = {j | Bj+1 = Bj},
Sk1 = [1, 2, . . . , k] ∩ S1,

Sk2 = [1, 2, . . . , k] ∩ S2,

where

BBFGS(Bj , sj , yj) = Bj −
Bjsjs

T
j Bj

sTj Bjsj
+
yjy

T
j

sTj yj
(1.5)

is the BFGS update. Furthermore, ‖ · ‖ stands for the l2 norm, ‖ · ‖1 for the l1 norm,
and ‖ · ‖∞ for the infinity norm.

2. A new update criterion and general RHSQP with merit functions.
The reduced Hessian technique can be derived from SQP methods by considering
general basis matrices and their pseudoinverses. Suppose Zk is any basis matrix of
the null space of ATk (i.e., ATk Zk = 0 and Zk is full rank). Let (Zk)−1

L and (Ak)−1
L be

left inverse matrices of Zk and Ak, respectively, that satisfy

(Ak)−1
L (Zk)−TL = (Zk)−1

L (Ak)−TL = 0.(2.1)

Then, we have(
(Zk)−1

L

ATk

)
(Zk (Ak)−TL) = (Zk (Ak)−TL)

(
(Zk)−1

L

ATk

)
= I,(2.2)

and Gk can be written as the following:

Gk = ((Zk)−TL Ak)

(
ZTk

(Ak)−1
L

)
Gk(Zk (Ak)−TL)

(
(Zk)−1

L

ATk

)
= ((Zk)−TL Ak)

(
ZTk GkZk ZTk Gk(Ak)−TL

(Ak)−1
L GkZk (Ak)−1

L Gk(Ak)−TL

)(
(Zk)−1

L

ATk

)
.

As is well known, the reduced Hessian approach is to neglect the cross terms, i.e.,

Gk ' ((Zk)−TL Ak)

(
ZTk GkZk 0

0 0

)(
(Zk)−1

L

ATk

)
= (Zk)−TL (ZTk GkZk)(Zk)−1

L = Mk.

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 581

It chooses such a matrix Mk in the SQP method and uses Bk, an (n−t)×(n−t) matrix,
to approximate (ZTk GkZk). Thus, RHSQP algorithms generate a search direction dk
at xk by solving

min gTk d+ 1
2d
T (Zk)−TL Bk(Zk)−1

L d
s.t. c(xk) +ATk d = 0.

Note that (2.1) implies that (1.3) is also the Lagrange multiplier of the above quadratic
program. The solution dk may be expressed as

dk = hk + vk,(2.3)

where

hk = −ZkB−1
k ZTk gk(2.4)

and

vk = −(Ak)−TL c(xk).(2.5)

There are two widely used instantiations of the generalized inverses. One is based on
a QR factorization and widely used in discussions of RHSQP methods, for example,
[11]. In this instantiation, the inverse matrices are given, using Nocedal and Overton’s
notation, by

(Ak)−1
L = (R−1

k 0)

(
Y Tk
ZTk

)
, (Zk)−1

L = ZTk ,(2.6)

where Yk and Zk are orthonormal matrices derived from a QR factorization of Ak,

Ak = (Yk Zk)

(
Rk
0

)
.(2.7)

The other instantiation, which is more appropriate for large-scale problems, is based
on an LU decomposition of Ak. Suppose ATk = (AB AN), where AB is nonsingular.
This instantiation in effect chooses

(Ak)−1
L = (A−TB 0),

Zk =

(−A−1
B AN
I

)
,

(Zk)−1
L = (0 I),

where an LU decomposition of AB is actually computed rather than its inverse, and
may take advantage of the sparsity of Ak for a large-scale problem. For some very
large scale problems where LU is not applicable, iterative methods could be used to
invert AB and its transpose. The generalized basis matrices give the RHSQP methods
great flexibility in dealing with large-scale problems.

The matrix Bk is to be updated using gradient difference information. Two ways
of obtaining this information have been proposed. Consider the gradient difference of
the Lagrangian function ∇xL(x, λk) −∇xL(xk, λk). Its projection on the null space
using a given basis matrix Zk can be approximated by

ZTk (∇xL(x, λk)−∇xL(xk, λk))(2.8)

' ZTk Gk(Zk (Ak)−TL)

(
(Zk)−1

L

ATk

)
(x− xk)

= ZTk GkZk(Zk)−1
L (x− xk) + ZTk Gk(Ak)−TL ATk (x− xk).

582 Y. F. XIE AND R. H. BYRD

To apply a quasi-Newton method such that Bk ' ZTk GkZk, it is ideal to choose x
such that the second term of the last equation in (2.8) disappears. By using xk+1,
one would choose the component of xk+1 − xk along the null space of Ak from xk;
i.e., x = xk + αkhk and

yk = ZTk (∇xL(xk + αkhk, λk)−∇xL(xk, λk)),(2.9)

sk = (Zk)−1
L αkhk = (Zk)−1

L (xk+1 − xk),(2.10)

and then the quasi-Newton equation yk = Bk+1sk ' ZTk GkZksk is satisfied. We
call this first update strategy the null space secant update strategy because it uses
the exact reduced Hessian information along the null space of Ak. The drawback of
this strategy is that it imposes a significant extra cost to evaluate yk when gradient
evaluations of f and c are expensive.

The step secant update strategy of the second update category uses

yk = ZTk (∇xL(xk+1, λk)−∇xL(xk, λk))(2.11)

to update Bk+1 and saves the extra computation of the gradients of the Lagrangian.
However, such yk may not provide accurate information on the derivatives of L(x, λ)
along the null space of the constraints because of the presence of the second term in
(2.8). Thus, updates of Bk+1 must be skipped at some iterations where the second
terms are large. If we replace x by xk+1 in (2.8), the second term becomes ZTk Gkvk.
Because Bk+1 is expected to approximate ZTk ∇2

xxL(xk, λk)Zk, the update could in
fact result in great loss in accuracy of Bk+1 if the vertical component vk is not small
when Bk+1 is updated. Nocedal and Overton [11] proposed a criterion which we refer
to as the Nocedal–Overton update criterion and under which Bk+1 is updated if and
only if

‖vk‖2 ≤ η

(k + 1)1+ε
‖hk‖2,(2.12)

where η and ε are positive constants; otherwise Bk+1 = Bk. Actually, they use ‖sk‖
instead of ‖hk‖ in their criterion, but under their orthogonality assumption on Zk,
‖sk‖ = ‖hk‖. It can be seen that the larger k is, the more accurate the information on
the reduced Hessian (2.12) must be when Bk+1 is updated. In section 4, we show a set
of similar criteria with milder conditions on update steps. To globalize the algorithm,
sTk yk > 0 has to be tested to ensure that the positive definiteness of Bk is inherited.

In this section, a new update criterion is introduced to improve the numerical
performance of the Nocedal–Overton update criterion, and general RHSQP algorithms
are described using two merit functions.

Numerical experiments with the step secant update strategy show that the No-
cedal–Overton update criterion often skips the updates in a large proportion of the
cases. It appears that the criterion (2.12), which depends on the iteration number,
is too strong, forcing updates to be skipped and sometimes slowing down the con-
vergence. The criterion (2.12) may be relaxed by allowing updates whenever the
horizontal component ‖hk‖ is not small compared to the vertical component ‖vk‖. A
new update criterion is thus proposed, which not only allows more updates but also
automatically guarantees the positive definiteness of {Bk}.

Positive Curvature Criterion. For constants ζ1 ≥ ζ2 > 0, the update criterion
requires

sTk yk > ζ1‖αkvk‖2 ∀k ∈ S1,(2.13)

sTk yk ≤ ζ2‖αkvk‖2 ∀k ∈ S2.(2.14)

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 583

If ζ2 < ζ1, these conditions leave an intermediate case where neither equation is
imposed, giving the algorithm flexibility in deciding whether to update. This new cri-
terion is referred to as the “positive curvature update criterion” for simplicity because
(2.13) implies that the Lagrangian has a significantly positive curvature, which makes
Bk+1 automatically inherit the positive definiteness from Bk. Lemma 4.7, proved
later, shows that this criterion satisfies ‖vk‖ ≤ γ8‖hk‖ whenever Bk+1 is updated,
and ‖hk‖ ≤ γ8‖vk‖ whenever an update is skipped, where γ8 > 0 is a constant.
Intuitively, it allows more updates than the Nocedal–Overton update criterion, and
our numerical experiments in section 5 support this. Its numerical performance is so
good that the step secant update strategy with the positive curvature criterion is very
competitive with the null space secant update strategy.

Because the global and R-linear convergence of the null space secant update strat-
egy has been proved by Byrd and Nocedal [2], we consider only the step secant update
strategy in this paper. In the following description of the algorithm, ϕ(x) stands for
the merit function and Dϕ(x; d) denotes the directional derivative of ϕ along d at x.

Algorithm 2.1.
The constants η ∈ (0, 1

2) and τ , τ ′ with 0 < τ < τ ′ < 1 are given.
Let x1 and B1 be an initial point and an initial positive definite
matrix.

1. Compute dk = hk + vk by solving (2.4) and (2.5).
2. Adjust the merit function ϕ according to xk if it is necessary.
3. Set αk = 1 and check the line search condition

ϕ(xk + αkdk) ≤ ϕ(xk) + αkηDϕ(xk; dk).

If it is violated, choose a new αk ∈ [ταk, τ
′αk] and check it

again.
4. Set xk+1 = xk + αkdk.
5. Compute sk by (2.10) and yk by (2.11). Update Bk+1 by

Bk+1 =

{
BBFGS(Bk, sk, yk) if a criterion holds,
Bk otherwise.

6. If a stopping condition is not satisfied, set k = k + 1 and go to
step 1; otherwise, stop.

In analyzing this algorithm, in order to study the entire sequence, we do not impose a
stopping condition. In our numerical tests, we use the stopping condition, ‖ZTk gk‖+
‖ck‖ < ε, where ε > 0 is a given constant.

There are two widely used merit functions, the l1 and Fletcher merit functions.
Han [8] first introduced the l1 merit function as

φµ(x) = f(x) + µ‖c(x)‖1,
where µ is called a penalty parameter. The l1 merit function allows a strong global
analysis. However, its penalty term is nondifferentiable and this nondifferentiability
may affect the speed of convergence (the Maratos effect). Still, a directional derivative
exists and, as is shown in Lemma 3.3 of [2],

Dφµ(xk; dk) ≤ gTk hk − (µ− ‖λk‖)‖ck‖1,(2.15)

using the fact that gTk vk = −λTk ck. The Fletcher merit function [4] is a differentiable
merit function:

Φν(x) = f(x) + λ(x)T c(x) +
1

2
ν‖c(x)‖22,

584 Y. F. XIE AND R. H. BYRD

where λ(x) is a Lagrange multiplier estimate at x having the form of (1.3) and ν is a
penalty parameter. Note that at xk, the directional derivative is

∇Φν(xk)T dk = gTk hk + gTk vk + λTkA
T
k dk + cTk∇λ(xk)T dk + νcTkA

T
k dk.

From (1.3) and (2.5), ATk dk = −ck and gTk vk = −gTk (Ak)−TL ck = −λTk ck. Thus

∇Φν(xk)T dk = gTk hk + cTk∇λ(xk)T dk − νcTk ck.(2.16)

With these merit functions, we can explicitly define step 2 of Algorithm 2.1, i.e.,
how to choose the penalty parameters µ and ν. In our global and R-linear convergence
analysis, it is assumed that the penalty parameters µk and νk are monotonically
increasing. The following adjusting procedure of these penalty parameters is simply
called step 2′ of Algorithm 2.1: for the l1 merit function, the penalty parameter µk is
chosen by

µk+1 =

{ ‖λk‖∞ + 2ρ if µk < ‖λk‖∞ + ρ,
µk otherwise,

(2.17)

which, by (2.15), clearly implies that dk is a descent direction. For the Fletcher merit
function, the penalty parameter νk is chosen by

νk+1 =

{
ν̄k + 2ρ if νk < ν̄k + ρ,
νk otherwise,

(2.18)

where ν̄k is defined by

ν̄k =
dTk∇λ(xk)ck + 1

2g
T
k hk

‖ck‖2 ,(2.19)

where ρ > 0 is a constant. It is shown in Lemma 3.6 of [2] that ν̄k is bounded above

by O(
sTk sk
sT
k
Bksk

) and thus {ν̄k} is bounded if {‖B−1
k ‖} is. Although we cannot bound

{‖B−1
k ‖} prior to our global convergence analysis, this fact indicates that boundedness

of {ν̄k} is at least a reasonable assumption. If (2.18) is imposed, it follows easily from
(2.16) that, as shown in [2],

∇Φνk(xk)T dk ≤ −1

2
gTk hk − ρ‖ck‖2.(2.20)

Since by (2.15) and (2.20), dk is a descent direction for either merit function, it follows
that step 3 of Algorithm 2.1 will terminate in a finite number of iterations. There
are also some nonmonotonically increasing strategies which are widely used, e.g.,
µk+1 = ‖λk‖ + 2ρ. Although nonmonotonically increasing procedures numerically
perform better than the monotonically increasing strategies in many numerical tests,
there is no global and R-linear analysis established.

3. Global convergence. Our global convergence analysis of RHSQP algorithms
using the step secant update strategy is based on the following assumptions.

Assumption 3.1.
1. f : Rn → R1 and c : Rn → Rt and their first- and second-order derivatives

are uniformly bounded in a closed set D ⊂ Rn, which contains {xk}.

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 585

2. The matrix A(x) is full rank for all x ∈ D and there are constants γA > 0
and γZ > 0 such that for all x ∈ D,

‖A(x)‖ ≤ γA, ‖A(x)−1
L ‖ ≤ γA,

‖Z(x)‖ ≤ γZ , ‖Z(x)−1
L ‖ ≤ γZ ,

A(x)TZ(x) = 0, Z(x)−1
L A(x)−TL = 0.

3. For a given µ or ν, φµ(x) and Φν(x) are bounded below.
We also assume that there are m > 0 and M > 0 such that

sTk yk
sTk sk

≥ m,(3.1)

yTk yk
sTk yk

≤M(3.2)

for the global analysis. For unconstrained problems, a proper line search strategy
and the convexity of the objective function imply (3.1) and (3.2) [13]. However, for
constrained problems, (3.1) and (3.2) are harder to guarantee. The following lemma
shows that uniform positive definiteness of the reduced Hessian on the null space of
A(x)T , which holds locally around a solution x∗ satisfying second-order sufficiency
conditions, implies (3.1) and (3.2) for constrained problems, provided the step secant
update strategy satisfies certain conditions. These conditions are satisfied by the
positive curvature criterion as well as by the Nocedal–Overton update criterion.

Lemma 3.1. Suppose an RHSQP algorithm uses the step secant update strategy
in such a way that (2.13) is satisfied or ‖vk‖/‖hk‖ is sufficiently small for k ∈ S1 large
enough. Let D be a closed convex set containing {xk}∞k=K0

for some K0. Assume the
following:

1. The second-order sufficient conditions hold on D,

m0‖u‖2 ≤ uT∇2
xxL(x, λk)u ∀u ∈ Rn : ATk u = 0

for all x ∈ D, any integer k ≥ K0, and some constant m0 > 0.
2. For some constant M0 > 0 and any x ∈ D and k ≥ K0,

‖∇2
xxL(x, λk)‖ ≤M0.

Then there are constants m > 0 and M > 0 such that (3.1) and (3.2) hold whenever
Bk+1 is updated with k > K0.

Proof. First consider a criterion satisfying (2.13). Consider two cases.
Case 1. 2γZM0‖αkvk‖ ≤ m0‖sk‖: By (2.10), the Taylor expansion of yk, and the

inequalities ‖Zksk‖ ≤ γZ‖sk‖ and ‖sk‖ = ‖(Zk)−1
L Zksk‖ ≤ γZ‖Zksk‖, the hypotheses

of this lemma imply

sTk yk = sTk Z
T
k ∇2

xxL(xk + ξdk, λk)(αkhk + αkvk)

= sTk Z
T
k ∇2

xxL(xk + ξdk, λk)Zksk + sTk Z
T
k ∇2

xxL(xk + ξdk, λk)(αkvk)

≥ m0‖Zksk‖2 −M0‖Zksk‖‖αkvk‖ ≥ 1

2

m0

γ2
Z

‖sk‖2.

Since αkhk = Zksk, we have

yTk yk
sTk yk

= ‖ZTk ∇2
xxL(xk + ξdk, λk)(Zksk + αkvk)‖2/(sTk yk)

≤ (γZM0)2 (γZ‖sk‖+ ‖αkvk‖)2

m0

2γ2
Z

‖sk‖2 ≤ 2
γ4
ZM

2
0

m0

(
γZ +

m0

2γZM0

)2

.

586 Y. F. XIE AND R. H. BYRD

Case 2. 2γZM0‖αkvk‖ > m0‖sk‖: Since the update criterion satisfies (2.13),

sTk yk ≥ ζ1‖αkvk‖2 ≥ ζ1
[

m0

2γZM0

]2

‖sk‖2,

and

yTk yk
sTk yk

≤ (γZM0)2 (γZ‖sk‖+ ‖αkvk‖)2

ζ1‖αkvk‖2

≤ (γZM0)2

ζ1

(
2
γZM0

m0
+ 1

)2

.

Therefore, there exist m > 0 and M > 0 such that (3.1) and (3.2) hold.
If we consider the criterion that ‖vk‖/‖hk‖ is sufficiently small, the analysis is

identical to Case 1 above.
Under the assumption that (3.1) and (3.2) hold, global convergence is proved in

the following. First we define the quantities

cos θ̂k =
sTkBksk

‖sk‖ ‖Bksk‖ and q̂k =
sTkBksk
sTk sk

.

For these quantities, the following theorem holds if Assumption 3.1 is satisfied.
Theorem 3.2. Let {Bk}k∈S1

be generated by the BFGS method. Suppose (3.1)
and (3.2) hold for any sk 6= 0. Then for any p ∈ (0, 1], there exist constants β1 > 0,
β2 > 0, and β3 > 0 such that for any k, the relations

cos θ̂i ≥ β1 > 0,

0 < β2 ≤ q̂i ≤ β3,

β2 ≤ ‖Bisi‖‖si‖ ≤
β3

β1

hold for at least dp|Sk1 |e values of i ∈ Sk1 . In other words, the index set Jk in which
for any i the above three inequalities hold has at least dp|Sk1 |e elements, i.e., |Jk| ≥
dp|Sk1 |e.

Theorem 3.2 can be proved by applying the analysis of Theorem 3.1 of Byrd
and Nocedal [1] to the subsequence {Sk1 }; the proof is omitted. The following two
theorems describe the behaviors of the two merit functions, the l1 and Fletcher merit
functions.

Theorem 3.3. Suppose {xk} is generated by an RHSQP algorithm using the l1
merit function with its penalty parameter chosen so that

µk ≥ ‖λk‖∞ + ρ(3.3)

for all k, where ρ is a positive constant. Then for all k,

Dφµk(xk; dk) ≤ − 1

γZ
‖ZTk gk‖‖hk‖ cos θ̂k − ρ‖ck‖1.(3.4)

In addition, for given constants, β1 > 0, β2 > 0, and β3 > 0, there is a constant
γ̂ > 0 such that if the conditions

cos θ̂k ≥ β1 > 0,(3.5)

0 < β2 ≤ q̂k ≤ β3(3.6)

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 587

hold for some k, the directional derivative at xk satisfies

Dφµk(xk; dk) ≤ −γD[‖ZTk gk‖2 + ‖ck‖1].(3.7)

Moreover, for any value µ, there is a positive constant γµ such that if µk = µ satisfies
(3.3) and if (3.5) and (3.6) hold, then

φµk(xk)− φµk(xk+1) ≥ γµ[‖ZTk gk‖2 + ‖ck‖1].(3.8)

Proof. The proof of this theorem is similar to that for Lemma 3.3 in [2], but it
handles the more general basis Z(x) satisfying Assumption 3.1. The main difference
is in (3.4), and we prove it as follows.

By the definition of φµk ,

Dφµk(xk; dk) = gTk dk − µk‖ck‖1,
as shown in [2]. Since vTk gk = cTk λk, (2.3) and (2.4) imply

Dφµk(xk; dk) ≤ gTk hk − (µk − ‖λk‖∞)‖ck‖1 ≤ −gTk ZkB−1
k ZTk gk − ρ‖ck‖1

= − cos θ̂k‖B−1
k ZTk gk‖‖ZTk gk‖ − ρ‖ck‖1.

By (2.4) and Assumption 3.1, ‖hk‖ ≤ γZ‖B−1
k ZTk gk‖, and then (3.4) holds. The

remainder of this theorem can be proved using the same analysis as [2] and considering
the factor γZ .

A corresponding result can be proved for the Fletcher merit function.
Theorem 3.4. Suppose {xk} are generated by an RHSQP algorithm using the

Fletcher merit function with the penalty parameter chosen so that

νk ≥
dTk∇λ(xk)ck + 1

2g
T
k hk

‖ck‖2 + ρ = ν̄k + ρ(3.9)

for k > 0 and some positive constant ρ > 0. Then for all k ≥ 0,

DΦνk(xk; dk) ≤ − 1

γZ
‖ZTk gk‖‖hk‖ cos θ̂k − ρ‖ck‖2.(3.10)

In addition, for given constants, β1 > 0, β2 > 0, and β3 > 0, there is a constant γ̂ > 0
such that if the conditions (3.5) and (3.6) hold for some k, the directional derivative
at xk satisfies

DΦνk(xk; dk) ≤ −γD[‖ZTk gk‖2 + ‖ck‖2].(3.11)

Moreover, for any value ν, there is a positive constant γν such that if νk = ν satisfies
(3.9) and if (3.5) and (3.6) hold, then

Φνk(xk)− Φνk(xk+1) ≥ γν [‖ZTk gk‖2 + ‖ck‖2].(3.12)

Proof. The proof is analogous to the previous analysis by considering the general
basis matrices and using the directional derivative

∇Φνk(xk)T dk = gTk hk + dTk∇λkck + νk‖ck‖2.
Based on the above two theorems about the two merit functions, the global con-

vergence of RHSQP algorithms using the step secant update strategy is proved.

588 Y. F. XIE AND R. H. BYRD

Theorem 3.5. Suppose {xk} is generated by an RHSQP algorithm using the step
secant update strategy with any update criteria and using the l1 and Fletcher merit
functions with step 2 in Algorithm 2.1 replaced by step 2′. Suppose Assumption 3.1
and (3.1) and (3.2) are satisfied for all k sufficiently large. For the Fletcher merit
function, ν̄k is assumed to be bounded above. Then

lim
k→∞

inf
i≤k
{‖ZTi gi‖+ ‖ci‖} = 0.

Proof. If the l1 merit function is used, it follows that µk ≡ µ for some constant
µ > 0 and for sufficiently large k because µk is chosen by (2.17) and ‖λ(x)‖ is bounded
above. Similarly, if the Fletcher merit function is used, νk ≡ ν for some constant ν
and for k sufficiently large because ν̄k is assumed to be bounded above. Without loss
of generality, we assume for any k, µk = µ and νk = ν.

Suppose |S1| = ∞. Since (3.1) and (3.2) hold for large k, by Theorem 3.2, for
any p ∈ (0, 1), there are constants β1, β2, β3, and index sets Jk with |Jk| ≥ p|Sk1 | for
all k, such that for any j ∈ Jk, (3.5) and (3.6) hold. Theorems 3.3 and 3.4 imply

φµ(x0)− φµ(xk) ≥ γµ
∑
j∈Jk

[‖ZTj gj‖2 + ‖cj‖1],

Φν(x0)− Φν(xk) ≥ γν
∑
j∈Jk

[‖ZTj gj‖2 + ‖cj‖2],

as both {φµ(xk)} and {Φν(xk)} are decreasing sequences. Then∑
j∈Jk

[‖ZTj gj‖2 + ‖cj‖1] ≤ φµ(x0)−min
x
φµ(x) <∞,

∑
j∈Jk

[‖ZTj gj‖2 + ‖cj‖2] ≤ Φν(x0)−min
x

Φν(x) <∞,

since the merit functions are bounded below for fixed penalty parameters by Assump-
tion 3.1. Because |Jk| ≥ p|Sk1 | → ∞ as k →∞,

lim
j∈Jk→∞

‖ZTj gj‖2 + ‖cj‖1 = 0,

lim
j∈Jk→∞

‖ZTj gj‖2 + ‖cj‖2 = 0.

Since the l1 and l2 norms are equivalent, the conclusion of the theorem follows for
this case.

If |S1| is finite, there is a K1 large enough so that for any k > K1, Bk ≡ BK1

and thus for all k ≥ K1, (3.5) and (3.6) hold for some constants β1 > 0, β2 > 0, and
β3 > 0. Similarly, by Theorems 3.3 and 3.4, we know that there are constants γµ > 0
and γν > 0 such that for any k > K1

φµ(xK1
)− φµ(xk) ≥ γµ

k∑
j=K1

[‖ZTj gj‖2 + ‖cj‖1],

Φν(xK1)− Φν(xk) ≥ γν
k∑

j=K1

[‖ZTj gj‖2 + ‖cj‖2].

These two inequalities imply that

lim
k→∞

[‖ZTk gk‖+ ‖ck‖] = 0

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 589

when S1 is finite.
Note that the convergence result for the Fletcher merit function is somewhat

weaker than for the l1 merit function because of the plausible but optimistic assump-
tion on {ν̄k}.

With global convergence now established, in the next section we discuss the R-
linear convergence of the step secant update strategy.

4. Local and R-linear convergence. In this section R-linear convergence is
proved for the RHSQP algorithms using the step secant update with the Nocedal–
Overton update strategy and the positive curvature criterion, along with either the
l1 merit function or the Fletcher merit function. Although the positive curvature
criterion allows more updates than the Nocedal–Overton update criterion and we
prove that they are both R-linear convergent, we cannot establish a single unified
analysis for them. In this section, we present the analysis of R-linear convergence of
the two criteria separately because of their different update characters.

4.1. Properties of the local minimizer. Before the analysis of the R-linear
convergence, some characteristics of the solution of (1.1) are shown under the following
assumption.

Assumption 4.1. Let x∗ be a local minimizer of (1.1).
1. Assumption 3.1 holds on a set D containing x∗ in its interior.
2. The matrix A(x∗) is full rank. This implies that x∗ is a Kuhn–Tucker point.

That is, there is a Lagrange multiplier vector, λ∗ ∈ Rt, such that

∇xL(x∗, λ∗) = g(x∗) +A(x∗)λ∗ = 0.(4.1)

3. The matrix Z(x∗)T∇2
xxL(x∗, λ∗)Z(x∗) is positive definite.

4. In a neighborhood of x∗ the functions λ(x) and Z(x) are Lipschitz continuous;
i.e.,

‖λ(x)− λ(z)‖ ≤ γλ‖x− z‖,(4.2)

‖Z(x)− Z(z)‖ ≤ γz‖x− z‖,(4.3)

where γλ and γz are constants. Locally, there exist constants γZ and gammaA
such that inequalities in Assumption 3.1 hold.

Assumption 4.1 implies that for any (x, λ) sufficiently close to (x∗, λ∗) and δ > 0
sufficiently small,

m0‖u‖2 ≤ uTZ(x)T∇2
xxL(x+ ∆x, λ)Z(x)u ≤M0‖u‖2(4.4)

for some constants m0 > 0 and M0 > 0 with ‖∆x‖ ≤ δ. That means that the
assumptions of Lemma 3.1 are satisfied, and thus (3.1) and (3.2) hold near (x∗, λ∗).

Under Assumption 4.1, the following lemma similar to Lemmas 4.1 and 4.2 given
by Byrd and Nocedal [2] can be proved under mild conditions.

Lemma 4.1. If Assumption 4.1 holds, then for x sufficiently close to x∗,

γ1‖x− x∗‖ ≤ ‖c(x)‖+ ‖Z(x)T g(x)‖ ≤ γ2‖x− x∗‖(4.5)

for some constants γ1 > 0 and γ2 > 0. In addition, for any µ > ‖λ∗‖∞ and for any
ν sufficiently large, there are constants γ3 > 0, γ4 > 0, and γ5 > 0, γ6 > 0 such that

γ3‖x− x∗‖2 ≤ φµ(x)− φµ(x∗) ≤ γ4[‖Z(x)T g(x)‖2 + ‖c(x)‖1],(4.6)

γ5‖x− x∗‖2 ≤ Φν(x)− Φν(x∗) ≤ γ6[‖Z(x)T g(x)‖2 + ‖c(x)‖2].(4.7)

590 Y. F. XIE AND R. H. BYRD

Proof. By using (2.10) and (3.1) for the general matrix functions, Z(x), (Z(x))−1
L ,

and A(x)−1
L , the inequality (4.5) follows from the analysis of Lemma 4.1 in [2] because

there are no derivatives higher than second order involved. If (4.7) holds, (4.6) follows,
using the same technique as in Lemma 4.2 in [2]. The analysis in [2] involves the third-
order derivatives only in the proof of (4.7) itself.

Let us consider (4.7). Since (2.2) also holds on x∗, we can express x−x∗ = h+ v,
where h = Z∗(Z∗)−1

L (x−x∗) and v = A∗−TL A∗T (x−x∗). Because Φν(x∗) = L(x∗, λ∗)
and ∇xL(x∗, λ∗) = 0, it follows from Taylor’s theorem applied to L and from (4.4),
(4.2), and (4.3) that

Φν(x)− Φν(x∗) = L(x, λ(x))− L(x∗, λ∗) +
ν

2
‖c(x)‖2

≥ 1

2
(x− x∗)T∇2

xxL(x∗, λ∗)(x− x∗) + (λ(x)− λ∗)T c(x)

+o(‖x− x∗‖2) +
ν

2
‖c(x)‖2

=
1

2
(hT∇2

xxL(x∗, λ∗)h+ 2hT∇2
xxL(x∗, λ∗)v + vT∇2

xxL(x∗, λ∗)v)

+(λ(x)− λ∗)T c(x) + o(‖x− x∗‖2) +
ν

2
‖c(x)‖2

≥ 1

2
m0‖h‖2 −M0‖h‖‖v‖ − 1

2
M0‖v‖2

−γλ‖x− x∗‖‖c(x)‖+
ν

2
‖c(x)‖2 + o(‖x− x∗‖2).

Since c(x)− c(x∗) = A∗T (x−x∗)+O(‖x−x∗‖2) and A∗−1
L is bounded, it follows that

‖v‖ ≤ γA‖c(x)‖+O(‖x− x∗‖2). Thus,

Φν(x)− Φν(x∗) ≥ −γλ(‖h‖+ γA‖c(x)‖)‖c(x)‖+
1

2
m0‖h‖2 −M0γA‖h‖‖c(x)‖

−1

2
M0γA‖c(x)‖2 +

ν

2
‖c(x)‖2 + o(‖x− x∗‖2)

=
1

2
m0‖h‖2 +

(
−γλγA − 1

2
M0γA +

ν

2

)
‖c‖2

+ (−γλ −M0γA) ‖h‖‖c‖+ o(‖x− x∗‖2).

Consider the above equation as a quadratic polynomial in ‖h‖ and ‖c‖. There are
positive constants ν̄, γ′, and γ5 such that if ν > ν̄,

Φν(x)− Φν(x∗) ≥ γ′(‖h‖2 + ‖v‖2) + o(‖x− x∗‖2) ≥ γ5‖x− x∗‖2.
Similarly, using the Lipschitz continuity of λ(x), ∇xL(x∗, λ∗) = 0 and (4.5),

Φν(x)− Φν(x∗) = L(x, λ(x))− L(x∗, λ∗) +
ν

2
‖c(x)‖2

≤ γλ‖x− x∗‖‖c(x)‖+
M0

2
‖x− x∗‖2

+o(‖x− x∗‖2) +
ν

2
‖c(x)‖2

≤ O(‖x− x∗‖2) +
ν

2
‖c(x)‖2

≤ O(‖Z(x)T g(x)‖+ ‖c(x)‖)2 +
ν

2
‖c(x)‖2

≤ γ6(‖Z(x)T g(x)‖2 + ‖c(x)‖2).

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 591

In order to guarantee that {xk}∞k=1 converges to x∗, another assumption is made
for the constrained problem,

Assumption 4.2. The line search procedure has the property that if xk is suffi-
ciently close to x∗, then ∀θ ∈ [0, 1],

ϕ((1− θ)xk + θxk+1) ≤ ϕ(xk),

where ϕ is the merit function used in RHSQP algorithms.
Actually, there is no practical line search strategy that can absolutely guarantee

Assumption 4.2 to be satisfied, but it seems unlikely that it is violated when xk is
close to x∗. It is clearly satisfied when ϕ is quasi-convex. The following theorem
shows that Assumption 4.2 implies {xk} → x∗.

Theorem 4.2. Let {xk} be generated by an RHSQP algorithm using the l1 merit
function with µk chosen by (2.17) and using either the Nocedal–Overton criterion or
the positive curvature criterion. Suppose Assumptions 4.1 and 4.2 hold and {λk} is
bounded above. Then for sufficiently large K, µk is fixed for k > K and there is a
neighborhood of x∗ such that if an iterate xk0 with k0 > K falls in the neighborhood,
then xk → x∗ and (3.1) and (3.2) hold for all k sufficiently large. If the Fletcher
merit function with νk chosen by (2.18) is used, the same conclusion holds under the
additional assumption that ν̄k is bounded and νk is large enough.

Proof. By Assumption 4.1, there exists δ1 > 0 such that, for all x in the neigh-
borhood N1 = {x : ‖x− x∗‖ < δ1} of x∗,

‖λ(x)‖∞ + ρ > ‖λ∗‖∞,(4.8)

and the conditions of Assumption 3.1 hold for D = N1.
Now, since {‖λ(xk)‖∞} and {ν̄k} are bounded, the procedure (2.17) or (2.18)

implies that for all k greater than some value k̄, µk or νk are fixed at some values µ
and ν. Suppose ν is sufficiently large that (4.7) holds. By (2.17), (2.18), and (4.8),
if an iterate xk, with k > k̄, occurs in N1 then it must be that µ > ‖λ∗‖∞. In other
words, Lemma 4.1 holds on N1, and φµ and Φν have a strict local minimizer x∗.
Suppose K is an integer such that µk = µ or νk = ν for any k > K. For such µ and
ν, it follows from Lemma 4.1 that there exists δ2 ∈ (0, δ1] such that if ‖xk0

−x∗‖ < δ2
for k0 > K, the connected component of the level set {z : φµ(z) < φµ(xk0

)} or
{z : Φν(z) < Φν(xk0)} containing x∗ is a subset N2 of N1. Since N2 is connected, by
Assumption 4.2, all iterates xk for k > k0 remain in N2. If δ2 is chosen sufficiently
small, then by Assumption 4.1 the hypotheses of Lemma 3.1 hold for D = N2 and
therefore (3.1) and (3.2) hold at all update steps for k > k0. Then the assumptions of

Theorem 3.5 are satisfied for k > k̂ and thus there is a subsequence {xki} of {xk}∞k=k0

such that

lim
i→∞

[‖ZTkigki‖+ ‖cki‖] = 0.

By (4.5), (4.6), and (4.7), we have

lim
i→∞

φµ(xki)− φµ(x∗) = 0,

lim
i→∞

Φν(xki)− Φν(x∗) = 0,

and by the monotone decreasing property of {φµ(xk)} or {Φν(xk)},
lim
k→∞

φµ(xk)− φµ(x∗) = 0,

lim
k→∞

Φν(xk)− Φν(x∗) = 0.

592 Y. F. XIE AND R. H. BYRD

By Lemma 4.1, x∗ is a local minimizer of either merit function. So Assumption 4.1
implies xk → x∗. The neighborhood guaranteed by this theorem is thus N2.

Based on this theorem, we can show the R-linear convergence under the hypothe-
sis {xk} → x∗ for the Nocedal–Overton criterion and the positive curvature criterion,
respectively. First, we show that both criteria have an R-linear convergent subse-
quence, and the remaining subsequence is discussed separately for these two criteria.

4.2. A subsequential R-linear convergence. We now define a subsequential
R-linear convergence. Given a subset S ⊂ [1, . . . ,∞), we refer to {xk} as S R-linear

convergent if there exists r < 1 such that for all k, ‖xk − x∗‖ ≤ r|S
k|, where Sk =

S
⋂

[1, . . . , k]. We now show that both criteria generate an S1 R-linear convergent
sequence.

Lemma 4.3. Suppose {xk} is generated by an RHSQP algorithm using the
step secant update strategy with either the Nocedal–Overton criterion or the positive
curvature criterion and using the l1 merit function or the Fletcher merit function.
Then {xk} converges S1 R-linearly if the hypotheses of Theorem 4.2 are satisfied.

Proof. Since xk → x∗ by Theorem 4.2, (3.1) and (3.2) hold, and Lemma 4.1 also
holds for x = xk, if k is large enough. Without loss of generality, assume that these
lemmas hold for any k. Choose p = 1

2 and apply Theorems 3.2, 3.3, and 3.4 to the
RHSQP algorithm. Then for the index set Jk defined in Theorem 3.2,

φµ(xi)− φµ(xi+1) ≥ γµ[‖ZTi gi‖2 + ‖ci‖1] ∀i ∈ Jk,
Φν(xi)− Φν(xi+1) ≥ γν [‖ZTi gi‖2 + ‖ci‖2].

By (4.6) or (4.7), the above inequalities imply

φµ(xi)− φµ(xi+1) ≥ γµ
γ4

(φµ(xi)− φµ(x∗)) ∀i ∈ Jk,

Φν(xi)− Φν(xi+1) ≥ γν
γ6

(Φν(xi)− Φν(x∗)) ∀i ∈ Jk.

Then

φµ(xi+1)− φµ(x∗) ≤
(

1− γµ
γ4

)
(φµ(xi)− φµ(x∗)),

Φν(xi+1)− Φν(x∗) ≤
(

1− γν
γ6

)
(Φν(xi)− Φν(x∗)).

Let r′ = (1− γµ
γ4

)
1
4 < 1 for the l1 merit function or r′ = (1− γν

γ6
)

1
4 < 1 for the Fletcher

merit function and choose r′′ = 1
γ3

(φµ(x0) − φµ(x∗))
1
2 > 0 for the l1 merit function

and r′′ = 1
γ5

(Φν(x0) − Φν(x∗))
1
2 > 0 for the Fletcher merit function. Then for any

i ∈ Jk,

φµ(xi+1)− φµ(x∗) ≤ r′4(φµ(xi)− φµ(x∗)),

Φν(xi+1)− Φν(x∗) ≤ r′4(Φν(xi)− Φν(x∗)),

and by the decreasing properties of {φµ(xi)} along with (4.6),

‖xk − x∗‖ ≤ 1

γ3
(φµ(xk)− φµ(x∗))

1
2

≤ 1

γ3
(r′4|Jk|(φµ(x0)− φµ(x∗)))

1
2

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 593

≤ 1

γ3
(r′2|S

k
1 |(φµ(x0)− φµ(x∗)))

1
2

= r′′r′|S
k
1 |,

because p = 1
2 and |Jk| ≥ p|Sk1 |. For the Fletcher merit function, this conclusion

follows similarly. This implies that there is a constant r ∈ (0, 1) such that

‖xk − x∗‖ ≤ r|Sk1 |

for both merit functions.
Note that this analysis can be applied to any update that guarantees that (3.1)

and (3.2) are satisfied. By the S1 R-linear convergence, it follows that the entire
sequence is R-linearly convergent if

• there is a constant p > 0 such that |Sk1 | ≥ pk for any k; or
• |S1| is finite (because Bk will be a fixed matrix for large k and the proof of

Lemma 4.3 can be applied to S2).
The difficult case is when neither of these holds and S2 R-linear convergence has to
be proved. Because of the differences in S2 between the Nocedal–Overton update
criterion and the positive curvature criterion, we prove their R-linear convergence
separately.

4.3. The Nocedal–Overton criterion. For the Nocedal–Overton update cri-
terion, one can prove that the matrices {Bk} and {B−1

k } are bounded, and then it is
not difficult to prove R-linear convergence. We need only show the boundedness of
{Bk} and {B−1

k } for the Nocedal–Overton update criterion.
Consider the scaled version of the matrix function ψ(·) developed by Byrd and

Nocedal [1] for the quasi-Newton methods. The ψ function is defined as

ψ(B) = Tr(H∗−
1
2BH∗−

1
2)− ln det(H∗−

1
2BH∗−

1
2),(4.9)

where H∗ = Z∗T∇2
xxL(x∗, λ∗)Z∗ > 0. In order to discuss the boundedness of Bk and

B−1
k using ψ, we define the quantities cos θk and qk, which are scaled versions of the

quantities cos θ̂k and q̂k, used for the global convergence analysis:

cos θk =
sTkBksk

‖H∗ 1
2 sk‖‖H∗− 1

2Bksk‖
, qk =

sTkBksk
sTkH

∗sk
.(4.10)

Now we estimate ψ(Bk+1) by the following lemma.
Lemma 4.4. When xk and xk+1 are close to x∗ and k ∈ S1,

ψ(Bk+1) ≤ ψ(Bk)− qk
cos2 θk

+ ln qk + 1 + γ̃ and(4.11)

ψ(Bk+1) ≤ ψ(Bk)− qk
cos2 θk

+ ln qk + 1 + L0σk + γ̃ωk,(4.12)

where L0 and γ̃ are constants, ωk = ‖αkck‖/‖sk‖, and σk = max{‖ek+1‖, ‖ek‖} with
ek = xk − x∗.

Proof. By a result of Pearson [12] for the BFGS update,

det(H∗−
1
2Bk+1H

∗− 1
2) = det(H∗−

1
2BkH

∗− 1
2)

sTk yk
sTkBksk

.(4.13)

594 Y. F. XIE AND R. H. BYRD

By the definition of ψ, (4.13), and (4.10),

ψ(Bk+1) = Tr(Bk)− Tr

(
H∗−

1
2

(
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk

)
H∗−

1
2

)
(4.14)

− ln det(H∗−
1
2BkH

∗− 1
2) + ln

sTkBksk
sTk yk

= ψ(Bk)− ‖H
∗− 1

2Bksk‖2
sTkBksk

+
yTkH

∗−1yk
sTk yk

+ ln
sTkBksk
sTk yk

= ψ(Bk)− qk
cos2 θk

+
yTkH

∗−1yk
sTk yk

− ln
sTk yk

sTkH
∗sk

+ ln qk.

Then by Assumption 4.1, the conditions (3.1) and (3.2) hold on S1. Thus

ψ(Bk+1) ≤ ψ(Bk)− qk
cos2 θk

+ ln qk + 1

+

(
‖H∗−1‖M − 1− ln

m

‖H∗‖
)
.

That is, (4.11) holds. To prove (4.12), we need to estimate the third and fourth terms
in the last equation of (4.14). Let

Hk = ZTk GkZk, H̃k = ZTk Gk(Ak)−TL ,

and then by Taylor’s theorem and (2.2),

yk = ZTk [∇xL(xk+1, λk)−∇xL(xk, λk)](4.15)

= ZTk [Gkαkdk] +O(‖αkdk‖2)

= ZTk
[
Gk(Zk(Zk)−1

L + (Ak)−TL ATk)αkdk
]

+O(‖αkdk‖2)

= Hksk − H̃kαkck +O(‖αkdk‖2)

= H∗sk − H̃k(αkck) +O(‖ek‖‖sk‖+ ‖αkdk‖2).

To estimate the third term of (4.12), we multiply both sides of (4.15) by yTkH
∗−1 and

yield

yTkH
∗−1yk = sTk yk − yTkH∗−1H̃k(αkck) +O(‖ek‖‖sk‖+ ‖αkdk‖2)‖yk‖

≤ sTk yk +O(‖αkck‖)‖yk‖+O(‖ek‖‖sk‖+ ‖αkdk‖2)‖yk‖.

By (3.1) and (3.2), we have sTk yk ≥ mM‖sk‖‖yk‖ and then

yTkH
∗−1yk

sTk yk
≤ 1 +O

(‖αkck‖
‖sk‖

)
+O(‖ek‖) +O

(‖αkdk‖2
‖sk‖

)
.

Since ‖αkdk‖ ≤ O(σk) and

‖αkdk‖2
‖sk‖ = O(σk)

‖αkdk‖
‖sk‖ ≤ O(σk)

‖αkhk‖+ ‖αkvk‖√
sTk yk

= O(σk) +O

(
σk
‖αkck‖
‖sk‖

)
,

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 595

it follows that

yTkH
∗−1yk

sTk yk
≤ 1 +O

(‖αkck‖
‖sk‖

)
+O(σk).(4.16)

Similarly, to estimate the fourth term, we multiply both sides of (4.15) by sTk ,

sTk yk = sTkH
∗sk − sTk H̃k(αkck) +O(‖ek‖‖sk‖+ ‖αkdk‖2)‖sk‖,

sTk yk
sTkH

∗sk
= 1 +

1

sTkH
∗sk

[−sTk H̃k(αkck) +O(‖ek‖‖sk‖+ ‖αkdk‖2)‖sk‖]

= 1 +O

(‖αkck‖
‖sk‖

)
+O(σk).

Since
sTkH

∗sk
sT
k
yk
≤ ‖H∗‖m , we have

− ln
sTk yk

sTkH
∗sk

= ln
sTkH

∗sk
sTk yk

(4.17)

≤ sTkH
∗sk

sTk yk
− 1

=
sTkH

∗sk
sTk yk

(
1− sTk yk

sTkH
∗sk

)
≤ ‖H

∗‖
m

∣∣∣∣ sTk yk
sTkH

∗sk
− 1

∣∣∣∣
≤ O

(‖αkck‖
‖sk‖

)
+O(σk).

Using (4.16) and (4.17) and the definition of ωk, we know that there exist constants
L0 and γ̃ satisfying (4.11) and (4.12).

From Lemmas 4.3 and 4.4, it follows that for any update criterion satisfying∑
j∈S1

‖vj‖
‖hj‖ <∞,(4.18)

the quasi-Newton matrices and their inverses are bounded below and above. This is
because ‖αkck‖/‖sk‖ ≤ (γA/γZ)(‖vk‖/‖hk‖), and

ψ(Bk) ≤ ψ(B0) + L0

∑
j∈Sk−1

1

σj + γ̃
∑

j∈Sk−1
1

(
γA
γZ

‖vj‖
‖hj‖

)

≤ ψ(B0) + L0

∑
j∈Sk−1

1

r|S
j
1 | + γ̃

∑
j∈Sk−1

1

(
γA
γZ

‖vj‖
‖hj‖

)
<∞,

since −qk/ cos2 θk+ln qk+1 ≤ 0. That is, there is a ψ̄ > 0 such that ψ(Bk) ≤ ψ̄ <∞,
which implies that ‖Bk‖ and ‖B−1

k ‖ are bounded, and we have the following theorem.
Theorem 4.5. Under the assumptions of Theorem 4.2 with either merit func-

tion, if an iterate lands close enough to x∗, then xk → x∗. In addition, if (4.18) holds,
{‖Bk‖} and {‖B−1

k ‖} are bounded above and {xk} converges to x∗ R-linearly.

596 Y. F. XIE AND R. H. BYRD

Proof. As shown above, {‖Bk‖}∞k=1 and {‖B−1
k ‖}∞k=1 are bounded. Therefore,

(3.7) and (3.10) and thus (3.8) and (3.12) hold for all k. The R-linear convergence
follows from the same argument as in the proof of Lemma 4.3, applied to the entire
sequence.

The Nocedal–Overton update criterion satisfies (4.18). Actually, there are other
criteria satisfying (4.18); for example, (4.18) will hold if

‖vk‖ ≤ ζ

|Sk1 |1+ε
‖hk‖(4.19)

whenever Bk+1 is updated, where ζ and ε are positive constants.
Corollary 4.6. Suppose the assumptions of Theorem 4.5 are satisfied, and

either the Nocedal–Overton update criterion or the criterion given by (4.19) are used.
If Assumptions 4.1 and 4.2 hold, then {xk}∞k=1 converges to x∗ R-linearly.

4.4. R-linear convergence using the positive curvature criterion. Unlike
the Nocedal–Overton update criterion, the positive curvature criterion allows updates
even when ‖vk‖/‖hk‖ is not small. The analysis of Lemma 4.4 cannot be applied.
Without assuming that {Bk} and {B−1

k } are bounded, the sufficient reductions of the
merit functions in (3.4) and (3.10) cannot rely on the terms involving cos θk, because
based on the current analysis, cos θk cannot be proved to be bounded away from
zero even though numerically it rarely happens that cos θk tends to be unbounded.
Fortunately, the positive curvature criterion guarantees that ‖ck‖ is relatively large
compared to ‖hk‖ for any k ∈ S2.

Lemma 4.7. If Algorithm 2.1 is used with the positive curvature criterion and
the conditions of Theorem 4.2 are satisfied, then there are constants γ8 > 0 and γ9 > 0
such that for sufficiently large k,

‖vk‖ ≤ γ8‖hk‖, k ∈ S1,

‖hk‖ ≤ γ9‖vk‖, k ∈ S2.

Proof. By (2.2) and (4.15),

sTk yk ≤ O(‖sk‖2 + ‖sk‖‖αkvk‖) + ‖sk‖O(‖sk‖+ ‖αkvk‖)2.

Thus, based on (2.13), for k ∈ S1,

ζ1‖αkvk‖2 ≤ ‖αkhk‖O(‖sk‖+ ‖αkvk‖) + ‖αkhk‖O(‖sk‖+ ‖αkvk‖)2.

Either ‖hk‖ ≤ ‖vk‖, which implies

‖vk‖ ≤ ‖hk‖O(‖vk‖) ≤ ‖hk‖O(γA sup
D
‖c(x)‖) = O(‖hk‖),

or ‖vk‖ ≤ ‖hk‖ shows the existence of the constant γ8 > 0.
For the second part of this lemma, the existence of γ9 > 0 can be proved as

follows. For any k ∈ S2, Lemma 3.1 and (2.14) imply

m‖sk‖2 ≤ sTk yk ≤ ζ2‖αkvk‖2.
If Assumption 4.1 holds, using the second inequality from the bottom in (4.15), we
have

sTk yk ≥ sTkHksk − |sTk H̃k(αkck)| −O(‖dk‖3)

≥ m0‖sk‖2 −M0γZγA‖αkATk vk‖‖sk‖ −O(‖dk‖3)

≥ m0‖sk‖2 −M0γZγ
2
A‖αkvk‖‖sk‖ −O(‖dk‖3),

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 597

by the definition of H̃k, since ‖sk‖ = O(‖dk‖). Then for k ∈ S2,

ζ2‖αkvk‖2 ≥ sTk yk ≥ m0‖sk‖2 −M0γZγ
2
A‖αkvk‖‖sk‖ −O(‖dk‖3).

Since xk → x∗ and vk → 0, ‖sk‖ is small for large k. Then either

M0γZγ
2
A

‖αkvk‖
‖sk‖ ≤

m0

3
,

which shows

ζ2‖αkvk‖2 ≥ 2m0

3
‖sk‖2 −O(‖sk‖3) ≥ m0

2
‖sk‖2,

√
ζ2‖αkvk‖ ≥

√
m0

2
‖sk‖ ≥

√
m0

2

‖αkhk‖
γZ

,

or M0γZγ
2
A
‖αkvk‖
‖sk‖ > m0

3 , which implies

(M0γZγ
2
A)‖vk‖ ≥ m0

3
‖B−1

k ZTk gk‖ ≥
m0

3γZ
‖hk‖.

In either case γ9 exists.
To prove R-linear convergence for the positive curvature criterion, we concentrate

on the reductions in the vertical direction. We show that αk = 1 for k ∈ S2 sufficiently
large if an RHSQP algorithm uses the positive curvature criterion and either the l1
or Fletcher merit function in the following lemmas.

Lemma 4.8. If the conditions of Theorem 4.2 are satisfied and the l1 merit func-
tion is used in Algorithm 2.1 with the positive curvature criterion to generate a se-
quence, {xk}, then for any sufficiently large k ∈ S2, αk = 1.

Proof. For αk < 1 for k ∈ S2 in the backtracking line search, we show that the
reduction in the l1 merit function is greater than a positive constant. Since the merit
function is bounded below, this implies that there is only a finite number k ∈ Sk such
that αk < 1.

Suppose αk < 1 for some k ∈ S2. That means the descent condition fails for a
step length α̃, and αk ≥ τα̃. This means

φµ(xk + α̃dk)− φµ(xk) > ηα̃Dφµ(xk; dk).

On the other hand, by the Taylor expansion,

φµ(xk + α̃dk)− φµ(xk) ≤ α̃Dφµ(xk; dk) +O(α̃2‖dk‖2).

Thus

−(1− η)Dφµ(xk; dk) < α̃O(‖dk‖2) ≤ α̃γ10‖dk‖2,(4.20)

and furthermore, we have a lower bound for αk:

αk ≥ τα̃ > −τ(1− η)Dφµ(xk; dk)/(γ10‖dk‖2).

Using (3.4),

598 Y. F. XIE AND R. H. BYRD

αk ≥ τ(1− η)

(
1

γZ
‖ZTk gk‖‖hk‖ cos θ̂k + ρ‖ck‖1

)
/(γ10‖dk‖2)

≥ τ(1− η)ρ‖ck‖1/(γ10‖dk‖2)

≥ τ(1− η)ρ‖ck‖1/(γ10(1 + γ9)2‖vk‖2)

≥ γ11

‖ck‖ .

Since ck → 0, this contradicts the assumption that αk < 1. Thus, for large k,
αk = 1.

For the Fletcher merit function, a stronger condition on the penalty parameter
must be added to guarantee αk = 1.

Lemma 4.9. Suppose the conditions of Theorem 4.2 are satisfied and the Fletcher
merit function is used in Algorithm 2.1 with the positive curvature criterion. Then
there is a constant ν̃ > 0 such that if the penalty parameter νk is greater than ν̃,
αk = 1 for any k ∈ S2 large enough.

Proof. Since the Fletcher merit function is differentiable,

∇Φν(x) = g(x) +∇λ(x)c(x) +A(x)λ(x) + νA(x)c(x),

and by using the relation λ(xk)T c(xk) = gTk vk,

∇Φν(xk)T dk = gTk hk + dTk∇λ(xk)ck − νcTk ck.

By Lemma 4.7, dk → 0 for k ∈ S2 as xk → 0. Thus, using (2.16), and noticing
that λ(xk + dk) − λk → 0 and c(xk + dk) = O(‖dk‖2), the Taylor expansion for the
Lagrangian function gives

Φν(xk + dk)− Φν(xk)− η∇Φν(xk)T dk

= f(xk + dk) + λTk c(xk + dk) +
ν

2
c(xk + dk)T c(xk + dk)−

(
f(xk) + λTk ck +

ν

2
cTk ck

)
+(λ(xk + dk)− λk)T c(xk + dk)− η(gTk hk + dTk∇λ(xk)ck − νcTk ck)

≤ gTk dk +
1

2
dTk∇2fkdk + λTkA

T
k dk +

1

2
dTk
∑
i

(λk)i∇2ci(xk)dk + o(‖dk‖2)

−ν
2
cTk ck − η(gTk hk + dTk∇λ(xk)ck − νcTk ck)

= (1− η)gTk hk − ηdTk∇λ(xk)ck

+
1

2
dTk∇2

xxL(xk, λ(xk))dk −
(

1

2
− η
)
νcTk ck + o(‖dk‖2)

≤ −ηdTk∇λ(xk)ck +M0‖dk‖2 −
(

1

2
− η
)
νcTk ck + o(‖dk‖2),

by (2.19) and the fact that gTk hk < 0. Because Lemma 4.7 implies ‖hk‖ ≤ γ9γA‖ck‖
for any k ∈ S2 and (dTk∇λ(xk)ck)/‖ck‖2 ≤ sup ‖∇λ(x)‖(1 + γ9γA),

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 599

Φν(xk + dk)− Φν(xk)− η∇Φν(xk)T dk

≤ −ηdTk∇λ(xk)ck +M0(1 + γ9)2γ2
A‖ck‖2 −

(
1

2
− η
)
νcTk ck + o(‖ck‖2)

≤ −
(
ν

(
1

2
− η
)
− η sup ‖∇λ(x)‖(1 + γ9γA)−M0(1 + γ9)2γ2

A −
1

2

)
‖ck‖2

−1

2
‖ck‖2 + o(‖ck‖2)

≤ 0

for k large enough and ν ≥ ν̃ > 0, where ν̃ is a constant satisfying

ν̃ ≥ −η sup ‖∇λ(x)‖(1 + γ9γA)−M0(1 + γ9)2γ2
A − 1

2
1
2 − η

(4.21)

for any k. That is, for k ∈ S2 large enough, αk = 1 is accepted by the line search for
the Fletcher merit function.

Given these results, we can show the R-linear convergence of the RHSQP algo-
rithms using the positive curvature criterion. First, we have an estimate for ‖ek‖ as
follows.

Lemma 4.10. If the conditions of Theorem 4.2 hold and Algorithm 2.1 is used
with the positive curvature criterion and either the l1 merit function with (2.17) or
the Fletcher merit function with (2.18) and νk eventually sufficiently large, then for
any index set S ⊂ [1, 2, . . . , k − 1],

‖ek‖ ≤ γ|S|12

∏
j∈S

‖ej+1‖
‖ej‖ .

Proof. Without loss of generality, assume ‖e1‖ = 1. By Lemma 4.1 and the
monotonicity of {Φν},

‖ek‖2 ≤ 1

γ5
(Φν(xk)− Φν(x∗)) ≤ 1

γ5
(Φν(xk′+1)− Φν(x∗)),

where k′ is the largest index in S. By (4.5) and (4.7),

‖ek‖2 ≤ γ2γ6

γ5
‖ek′+1‖2,

‖ek‖ ≤
(
γ2γ6

γ5

) 1
2 ‖ek′+1‖
‖ek′‖ ‖ek

′‖.

Therefore, applying the same procedure to the second largest index k′′ in S and so
on, we have

‖ek‖ ≤
(
γ2γ6

γ5

) 1
2 |S|∏

j∈S

‖ej+1‖
‖ej‖ ,

and the lemma is proved with γ12 = (γ2γ6

γ5
)

1
2 .

To show R-linear convergence, we need only consider the situation where |Sk2 | ≥
3
4k. If |Sk2 | < 3

4k, the S1 R-linear convergence implies that the sequence {xk} is
R-linear convergent. If |Sk2 | ≥ 3

4k, the index set

S̄k = {j | j, j + 1 ∈ Sk2 }

600 Y. F. XIE AND R. H. BYRD

contains at least 1
4k elements; otherwise |Sk2 | < 2 × 1

4k + |Sk1 | ≤ 1
2k + 1

4k = 3
4k.

Moreover, for any j ∈ S̄k, the following bound holds.
Lemma 4.11. Under the conditions of Lemma 4.10, for any positive constant

ε > 0 and any sufficiently large k and j ∈ S̄k such that αk = 1,

‖ej+1‖
‖ej‖ ≤ ε.

Proof. Using the fact that

− qk
cos2 θk

+ ln qk + 1 ≤ 0

in the inequality (4.11), we can obtain the growth bounds

‖Bk‖ ≤ γ|Sk1 |, ‖B−1
k ‖ ≤ γ|Sk1 |

for some constant γ. For any constant τ with 1 > τ > 0, Lemma 4.3 implies

‖ZTk gk‖τγ1−τ
Z ‖Bk‖1−τ ≤ ‖ek‖τγ1−τ

Z ‖Bk‖1−τ ≤ rτ |Sk1 |γ1−τ
Z |Sk1 |1−τ ≤ 1

for k sufficiently large. Since αj = 1 and j ∈ S2 is large, cj+1 = O(‖dj‖2) and by
Lemma 4.1,

‖ej+1‖ ≤ 1

γ1
(‖ZTj+1gj+1‖+ ‖cj+1‖)

≤ 1

γ1
(‖ZTj+1gj+1‖τ‖ZTj+1gj+1‖1−τ + ‖cj+1‖)

≤ 1

γ1
(‖ZTj+1gj+1‖τγ1−τ

Z ‖Bj+1‖1−τ‖hj+1‖1−τ + ‖cj+1‖)

≤ 1

γ1
(‖hj+1‖1−τ + ‖cj+1‖)

≤ 1

γ1
(γ1−τ

8 ‖cj+1‖1−τ + ‖cj+1‖)

≤ O(‖cj+1‖1−τ) ≤ O(‖dj‖2(1−τ))

≤ O(‖hj‖2(1−τ) + ‖cj‖2(1−τ))

≤ O(‖cj‖2(1−τ)) ≤ O(‖ej‖2(1−τ)).

Since the assumptions of Theorem 4.2 are satisfied, ‖ek‖ → 0. Therefore, as long as
τ < 1

2 is chosen, for any given constant ε > 0,

‖ej+1‖
‖ej‖ ≤ ε

for k large enough.
Using Lemmas 4.10 and 4.11,

‖ek‖ ≤ γ|S̄
k|

12

∏
j∈S̄k

‖ej+1‖
‖ej‖

≤ γ|S̄k|12

∏
j∈S̄k

ε

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 601

≤ γ|S̄k|12 ε|S̄
k|

≤ (γ12ε)
|S̄k|

≤ (γ12ε)
1
4k

≤ ([γ12ε]
1
4)k;

i.e., ‖ek‖ ≤ rk for some r ∈ (0, 1). Thus {xk}∞k=1 converges R-linearly, and we have
the following theorem.

Theorem 4.12. If Assumptions 4.1 and 4.2 hold and an RHSQP algorithm uses
the step secant update strategy with the positive curvature criterion and either the l1
or the Fletcher merit function with the penalty parameter with νk sufficiently large
and ν̄k bounded, then the sequence {xk}∞k=1 produced by the algorithm converges to
the solution x∗ R-linearly.

Now global and R-linear convergence has been established for the step secant
update used with the l1 and Fletcher merit functions. In the next section, we present
some results of numerical experiments comparing the step secant update strategy
using the positive curvature criterion and the Nocedal–Overton criterion with the
null space secant update strategy.

5. Numerical experiments. Although the null space secant strategy and the
step secant update strategies with the Nocedal–Overton update criterion and the
positive curvature criterion are proved R-linearly convergent, their numerical perfor-
mances differ. We present here numerical experiments with the step secant update
strategy using these two update criteria and compare them with the null space secant
update strategy, although it is known that the null space secant update strategy is
expensive because of the extra gradient evaluations. We used a single FORTRAN
code that allowed us to vary update strategies. In these numerical experiments, the
simpler l1 merit function is used. We used the QR factorization (2.7) to compute the
null space basis matrix Zk as well as the inverse matrices, as we described in (2.6).
For the null space secant update, we used the BFGS update with yk and sk given by
(2.9) and (2.10). We skipped the updates if sTk yk ≤ 0.

The algorithm parameters used are
• the general parameters, ρ = 1, B0 = I, η = 10−4, and τ = τ ′ = 0.5;
• parameters for the Nocedal–Overton criterion: ζ = 1.0 and ε = 0.01 (the

same values used in [11]);
• parameters for the positive curvature criterion: ζ1 = ζ2 = 0.01.

The problems tested are chosen from Hock and Schittkowski’s test problems [9].
For example, “hs10” stands for problem 10 from [9]. The following notation is used
in Tables 5.1 and 5.2, which show our numerical results:

• “upd” is the number of updates;
• “ite” is the number of iterations;
• “rsd” is the residual, ‖ZTk gk‖+ ‖ck‖; and
• “F” indicates the algorithm’s failure on that problem.

From the tables, we can see that there are two kinds of failure cases: In some
cases the number of iterations hit the maximum iteration allowance which was set
to 100. In failure cases with a number of iterations less than the maximum iteration
allowance, the algorithm stopped because of failure of the line search. That is, at the
current approximation, the line search cannot find a positive step length greater than
αmin (which was chosen as αmin = 10−30) such that (2.15) holds. At the bottoms
of the two tables, there are rows to show the total numbers of updates/iterations

602 Y. F. XIE AND R. H. BYRD

Table 5.1
Numerical tests with monotonically increasing parameter.

Positive curvature Nocedal–Overton Null space secant
Pro # upd/ite rsd upd/ite rsd upd/ite rsd

hs6 8/11 0.8d-08 28/36 0.7d-08 8/10 0.2d-08
hs7 3/8 0.2d-11 3/10 0.5d-09 5/7 0.1d-11
hs10 12/18 0.2d-10 3/15 0.9d-08 13/14 0.3d-10
hs11 5/9 0.6d-10 5/9 0.6d-10 7/8 0.9d-11
hs12 10/11 0.3d-08 6/13 0.4d-08 7/8 0.2d-08
hs26 12/100 0.2d-02F 23/26 0.3d-02F 33/35 0.7d-08
hs27 15/100 0.2d-01F 25/32 0.1d-01F 47/49 0.1d-08
hs29 10/12 0.1d-08 13/17 0.1d-08 7/9 0.5d-08
hs39 13/15 0.2d-09 9/28 0.8d-09 21/22 0.1d-09
hs40 4/6 0.7d-08 3/6 0.1d-09 4/5 0.1d-09
hs43 12/13 0.1d-08 34/41 0.5d-01F 9/10 0.8d-08
hs46 17/100 0.8d-02F 21/22 0.2d-01F 99/100 0.2d-05F
hs47 20/100 0.1d+01F 22/32 0.1d-01F 31/32 0.1d-08
hs56 16/17 0.6d-12 14/18 0.1d-09 10/11 0.6d-09
hs60 11/12 0.1d-09 9/12 0.6d-10 10/11 0.4d-08
hs61 36/80 0.3d-10 42/45 0.1d+02F 7/9 0.2d-08
hs63 5/7 0.5d-09 4/8 0.4d-10 5/6 0.6d-08
hs65 6/100 0.7d+01F 19/36 0.8d+01F 10/13 0.5d-09
hs66 10/11 0.6d-13 34/36 0.1d-02F 11/12 0.1d-13
hs71 10/11 0.4d-08 6/9 0.1d-09 6/7 0.3d-08
hs72 13/23 0.2d-08 13/27 0.6d-08 19/20 0.1d-09
hs77 14/15 0.2d-08 9/14 0.5d-09 18/19 0.2d-08
hs78 5/7 0.5d-08 4/7 0.9d-08 6/7 0.1d-08
hs79 26/28 0.1d-08 11/14 0.9d-09 11/12 0.1d-08
hs80 6/9 0.1d-10 6/10 0.2d-09 4/5 0.1d-09
hs81 14/22 0.5d-05F 8/19 0.2d+02F 4/5 0.1d-09
hs93 39/41 0.2d-09 26/32 0.1d+03F 22/26 0.1d-08
hs100 27/28 0.1d-08 36/43 0.1d-08 99/100 0.2d-06F
Total1 171/219 6F 146/253 10F 161/181 2F

Upd. ratio 0.781 0.577 0.890

1 Note that the totals are for problem solved by all three strategies.

and the update ratios. These totals are obtained by counting only the cases where
all three algorithms successfully reached the solution. The stopping criterion was
rsd ≤ ε = 10−8 and the starting points were the standard points given in [9]. The
problems were tested on a Sun SPARC2 workstation.

First, we present the results obtained using the monotonically increasing strategy
given in step 2′, for which the global and R-linear convergence is established. These
results are presented in Table 5.1. It shows that the positive curvature criterion
improves the Nocedal–Overton criterion, as it not only has fewer failed cases but also
uses fewer function evaluations and iterations. We believe that this improvement is
due to the higher update rate of the positive curvature criterion.

Even though no convergence analysis has been established for the nonmonoton-
ically increasing strategy, numerical experiments in Table 5.2 show it works much
better than the monotonically increasing strategy. For these numerical experiments,
the following nonmonotonic strategy is used:

µk = ‖λk‖+ ρ,

where ρ > 0 is a constant. For this nonmonotonic increasing strategy, the step secant
update strategy with the positive curvature criterion works almost as well as the null
space update strategy, and in addition it saves the extra gradient evaluations.

PRACTICAL UPDATE CRITERIA: GLOBAL ANALYSIS 603

Table 5.2
Numerical tests with nonmonotonically increasing parameter.

Positive curvature N–O criterion Null space secant
Pro # upd/ite rsd upd/ite rsd upd/ite rsd

hs6 11/13 0.7d-09 12/20 0.7d-09 8/10 0.2d-08
hs7 4/8 0.4d-15 3/10 0.3d-09 5/7 0.1d-11
hs10 26/34 0.5d-11 6/30 0.3d-08 21/22 0.4d-09
hs11 10/17 0.3d-09 3/16 0.4d-08 13/14 0.1d-12
hs12 9/10 0.1d-08 6/14 0.1d-10 7/8 0.2d-08
hs26 28/29 0.7d-08 27/31 0.7d-08 33/35 0.7d-08
hs27 34/36 0.3d-08 30/56 0.4d-08 27/28 0.1d-10
hs29 13/15 0.6d-09 8/30 0.6d-09 13/15 0.9d-08
hs39 16/18 0.1d-08 6/21 0.2d-15 16/17 0.5d-08
hs40 4/6 0.7d-08 3/6 0.1d-09 4/5 0.1d-09
hs43 14/15 0.1d-09 9/18 0.1d-10 10/11 0.1d-08
hs46 33/34 0.2d-08 33/34 0.2d-08 40/41 0.6d-08
hs47 19/23 0.2d-08 17/26 0.5d-08 29/30 0.2d-08
hs56 15/16 0.1d-09 0/100 F 16/17 0.2d-11
hs60 11/12 0.5d-10 10/13 0.3d-08 11/12 0.3d-08
hs61 10/13 0.6d-12 16/26 F 7/9 0.1d-11
hs63 8/9 0.9d-10 5/11 0.1d-11 7/8 0.1d-09
hs65 20/22 0.4d-10 8/15 0.4d-09 9/11 0.2d-09
hs66 8/9 0.1d-08 7/9 0.2d-08 8/9 0.2d-12
hs71 10/11 0.4d-08 6/9 0.1d-09 6/7 0.3d-08
hs72 13/23 0.2d-08 13/27 0.6d-08 19/20 0.1d-09
hs77 13/14 0.8d-10 9/14 0.3d-09 18/19 0.2d-08
hs78 5/7 0.5d-08 4/7 0.9d-08 6/7 0.1d-08
hs79 21/22 0.1d-09 8/12 0.7d-09 11/12 0.1d-08
hs80 4/21 0.3d-10 2/20 0.6d-08 17/18 0.1d-11
hs81 25/39 0.4d-08 8/100 F 4/5 0.1d-09
hs93 72/75 0.8d-08 2/100 F 21/24 0.1d-09
hs100 28/29 0.4d-08 32/39 0.1d-09 35/36 0.5d-13
Total1 362/437 0F 267/488 4F 373/402 0F

Upd. ratio 0.830 0.550 0.928

1 Note that the totals are for problem solved by all three strategies.

6. Conclusions. The purpose of this paper is to present a more realistic analysis
of reduced Hessian SQP and to present a new practical update criterion. It presents
the first analysis of the step secant update for RHSQP in the context of a line search,
and without assumptions on the accuracy of the initial Hessian approximation. We
have done this for both the well-known Nocedal–Overton criterion and for the positive
curvature criterion proposed here.

The positive curvature update criterion was proposed to allow more updates than
the Nocedal–Overton update criterion, and based on numerical experiments, this
seems to occur. It seems plausible that the superior performance using the positive
curvature criterion is due to this greater update frequency.

From the numerical experiments made in this paper and the global and R-linear
convergence results for the step secant update strategies, the positive curvature cri-
terion may be a competitive candidate for solving very large scale constrained op-
timization problems, especially when it is combined with a nonmonotonic penalty
parameter strategy, because it saves the extra gradient evaluation required by the
null space secant update strategy.

604 Y. F. XIE AND R. H. BYRD

REFERENCES

[1] R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application
to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), pp. 727–739.

[2] R. H. Byrd and J. Nocedal, An analysis of reduced Hessian methods for constrained opti-
mization, Math. Programming, 49 (1990), pp. 285–323.

[3] T. F. Coleman and A. R. Conn, On the local convergence of a quasi-Newton method for the
nonlinear programming problem, SIAM J. Numer. Anal., 21 (1984), pp. 755–769.

[4] R. Fletcher, A class of methods for nonlinear programming with termination and convergence
properties, in Integer and Nonlinear Programming, North–Holland, Amsterdam, 1970, pp.
157–175.

[5] R. Fletcher, A First Derivative Method for Nonlinear Programming Based on Successive
l1 LP, Numerical Analysis Report NA/114, Department of Mathematics and Computer
Science, University of Dundee, Scotland, 1988.

[6] D. Gabay, Reduced quasi-Newton methods with feasibility improvement for nonlinear con-
strained optimization, Math. Programming Stud., 16 (1982), pp. 18–44.

[7] J. C. Gilbert, Maintaining the positive definiteness of the matrices in reduced Hessian methods
for equality constrained optimization, Math. Programming, 50 (1991), pp. 1–28.

[8] S. P. Han, Superlinearly convergent variable metric algorithms for general nonlinear program-
ming problems, Math. Programming, 11 (1976), pp. 263–282.

[9] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Econom. and Math. Systems, Springer-Verlag, New York, 1981.

[10] W. Murray and M. H. Wright, Projected Lagrangian Methods Based on the Trajectories of
Penalty and Barrier functions, Systems Optimization Laboratory Report 78-23, Stanford
University, Stanford, CA, 1978.

[11] J. Nocedal and M. L. Overton, Projected Hessian updating algorithms for nonlinearly con-
strained optimization, SIAM J. Numer. Anal., 22 (1985), pp. 821–850.

[12] J. D. Pearson, Variable metric methods of minimization, Computer J., 12 (1969), pp. 171–178.
[13] M. J. D. Powell, Some global convergence properties of a variable metric algorithm for mini-

mization without exact line searches, in Nonlinear Programming, SIAM–AMS Proceedings,
Vol. IX, American Mathematical Society, Providence, RI, 1976, pp. 53–72.

[14] M. J. D. Powell, Variable metric methods for constrained optimization, in Mathematical
Programming: The State of the Art, Springer-Verlag, New York, 1983, pp. 288–311.

A GLOBAL LINEAR AND LOCAL QUADRATIC NONINTERIOR
CONTINUATION METHOD FOR NONLINEAR
COMPLEMENTARITY PROBLEMS BASED ON

CHEN–MANGASARIAN SMOOTHING FUNCTIONS∗

BINTONG CHEN† AND NAIHUA XIU‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 605–623

Abstract. A noninterior continuation method is proposed for nonlinear complementarity prob-
lems. It improves the noninterior continuation methods recently studied by Burke and Xu [Math.
Oper. Res., 23 (1998), pp. 719–734] and Xu [The Global Linear Convergence of an Infeasible
Non-Interior Path-following Algorithm for Complementarity Problems with Uniform P-functions,
Preprint, Department of Mathematics, University of Washington, Seattle, 1996]; the interior point
neighborhood technique is extended to a broader class of smoothing functions introduced by Chen
and Mangasarian [Comput. Optim. Appl., 5 (1996), pp. 97–138]. The method is shown to be glob-
ally linearly convergent following the methodology established by Burke and Xu. In addition, a local
acceleration step is added to the method so that it is also locally quadratically convergent under
suitable assumptions.

Key words. nonlinear complementarity problem, continuation method, smoothing function,
global linear convergence, local quadratic convergence

AMS subject classification. 90C33

PII. S1052623497316191

1. Introduction. Let F : Rn → Rn be a continuously differentiable function.
The nonlinear complementarity problem (NCP) is to find (x, y) ∈ Rn ×Rn such that

F (x)− y = 0,(1)

x ≥ 0, y ≥ 0, xT y = 0.(2)

Numerous methods have been developed to solve the NCP; for a comprehensive survey,
see [12, 18]. In this paper, we are interested in developing a noninterior continuation
method for the NCP and analyzing its rate of convergence.

Like interior point algorithms, noninterior continuation methods approximate the
complementarity condition (2) with a parameterized system of smooth equations.
At each iteration, Newton’s method is applied to solve the smooth equations. The
smoothing parameter is then adjusted to refine the approximation. However, the
smooth approximation of condition (2) used in noninterior continuation methods is
different from that used in interior point methods. As a result, the intermediate it-
erates are not required to stay in positive orthant. The first noninterior method was
introduced by Chen and Harker [3], where the authors concentrated on establishing the
structural properties of the central path for linear complementarity problems (LCPs)
with P0- and R0-matrices. The method was later improved by Kanzow [13], where the
author refined the smoothing function and established the convergence for the contin-
uation method under similar assumptions. However, both methods lack a systematic

∗Received by the editors February 4, 1997; accepted for publication (in revised form) May 4, 1998;
published electronically April 19, 1999.

http://www.siam.org/journals/siopt/9-3/31619.html
†Department of Management and Systems, Washington State University, Pullman, WA 99164-

4736 (chenbi@wsu.edu).
‡Institute of Applied Mathematics, Academia Sinica, Beijing 100080, China (nhxiu@center.

njtu.edu.cn).

605

606 BINTONG CHEN AND NAIHUA XIU

procedure to reduce the smoothing parameter to zero, even though they have shown
impressive numerical performance [3, 13] compared with interior point algorithms. As
a result, no rate-of-convergence results were obtained. This gap was closed recently
by Burke and Xu [1]. Inspired by many path-following interior point algorithms, the
authors introduced a notion of neighborhood around the central path for their nonin-
terior continuation methods. All intermediate iterates are required to stay within the
neighborhood, and this provides a systematic way of reducing the smoothing param-
eter. This important addition to the continuation methods allowed them to establish
the global linear convergence for both LCPs with P0- and R0-matrices [1] and NCPs
with uniform P -functions [24]. In addition, their computational experiments have
shown further improvement over previous noninterior continuation methods. Besides
the above-mentioned literature, similar noninterior continuation methods have been
developed to solve linear and quadratic programs [4], complementarity problems [14],
and variational inequalities [5, 16].

All noninterior continuation methods mentioned above are based on smoothing
functions derived from xiyi = µ, the deformed complementarity condition used for
interior point algorithms. Many other smoothing functions exist. Indeed, Chen and
Mangasarian [8] have proposed a broad class of smoothing functions for the plus func-
tion z+ = max{z, 0}. Roughly speaking, their smoothing functions are derived from
double integrals of parameterized probability density functions. Many smoothing
functions proposed earlier, including the interior point related smoothing functions
mentioned above, turned out to be special cases of the Chen–Mangasarian smoothing
function family. They differ only in the choice of probability density functions. Since
these smoothing functions can be derived through the same mechanism, one would
expect that the continuation methods based on these functions would share similar
properties and perform similarly. In fact, this conjecture has been partially con-
firmed by the extensive numerical experiments conducted by Chen and Mangasarian
[7, 8], where they reported similar impressive performance for continuation (smooth-
ing) methods based on other smoothing functions. Chen and Harker [6] later studied
the structural properties of the continuation methods based on the Chen–Mangasarian
smoothing function family.

The current paper improves and generalizes the noninterior continuation methods
by Burke and Xu [1] and Xu [24]. The new method is based on the Chen–Mangasarian
smoothing function family and is shown to have a global linear convergence, following
the methodology established in [1]. In addition, we incorporate a local acceleration
step into the method so that it also achieves local quadratic convergence.

The paper is organized as follows. Section 2 studies a subclass of the Chen–
Mangasarian smoothing function family to be used for the continuation method. Some
new properties of the smoothing functions are explored. Section 3 introduces a new
definition of the neighborhood of the central path and describes the continuation
method based on the Chen–Mangasarian smoothing functions. Section 4 shows that
the continuation method converges globally linearly to a solution of the NCP under
certain assumptions. Section 5 proves the local quadratic convergence of the continua-
tion method under the strict complementarity assumption at the limit point. Finally,
conditions on function F to guarantee the global linear convergence are discussed in
section 6.

A brief note on the notation to be used in this paper: ‖ · ‖ denotes a 1, 2, or ∞
norm as well as its induced matrix norm. All vectors are column vectors. x, y, z are
scalars in section 2 but vectors in all other sections. For simplicity, we sometimes use

CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS 607

(x, y) for the column vector (x y)T . In addition, vec{xi} stands for a vector whose
ith element is xi. In this case, vec{xi} = x. If x is a vector, then x+ = vec{(xi)+}.
We use diag{xi} for a diagonal matrix with iith entry equal to xi. Finally, dist{S, T}
represents the minimum distance between set S and set T , measured in 1, 2, or ∞
norm.

2. Chen–Mangasarian smoothing functions and properties. Chen and
Mangasarian [8] introduced a class of smoothing function pµ(z) that approximates
the fundamental plus function z+ by twice integrating a parameterized probability
density function. More specifically, their smoothing function is defined as

pµ(z) =

∫ z

−∞

∫ t

−∞

1

µ
d

(
x

µ

)
dxdt,(3)

where 0 ≤ µ < ∞ is a smoothing parameter and d(x) is a probability density func-
tion that satisfies certain technical assumptions. Clearly, as µ approaches zero, the
probability density function (1/µ)d(x/µ) approaches the delta function with all mass
concentrated at the origin, and the smoothing function pµ(z) approaches the plus
function z+. In this regard, pµ(z) can be considered as a natural approximation of
the plus function z+. Indeed, it has been shown by Chen and Harker [6] that any
“well”-behaved smooth approximation of the plus function must be a double inte-
gral of a probability density function. For convenience of presentation, we denote
p0(z) = limµ→0 pµ(z) = z+. In addition, ∂p0(z) stands for the generalized derivative
of p0 at z in the sense of Clarke [11].

In this paper, we consider a subset of the Chen–Mangasarian smoothing function
family, whose probability density function d satisfies the following properties.

Assumption 1. The probability density function d satisfies the following condi-
tions:

(A1) d(x) is a continuous function such that 0 < d(x) ≤ A <∞ and d(x) = d(−x)
for all x ∈ (−∞,+∞).

(A2)
∫ +∞

0
xd(x)dx = B <∞.

Under Assumption 1, the smoothing function pµ(z) has the following properties.
Proposition 1. Assume that the probability density function d satisfies Assump-

tion 1. The following properties hold for the smoothing function pµ(z) defined in (3)
with µ > 0:

1. pµ(z) is continuously differentiable, increasing, and strictly convex with re-
spect to z.

2. 0 < p′µ(z) < 1 and p′µ(−z) = 1− p′µ(z) for all z.
3. 0 < p′′µ(z) ≤ A/µ for all z.
4. |pµ2

(z)− pµ1
(z)| ≤ B|µ2 − µ1| for all z and µ1, µ2 ≥ 0.

5. If z 6= 0, then p0 is continuously differentiable at z. In addition, |p′µ(z) −
p′0(z)| ≤ Bµ/|z| for all z.

6. Let limk z
k = z and limk µk = 0. Then limk dist{p′µk(zk), ∂p0(z)} = 0.

Proof. Result 1 has been shown in [8]. By definition,

p′µ(z) =

∫ z/µ

−∞
d(x)dx and p′′µ(z) =

1

µ
d

(
z

µ

)
.

Results 2 and 3 then follow from Assumption 1(A1). Result 4 with either µ1 = 0 or
µ2 = 0 has been shown in [8] and clearly holds if µ1 = µ2. Without loss of generality,

608 BINTONG CHEN AND NAIHUA XIU

assume µ2 > µ1 > 0. Under Assumption 1(A2), it has been shown that [7]

pµ(z) = z

∫ z/µ

−∞
d(x)dx− µ

∫ z/µ

−∞
xd(x)dx.(4)

Thus,

∂pµ(z)

∂µ
= −

∫ z/µ

−∞
xd(x)dx > 0,

where the inequality is true because d(x) is symmetric by assumption. Therefore,
pµ2(z) > pµ1(z). Let

D(z) = |pµ2
(z)− pµ1

(z)| = pµ2
(z)− pµ1

(z).

Then

D′(z) = p′µ2
(z)− p′µ1

(z) =

∫ z/µ2

z/µ1

d(x)dx.

Since d(x) > 0 for all x, D′(z) = 0 if and only if z = 0. Since

D′′(0) = d(0)

(
1

µ2
− 1

µ1

)
< 0,

z = 0 must be the unique maximizer of D(z) and D(z) ≤ D(0) for all z. Using
equality (4) again, we have

D(0) = −(µ2 − µ1)

∫ 0

−∞
xd(x)dx = B(µ2 − µ1),

and result 4 follows immediately. For result 5, notice that p0(z) = z+ and the latter
is continuously differentiable at all z 6= 0. If z > 0 then p′0(z) = 1. Therefore,

|p′µ(z)− p′0(z)| =
∫ ∞
z/µ

d(x)dx ≤
∫∞

0
xd(x)dx

z/µ
=
Bµ

|z| ,

where the inequality follows from the assumption that d(x) is symmetric and the
well-known Markov inequality in the probability theory. The proof for the case with
z < 0 is similar and is omitted. For result 6, observe that ∂p0(z) has the following
explicit expression, due to the special structure of function p0:

∂p0(z) =

 1 if z > 0,
all w ∈ [0, 1] if z = 0,

0 if z < 0.

If z 6= 0, then p0 is continuously differentiable at z. Hence,

dist{p′µk(zk), ∂p0(z)} = |p′µk(zk)− p′0(z)|
≤ |p′µk(zk)− p′0(zk)|+ |p′0(zk)− p′0(z)|
≤ (Bµk)/|zk|+ |p′0(zk)− p′0(z)|.

CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS 609

The result follows from passing to the limit on both sides. If z = 0, the result is
clearly true since p′µk(zk) ∈ [0, 1] for all k.

Notice that result 6 of the above proposition holds even if the limit of p′µk(zk)
does not exist in general.

In addition to the above properties of pµ, we also need the following Taylor
expansion of pµ with µ > 0, which will be used in section 4 for the global linear
convergence analysis:

pµ(z + θ∆z) = pµ(z) + θp′µ(z)∆z +
θ2

2
p′′µ(z̄)(∆z)2,(5)

where z̄ is some number between z and z + θ∆z.
We next provide several examples of the smoothing functions that satisfy As-

sumption 1. All of them have been used in the literature to design smoothing or
continuation methods.

Example 1. Neural network smoothing function (Chen and Mangasarian [7]):

d(x) = e−x/(1 + e−x)2, pµ(z) = z + µ ln(1 + e−
z
µ), A =

1

4
, B = ln 2.

Example 2. Interior point smoothing function (Chen and Harker [3], Kanzow
[13], Smale [21]):

d(x) = 2/(x2 + 4)1.5, pµ(z) = (z +
√
z2 + 4µ2)/2, A =

1

4
, B = 1.

This smoothing function is closely related to both the deformation used in interior
point algorithms (see [21]) and the smoothing functions for several noninterior con-
tinuation methods [3, 13, 1] mentioned in the introduction.

Example 3. Normal smoothing function:

d(x) =
1√
2π
e−x

2/2, no closed form expression for pµ(z), A =
1√
2π
, B =

√
2

π
.

3. A continuation method for NCP. It is well known that the complemen-
tarity condition (2) in the NCP can be rewritten as

min{x, y} = 0 or x− (x− y)+ = 0,

where the plus function is taken componentwise. By deforming the plus function with
the Chen–Mangasarian smoothing function pµ, we obtain the following smoothed
complementarity condition:

Ψµ(x, y) ≡ x− Pµ(x− y) = 0,

where µ ≥ 0 is a smoothing parameter, Pµ(x− y) = vec{pµ(xi− yi)}, and Ψµ(x, y) =
vec{ψµ(xi, yi)}. The smoothed NCP then becomes

Hµ(x, y) =

[
F (x)− y
Ψµ(x, y)

]
= 0,(6)

and the NCP conditions (1) and (2) can be written as H0(x, y) = 0. The idea behind
continuation methods is to solve the smoothed NCP Hµ(x, y) = 0 “approximately”

610 BINTONG CHEN AND NAIHUA XIU

for each given smoothing parameter µ > 0 and gradually reduce µ to zero. Hopefully,
as µ approaches zero, the solution of the smoothed NCP approaches a solution of the
NCP.

Since the Jacobian matrix ∇Hµ(z) plays an important role for the convergence
analysis, we next take a look at its structure. Denote P ′µ(z) = diag{p′µ(zi)}. By
definition,

∇xΨµ(x, y) = I − P ′µ(x− y) and ∇yΨµ(x, y) = P ′µ(x− y).

By result 2 of Proposition 1, both P ′µ(x − y) and P ′µ(y − x) are positive diagonal
matrices such that

I − P ′µ(x− y) = P ′µ(y − x), 0 < P ′µ(x− y) < I, 0 < P ′µ(y − x) < I.

Thus, the Jacobian matrix can be written as

∇Hµ(x, y) =

[∇F (x) −I
P ′µ(y − x) P ′µ(x− y)

]
.

It is well known that the Jacobian ∇Hµ(x, y), due to its special structure, is nonsin-
gular if and only if matrix P ′µ(y − x) + P ′µ(x− y)∇F (x) is nonsingular.

Define the following merit function for (6):

ρµ(x, y) = ‖F (x)− y‖+ ‖Ψµ(x, y)‖.

Let the central path(s) of the NCP be the set of solutions of (6) for all µ > 0.
To construct an implementable continuation method for the NCP, we introduce a
neighborhood around the central path:

N (β) = {(x, y) : ρµ(x, y) ≤ βµ, µ > 0},

where parameter β > 0 is called the width of the neighborhood. In addition, we define
a slice of the neighborhood with µ ∈ U as

N (β, U) = {(x, y) : ρµ(x, y) ≤ βµ, µ ∈ U}.

For simplicity, if U = µ, we will write the slice as N (β, µ). We now describe the
continuation method.

Algorithm 1. Given σ ∈ (0, 1), and αi ∈ (0, 1) for i = 1, 2, 3.
Step 0 (Initialization)

Set k = 0. Choose µ0 > 0, (x0, y0) ∈ R2n, and β > nB such that (x0, y0) ∈
N (β, µ0).

Step 1 (Calculate Centering Step)
If H0(xk, yk) = 0, stop. (xk, yk) is a solution of the NCP; otherwise, if
ρµk(xk, yk) = 0, set (x̃k+1, ỹk+1) = (xk, yk) and go to Step 3; otherwise, if
∇Hµk(xk, yk) is singular, stop. The continuation method fails; otherwise, let
(∆x̃k,∆ỹk) solve the equation

Hµk(xk, yk) +∇Hµk(xk, yk)(∆x,∆y)T = 0.(7)

Step 2 (Line Search for Centering Step)
Let λk be the maximum of the values 1, α1, α

2
1, . . . such that

CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS 611

ρµk(xk + λk∆x̃k, yk + λk∆ỹk) ≤ (1− σλk)ρµk(xk, yk).(8)

Set (x̃k+1, ỹk+1) = (xk, yk) + λk(∆x̃k,∆ỹk).
Step 3 (µ Reduction Based on Centering Step)

Let γk be the maximum of the values 1, α2, α
2
2, . . . such that

(x̃k+1, ỹk+1) ∈ N (β, (1− γk)µk).(9)

Set µ̃k+1 = (1− γk)µk.
Step 4 (Calculate Approximate Newton Step)

Let (∆x̂k,∆ŷk) solve the equation

H0(xk, yk) +∇Hµk(xk, yk)(∆x,∆y)T = 0.(10)

Set (x̂k+1, ŷk+1) = (xk, yk) + (∆x̂k,∆ŷk).
Step 5 (µ Reduction Based on Approximate Newton Step)

If (x̂k+1, ŷk+1) 6∈ N (β, µ̃k+1), set

µk+1 = µ̃k+1, (xk+1, yk+1) = (x̃k+1, ỹk+1),

and k = k + 1, Return to Step 1; otherwise, if H0(x̂k+1, ŷk+1) = 0, stop.
(x̂k+1, ŷk+1) is a solution of the NCP; otherwise, let ηk be the minimum of
the values 1, α3, α

2
3, . . . such that

(x̂k+1, ŷk+1) ∈ N (β, ηkµ̃k+1).(11)

Set

µk+1 = ηkµ̃k+1, (xk+1, yk+1) = (x̂k+1, ŷk+1),

and k = k + 1. Return to Step 1.
We make the following remarks about the continuation method:

• It is very easy to initialize the above continuation method. One may simply
choose any µ0 > 0, (x0, y0) ∈ R2n, and β > max{ρµ0(x0, y0)/µ0, nB}.

• For global linear convergence, only the centering steps 1–3 are needed. The
approximate Newton steps 4 and 5 are added to ensure local quadratic con-
vergence. Notice the switch between the two steps is quite natural: the
continuation method simply chooses the step that reduces µ faster. One may
also use some other switching rules to achieve local quadratic convergence,
such as that proposed by Wright and Ralph [23]; the approximate Newton
(fast) step is chosen only if µ is reduced by more than a prespecified factor.
• Since the same matrix ∇Hµk(xk, yk) is inverted in both (7) and (10), the

additional computational time for calculating both the centering step and
the approximate Newton step is very minimal.
• The centering steps 1–3 in our continuation method are very similar to the

continuation method studied by Burke and Xu [1] and Xu [24]. However,
our definition of merit function ρµ(x, y) seems to be simpler. Burke and Xu
[1] used ρµ(x, y) = ‖Ψ̄µ(x, y)‖2 for the LCP and Xu [24] used ρµ(x, y) =
‖F (x)− y‖+ ‖Ψ̄µ(x, y)‖2 for the NCP, where Ψ̄µ(x, y) = vec{ψ̄µ(xi, yi)} and

ψ̄µ(xi, yi) = xi + yi −
√
x2
i + y2

i + 2µ.

Moreover, our choice of the merit function also leads to subsequent simplifi-
cations of the continuation method in terms of the neighborhood definition,
the line search procedure, and the updating rule for µ.

612 BINTONG CHEN AND NAIHUA XIU

• Step 4 is motivated by the recent work by Chen, Qi, and Sun [9] and Chen
and Ye [10], where the approximate Newton step is shown to have good local
convergence properties.

We end this section with a technical result that follows directly from the properties
of our merit function and the Chen–Mangasarian smoothing function family.

Lemma 1. Let µ ≥ 0 and µi ≥ 0 for i = 1, 2. Then
1. ‖Ψµ1(x, y)−Ψµ2(x, y)‖ ≤ nB|µ1 − µ2|,
2. |ρµ1(x, y)− ρµ2(x, y)| ≤ nB|µ1 − µ2|,
3. ‖Hµ(x, y)‖ ≤ ρµ(x, y) ≤ 2‖Hµ(x, y)‖,
4. ‖H0(x, y)‖ ≤ ρµ(x, y) + nBµ,
5. ρµ(x, y) ≤ 2‖H0(x, y)‖+ nBµ

for all (x, y) ∈ R2n.
Proof. For each i, we have

|ψµ1
(xi, yi)− ψµ2

(xi, yi)| = |pµ1
(xi, yi)− pµ2

(xi, yi)| ≤ B|µ1 − µ2|,

where the inequality follows from result 4 of Proposition 1. Result 1 then follows from
the properties of the 1, 2, and ∞ norms. Result 2 is true because

|ρµ1
(x, y)− ρµ2

(x, y)| = |‖Ψµ1
(x, y)‖ − ‖Ψµ2

(x, y)‖|
≤ ‖Ψµ1

(x, y)−Ψµ2
(x, y)‖

≤ nB|µ1 − µ2|.

Result 3 follows from the definitions of Hµ(x, y) and ρµ(x, y). Result 4 is an immediate
consequence of results 2 and 3:

‖H0(x, y)‖ ≤ ρ0(x, y) ≤ ρµ(x, y) + nBµ.

Result 5 follows from results 1 and 3:

ρµ(x, y) = ‖F (x)− y‖+ ‖Ψµ(x, y)‖
≤ ‖F (x)− y‖+ ‖Ψ0(x, y)‖+ nBµ

= ρ0(x, y) + nBµ

≤ 2‖H0(x, y)‖+ nBµ.

The results in the above lemma will be used repeatedly in the remaining paper.

4. Global linear convergence. In this section, we show that the centering
steps in the continuation method are well defined under certain assumptions. By
following the centering steps, the smoothing parameter µ̃k converges globally and
linearly to zero. This result also implies the global linear convergence for the whole
continuation method, since the approximate Newton step is taken only if it reduces
the smoothing parameter µk faster. We obtain the above global linear convergence
by following the pattern of proof established in Burke and Xu [1] and Xu [24]. In
particular, it is established through two intermediate results: both the line search
step length λk for the centering step and the step length γk for reducing µ are shown
to be uniformly bounded below by a positive constant. Moreover, we show that the
sequence (xk, yk) generated by the continuation method converges to a solution of the
NCP, which may have multiple solutions.

We assume in the remaining paper that function F is Lipschitz continuous.

CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS 613

Assumption 2. There exists a Lipschitz constant L > 0 such that

‖F (z)− F (x)−∇F (x)(z − x)‖ ≤ L‖z − x‖2

for all x, z ∈ Rn.
We start by studying the properties of the solution to (7) in the centering step.
Lemma 2. Let 0 ≤ λ ≤ 1. Suppose ∇Hµ(x, y) is nonsingular at (x, y) for some

µ > 0 and (∆x̃,∆ỹ) is the solution of (7) at (x, y).
1. If F satisfies Assumption 2, then

‖F (x+ λ∆x̃)− (y + λ∆ỹ)‖ ≤ (1− λ)‖F (x)− y‖+ Lλ2‖(∆x̃,∆ỹ)‖2.
2. Let A be the constant defined in Proposition 1. Then

‖Ψµ(x+ λ∆x̃, y + λ∆ỹ)‖ ≤ (1− λ)‖Ψµ(x, y)‖+
2A

µ
λ2‖(∆x̃,∆ỹ)‖2.

Proof. For result 1, notice that

‖F (x+ λ∆x̃)− (y + λ∆ỹ)‖
= ‖F (x)− y + λ(∇F (x)∆x̃−∆ỹ) + F (x+ λ∆x̃)− F (x)− λ∇F (x)∆x̃‖
= ‖(1− λ)(F (x)− y) + F (x+ λ∆x̃)− F (x)− λ∇F (x)∆x̃‖
≤ (1− λ)‖F (x)− y‖+ Lλ2‖∆x̃‖2
≤ (1− λ)‖F (x)− y‖+ Lλ2‖(∆x̃,∆ỹ)‖2,

where the second equality is true because (∆x̃,∆ỹ) is the solution of (7) and the third
inequality follows from Assumption 2. For result 2, we have

Ψµ(x+ λ∆x̃, y + λ∆ỹ)

= x+ λ∆x̃− Pµ(x− y + λ(∆x̃−∆ỹ))

= x− Pµ(x− y) + λ(∆x̃− P ′µ(x− y)(∆x̃−∆ỹ))− λ2

2
vec{p′′µ(x̄i − ȳi)(∆x̃i −∆ỹi)

2}

= Ψµ(x, y) + λ(P ′µ(y − x)∆x̃+ P ′µ(x− y)∆ỹ)− λ2

2
vec{p′′µ(x̄i − ȳi)(∆x̃i −∆ỹi)

2}

= (1− λ)Ψµ(x, y)− λ2

2
vec{p′′µ(x̄i − ȳi)(∆x̃i −∆ỹi)

2}.
In the above derivation, the second equality follows from the Taylor expansion of pµ
given by (5), where x̄i − ȳi is between xi − yi and (xi + λ∆x̃i) − (yi + λ∆ỹi) for all
i; the third equality follows from result 2 of Proposition 1; the fourth equality is true
since (∆x̃,∆ỹ) is the solution of (7). Result 2 then follows from the fact that

‖vec{p′′µ(x̄i − ȳi)(∆x̃i −∆ỹi)
2}‖ ≤ A

µ
‖vec{(∆x̃i −∆ỹi)

2}‖

≤ 2A

µ
‖vec{(∆x̃i)2 + (∆ỹi)

2}‖

≤ 4A

µ
‖(∆x̃,∆ỹ)‖2,

where the first inequality follows from result 3 of Proposition 1.
We next bound the norm of each centering step and each approximate Newton

step.
Lemma 3. Let (xk, yk, µk) be the kth iterate of the continuation method. If

‖∇Hµk(xk, yk)−1‖ ≤ C, then

614 BINTONG CHEN AND NAIHUA XIU

1. For the centering step, we have

‖(∆x̃k,∆ỹk)‖ ≤ Cρµk(xk, yk) ≤ βCµk.
2. For the approximate Newton step, we have

‖(∆x̂k,∆ŷk)‖ ≤ C(β + nB)µk.

Proof. Since (∆x̃k,∆ỹk) is a solution of (7), we have

‖(∆x̃k,∆ỹk)‖ ≤ ‖∇Hµk(xk, yk)−1‖‖Hµk(xk, yk)‖
≤ Cρµk(xk, yk)

≤ βCµk,
where the second inequality follows from result 3 of Lemma 1. Similarly, for the
approximate Newton step, we have

‖(∆x̂k,∆ŷk)‖ ≤ ‖∇Hµk(xk, yk)−1‖‖H0(xk, yk)‖
≤ C(ρµk(xk, yk) + nBµk)

≤ C(β + nB)µk,

where the second inequality follows from result 4 of Lemma 1.
We are now ready to show that the line search step length λk of the centering

step is bounded below by a positive constant.
Proposition 2. Let (xk, yk, µk) be the kth iterate of the continuation method.

If ‖∇Hµk(xk, yk)−1‖ ≤ C and ρµk(xk, yk) 6= 0, then λk ≥ λ̄, where

λ̄ = α1λ̃ and λ̃ = min

{
1,

1− σ
β(µ0L+ 2A)C2

}
> 0.

Proof. In view of the line search procedure, it suffices to show that inequality (8)
holds for all λ ∈ [0, λ̃] ⊆ [0, 1]. Indeed,

ρµk(xk + λ∆x̃k, yk + λ∆ỹk)

= ‖F (xk + λ∆x̃k − (yk + λ∆ỹk)‖+ ‖Ψµk(xk + λ∆x̃k, yk + λ∆ỹk)‖
≤ (1− λ)ρµk(xk, yk) + (L+ 2A/µk)λ2‖(∆x̃k,∆ỹk)‖2
≤ (1− λ)ρµk(xk, yk) + (Lρµk(xk, yk) + 2Aρµk(xk, yk)/µk)C2λ2ρµk(xk, yk)

≤ (1− λ)ρµk(xk, yk) + (βµkL+ 2βA)C2λ2ρµk(xk, yk)

≤ (1− λ)ρµk(xk, yk) + β(µ0L+ 2A)C2λ2ρµk(xk, yk)

≤ (1− σλ)ρµk(xk, yk) for all λ ∈ [0, λ̃],

where the first inequality follows from Lemma 2 and the second inequality follows
from result 1 of Lemma 3.

We next show that the step length γk for reducing µ based on the centering step
is also bounded below by a positive constant.

Proposition 3. Let (xk, yk, µk) be the kth iterate of the continuation method.
If ‖∇Hµk(xk, yk)−1‖ ≤ C, then γk ≥ γ̄, where

γ̄ = α2γ̃ and γ̃ = min

{
1,

βσλ̄

β + nB

}
> 0,

CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS 615

where λ̄ has been defined in Proposition 2.
Proof. In view of the updating rule for µk, it suffices to show that

(x̃k+1, ỹk+1) ∈ N (β, (1− γ)µk) or ρ(1−γ)µk(x̃k+1, ỹk+1) ≤ β(1− γ)µk(12)

holds for all γ ∈ [0, γ̃] ⊆ [0, 1]. Consider the case ρµk(xk, yk) 6= 0 first:

ρ(1−γ)µk(x̃k+1, ỹk+1) ≤ ρµk(x̃k+1, ỹk+1) + nBγµk

≤ (1− σλ̄)ρµk(xk, yk) + nBγµk

≤ (β(1− σλ̄) + nBγ)µk

≤ β(1− γ)µk for all γ ∈ [0, γ̃],

where the first inequality follows from result 2 of Lemma 1 and the second inequality
follows from Proposition 2. As a by-product of the above proof, one can see that the
inequality (12) also holds for the case ρµk(xk, yk) = 0. This can be verified by setting
ρµk(x̃k+1, ỹk+1) = ρµk(xk, yk) = 0 in the right-hand side of the first inequality.

We are now in the position to show the global linear convergence for the continu-
ation method. We assume the algorithm does not terminate finitely. In addition, we
make the following blanket assumption on the infinite sequence {(xk, yk, µk)} gener-
ated by the continuation method.

Assumption 3. There is a constant C > 0 such that ‖∇Hµk(xk, yk)−1‖ ≤ C for
all k.

Conditions under which the assumption is satisfied will be discussed in section 6.
Theorem 1. Suppose Assumption 3 holds for the infinite sequence (xk, yk, µk)

generated by the continuation method. Then
1. For all k = 0, 1, . . ., we have

µk ≤ µ0(1− γ̄)k.(13)

Thus, the sequence {µk} converges to 0 globally and at least Q-linearly.
2. The sequence {‖min{xk, F (xk)}‖} converges to 0 globally and R-linearly.
3. The sequence {(xk, yk)} is bounded and converges to a solution of the NCP.

Proof. At each iteration k, the continuation method takes the approximate New-
ton step only if it reduces µk faster. Therefore,

µk+1 ≤ µ̃k+1 = (1− γk)µk ≤ (1− γ̄)µk for all k,

where the second inequality follows from Proposition 3 and Assumption 3. Result 1
then follows immediately.

For result 2, notice that

‖min{xk, F (xk)} −min{xk, yk}‖ ≤ ‖F (xk)− yk‖.

Therefore,

‖min{xk, F (xk)}‖ ≤ ‖min{xk, yk}‖+ ‖F (xk)− yk‖
= ρ0(xk, yk)

≤ ρµk(xk, yk) + nBµk

≤ (β + nB)µk,(14)

616 BINTONG CHEN AND NAIHUA XIU

where the second inequality follows from result 2 of Lemma 1. Result 2 then follows
from result 1 of this theorem.

For result 3, we first show that the sequence {(xk, yk)} is bounded. Since at each
iteration the continuation method takes either a centering step or an approximate
Newton step, we have

‖(xk+1, yk+1)− (xk, yk)‖ ≤ max{λk‖(∆x̃k,∆ỹk)‖, ‖(∆x̂k,∆ŷk)‖}
≤ C(β + nB)µk

≤ µ0C(β + nB)(1− γ̄)k,(15)

where the second inequality follows from Lemma 3 and the fact that λk ≤ 1. It
follows that {(xk, yk)} is a Cauchy sequence and therefore must be bounded and has
a unique limit point. Let (x∗, y∗) be the limit point. Since H0(x, y) is continuous at
(x∗, y∗), by result 5 of Lemma 1, ρµ(x, y) is continuous at (x, y, µ) = (x∗, y∗, 0). Since
(xk, yk) ∈ N (β, µk) for all k, we have ρ0(x∗, y∗) = 0 by result 1 of this theorem. This
implies that (x∗, y∗) is a solution of the NCP.

Notice that result 3 of the above theorem does not imply that the NCP has a
unique solution. Instead, it shows that the sequence generated by the continuation
method converges to one of the solutions of the NCP. This result is stronger than some
of the existing global convergence results for both interior point algorithms (e.g., [22])
and noninterior continuation methods (e.g., [1]) under similar assumptions, which
state that any accumulation point is a solution of the NCP.

5. Local quadratic convergence. In this section, we first establish the local
superlinear convergence for the approximate Newton step. We then show that the
continuation method eventually switches to the approximate Newton step for all k
sufficiently large. As a result, it converges quadratically to a solution of the NCP.

For the local quadratic convergence, we need the following strict complementarity
assumption at the limit point of the continuation method.

Assumption 4. The limit point (x∗, y∗) of the sequence {(xk, yk)} generated by
the continuation method satisfies the following strict complementarity condition:

x∗i + y∗i > 0 for all i = 1, . . . , n.

Lemma 4. Let (x∗, y∗) be the limit point of the continuation method. Under
Assumption 4, there exists a neighborhood N(x∗, y∗) of (x∗, y∗) such that

1. H0(x, y) is continuously differentiable and

‖∇Hµ(x, y)−∇H0(x, y)‖ ≤ (4nB/ε)µ

for all (x, y) ∈ N(x∗, y∗), where ε = mini{x∗i + y∗i }.
2. In addition,

‖H0(x̂, ŷ)−H0(x, y)−∇H0(x, y)((x̂, ŷ)− (x, y))‖ ≤ L‖(x̂, ŷ)− (x, y)‖2

for all (x, y), (x̂, ŷ) ∈ N(x∗, y∗), where L is the Lipschitz constant defined in
Assumption 2.

Proof. By result 3 of Theorem 1, (x∗, y∗) is a solution of the NCP and min{x∗, y∗} =
0. Then, under Assumption 4, there exists a neighborhood N(x∗, y∗) of (x∗, y∗) such
that

min
i
|xi − yi| ≥ ε/2 > 0 for all (x, y) ∈ N(x∗, y∗).

CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS 617

By result 5 of Proposition 1, Ψ0(x, y) is continuously differentiable in the neighbor-
hood, and so is H0(x, y). Now, let (x, y) ∈ N(x∗, y∗). By result 5 of Proposition 1,
we have

|p′µ(xi − yi)− p′0(xi − yi)| ≤ Bµ/|xi − yi| ≤ (2B/ε)µ.

Therefore, based on the structure of ∇Hµ and ∇H0, we have

‖∇Hµ(x, y)−∇H0(x, y)‖
≤ ‖P ′µ(y − x)− P ′0(y − x)‖+ ‖P ′µ(y − x)− P ′0(y − x)‖
≤ (4nB/ε)µ.

To prove result 2, let (x, y), (x̂, ŷ) ∈ N(x∗, y∗) and J = {i|x∗i > 0, y∗i = 0} be the
active set. Then

∇H0(x, y) =

[∇F (x) −I
I −W W

]
,

where W = diag{wi} and wi = 1 for all i ∈ J and wi = 0 otherwise. In addition, we
have

Ψ0(x, y) = (I −W)x+Wy and Ψ0(x̂, ŷ) = (I −W)x̂+Wŷ.

It follows, after some algebraic calculations, that

‖H0(x̂, ŷ)−H0(x, y)−∇H0(x, y)((x̂, ŷ)− (x, y))‖
= ‖F (x̂)− F (x)−∇F (x)(x̂− x)‖
≤ L‖x̂− x‖2
≤ L‖(x̂, ŷ)− (x, y)‖2,

where the first inequality follows from Assumption 2.
We next show the local superlinear convergence for the approximate Newton step

of the continuation method.
Lemma 5. Suppose the sequence {(xk, yk)} generated by the continuation method

satisfies Assumption 3 and the limit point (x∗, y∗) satisfies Assumption 4. The fol-
lowing properties hold for the approximate Newton step:

1. ‖(x̂k+1, ŷk+1)− (x∗, y∗)‖ = o(‖(xk, yk)− (x∗, y∗)‖),
2. ‖H0(x̂k+1, ŷk+1)‖ = o(‖H0(xk, yk)‖)

for all k sufficiently large.
Proof. By the definition of (x̂k+1, ŷk+1), we have

‖(x̂k+1, ŷk+1)− (x∗, y∗)‖
= ‖(xk, yk)− (x∗, y∗)−∇Hµk(xk, yk)−1H0(xk, yk)‖
≤ ‖∇Hµk(xk, yk)−1[(∇Hµk(xk, yk)−∇H0(xk, yk))((xk, yk)− (x∗, y∗))
− (H0(xk, yk)−H0(x∗, y∗)−∇H0(xk, yk)((xk, yk)− (x∗, y∗)))]‖

≤ ‖∇Hµk(xk, yk)−1‖[‖∇Hµk(xk, yk)−∇H0(xk, yk)‖‖(xk, yk)− (x∗, y∗)‖
+ ‖H0(xk, yk)−H0(x∗, y∗)−∇H0(xk, yk)((xk, yk)− (x∗, y∗))‖].

We now bound each part of the right-hand side. By Assumption 3, ‖Hµk(xk, yk)−1‖ ≤
C. Since (xk, yk) converges to (x∗, y∗), we have

‖∇Hµk(xk, yk)−∇H0(xk, yk)‖ ≤ (4nB/ε)µk = o(1)

618 BINTONG CHEN AND NAIHUA XIU

for all k sufficiently large, where the inequality follows from result 1 of Lemma 4 and
the equality is true since µk converges to 0. Finally, by result 2 of Lemma 4, we have

‖H0(xk, yk)−H0(x∗, y∗)−∇H0(xk, yk)((xk, yk)−(x∗, y∗))‖ = O(‖(xk, yk)−(x∗, y∗)‖2)

for k sufficiently large. Result 1 then follows immediately.
We now prove result 2. Based on the proof of Lemma 4, H0(x, y) is continuously

differentiable in a neighborhood of (x∗, y∗) and ∇H0(x∗, y∗)−1 exists. Using the in-
verse function theorem [17, Theorem 5.2.1], we conclude that H−1

0 is continuously
differentiable and, therefore, Lipschitz continuous in the neighborhood of H0(x∗, y∗).
Let L1 and L2 be the Lipschitz constants of H0 and H−1

0 in the respective neighbor-
hoods mentioned above. Since the sequence {(xk, yk, µk)} converges to (x∗, y∗, 0) by
Theorem 1, we have, by definition of Lipschitz continuity,

‖H0(x̂k+1, ŷk+1)‖ ≤ L1‖(x̂k+1, ŷk+1)− (x∗, y∗)‖
and

‖(xk, yk)− (x∗, y∗)‖ ≤ L2‖H0(xk, yk)‖
for all k sufficiently large. Result 2 then follows from result 1 of this lemma.

Based on the above proof, if µk = O(‖(xk, yk)− (x∗, y∗)‖), then the approximate
Newton step has a quadratic convergence rate.

The next result is key to the local quadratic convergence for the continuation
method. It shows that the continuation method eventually takes only the approximate
Newton step.

Lemma 6. Suppose the sequence {(xk, yk)} generated by the continuation method
satisfies Assumption 3 and the limit point (x∗, y∗) satisfies Assumption 4. Then
(xk, yk) = (x̂k, ŷk) for all k sufficiently large.

Proof. It suffices to show that

(x̂k+1, ŷk+1) ∈ N (β, (1− γk)µk)

for all k sufficiently large. Denote

D1 =
(1− α2)(β − nB)

2(β + nB)
> 0.

By result 2 of Lemma 5,

‖H0(x̂k+1, ŷk+1)‖ ≤ D1‖H0(xk, yk)‖
holds for all k sufficiently large. Therefore,

ρ(1−γk)µk(x̂k+1, ŷk+1) ≤ 2‖H0(x̂k+1, ŷk+1)‖+ nB(1− γk)µk

≤ 2D1‖H0(xk, yk)‖+ nB(1− γk)µk

≤ 2D1(ρµk(xk, yk) + nBµk) + nB(1− γk)µk

≤ (2D1(β + nB) + (1− γk)nB)µk

= ((1− α2)(β − nB) + (1− γk)nB)µk

≤ ((1− γk)(β − nB) + (1− γk)nB)µk

= β(1− γk)µk,

CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS 619

where the second equality is true by choice of D1, the first and third inequalities follow
from results 5 and 4 of Lemma 1, respectively, and the last inequality follows from the
fact that the maximum reduction of µ based on the centering step is by a factor of
(1− α2) (otherwise, γk = 1, and the continuation method terminates finitely).

The next result provides a bound for µk, whenever it is generated by the approx-
imate Newton step. This result will be used to prove local quadratic convergence.

Lemma 7. If the kth iterate (xk, yk, µk) of the continuation method is generated
by the approximate Newton step, then

µk ≤ 2

α3(β − nB)
‖H0(xk, yk)‖.

Proof. In view of the µ reduction procedure of the approximate Newton step, we
have

(xk, yk) 6∈ N (β, α3µk).

Therefore,

βα3µk ≤ ρα3µk(xk, yk) ≤ 2‖H0(xk, yk)‖+ nBα3µk,

where the second inequality follows from result 5 of Lemma 1. The result then follows
by reorganizing the above inequality.

We are now ready to show the local quadratic convergence for the continuation
method.

Theorem 2. Suppose that the sequence {(xk, yk)} generated by the continuation
method satisfies Assumption 3 and the limit point (x∗, y∗) satisfies Assumption 4.
Then

1. ‖(xk+1, yk+1)− (x∗, y∗)‖ = O(‖(xk, yk)− (x∗, y∗)‖2),
2. ‖H0(xk+1, yk+1)‖ = O(‖H0(xk, yk)‖2),
3. µk+1 = O(µ2

k)
for all k sufficiently large.

Proof. By Lemma 6, (xk, yk) = (x̂k, ŷk) for all k sufficiently large. From Lemma 7,
we have

µk = O(‖H0(xk, yk)‖) = O(‖(xk, yk)− (x∗, y∗)‖)
for all k sufficiently large. The second equality is true since H0 is continuously differ-
entiable and therefore Lipschitz continuous in the neighborhood of (x∗, y∗). Results 1
and 2 then follow from the remark after the proof of Lemma 5. For result 3, it suffices
to show that there exists a 0 < t <∞ such that

(x̂k+1, ŷk+1) ∈ N (β, tµ2
k)(16)

holds for all k sufficiently large. By result 2 of Lemma 5, there exists a D2 > 0 such
that

‖H0(x̂k+1, ŷk+1)‖ ≤ D2‖H0(xk, yk)‖2

for all k sufficiently large. By following the proof of Lemma 6, we can show that
condition (16) holds for

t =
2D2(β + nB)2

β − nB .

Clearly, 0 < t <∞ since β > nB by construction of the continuation method.

620 BINTONG CHEN AND NAIHUA XIU

6. Conditions that guarantee Assumption 3. In this section, we introduce a
set of sufficient conditions that guarantee Assumption 3. We start by defining several
special functions for NCPs.

Definition 1. Let S be a nonempty subset of Rn. The mapping F : Rn → Rn

is said to be
1. a P0-function on set S if for any x 6= y, x, y ∈ S, there is an index i such

that

xi − yi 6= 0 and (Fi(x)− Fi(y))(xi − yi) ≥ 0;

2. a uniform P -function on set S if for some γ > 0,

max
i

(Fi(x)− Fi(y))(xi − yi) ≥ γ‖x− y‖2 for all x, y ∈ S;

3. an Rw0 -function (w for weak) on set S if for any sequence {xk} ∈ S satisfying

‖xk‖ → ∞, lim sup
k→∞

[−xk]+ <∞, lim sup
k→∞

[−F (xk)]+ <∞,

where the inequalities are interpreted as componentwise, there is an index i
such that

xki →∞, Fi(x
k)→∞.

It is well known that any uniform P -function is a P0-function. The definition
of Rw0 -function was recently introduced in [2]. It is a natural generalization of the
concept of R0-matrix for LCPs. Indeed, if F (x) = Mx + q, F is an Rw0 -function if
and only if M is an R0-matrix. In addition, any uniform P -function is also an Rw0 -
function. See [2, 6] for proofs of these results and definitions and properties of other
R0-type functions.

We first introduce a set of conditions that guarantee the global convergence of
the continuation method.

Theorem 3. Suppose the following conditions are satisfied:
(C1) F is a P0-function.
(C2) The slice of neighborhood N (β, 0 < µ ≤ µ0) is bounded.
Then the sequence {(xk, yk, µk)} generated by the continuation method is well

defined and has at least one accumulation point, and every accumulation point is a
solution of the NCP.

Proof. Under assumption (C1), Jacobian ∇Hµ(x, y) is nonsingular for all µ > 0
and (x, y) ∈ R2n. (See [8] for the proof of a similar result.) Hence, the sequence
{(xk, yk, µk)} is well defined. In addition, it has an accumulation point by assumption
(C2). Since µk decreases monotonically and µ0 ≥ µk > 0, it converges to some µ∗ ≥ 0.
In fact, µ∗ must be 0. Otherwise, with µk > µ∗ > 0 and {(xk, yk)} being bounded,
‖∇Hµk(xk, yk)−1‖ is uniformly bounded above by assumption (C1). However, this
implies that Assumption 3 is satisfied and µk converges to 0 by Theorem 1, which
leads to a contradiction. It remains to show that any accumulation point (x∗, y∗) is
a solution of the NCP. Indeed, since (xk, yk) ∈ N (β, µk) and µk converges to 0, we
have ρ0(x∗, y∗) = 0. That is, (x∗, y∗) is a solution of the NCP.

Although conditions (C1) and (C2) are sufficient for the global convergence, ad-
ditional conditions are needed to guarantee the global linear convergence rate. Specif-
ically, we need some nonsingularity conditions at each possible accumulation point so

CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS 621

that ∇Hµk(xk, yk) is well conditioned for all k sufficiently large. Let ∂H0(x, y) be
the generalized derivative of H0 at (x, y) in the sense of Clarke [11]. The following
nonsingularity condition has been introduced and studied in [19, 20]:

(C3) ‖V −1‖ ≤ C ′ < ∞ for all V ∈ ∂H0(x∗, y∗) and for every solution (x∗, y∗) of
the NCP.

We next show that ∇Hµ(x, y) satisfies certain Jacobian consistence properties.
Lemma 8. For any sequence {(xk, yk, µk)} that converges to (x∗, y∗, 0), we have

lim
k→∞

dist{∇Hµk(xk, yk), ∂H0(x∗, y∗)} = 0.

Proof. Due to the special structure of H0, ∂H0(x∗, y∗) has the following explicit
expression:

∂H0(x∗, y∗) =

[∇F (x∗) −I
∂P0(y∗ − x∗) ∂P0(x∗ − y∗)

]
,

where ∂P0(y∗ − x∗) = diag{∂p0(y∗i − x∗i)} and ∂P0(x∗ − y∗) = diag{∂p0(x∗i − y∗i)}.
By result 6 of Proposition 1, we have

lim
k→∞

dist{p′µk(yki − xki), ∂p0(y∗i − x∗i)} = 0

and

lim
k→∞

dist{p′µk(xki − yki), ∂p0(x∗i − y∗i)} = 0

for all i = 1, . . . , n. The result then follows by comparing∇H0(xk, yk) and ∂H0(x∗, y∗)
element by element.

Notice that the concept of Jacobian consistence in the above result is slightly
different from that defined in [9], where the concept was first introduced for a class
of semismooth functions.

We are now ready to provide conditions that guarantee Assumption 3.
Theorem 4. Assumption 3 holds if conditions (C1)–(C3) are satisfied.
Proof. It suffices to show that ‖∇Hµk(xk, yk)−1‖ is bounded for all k sufficiently

large. Since {(xk, yk, µk)} generated by the continuation method is bounded by con-
dition (C2), there is at least an accumulation point. Let {(xk, yk, µk)}, k ∈ K, be a
convergent subsequence with an accumulation point (x∗, y∗, µ∗). By conditions (C1)
and (C2) and Theorem 1, µ∗ = 0, and (x∗, y∗) is a solution of the NCP. In addition,
since each solution (x∗, y∗) is locally unique by assumption (C3) and Proposition 2.5
of [19], sequence {(xk, yk)} has only a finite number of such accumulation points. On
the other hand, we have by Lemma 8:

lim
k→∞,k∈K

dist{∇Hµk(xk, yk), ∂H0(x∗, y∗)} = 0.

Assumption (C3) then implies that ‖∇Hµk(xk, yk)−1‖ is bounded for all k sufficiently
large and k ∈ K. Since the same argument applies for all convergent subsequences,
we obtain the desired result.

To conclude the section, we show that some special classes of function F satisfy
conditions (C1)–(C3).

Proposition 4. If F is an Rw0 -function, then condition (C2) is satisfied.
Proof. Since (xk, yk) ∈ N (β, 0 < µ ≤ µ0) for all k, we have, by (14),

‖min{xk, F (xk)}‖ ≤ (β + nB)µ0.(17)

622 BINTONG CHEN AND NAIHUA XIU

By Proposition 4 of [2], sequence {xk} is bounded. The result then follows from

‖yk − F (xk)‖ ≤ ρµk(xk, yk) ≤ βµk ≤ βµ0

and the fact that F is a continuous function.
Proposition 5. If F is a uniform P -function, then conditions (C1)–(C3), and

therefore Assumption 3, are satisfied. In addition, xk converges to x∗ globally and
R-linearly, where (x∗, y∗) is the unique solution of the NCP and {(xk, yk)} is the
sequence generated by the continuation method.

Proof. Notice that any uniform P -function is both a P0- and an Rw0 -function.
In addition, it is straightforward to show that ∂H0(x, y) is nonsingular for all (x, y)
if F is a uniform P -function. As a result, conditions (C1)–(C3) are satisfied. The
second part is based on the following global error bound (see [6, 15]) for the uniform
P -function: there exists a constant E > 0 such that

‖x− x∗‖ ≤ E‖min{x, F (x)}‖ for all x ∈ Rn.

Thus, by inequality (14), we have

‖xk − x∗‖ ≤ (β + nB)Eµk

and the result follows from Theorem 1.
As a final remark, we want to point out that the conditions in Theorem 4 are by no

means necessary for Assumption 3, which assures the global linear convergence for the
continuation method. While the nonsingularity of ∇Hµk(xk, yk) is guaranteed for all
bounded {(xk, yk)} under condition (C1), it is needed only within the neighborhood
N (β, 0 < µ ≤ µ0). Indeed, as long as the whole sequence {(xk, yk)} is well defined
and all of its accumulation points have nonsingular generalized derivatives, the global
linear convergence holds.

Acknowledgments. The first author would like to thank Pei-Lei Jiang for her
careful reading of an early draft of this paper. In particular, her suggestions led to
the improvement of result 3 of Theorem 1. We are also grateful to two anonymous
referees for their careful reading of the paper and constructive comments.

REFERENCES

[1] J. Burke and S. Xu, The global linear convergence of a noninterior path-following algorithm
for linear complementarity problem, Math. Oper. Res., 23 (1998), pp. 719–734.

[2] B. Chen, Error Bounds for R0-Type and Monotone Nonlinear Complementarity Problems,
Technical Report, Department of Management and Systems, Washington State University,
Pullman, 1997.

[3] B. Chen and P. T. Harker, A noninterior-point continuation method for linear complemen-
tarity problems, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 1168–1190.

[4] B. Chen and P. T. Harker, A noninterior continuation method for quadratic and linear
programming, SIAM J. Optim., 3 (1993), pp. 503–515.

[5] B. Chen and P. T. Harker, A continuation method for monotone variational inequalities,
Math. Programming, 69 (1995), pp. 237–253.

[6] B. Chen and P. T. Harker, Smooth approximations to nonlinear complementarity problems,
SIAM J. Optim., 7 (1997), pp. 403–420.

[7] C. Chen and O. L. Mangasarian, Smoothing methods for convex inequalities and linear
complementarity problems, Math. Programming, 71 (1995), pp. 51–69.

[8] C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed
complementarity problems, Comput. Optim. Appl., 5 (1996), pp. 97–138.

CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS 623

[9] X. Chen, L. Qi, and D. Sun, Global and superlinear convergence of the smoothing New-
ton method and its application to general box constrained variational inequalities, Math.
Comput., 67 (1998), pp. 519–540.

[10] X. Chen and Y. Ye, On Homotopy-Smoothing Methods for Variational Inequalities, AMR
96/39, Applied Mathematics Report, School of Mathematics, The University of New
South Wales, Sydney, Australia, 1996.

[11] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983; reprinted
by SIAM, Philadelphia, 1990.

[12] P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear com-
plementarity problems: A survey of theory, algorithms and applications, Math. Program-
ming, 48 (1990), pp. 161–120.

[13] C. Kanzow, Some noninterior continuation methods for linear complementarity problems,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 851–868.

[14] C. Kanzow, A new approach to continuation methods for complementarity problems with
uniform P -function, Oper. Res. Lett., 20 (1997), pp. 85–92.

[15] C. Kanzow and M. Fukushima, Equivalence of the generalized complementarity problem
to differentiable unconstrained minimization, J. Optim. Theory Appl., 90 (1996), pp.
581–603.

[16] C. Kanzow and H. Jiang, A continuation method for (strongly) monotone variational in-
equalities, Math. Programming, 81 (1998), pp. 103–125.

[17] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, San Diego, 1970.

[18] J. S. Pang, Complementarity problems, in Handbook of Global Optimization, R. Horst and
P. Pardalos, eds., Kluwer, Boston, 1995, pp. 271–338.

[19] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), pp. 227–244.

[20] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993),
pp. 353–367.

[21] S. Smale, Algorithms for solving equations, in Proceedings of the International Congress of
Mathematicians, Berkeley, CA, 1986, pp. 172–195.

[22] P. Tseng, An infeasible path-following method for monotone complementarity problems,
SIAM J. Optim., 7 (1997), pp. 386–402.

[23] S. Wright and D. Ralph, A superlinear infeasible-interior-point algorithm for monotone
complementarity problems, Math. Oper. Res., 21 (1996), pp. 815–838.

[24] S. Xu, The Global Linear Convergence of an Infeasible Non-Interior Path-Following Algo-
rithm for Complementarity Problems with Uniform P -Functions, Preprint, Department
of Mathematics, University of Washington, Seattle, 1996.

A GLOBAL AND LOCAL SUPERLINEAR
CONTINUATION-SMOOTHING METHOD FOR

P0 AND R0 NCP OR MONOTONE NCP∗

BINTONG CHEN† AND XIAOJUN CHEN‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 624–645

Abstract. We propose a continuation method for a class of nonlinear complementarity prob-
lems (NCPs), including the NCP with a P0 and R0 function and the monotone NCP with a feasible
interior point. The continuation method is based on a class of Chen–Mangasarian smoothing func-
tions. Unlike many existing continuation methods, the method follows noninterior smoothing paths,
and, as a result, initial points can be easily constructed. In addition, we introduce a procedure to
dynamically update the neighborhoods associated with the smoothing paths, so that the algorithm
is both globally convergent and locally superlinearly convergent under suitable assumptions. Finally,
a hybrid continuation-smoothing method is proposed and is shown to have the same convergence
properties under weaker conditions.

Key words. smoothing method, global and superlinear convergence, P0 and R0 function,
monotone function, complementarity problem

AMS subject classification. 90C33

PII. S1052623497321109

1. Introduction. Let F : Rn → Rn be a continuously differentiable function.
The nonlinear complementarity problem (NCP), denoted by NCP(F), is to find a
vector (x, y) ∈ Rn ×Rn such that

F (x)− y = 0,

x ≥ 0, y ≥ 0, xT y = 0.

If F is an affine function of x, then NCP(F) reduces to a linear complementarity
problem (LCP). The NCP is considered a fundamental problem for optimization the-
ory since the optimality condition of many continuous optimization problems can be
formulated as an NCP. In the last few decades, many algorithms have been developed
to solve various NCPs. See [19, 27] for a comprehensive survey. In this paper, we are
interested in developing a noninterior continuation method to solve NCP(F).

In general, a continuation method uses a smooth function to approximate NCP(F)
as a family of parameterized smooth equations, solves the smooth equations “ap-
proximately” at each iteration, and refines the smooth approximation as the iterates
progress towards (hopefully) a solution of the NCP. In many cases, the set of solutions
of the smooth equations forms a path as the smoothing parameter is reduced to zero.
We call the set of solutions the smoothing path of the continuation method. The con-
tinuation method is closely related to, and in many cases identical to, the homotopy
methods in numerical analysis literature [26], the path-following algorithms in interior
point algorithm literature [17, 24, 25, 42], and many smoothing methods developed
recently [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and [18, 20, 22, 30, 34, 40, 41]. The
well-known interior point path-following algorithm can be considered a continuation

∗Received by the editors May 6, 1997; accepted for publication (in revised form) April 7, 1998;
published electronically April 19, 1999.

http://www.siam.org/journals/siopt/9-3/32110.html
†Department of Management and Systems, Washington State University, Pullman, WA 99164-

4736 (chenbi@wsu.edu).
‡Department of Mathematics and Computer Science, Shimane University, Matsue 690-8504,

Japan. This author’s work was supported in part by the Australian Research Council.

624

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 625

method, where all iterates are confined within the positive orthant. In that case,
the smoothing path reduces to the central path, the term often used in the interior
point algorithm literature. Many interior point algorithms have been shown to solve
a subclass of NCPs, including linear programs and quadratic programs, in polynomial
time. See [17] for a survey of interior point algorithms. On the other hand, the so-
called noninterior continuation methods require neither the smoothing path nor the
initial and intermediate iterates to be in the positive orthant. As a result, they are
more flexible than interior point algorithms and very convenient for numerical im-
plementation. Indeed, it has been demonstrated that many noninterior continuation
methods developed so far are competitive with, and in a number of cases superior to,
interior point algorithms in terms of numerical performance. In particular, Billups,
Dirkse, and Ferris [1] compared several numerical methods for mixed NCPs, and their
numerical results showed that the smooth code was comparable to the best noninterior
point codes available (e.g., the PATH solver [15, 33]). Furthermore, since noninterior
smoothing methods are defined in a larger domain than the neighborhood of interior
point methods, the sequence generated by these methods can have a superlinear or
quadratic convergence rate without the strict complementarity condition. However,
on the theoretical side, many open questions remain to be answered for the noninterior
continuation methods.

We review some of the important progress made related to the noninterior con-
tinuation methods. Chen and Harker [5] introduced the first noninterior continuation
method to solve the LCP with a P0 and R0 matrix. They concentrated on establishing
the properties of the smoothing path. Later, Kanzow [22] improved the method by
refining the smoothing function, sometimes referred to as the Chen–Harker–Kanzow–
Smale (CHKS) smoothing function, and showing global convergence for the continu-
ation method. Chen and Qi [10, 30] introduced some other smoothing functions and
proposed a globally and locally linearly convergent smoothing method for a class of
nonsmooth equations, which includes the NCP as a special case. Chen and Man-
gasarian [8] developed a smoothing method to solve LCPs and linear inequalities
based on the neural network function, a double integration of the sigmoid function.
Later, they [9] introduced a family of smoothing functions, which unified the smooth-
ing functions studied in [5, 22, 10, 8]. Gabriel and Moré [18] further generalized the
Chen–Mangasarian smooth function family to solve variational inequality problems
with box constraints. Chen, Qi, and Sun [11] discovered the Jacobian consistency
property for the Gabriel–Moré smooth function family. This property allowed us to
design a globally and superlinearly convergent smoothing Newton method. Chen and
Ye [12] introduced a hybrid switch technique that allows their smoothing method to
converge finitely for LCPs. Burke and Xu [2] and Xu [40] introduced a notion of
neighborhood for their continuation methods, which allowed them to establish the
global linear convergence for the LCP with a P0 and R0 matrix and for the NCP with
a uniform P function. Recently, Chen and Xiu [7] improved the Burke–Xu continua-
tion method by simplifying the neighborhood definition and adding an approximate
Newton step. They obtained both global linear convergence and local quadratic con-
vergence for a class of NCPs. Chen and Chen [4] further simplified the neighborhood
definition and the continuation method given in [7]. In particular, they introduced a
nonhybrid continuation method that converges globally linearly and locally quadrat-
ically and a hybrid continuation method with the above convergence properties but
without the strict complementarity assumption.

The smoothing paths in all of the above-mentioned continuation methods for

626 BINTONG CHEN AND XIAOJUN CHEN

NCPs are confined in the positive orthant [6, 12]. As a result, they all require a
relatively large bounded neighborhood or level set so that they can start from an
arbitrary point. This is usually achieved by assuming F to be an R0 function (R0

matrix in the case of LCP). However, this assumption is not satisfied by many NCPs
derived from convex optimization problems. In particular, the matrix associated with
the LCP derived from a linear program is not an R0 matrix. Therefore, the above-
mentioned continuation methods are not guaranteed to work for convex optimization
problems. On the other hand, the interior point algorithms often make the following
assumption on the NCP: F is monotone and there exists a feasible interior point,
i.e., an x > 0 such that F (x) > 0. In contrast, this assumption is often satisfied by
NCPs derived from convex optimization problems. For the monotone problem with
a feasible interior point, Chen and Ye [12] proved the existence of a bounded level
set. Xu [41] showed the existence of a slice of bounded neighborhoods. Chen and
Chen [4] improved Xu’s results and unified the existence of the bounded level set and
the bounded neighborhood. These results provide a theoretical tool for constructing
a noninterior continuation-smoothing method for the monotone NCP with a feasible
interior point. However, in practice, it is difficult to find an initial point within the
bounded level set or the bounded neighborhood that depends on the information of
the feasible interior point.

The gap between the interior and noninterior continuation methods has been ob-
served by Hotta and Yoshise [20], and their recent work has laid down the theoretical
foundation for continuation methods based on noninterior smoothing paths. Specif-
ically, they showed the existence, uniqueness, and other structural properties of the
noninterior smoothing paths for NCPs based on the CHKS smoothing function. They
then developed a continuation method based on a noninterior smoothing path. Their
algorithm was shown to converge globally for a class of NCPs including the monotone
NCP with a feasible interior point. However, their neighborhood definition in the
algorithm is quite restrictive, and no convergence rate was obtained.

The current paper attempts to solve some of the above-mentioned problems.
In particular, we propose a continuation-smoothing method that follows noninterior
smoothing paths based on a class of Chen–Mangasarian smoothing functions. As a
result, we are able to easily construct a (noninterior) initial point and define the as-
sociated neighborhood. By adjusting the neighborhoods dynamically, we show that
the continuation-smoothing method converges globally and locally superlinearly for
a class of NCPs, including the NCP with a P0 and R0 function and the monotone
NCP with a feasible interior point. In addition, we also propose a hybrid continuation
method that possesses the above convergence properties under weaker assumptions.
To the best of our knowledge, the continuation-smoothing method is the first non-
interior continuation method that achieves global and local superlinear convergence
for both the NCP with a P0 and R0 function and the monotone NCP with a feasible
interior point.

The paper is organized as follows. Section 2 summarizes the properties of the
Chen–Mangasarian smoothing function needed for this paper and studies the prop-
erties of the noninterior smoothing path and the associated neighborhood. Section 3
proposes a continuation-smoothing method based on the noninterior smoothing paths
and proves the global and superlinear convergence for the continuation method. Sec-
tion 4 proposes a hybrid continuation-smoothing method, which is shown to converge
globally and locally superlinearly under weaker assumptions.

We now briefly describe the notation to be used in this paper. Rn++, Rn+, and Rn−

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 627

stand for the positive, the nonnegative, and the nonpositive orthant of Rn, respec-
tively. ‖ · ‖ denotes the 1-, 2-, or ∞-norm as well as its induced matrix norm. All
vectors are column vectors. For simplicity, we sometimes use z for the column vector
(xT , yT)T . We use vec{xi} for a vector whose ith element is xi and diag{xi} for a
diagonal matrix with iith entry equal to xi. We use e for a vector with all entries
equal to 1 and I for a diagonal matrix with all diagonal entries equal to 1. Finally,
unless noted otherwise, f ′1(x, y) stands for the partial derivative of f with respect to
the first argument x.

In addition, the following definitions related to function F will be used in the
paper.

Definition 1.1. The mapping F : Rn → Rn is said to be
1. a P0 function if for all x1, x2 ∈ Rn with x1 6= x2, there is an index i such

that

x1
i 6= x2

i and (Fi(x
1)− Fi(x2))(x1

i − x2
i) ≥ 0;

2. a uniform P function if for some γ > 0,

max
1≤i≤n

(Fi(x
1)− Fi(x2))(x1

i − x2
i) ≥ γ‖x1 − x2‖2 for all x1, x2 ∈ Rn;

3. a monotone function if

(F (x1)− F (x2))T (x1 − x2) ≥ 0 for all x1, x2 ∈ Rn;

4. an R0 function if for any sequence {xk} ⊂ Rn satisfying {‖xk‖} → ∞ and

lim inf
k→∞

mini x
k
i

‖xk‖ ≥ 0, lim inf
k→∞

mini Fi(x
k)

‖xk‖ ≥ 0,

there exists an index j such that

{xkj } → ∞ and {Fj(xk)} → ∞.

It is well known that any monotone function or uniform P function is a P0 func-
tion. The definition of the R0 function was introduced in [37] and later modified in
[6]. It can be viewed as a natural generalization of the concept of the R0 matrix for
LCPs. It has been shown in [6] that any uniform P function is also an R0 function.

2. Smoothing functions, smoothing paths, and neighborhoods. In this
section, we first introduce a subclass of the Chen–Mangasarian smooth function fam-
ily to be used in this paper and summarize its properties. We then approximate
NCP(F) by a smoothing function and study the properties of the smoothed NCP.
Based on these properties, we define a noninterior smoothing path and the associated
neighborhood. Finally, we provide a simple procedure to construct an initial point
within the neighborhood.

2.1. The Chen–Mangasarian smoothing function. The Chen–Mangasarian
smoothing function approximates the plus function s+ by a double integration of a
probability density function ρ. In this paper, we choose to use a subclass of the Chen–
Mangasarian smoothing function, whose probability density function ρ satisfies the
following assumption.

628 BINTONG CHEN AND XIAOJUN CHEN

Assumption 2.1.
(A1) ρ is a continuous function such that 0 < ρ(t) ≤ A <∞ and ρ(t) = ρ(−t) for

all t ∈ (−∞,+∞),

(A2) supτ≥0

∫ +∞
τ

τtρ(t)dt = B2
2 <∞.

Condition (A2) was introduced in [12]. Clearly, Assumption 2.1 implies that

0 < B1 ≡
∫ ∞

0

tρ(t)dt <∞.(2.1)

In addition, Assumption 2.1 is satisfied by the density functions associated with the
most commonly used smoothing functions, such as the neural network smoothing
function, the CHKS smoothing function, and the normal smoothing function. Gabriel
and Moré [18] proved that if condition (2.1) is satisfied, then the Chen–Mangasarian
smoothing function is equivalent to a special case of the Gabriel–Moré smoothing
function:

p(s, µ) =

∫ +∞

−∞
(s− µt)+ρ(t)dt,(2.2)

where 0 ≤ µ < ∞ is a smoothing parameter. Clearly, as µ approaches zero, the
smoothing function p(s, µ) approaches the plus function and p0(s) ≡ p(s, 0) = s+ for
any s ∈ R. The properties of the above subclass of the Chen–Mangasarian smoothing
function are summarized below.

Proposition 2.1. Under assumption (A1) and condition (2.1), the following
properties hold for the smoothing function p(s, µ) defined in (2.2).

1. For any fixed µ > 0, p(s, µ) > 0 is continuously differentiable, strictly in-
creasing, and convex with respect to s.

2. p(s, µ)− p(−s, µ) = s for all s ∈ R and µ ≥ 0. As a result,

0 < p′1(s, µ) =

∫ s/µ

−∞
ρ(t)dt < 1 and p′1(−s, µ) = 1− p′1(s, µ)

for all s ∈ R and µ > 0.
3. For any fixed s ∈ R, p(s, µ) is strictly increasing and continuous at µ = 0.

In particular, it is continuously differentiable, strictly increasing, and convex
with respect to µ > 0. Thus, p(s, µ)→∞ if µ→∞.

4. p(s, µ2)− p(s, µ1) ≤ B1(µ2 − µ1) for all s ∈ R and µ2 ≥ µ1 ≥ 0.
5. Let p0(s) ≡ limµ↓0 p′1(s, µ). Then p0(s) ∈ ∂p0(s), where ∂p0(s) stands for the

generalized derivative of p0(·) at s in the sense of Clark [13]; i.e.,

∂p0(s) =

 {1} s > 0,
{0} s < 0,
{[0, 1]} s = 0.

If s = 0 then

p′1(s, µ) = p0(s) =
1

2
.

Otherwise, p0(·) is differentiable at s and

p0(s) = p′0(s) =

{
0 if s < 0,
1 if s > 0.

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 629

In addition, we have

|p′1(s, µ)− p0(s)| ≤ B1µ/|s|.
6. Let v(s+ h) ∈ ∂p0(s+ h); then

|p0(s+ h)− p0(s)− v(s+ h)h| = O(|h|r)
for all r > 0; i.e., for all h sufficiently small, we have

|p0(s+ h)− p0(s)− v(s+ h)h| = 0.

If, in addition, assumption (A2) is satisfied, then

p(s, µ)p(−s, µ) ≤ (B2
1 +B2

2)µ2(2.3)

for all s ∈ R and µ ≥ 0.
Proof. Results 1 and 4–6 of the proposition have been shown in [4, 6, 7, 9].
The first part of result 2 clearly holds for µ = 0 since s+ = p(s, 0) by definition.

We may assume without loss of generality that s, µ > 0. By definition,

p(s, µ)− p(−s, µ) =

∫ s/µ

−∞
(s− µt)ρ(t)dt−

∫ −s/µ
−∞

(−s− µt)ρ(t)dt

= s

∫ s/µ

−∞
ρ(t)dt+ s

∫ +∞

s/µ

ρ(t)dt− µ
∫ s/µ

−∞
tρ(t)dt+ µ

∫ −s/µ
−∞

tρ(t)dt

= s,

where the third equality uses the fact that ρ is a symmetric function. The second
part of the result 2 then follows immediately from result 1.

For result 3, p(s, µ) is continuous with respect to µ by definition. Suppose now
that µ > 0. If s ≤ 0, then

p(s, µ) > p(s, 0) = 0

by result 1 of this proposition. If s > 0, then

p(s, µ)− p(s, 0) = p(s, µ)− s = p(−s, µ) > 0

by results 1 and 2 of this proposition. Therefore, p(s, u) is strictly increasing with
respect to µ at µ = 0. For the second part of result 3, notice that

p(s, µ) =

∫ s/µ

−∞
(s− µt)ρ(t)dt

and p is continuously differentiable with respect to µ. Straightforward calculation
shows that

∂p(s, µ)

∂µ
= −

∫ s/µ

−∞
tρ(t)dt =

∫ +∞

s/µ

tρ(t)dt > 0

and

∂2p(s, µ)

∂2µ
=
s2

µ3
ρ

(
s

µ

)
> 0.

630 BINTONG CHEN AND XIAOJUN CHEN

Therefore, p is strictly increasing and convex with respect to µ > 0, and the last part
of result 3 follows immediately.

Finally, we show that inequality (2.3) holds under additional assumption (A2).
The result is clearly true for µ = 0, and we assume again that s, µ > 0. Indeed,

p(s, µ)p(−s, µ) =

(∫ s/µ

−∞
(s− µt)ρ(t)dt

)(∫ −s/µ
−∞

(−s− µt)ρ(t)dt

)

= µ2

(∫ s/µ

−∞
tρ(t)dt

)(∫ −s/µ
−∞

tρ(t)dt

)
− µs

(∫ s/µ

−∞
ρ(t)dt

)(∫ −s/µ
−∞

tρ(t)dt

)

− s2

(∫ s/µ

−∞
ρ(t)dt

)(∫ −s/µ
−∞

ρ(t)dt

)
+ µs

(∫ s/µ

−∞
tρ(t)dt

)(∫ −s/µ
−∞

ρ(t)dt

)

≤ µ2

(∫ s/µ

−∞
tρ(t)dt

)(∫ −s/µ
−∞

tρ(t)dt

)
− µs

(∫ −s/µ
−∞

tρ(t)dt

)

≤ µ2

(∫ +∞

s/µ

tρ(t)dt

)2

+ µ2

(∫ +∞

s/µ

s

µ
tρ(t)dt

)
≤ µ2(B2

1 +B2
2),

where the first inequality uses the facts that ρ is a symmetric function and the last
two terms after the second equality are nonpositive, and the last inequality follows
from assumption (A2).

We assume that the smooth function used in the remainder of the paper satisfies
Assumption 2.1.

2.2. Smoothed NCP. It is well known that NCP(F) can be written as the
following system of nonsmooth equations:

H0(z) ≡
(

F (x)− y
x− (x− y)+

)
= 0.(2.4)

Let a ∈ Rn++ be a vector of smoothing parameters. By using the Chen–Mangasarian
smoothing function, we may approximate (x− y)+ by

P (x− y, a) ≡ vec{p(xi − yi, ai)}.
Denoting

Ψ(x, y, a) ≡ x− P (x− y, a),

we obtain the following smooth approximation of NCP(F):

H(z, a) ≡
(

F (x)− y
Ψ(x, y, a)

)
= 0.(2.5)

Clearly, if a = 0, (2.5) reduces to (2.4). Thus, we can also write NCP(F) as H0(z) ≡
H(z, 0) = 0. By result 1 of Proposition 2.1, H(·, a) is continuously differentiable in
R2n for any fixed a ∈ Rn++. Let

P ′(x− y, a) ≡ diag{p′1(xi − yi, ai)}.
The Jacobian of H(·, a) is given by

H ′(z, a) =

(
F ′(x) −I

I − P ′(x− y, a) P ′(x− y, a)

)
.

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 631

It is well known that H ′(·, a) is nonsingular for any fixed a ∈ Rn++ if F is a P0 function.
Based on the properties of the subclass of the Chen–Mangasarian smoothing

functions, we have the following results for Ψ and H. Similar results were obtained
in [4, 6, 12]. However, some of our proofs below are much simpler.

Lemma 2.1.
1. If Ψ(x, y, a) = 0 for some a ∈ Rn++, then

(x, y) ∈ R2n
++ and xT y ≤ (B2

1 +B2
2)aTa.

2. For any (x, y) ∈ R2n
+ ((x, y) ∈ R2n

++), there is a unique vector a ∈ Rn+ (a ∈
Rn++) such that Ψ(x, y, a) = 0. In addition, for any (x, y) ∈ R2n, and a closed
set A ⊆ Rn+, if {‖Ψ(x, y, a)‖ | a ∈ A} is bounded, then A is bounded.

3. If Ψ(x, y, a) = v for some (x, y) ∈ R2n, v ∈ Rn, and a ∈ Rn+, then

Ψ(x− v, y − v, a) = 0.

4. Let a1, a2 ∈ Rn+. Then for all z ∈ R2n

|‖H(z, a1)‖ − ‖H(z, a2)‖| ≤ B1‖a1 − a2‖.
Proof. By result 1 of Proposition 2.1, Ψ(x, y, a) = 0 implies x = P (x− y, a) > 0.

By result 2 of Proposition 2.1, we also have y = P (y − x, a) > 0. Therefore,

xT y = P (x− y, a)TP (y − x, a),

and the second part of result 1 then follows from (2.3) in Proposition 2.1. By as-
sumption of result 2, P (x− y, 0) = x ∈ Rn+. Result 2 follows immediately from result
3 of Proposition 2.1. Indeed, the first part of result 2 is true since p(s, µ) is strictly
increasing with respect to µ for µ ≥ 0, and the second part of result 2 is true since
µ→∞ implies p(s, µ)→∞. By definition,

Ψ(x− v, y − v, a) = x− v − P ((x− v)− (y − v), a) = Ψ(x, y, a)− v = 0,

and this proves result 3. For result 4, we have

|‖H(z, a1)‖ − ‖H(z, a2)‖| ≤ ‖H(z, a1)−H(z, a2)‖
≤ ‖Ψ(z, a1)−Ψ(z, a2)‖
≤ B1‖a1 − a2‖,

where the last inequality follows from result 4 of Proposition 2.1.
We next characterize the range of H, denoted by

H(R2n, Rn++) = {H(z, a) : z ∈ R2n, a ∈ Rn++}.
Similar results have been obtained by Hotta and Yoshise [20] based on the CHKS
smoothing function.

Lemma 2.2.
1. H(R2n, Rn++) is an open subset of R2n.
2. If (w, v) ∈ H(R2n, Rn++), then

(w, v) +R2n
− ⊂ H(R2n, Rn++).

3. In particular, if (0, 0) ∈ H(R2n, Rn++), then

R2n
− ⊂ H(R2n, Rn++).

Proof. The proof follows from result 3 of Lemma 2.1 and the same proof techniques
used for Lemma 2.1 in [20].

632 BINTONG CHEN AND XIAOJUN CHEN

2.3. Assumptions on NCP(F). Let us denote

Q(z, a) ≡ (H(z, a), a) ∈ R2n ×Rn+.
We make the following assumption on function F throughout the remainder of the
paper.

Assumption 2.2.
1. F is a P0 function.
2. NCP(F) has a feasible interior point, i.e., there is a vector (x, y) > 0 such

that y = F (x).
3. The set

Q−1(D) ≡ {(z, a) ∈ R2n ×Rn+ : Q(z, a) ∈ D}
is bounded for every compact subsets D ⊂ H(R2n, Rn++)×Rn+.

4. There exists an ε > 0 such that the level set

L(ε) ≡ {z ∈ R2n : ‖H0(z)‖ ≤ ε}
is bounded.

Notice that conditions 1, 2, 3 of the above assumption are identical to condition
2.2 used in Hotta and Yoshise [20]. Using result 3 of Lemma 2.1, and the proof
technique originally developed by Kojima, Megiddo, and Noma [25], and later used
to show Corollary 3.5 in [6] and Theorem 2.10 in [20], we can obtain the following
result.

Theorem 2.1. Under conditions 1 and 3 of Assumption 2.2, the mapping Q
maps R2n ×Rn++ onto H(R2n ×Rn++)×Rn++ homeomorphically.

The following two propositions show that Assumption 2.2 is implied by the two
most popular assumptions used in the NCP literature.

Proposition 2.2. Assumption 2.2 holds if F is a P0 and R0 function.
Proof. We show in sequence that conditions 4, 3, and 2 of Assumption 2.2 hold.

By Proposition 3.12 in [6], if F is an R0 function, then x is bounded if ‖min{x, F (x)}‖
is bounded. Since F is a continuous function and

‖min{x, F (x)}‖ ≤ ‖min{x, y}‖+ ‖F (x)− y‖ ≤ 2‖H0(z)‖,(2.6)

condition 4 holds for all 0 ≤ ε < ∞. Condition 3 then follows from the above result
and the fact that

‖H0(z)‖ ≤ ‖H(z, a)‖+B1‖a‖.
In addition, the above inequality implies that the level set

L′(ε) ≡ {z ∈ R2n : ‖H(z, a)‖ ≤ ε}
is bounded for all 0 ≤ ε < ∞. It follows that 1

2‖H(z, a)‖2 has a bounded stationary
point z̄ such that

H ′(z̄, a)TH(z̄, a) = 0.

Since F is a P0 function, H ′(z̄, a) is nonsingular. Hence, H(z̄, a) = 0 and z̄ ∈ R2n is
a feasible interior point by definition of H. Therefore, condition 2 holds.

Proposition 2.3. Assumption 2.2 holds if F is a monotone function and NCP(F)
has a feasible interior point.

Proof. Conditions 1 and 2 of Assumption 2.2 clearly hold. Condition 3 follows
from results 1 and 3 of Proposition 2.1 and the same proof used for Lemma 2.3 in
[20]. Condition 4 follows from result 2 of Corollary 1 in [4].

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 633

2.4. Smoothing paths, neighborhoods, and initial points. Given a smooth-
ing vector a ∈ Rn++, let z(µ, a) be the unique solution of equation

H(z, µa) + µe = 0.(2.7)

The smoothing path associated with the vector a is defined as a set of solutions z(µ, a)
for all µ > 0; i.e.,

S(a) = {z : H(z, µa) + µe = 0, µ > 0}.

In addition, we choose the following neighborhood around the smoothing path:

N (a, β) = {z : ‖H(z, µa) + µe‖ ≤ βµ, µ > 0},

where β ∈ (0, 1] is called the width of the neighborhood. The slice of the neighborhood
with µ ∈ U ⊂ R++ is then given by

N (a, β, U) = {z : ‖H(z, µa) + µe‖ ≤ βµ, µ ∈ U}.

Notice that our neighborhood definition is simpler than those proposed in Hotta
and Yoshise [20]. The next result shows the boundedness of certain slices of the
neighborhood.

Proposition 2.4. Let a ∈ Rn++ and β ∈ (0, 1]. Under conditions 2 and 3
of Assumption 2.2, the slice of neighborhood N (a, β, U) is bounded for all bounded
U ⊂ R+.

Proof. By condition 2 of Assumption 2.2, there is a feasible interior point z̄ =
(x̄, ȳ) > 0 such that ȳ = F (x̄). By result 2 of Lemma 2.1, there is an ā ∈ Rn++

such that H(z̄, ā) = 0. Therefore, (0, 0) ∈ H(R2n, Rn++). By result 3 of Lemma 2.2,
R2n
− ⊂ H(R2n, Rn++). Let

D = {(w, v, µa) : −(1 + β)µe ≤ (w, v) ≤ −(1− β)µe, µ ∈ closure(U)}.

Since U ⊂ R+ is bounded, D is compact. In addition,

D ⊂ R2n
− ×Rn+ ⊂ H(R2n, Rn++)×Rn+.

By condition 3 of Assumption 2.2, Q−1(D) is bounded. On the other hand, based on
the definition of D, we have

N (a, β, U) ⊂ Q−1(D).

Hence, the slice of the neighborhood is bounded.

Moreover, Assumption 2.2 also ensures that the smoothing path S(a) is well
defined for all a ∈ Rn++ and leads to a solution of NCP(F) as µ approaches 0.

Theorem 2.2. Let a ∈ Rn++ be arbitrary. Under conditions 1, 2, and 3 of
Assumption 2.2,

1. z(µ, a) exists and is unique for all µ > 0; in addition, z(µ, a) is continuous
in µ and thus S(a) forms a trajectory;

2. z(µ, a) has a limiting point as µ → 0, and every limiting point is a solution
of NCP(F).

634 BINTONG CHEN AND XIAOJUN CHEN

Proof. From the proof of Proposition 2.4, we have R2n
− ⊂ H(R2n, Rn++) under

condition 2 of Assumption 2.2. Since µa ∈ Rn++ and −µe ∈ R2n
− for all µ > 0, it

follows from Theorem 2.1 that (2.7) has a unique solution under conditions 1 and 3
of Assumption 2.2. Result 1 then follows immediately. To show result 2, let U =
(0, µ̄] for some 0 < µ̄ < ∞. Then z(µ, a) ∈ N (a, β, U) for all µ ∈ U . Since the
neighborhood N (a, β, U) is bounded by Proposition 2.4, z(µ, a) has an accumulation
point z∗ as µ → 0. By the continuity of H, H(z∗, 0) = 0 and z∗ is a solution of
NCP(F).

To start a continuation method, it is required to have an initial point within a
chosen neighborhood. Such an initial point is often assumed to be readily available
by most existing continuation methods, interior or noninterior, that follow interior
smoothing paths [25, 37, 39, 41]. This is especially true for those algorithms de-
signed to solve the monotone NCP. It is important, however, for the purpose of both
theoretical study and numerical implementation, to be able to construct an initial
point within the neighborhood. We next provide a simple procedure to construct a
noninterior initial point z0 ∈ R2n such that z0 ∈ N (a, β, (0, µ0]) for some a ∈ Rn++,
µ0 ∈ R++, and β ∈ (0, 1].

Procedure 2.1.

1. Choose any x0 ∈ Rn.
2. Choose µ0 > maxi max{0,−x0

i ,−Fi(x0)/2}.
3. Let y0 = F (x0) + µ0e.
4. Find a ∈ Rn++ such that

p(x0
i − y0

i , µ0ai) = x0
i + µ0 for all i = 1, 2, . . . , n.

Notice that a ∈ Rn++, if it exists, can be obtained by solving n one-dimensional
equations. The next result guarantees the existence of the above initial point.

Proposition 2.5. The initial point (z0, µ0) and the smoothing vector a ∈ Rn++

constructed by Procedure 2.1 exist. In particular, they satisfy

H(z0, µ0a) = −µ0e.

Proof. It suffices to show that the vector a exists. Based on the choice of µ0, we
have

x0
i + µ0 > 0 and x0

i + µ0 > x0
i − Fi(x0)− µ0 = x0

i − y0
i

for all i. Therefore,

x0
i + µ0 > (x0

i − y0
i)+ = p(x0

i − y0
i , 0)

for all i. Moreover, by result 3 of Proposition 2.1, p(x0
i − y0

i , µ0a) → ∞ as a → ∞.
Hence the continuity of p implies that there exists a unique ai > 0 such that

x0
i + µ0 = p(x0

i − y0
i , µ0ai)

for each i. The result follows from the definition of H.

Based on the above result, z0 ∈ N (a, β, (0, µ0]) holds as long as the smoothing
vector a is a good approximate solution of the n one-dimensional equations in step 4
of Procedure 2.1.

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 635

3. The continuation method and its convergence. In this section, we pro-
pose a continuation method based on the noninterior smoothing path and the as-
sociated neighborhood defined in the previous section. By adjusting the smoothing
vector a dynamically, we are able to show that the method converges globally under
Assumption 2.2, and locally superlinearly under some regularity assumptions.

Algorithm 3.1. Given β ∈ (0, 1], σ, η ∈ (0, 1), τ ∈ (0, η), and αi ∈ (0, 1) for
i = 1, 2.
Step 0 (Initialization)

Choose any x0 ∈ Rn and µ0 > ‖min{x0, F (x0)}‖. Set k = 0.
Step 1 (Neighborhood Construction)

Let yk = F (xk) + µke. Choose ak ∈ Rn++ such that

‖H(zk, µka
k) + µke‖ ≤ βµk.(3.1)

Step 2 (Centering Step)
If H(zk, µka

k) + µke = 0, set z̃k+1 = zk and go to step 4. Otherwise, Let
∆z̃k solve the equation

H(zk, µka
k) + µke+H ′(zk, µkak)∆z̃k = 0.(3.2)

Step 3 (Line Search)
Let λk be the maximum of the values 1, α1, α

2
1, . . . such that

‖H(zk + λk∆z̃k, µka
k) + µke‖ ≤ (1− σλk)‖H(zk, µka

k) + µke‖.(3.3)

Set z̃k+1 = zk + λk∆z̃k.
Step 4 (µ Reduction)

Let γk be the maximum of the values α2, α
2
2, . . . such that

‖H(z̃k+1, (1− γk)µka
k) + (1− γk)µke‖ ≤ β(1− γk)µk.(3.4)

Set µ̃k+1 = (1− γk)µk.
Step 5 (Approximate Newton Step)

Let ∆ẑksolve the equation

H0(zk) +H ′(zk, µkak)∆ẑk = 0.(3.5)

Set ẑk+1 = zk + ∆ẑk.
Step 6 (Determining Next Iterate)

If ‖H0(ẑk+1)‖ = 0, stop. ẑk+1 is a solution of NCP (F). If ‖H0(ẑk+1)‖ >
1
2τµk, let zk+1 = z̃k+1, µk+1 = µ̃k+1, and ak+1 = ak. Set k = k+ 1 and go to
Step 2. Otherwise, let xk+1 = x̂k+1 and µk+1 = 2

η‖H0(ẑk+1)‖. Set k = k + 1
and go to Step 1.

A few remarks about Algorithm 3.1:
• The algorithm may start from any initial point x0 ∈ Rn.
• The algorithm differs from the existing interior or noninterior continuation

methods in that it dynamically adjusts the smoothing vector a ∈ Rn++ and the
associated neighborhood. This unique feature allows us to show both global
and local superlinear convergence for a broader class of NCPs, including the
NCP with a P0 and R0 function and the monotone NCP with a feasible
interior point.

636 BINTONG CHEN AND XIAOJUN CHEN

• Similar to the continuation method developed in [7], the matrices inverted
in the centering step and the approximate Newton step are identical. As a
result, the additional computation time for the approximate Newton step is
minimal.

Proposition 3.1. If F is a P0 function, Algorithm 3.1 is well defined.
Proof. We verify that each step of the algorithm is well defined. Step 0 is clearly

well defined. For Step 1, if k = 0, we have

µk > ‖min{xk, F (xk)}‖ ≥ max
i

max{0,−xki ,−Fi(xk)/2}.

If k > 0, then based on Step 6, we have

µk =
2

η
‖H0(ẑk)‖ ≥ 1

η
‖min{x̂k, F (x̂k)}‖ > ‖min{xk, F (xk)}‖,

where the first inequality follows from (2.6) and the second inequality holds since
‖H0(ẑk)‖ 6= 0. Therefore, it follows from Proposition 2.5 that in either case we
can find an ak ∈ Rn++ such that condition (3.1) holds. Step 2 is well defined since
µka

k ∈ Rn++ and F is a P0 function and, therefore, H ′(zk, µkak) is nonsingular. Step
3 is well defined since ∆z̃k 6= 0 by construction and therefore is a strictly descent
direction of ‖H(·, µkak) + µke‖ at zk. As a result, the line search procedure is finite
by construction. Step 4 is well defined since if H(zk, µka

k) + µke = 0 then zk+1 = zk

and

‖H(zk+1, µka
k) + µke‖ = 0 < βµk;

otherwise,

‖H(zk+1, µka
k) + µke‖ < ‖H(zk, µka

k) + µke‖ ≤ βµk,

because λk > 0 from the line search step. Therefore, in either case, the µ reduction
step terminates finitely by construction.

We now show the global convergence of the continuation method.
Theorem 3.1. Let {(zk, µk)} be a sequence generated by Algorithm 3.1. Then

under Assumptions 2.2
1. the sequence {µk} decreases monotonically and converges to 0 as k →∞,
2. the sequence {zk} is bounded and any accumulation point of the sequence is

a solution of NCP(F).
Proof. By construction of the algorithm, µk+1 is reduced by at least a factor of

either τ/η ∈ (0, 1) or (1 − γk) ∈ (0, 1). Thus, {µk} is a monotonically decreasing
sequence. Since µk is nonnegative, it converges to some µ̄ ≥ 0.

If µ̄ = 0, we have result 1. Suppose on the contrary that µ̄ > 0. This implies
γk → 0 and the iteration index set

K ≡
{
k > 0 : ‖H0(ẑk)‖ ≤ 1

2
τµk−1

}
(3.6)

is finite. As a result, there is a k0 > 0 such that for all k ≥ k0, the sequence {(zk, µk)}
is essentially generated by Steps 2–4 with a fixed ā ∈ Rn++; i.e., zk = z̃k, µk = µ̃k, and
ak = ā for all k ≥ k0. Now consider the sequence {(zk, µk)}k≥k0

. By Proposition 2.4,
the sequence zk ∈ N (ā, β, (0, µ0]) is bounded. Taking a subsequence if necessary, we

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 637

may assume that the sequence {zk} converges to some z̄. Based on the µ reduction
step, we have∥∥∥∥H (zk,(1− 1

α2
γk−1

)
µk−1ā

)
+

(
1− 1

α2
γk−1

)
µk−1e

∥∥∥∥ ≥ β(1− 1

α2
γk−1

)
µk−1.

Since γk → 0, by passing limits on both sides, we have

‖H(z̄, µ̄ā) + µ̄e‖ ≥ βµ̄ > 0.(3.7)

Let ∆z̄ be the solution of (3.2) at (z̄, µ̄). Since µ̄ > 0 and z̄ is bounded, H ′(z̄, µ̄ā)
is nonsingular and ∆z̄ is well defined. In addition, in view of (3.7), it is a strictly
descent direction for ‖H(·, µ̄ā)+ µ̄e‖ at z̄. As a result, the corresponding linear search
step length λ̄ and µ reduction step length γ̄ are both bounded below by a positive
constant. On the other hand, the function H as well as its Jacobian H ′ are continuous
in a neighborhood of (z̄, µ̄). It follows that ∆zk converges to ∆z̄ and therefore γk
must be uniformly bounded below by some positive constant for all k sufficiently large.
However, this contradicts the assumption that γk → 0. Therefore, µk → 0 and this
proves result 1.

For result 2, if the index set K is finite, then based on the above proof for result 1,
the sequence {zk} is bounded, ak = ā for all k ≥ k0 and µk → 0. In view of (3.1), any
accumulation point is a solution of the equation H0(z) = 0 and therefore a solution
of NCP(F). Now suppose that the index set K is infinite. We show first that result 2
holds for the subsequence {zk}k∈K and then extend the proof to the whole sequence.
By construction of Algorithm 3.1,

xk = x̂k and yk = F (x̂k) + µke for all k ∈ K.

Since µk → 0 by result 1, ‖ẑk − zk‖ → 0 for all k ∈ K. Therefore,

lim
k∈K
‖H0(zk)‖ = lim

k∈K
‖H0(ẑk)‖ =

1

2
η lim
k∈K

µk = 0.(3.8)

By condition 4 of Assumption 2.2, the sequence {zk}k∈K is bounded. Clearly, any of
its accumulation points is a solution of H0(z) = 0.

To extend the result to the whole sequence, we need to show µka
k → 0. Let K

consist of k1 < k2 < · · ·. Since the sequence {zkj} is bounded, µk → 0, and

‖H(zkj , µkja
kj)‖ ≤ (β + ‖e‖)µkj ,

the sequence {µkjakj} is bounded by result 2 of Lemma 2.1. Let b̄ ∈ Rn+ be any
accumulation point of {µkjakj} and z̄ be the corresponding accumulation point of
{zkj}. Then

H(z̄, b̄) = 0.

Since it also holds that H0(z̄) = 0, we have z̄ ∈ R2n
+ . By result 2 of Lemma 2.1, b̄ = 0

is the unique vector that satisfies the above equation. It follows that µkja
kj → 0 as

j →∞. Now let k be any iteration index. Since K is infinite, there is a kj ∈ K such
that

µka
k = µka

kj ≤ µkjakj .

638 BINTONG CHEN AND XIAOJUN CHEN

Thus, µka
k → 0 as k →∞.

We are now ready to show result 2 for the whole sequence. By result 4 of
Lemma 2.1, we have

‖H0(zk)‖ ≤ ‖H(zk, µka
k)‖+B1‖µkak‖ ≤ (β + ‖e‖)µk +B1‖µkak‖ → 0.

Therefore, {zk} is bounded by condition 4 of Assumption 2.2. In addition, any accu-
mulation point is a solution of H0(z) = 0 and therefore a solution of
NCP(F).

From Theorem 3.1, any accumulation point z∗ of the sequence {zk} generated by
Algorithm 3.1 is a solution of NCP(F). Additional assumptions are needed on the
accumulation point z∗ so that Algorithm 3.1 converges locally superlinearly.

Assumption 3.1. All elements in the generalized Jacobian ∂H0(z∗) are nonsin-
gular.

Assumption 3.2. The strict complementarity condition holds at z∗; i.e., x∗ +
y∗ > 0.

Notice that the above assumptions are identical to Condition 7.1 (i) in [25], the
strong nondegeneracy assumption in [37], and Assumption 2 in [39].

Proposition 3.2. Let z∗ be a solution of NCP(F).

1. Under Assumption 3.1, if F is a P0 function, then z∗ is the unique solution
of NCP(F).

2. Under Assumption 3.2, H0(·) is differentiable at z∗ and

‖H ′(z, µa)−H ′0(z∗)‖ = O(µ‖a‖)

for all z in a neighborhood of z∗.
Proof. For result 1, consider function H(z, µe), which maps R2n+1 to R2n. By

assumption, z∗ is a solution of NCP(F) and thus H(z∗, 0) = 0. By Assumption 3.1,
all elements in ∂zH(z∗, 0) are nonsingular. Since H is a Lipschitzian function, we
can apply the generalized implicit function theorem [13, section 7.1] to H at (z, µ) =
(z∗, 0). It follows that there exists a neighborhood U of µ at 0 and a Lipschitzian
function z : U → R2n such that z(0) = z∗ and H(z(µ), µe) = 0 for all µ ∈ U . Since
F is a P0 function, z(µ) is unique for all µ > 0 by Theorem 2.1. Since z(µ) converges
to z∗ as µ→ 0, z∗ is unique.

Result 2 follows from results 5 and 6 of Proposition 1. Also see Lemma 4
in [7].

Theorem 3.2. Under Assumptions 2.2, 3.1, and 3.2, the sequence {(zk, µk)}
generated by Algorithm 3.1 converges to (z∗, 0) locally superlinearly; i.e.,

1. ‖zk+1 − z∗‖ = o(‖zk − z∗‖),
2. µk+1 = o(µk).

Proof. That {zk} converges to z∗ follows from result 1 of Proposition 3.2 and
Theorem 3.1. For superlinear convergence, we first show

‖ẑk+1 − z∗‖ = o(‖zk − z∗‖).

From the proof of Theorem 3.1, µka
k → 0. Hence, by Assumption 3.1 and result 2 of

Proposition 3.2, there is a C > 0 such that

‖H ′(zk, µkak)−1‖ ≤ C

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 639

holds for all k sufficiently large. Therefore,

‖ẑk+1 − z∗‖ = ‖zk − z∗ −H ′(zk, µkak)−1H0(zk)‖
≤ ‖H ′(zk, µkak)−1‖‖H ′(zk, µkak)(zk − z∗)−H0(zk)‖
≤ C(‖H0(zk)−H0(z∗)−H ′0(zk)(zk − z∗)‖

+‖H ′(zk, µkak)−H ′0(zk)‖‖zk − z∗‖)
≤ C(‖H0(zk)−H0(z∗)−H ′0(zk)(zk − z∗)‖+O(‖µkak‖)‖zk − z∗‖)
= o(‖zk − z∗‖),

where the last inequality follows from result 2 of Proposition 3.2. In addition, we have

‖H0(ẑk+1)‖ = o(‖H0(zk)‖)(3.9)

based on the proof of Theorem 3.1 in [29].
For result 1, it remains to show that Algorithm 3.1 eventually reduces to the

approximate Newton step for all large k. To this end, we show first that the index set
K defined by (3.6) is infinite. Suppose on the contrary that K is finite and k̄ ∈ K is
the largest iteration index. Then ak = ā ≡ ak̄ for all k ≥ k̄. In addition, by result 4
of Lemma 2.1, we have

‖H0(zk)‖ ≤ ‖H(zk, µka
k) + µke‖+ µk(‖e‖+B1‖ak‖)

≤ µk(β + ‖e‖+B1‖ak‖)
= µk(β + ‖e‖+B1‖ā‖)

for all k ≥ k̄. In view of (3.9),

‖H0(ẑk+1)‖ ≤ 1

2
τµk

holds for all k ≥ k̄ and k sufficiently large. However, this implies the expansion of set
K, a contradiction to the assumption that K is finite.

Since both sequences {zk} and {ẑk} converge to z∗ and H0 is Lipschitzian in a
neighborhood of z∗, there exist a constant L > 0 and an integer k̄1 such that for all
k ≥ k̄1

‖H0(ẑk)−H0(zk)‖ ≤ L‖ẑk − zk‖.

Let

ε =
τ

η + L(η + 2‖e‖) .

By (3.9), there exists a large k̄2 such that for all k ≥ k̄2,

‖H0(ẑk+1)‖ ≤ ε‖H0(zk)‖.

Let k̄ = max{k̄1, k̄2}. Suppose now that zk is generated by the approximate Newton
step for some k ≥ k̄. Then

µk =
2

η
‖H0(ẑk)‖.

640 BINTONG CHEN AND XIAOJUN CHEN

This implies

‖ẑk − zk‖ = ‖ŷk − yk‖
≤ ‖ŷk − F (x̂k)‖+ ‖e‖µk
≤ ‖H0(ẑk)‖+

2‖e‖
η
‖H0(ẑk)‖.

Hence

‖H0(ẑk+1)‖ ≤ ε‖H0(zk)‖
≤ ε(‖H0(ẑk)‖+ L‖ẑk − zk‖)
≤ τ

η
‖H0(ẑk)‖

≤ 1

2
τµk.

Thus, the next iterate zk+1 will also be generated by the approximate Newton step. It
follows that Algorithm 3.1 will eventually choose the approximate Newton step only
for all large k. Result 1 then follows from

‖zk+1 − z∗‖ ≤ ‖ẑk+1 − z∗‖+ ‖ẑk+1 − zk+1‖
≤ o(‖zk − z∗‖) +

(
1 +

2‖e‖
η

)
‖H0(ẑk+1)‖

≤ o(‖zk − z∗‖) +

(
1 +

2‖e‖
η

)
(‖H0(ẑk+1)‖ − ‖H0(z∗)‖)

≤ o(‖zk − z∗‖) + L

(
1 +

2‖e‖
η

)
‖ẑk+1 − z∗‖

≤ o(‖zk − z∗‖).
Result 2 follows from (3.9) and the fact that zk = ẑk and µk = 2

η‖H0(zk)‖ for all
large k.

We conclude this section by commenting on the importance of updating the
smoothing vector a dynamically. Based on the proof of Theorem 3.1, Steps 2–4
in Algorithm 3.1 with a fixed smoothing vector a ∈ Rn++ would be sufficient for the
algorithm to converge globally. In fact, the algorithm would have a global linear con-
vergence rate under certain conditions, which can be shown by following the similar
arguments used in [4, 7]. However, by restricting all iterates within a fixed neigh-
borhood associated with a, the algorithm may be prevented from achieving the local
superlinear convergence. To the best of our knowledge, Algorithm 3.1 is the first non-
interior continuation method that dynamically updates the neighborhood and achieves
both global and local superlinear convergence for the monotone NCP. Most of the ex-
isting continuation methods, such as those studied in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
and [20, 22, 40], have fixed smoothing vectors and neighborhoods. As a result, they
all have certain difficulties with the monotone NCP, either in finding a proper initial
point or in establishing the local convergence rate.

4. A hybrid method. For many nonsmooth equation-based algorithms, As-
sumption 3.1 is sufficient for locally superlinear convergence. However, continuation-
based algorithms often require in addition that the strict complementarity condition
holds at the solution. For example, Assumption 3.2 is needed to show Theorem 3.2

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 641

for Algorithm 3.1 in this paper. This is because the Jacobian consistence property
[11]

dist{H ′(zk, µkak), ∂H0(zk)} → 0, as k →∞,
required for superlinear convergence, in general does not hold for the approximate
Newton step without Assumption 3.2. Based on this observation, we present a hy-
brid continuation-smoothing method by replacing the approximate Newton step in
Algorithm 3.1 by a smoothing Newton step that satisfies the Jacobian consistence
property. We show that the hybrid method achieves the same convergence properties
as Algorithm 3.1 but without the need of Assumption 3.2.

Let

P 0(x− y) ≡ diag{p0(xi − yi)}.
Then

H0(z) ≡ lim
ε↓0

H ′(z, εe) =

(
F ′(x) −I

I − P 0(x− y) P 0(x− y)

)
.

By result 5 of Proposition 1,

H0(z) ∈ ∂H0(z)

for any z ∈ R2n. Furthermore, from result 6 of Proposition 1 and the continuous
differentiability of F , we have

lim
h→0

H0(z + h)−H0(z)−H0(z + h)h

‖h‖ = 0.(4.1)

The following observation is instrumental for designing a smoothing Newton step in
the hybrid method.

Proposition 4.1. Let z = (x, y) ∈ R2n and ε > 0. If x = y, then H ′(z, εe) =
H0(z). Otherwise,

‖H ′(z, εe)−H0(z)‖ ≤ 2B1ε

δ(z)
,

where δ(z) = mini{|xi − yi|, xi − yi 6= 0, i = 1, . . . , n}.
Proof. From the definitions of H ′(z, εe) and H0(z), we have

H ′(z, εe)−H0(z) =

(
0 0

−P ′(x− y, εe) + P 0(x− y) P ′(x− y, εe)− P 0(x− y)

)
.

The first part then follows immediately from the fact that p′1(0, ε) = p0(0) = 1/2. For
the second part, we have

‖H ′(z, εe)−H0(z)‖ ≤ 2‖P ′(x− y, εe)− P 0(x− y)‖
= 2‖diag{p′1(xi − yi, ε)− p0(xi − yi)}‖
≤ 2‖I‖B1ε/δ(z)

= 2B1ε/δ(z),

where the last inequality follows from result 5 of Proposition 1.
The hybrid continuation-smoothing method, called Algorithm 4.1, will replace

the approximate Newton step (Step 5) with the following smoothing Newton step.

642 BINTONG CHEN AND XIAOJUN CHEN

Step 5′ (Smoothing Newton Step)
If xk = yk set εk = 1. Otherwise, choose ξk > 0 and set εk = δ(zk)ξk. Let
∆ẑk solve the equation

H0(zk) +H ′(zk, εke)∆ẑk = 0.

Set ẑk+1 = zk + ∆ẑk.

A few remarks about the smoothing Newton step in the hybrid algorithm:

• Our definition of εk is simpler than that proposed in [11].
• To achieve superlinear convergence, the sequence {ξk} has to approach 0.

This can be achieved by setting ξk = ‖H0(zk)‖. Indeed, for implementation
purposes, we may choose

εk = min{µk min
i
{aki }, δ(zk)‖H0(zk)‖}.

• Unlike the approximate Newton step in Algorithm 3.1, the matrix inverted in
Step 5′ is different from the matrix inverted in Step 2. Therefore, the removal
of Assumption 3.2 is achieved at the cost of additional computations.

Theorem 4.1. Proposition 3.1 and Theorem 3.1 hold for Algorithm 4.1. If ξk ↓ 0,
then the conclusion of Theorem 3.2 holds for Algorithm 4.1 under Assumptions 2.2
and 3.1.

Proof. Since the smoothing Newton step is well defined if F is a P0 function,
Algorithm 4.1 is well defined based on the proof of Proposition 3.1. In addition, with
Step 5 replaced by Step 5′, the proof of Theorem 3.1 does not change.

Let {zk} be a sequence generated by Algorithm 4.1. By the global convergence
result, every accumulation point z∗ of {zk} is a solution of NCP(F). For local con-
vergence, in view of the proof for Theorem 3.2, it suffices to show that

‖ẑk+1 − z∗‖ = o(‖zk − z∗‖).

By Proposition 4.1 and the definition of εk, we have

‖H ′(zk, εke)−H0(zk)‖ ≤ 2B1ξk.

Since ξk ↓ 0, zk → z∗, and H0(z) ∈ ∂H0(z) for all z ∈ R2n, Assumption 3.1 implies
that there is a constant C > 0 such that

‖H ′(zk, εke)−1‖ ≤ C

holds for k sufficiently large. Therefore,

‖ẑk+1 − z∗‖ = ‖zk − z∗ −H ′(zk, εke)−1H0(xk)‖
≤ ‖H ′(zk, εke)−1‖‖H ′(zk, εke)(zk − z∗)−H0(zk)‖
≤ C(‖H0(zk)−H0(z∗)−H0(zk)(zk − z∗)‖

+‖H ′(zk, εke)−H0(zk)‖‖zk − z∗‖)
≤ C(‖H0(zk)−H0(z∗)−H0(zk)(zk − z∗)‖+ 2B1ξk‖zk − z∗‖)
= o(‖zk − z∗‖),

where the last equality follows from (4.1) and the assumption that ξk ↓ 0.

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 643

5. Final remarks. While this paper was under review, there had been active
development in the smoothing methods for NCP related problems. Unlike the current
paper, where the smoothing parameter is adjusted after each Newton iteration, the
recent papers by Qi and Sun [31], Jiang [21], and Qi, Sun, and Zhou [32] treated
the smoothing parameter as a variable in their expanded Newton equations. Tseng
[38] improved the local convergence of the existing continuation methods by intro-
ducing an inexpensive active set strategy in computing the “fast” Newton direction.
Burke and Xu [3] defined a new neighborhood for a noninterior smoothing path based
on the CHKS smoothing function. Their continuation method for the monotone
LCP based on the new neighborhood was shown to converge globally linearly and
locally quadratically. More recently, Kanzow and Pieper [23] constructed a Jacobian
smoothing method for general NCPs based on the concept of the Jacobian consis-
tency property introduced in [11]. They reported good numerical results. We have
also seen some new development in the regularization methods for NCPs, which are
closely related to the smoothing methods. See [23, 28, 36]. The major advantage of
the regularization methods is that they are able to solve the P0 NCPs under weaker
assumptions than those required by the existing smoothing methods.

REFERENCES

[1] S. C. Billups, S. P. Dirkse, and M. C. Ferris, A comparison of algorithms for large-scale
mixed complementarity problems, Comput. Optim. Appl., 7 (1997), pp. 3–25.

[2] J. Burke and S. Xu, The global linear convergence of a non-interior path-following algorithm
for linear complementarity problem, Math. Oper. Res., to appear.

[3] J. Burke and S. Xu, A Non-Interior Predictor-Corrector Path Following Algorithm for
the Monotone Linear Complementarity Problem, Preprint, Department of Mathematics,
University of Washington, Seattle, 1997.

[4] B. Chen and X. Chen, A Global Linear and Local Quadratic Continuation Smoothing Method
for Variational Inequalities with Box Constraints, Department of Management and Sys-
tems, Washington State University, Pullman, 1997.

[5] B. Chen and P. T. Harker, A non-interior-point continuation method for linear comple-
mentarity problems, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 1168–1190.

[6] B. Chen and P. T. Harker, Smooth approximations to nonlinear complementarity problems,
SIAM J. Optim., 7 (1997), pp. 403–420.

[7] B. Chen and N. Xiu, A global linear and local quadratic non-interior continuation method for
nonlinear complementarity problems based on Chen–Mangasarian smoothing function,
SIAM J. Optim., 9 (1999), pp. 605–623.

[8] C. Chen and O. L. Mangasarian, Smoothing methods for convex inequalities and linear
complementarity problems, Math. Programming, 71 (1995), pp. 51–69.

[9] C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed
complementarity problems, Comput. Optim. Appl., 5 (1996), pp. 97–138.

[10] X. Chen and L. Qi, A parameterized Newton method and a Broyden-like method for solving
nonsmooth equations, Comput. Optim. Appl., 3 (1994), pp. 157–179.

[11] X. Chen, L. Qi, and D. Sun, Global and superlinear convergence of the smoothing New-
ton method and its application to general box constrained variational inequalities, Math.
Comp., 67 (1998), pp. 519–540.

[12] X. Chen and Y. Ye, On homotopy-smoothing methods for box-constrained variational in-
equalities, SIAM J. Control Optim., 37 (1999), pp. 589–616.

[13] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[14] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Com-

puter Science and Scientific Computing, Academic Press, San Diego, CA, 1990.
[15] S. P. Dirkse and M. C. Ferris, The PATH solver: A non-monotone stabilization scheme

for mixed complementarity problems, Optim. Methods Softw., 5 (1995), pp. 123–156.
[16] F. Facchinei and C. Kanzow, Beyond monotonicity in regularization methods for nonlinear

complementarity problems, SIAM J. Control Optim., to appear.

644 BINTONG CHEN AND XIAOJUN CHEN

[17] R. M. Freund and S. Mizuno, Interior point methods: Current status and future directions,
OPTIMA Newsletter, 51 (1996), pp. 1–9.

[18] S. A. Gabriel and J. J. Moré, Smoothing of mixed complementarity problems, in Comple-
mentarity and Variational Problems: State of the Art, M. C. Ferris and J. S. Pang, eds.,
SIAM, Philadelphia, 1996, pp. 105–116.

[19] P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear com-
plementarity problem: A survey of theory, algorithms and applications, Math. Program-
ming, 48 (1990), pp. 339–357.

[20] K. Hotta and A. Yoshise, Global Convergence of a Class of Non-Interior-Point Algorithms
Using Chen-Harker-Kanzow Functions for Nonlinear Complementarity Problems, Dis-
cussion Paper Series 708, Institute of Policy and Planning Sciences, University of Tsukuba,
Tsukuba, Japan, December, 1996.

[21] H. Jiang, Smoothed Fischer-Burmeister Equation Methods for the Complementarity Problem,
Report, Department of Mathematics, University of Melbourne, Parkville, Australia, 1997.

[22] C. Kanzow, Some noninterior continuation methods for linear complementarity problems,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 851–868.

[23] C. Kanzow and H. Pieper, Jacobian smoothing methods for nonlinear complementarity
problems, SIAM J. Optim., 9 (1999), pp. 342–373.

[24] M. Kojima, N. Megiddo, and S. Mizuno, A general framework of continuation methods for
complementarity problems, Math. Oper. Res., 18 (1993), pp. 945–963.

[25] M. Kojima, N. Megiddo, and T. Noma, Homotopy continuation methods for nonlinear
complementarity problems, Math. Oper. Res., 16 (1991), pp. 754–774.

[26] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, San Diego, 1970.

[27] J. S. Pang, Complementarity problems, in Handbook of Global Optimization, R. Horst and
P. Pardalos, eds., Kluwer, Boston 1995, pp. 271–338.

[28] H. D. Qi, A Regularized Smoothing Newton Method for Box Constrained Variational In-
equality Problems with P0-Functions, Report, Chinese Academy of Sciences, Institute
of Computational Mathematics and Scientific/Engineering Computing, Beijing, China,
1997.

[29] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), pp. 227–244.

[30] L. Qi and X. Chen, A globally convergent successive approximation method for severely
nonsmooth equations, SIAM J. Control Optim., 33 (1995), pp. 402–418.

[31] L. Qi and D. Sun, Globally Linearly, and Globally and Locally Superlinearly Convergent Ver-
sions of the Hotta-Yoshise Non-Interior Point Algorithm for Nonlinear Complementarity
Problems, Applied Mathematics Report, School of Mathematics, University of New South
Wales, Sydney, Australia, 1997.

[32] L. Qi, D. Sun, and G. Zhou, A New Look at Smoothing Newton Methods for Nonlinear Com-
plementarity Problems and Box Constrained Variational Inequalities, Applied Mathemat-
ics Report, AMR 97/13, School of Mathematics, University of New South Wales, Sydney,
Australia, 1997.

[33] D. Ralph, Global convergence of damped Newton’s method for nonsmooth equations, via the
path search, Math. Oper. Res., 19 (1994), pp. 352–389.

[34] H. Sellami and S. M. Robinson, Implementation of a continuation method for normal maps,
Math. Programming, 76 (1997), pp. 563–578.

[35] S. Smale, Algorithms for solving equations, in Proceedings of the International Congress of
Mathematicians, Berkeley, CA, 1986, AMS, Providence, RI, 1987, pp. 172–195.

[36] D. Sun, A regularization Newton method for solving nonlinear complementarity problems,
Appl. Math. Optim., to appear.

[37] P. Tseng, An infeasible path-following method for monotone complementarity problems,
SIAM J. Optim., 7 (1997), pp. 386–402.

[38] P. Tseng, Analysis of a non-interior continuation method based on Chen–Mangasarian
smoothing functions for complementarity problems, in Reformulation—Nonsmooth,
Piecewise Smooth, Semismooth and Smoothing Methods, M. Fukushima and L. Qi, eds.,
Kluwer Academic Publishers, Norwell, MA, 1998, pp. 381–404.

[39] S. Wright and D. Ralph, A superlinear infeasible-interior-point algorithm for monotone
complementarity problems, Math. Oper. Res., 21 (1996), pp. 815–838.

[40] S. Xu, The Global Linear Convergence of an Infeasible Non-Interior Path-Following Algo-
rithm for Complementarity Problems with Uniform P -Functions, Preprint, Department
of Mathematics, University of Washington, Seattle, 1996.

[41] S. Xu, The Global Linear Convergence and Complexity of a Non-Interior Path-Following

SMOOTHING METHOD FOR P0 AND R0 NCP OR MONOTONE NCP 645

Algorithm for Monotone LCP Based on Chen-Harker-Kanzow-Smale Smooth Functions,
Preprint, Department of Mathematics, University of Washington, Seattle, 1997.

[42] Y. Ye and K. Anstreicher, On quadratic and O(
√
NL) convergence of a predictor-corrector

algorithm for LCP, Math. Programming, 62 (1993), pp. 537–552.
[43] I. Zang, A smoothing-out technique for min–max optimization, Math. Programming, 19

(1980), pp. 61–71.

A CLASS OF INDEFINITE DOGLEG PATH METHODS
FOR UNCONSTRAINED MINIMIZATION∗

JIANZHONG ZHANG† AND CHENGXIAN XU‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 646–667

Abstract. In this paper we propose a convenient curvilinear search method to solve trust region
problems arising from unconstrained optimization problems. The curvilinear paths we set forth are
dogleg paths, generated mainly by employing Bunch–Parlett factorization for general symmetric
matrices that may be indefinite. This method is easy to implement and globally convergent. It is
proved that the method satisfies the first- and second-order stationary point convergence properties
and that the convergence rate is quadratic under commonly used conditions on functions. Numerical
experiments are conducted to compare this method with some existing methods.

Key words. trust region method, curvilinear search, factorization of indefinite matrices, nega-
tive curvature, global convergence, superlinear and quadratic convergence rates

AMS subject classifications. 90C30, 65K05

PII. S105262349627523X

1. Introduction. Trust region algorithms for solving the unconstrained mini-
mization problem

min f(x)(1.1)

have strong convergence properties (see [12]). These algorithms are based on the
following idea. Suppose f(x) is twice continuously differentiable. For a given iterate
x(k) ∈ Rn, which is an estimate of a local solution x∗ of problem (1.1), the solution,
δ(k) say, of the quadratic subproblem

min qk(δ)
def
= fk + g(k)T δ +

1

2
δTBkδ(1.2)

s.t. ||δ|| ≤ ∆k

serves as a correction to x(k); i.e., x(k) +δ(k) is considered as a successor to x(k), where
fk = f(x(k)), g(k) is the gradient ∇f(x(k)) of f(x) at x(k), δ = x − x(k), Bk is the
Hessian matrix ∇2f(x(k)) of f(x) at x(k) or its approximation, and ∆k is a parameter
called the trust region radius. The quadratic function qk(δ) is a local approximation
of the function f(x) at point x(k) and the parameter ∆k is adjusted at each iteration
so that a reasonable agreement between qk(δ) and f(x) is maintained in a proper
trust region {x| ||x− x(k)|| ≤ ∆k}.

In implementing trust region algorithms, the basic issue is how to solve problem
(1.2) efficiently. It is known that the solution δ(k) of problem (1.2) generally satisfies
the system

(Bk + µI)δ(µ) = −g(k)(1.3)

∗Received by the editors August 26, 1996; accepted for publication (in revised form) April 17,
1998; published electronically April 19, 1999. This work was supported by the Hong Kong University
Grants Committee (Competitive Earmarked Research Grant CITYU-9040159).

http://www.siam.org/journals/siopt/9-3/27523.html
†Department of Mathematics, City University of Hong Kong, Hong Kong (mazhang@cityu.

edu.hk).
‡Department of Scientific Computing and Software, Xian Jiaotong University, Xian, People’s

Republic of China (mxxu@xjtu.edu.cn).

646

INDEFINITE DOGLEG METHODS 647

and ‖δ(k)‖ = ∆k, where µ ≥ 0 such that Bk + µI is at least positive semidefinite. If
Bk is positive definite and ‖B−1

k g(k)‖ ≤ ∆k, then the solution is

δ(k) = −B−1
k g(k).(1.4)

In the hard case [16] when Bk is indefinite and ‖(Bk − µ1I)+g(k)‖ < ∆k, a solution
of (1.2) is given by

δ(k) = −(Bk − µ1I)+g(k) + td, t > 0, such that ‖δ(k)‖ = ∆k,(1.5)

where Bkd = µ1d, µ1 is the smallest eigenvalue of Bk, and (·)+ denotes the generalized
inverse of a matrix. Notice that δ(k) satisfies (1.3) with µ = −µ1 and that Bk − µ1I
is positive semidefinite.

Newton’s method is used to find an approximate solution of (1.2) on the full
space. It can be seen that the solution of (1.2) is usually related to solving the
nonlinear equation

φ(µ)−∆k = 0, φ(µ) = ‖δ(µ)‖, µ ≥ max{−µ1, 0},(1.6)

where δ(µ) is the solution of (1.3). Based on a rational approximation to φ(µ), Hebden
[14] and Moré [16] employed Newton’s iteration to (1.6) to find µ such that ‖δ(µ)‖ is
approximately equal to ∆k. Moré and Sorensen [18] applied Newton’s method to the
equation 1/φ(µ)−1/∆k = 0 to find µ > max{−µ1, 0}. Sorensen [23] applied Newton
iteration to the system (Bk + µI)δ + g(k) = 0, 1/‖δ‖ − 1/∆k = 0 to find µ and δ. In
their implementation, these methods require the matrix Bk + µI to be factorized by,
for example, Cholesky factorization for every new value of µ.

An alternative to the full-dimensional solution of (1.2) is the curvilinear path
method. Let ∆k vary in subproblem (1.2); then the solution points form a curvilinear
path with ∆k as its parameter in the full-dimensional space, called the optimal path
[4]. Then the subproblem can be interpreted as a problem of finding a point on the

optimal curvilinear path, denoted by Γ
(k)
op , which minimizes qk(δ) within the trust

region, i.e.,

δ(k) = arg min { qk(δ) | δ ∈ Γ(k)
op , ‖δ‖ ≤ ∆k}.

Besides the optimal path, there are other full-dimensional curvilinear paths, such as
the gradient path [2] and the conjugate gradient path [4]. Forming these curvilinear
paths requires the knowledge of the full eigensystem of the matrix Bk.

It is found that for the purpose of convergence, the full-dimensionality in the
solution of (1.2) is not necessary (see [3] and [22]). Shultz, Schnabel, and Byrd [22]
proposed a step computing function to form an algorithm that computes an approxi-
mate solution to (1.2) by performing a two-dimensional quadratic minimization

min{ qk(δ) | δ ∈ S, ‖δ‖ ≤ ∆k},(1.7)

where S is a two-dimensional subspace spanned by −g(k) and −B−1
k g(k) if Bk is

positive definite and by two directions from −g(k), −(Bk + µI)−1g(k), and a negative
curvature direction d when Bk is indefinite. The algorithm maintains the strong
convergence properties of the full-dimensional solution methods, and numerical results
[7] show that this inexpensive algorithm performs almost as well as the expensive full-
dimensional methods.

648 JIANZHONG ZHANG AND CHENGXIAN XU

The most practical two-dimensional curvilinear paths are dogleg paths [20], [11],
which are piecewise linear approximations to the optimal path in the subspace spanned
by the steepest descent direction −g(k) and the Newton direction −B−1

k g(k). Powell
suggested in [20] a dogleg path which is called in this paper a single dogleg path, as
it turns its direction once; Dennis and Mei, in a later paper [11], proposed a double
dogleg path that makes two turns. These dogleg path methods work well when Bk is
positive definite, but they are unable to deal with the indefinite case.

In this paper we describe a class of trust region indefinite dogleg path algorithms
for unconstrained minimization. Dogleg paths are formulated over two-dimensional
subspaces spanned by −g(k) and −B−1

k g(k) if Bk is positive definite and by −g(k),
−(Bk + µI)−1g(k), and directions d of negative curvature when Bk is indefinite. Di-
rections of negative curvature of Bk are obtained from the stable Bunch–Parlett [5]
factorization of a symmetric matrix. This class of dogleg path algorithms is easy to
implement and maintains the strong convergence properties of full-dimensional solu-
tion methods. That is, these algorithms are globally convergent and satisfy the first-
and second-order stationary point convergence properties. The paper is organized as
follows. In section 2 we describe the Bunch–Parlett factorization of the symmetric
matrix and the properties of the factorization. It is also shown how to construct
negative curvature directions of indefinite Bk from the factorization. In section 3 we
present the indefinite dogleg path algorithms and describe formulations of indefinite
dogleg paths. In section 4 we analyze the properties of the formulated indefinite dogleg
paths. It is shown that these dogleg paths satisfy the required properties for curvi-
linear paths proposed in [22]. In section 5 it is proved that the proposed indefinite
dogleg path algorithms are globally convergent and satisfy the first- and second-order
stationary point convergence properties and that the quadratic convergence rate is
preserved by these algorithms under reasonable conditions. Numerical results and
comparison with the method in [22] are presented in section 6 and show that these
indefinite dogleg path algorithms work as well as the two-dimensional minimization
algorithm.

In the remainder of the paper we use the following notation:
• ||.|| is the Euclidean norm.
• µ1 and µn are, respectively, the smallest and largest eigenvalues of the matrix

Bk.
• [x(k), . . . , y] or [x(k), . . . , y, w) denotes a dogleg path which starts from x(k) and

changes direction at each point listed. The former is a finite dogleg path where y is
the end point of the path, while the latter is an infinite dogleg path where the last
piece of the path is a ray starting at point y along the direction w.

2. Bunch–Parlett factorization and directions of negative curvature. A
real symmetric matrix Bk usually possesses a unique triangular factorization Bk =
LDLT , where L is a unit lower triangular matrix and D a diagonal matrix. When
Bk is positive definite this factorization is stable. However, for an indefinite matrix,
this factorization may not exist, and even if it exists, it may be unstable. A stable
factorization method for real symmetric indefinite matrices was suggested by Bunch
and Parlett [5] and Bunch, Kaufman, and Parlett [6]. The method factorizes matrix
Bk into the form

PBkP
T = LDLT ,

where P is a permutation matrix, L a unit lower triangular matrix, and D a block
diagonal matrix with 1× 1 and 2× 2 diagonal blocks. If Bk is positive definite, D is

INDEFINITE DOGLEG METHODS 649

diagonal. For convenience, without loss of generality, it is assumed in the following
that P = I, i.e.,

Bk = LDLT .(2.1)

This factorization has the following properties (see [3]):
(i) D and Bk have the same inertia, that is, they have the same numbers of

positive, zero, and negative eigenvalues.
(ii) The elements of the matrices L and L−1 are bounded by a fixed positive

constant which is independent of Bk; i.e., there exist positive constants c1, c2, c3,
and c4 such that

c1 ≤ ‖L‖ ≤ c2, c3 ≤ ‖L−1‖ ≤ c4.(2.2)

Property (i) shows that the positive definiteness of the matrix Bk can be checked from
that of the matrix D, whose eigenvalues are easy to calculate. Let d1 ≤ d2 ≤ · · · ≤ dn
be eigenvalues of the matrix D and u1, u2, . . . , un be corresponding orthonormal
eigenvectors. We partition the index set N = {1, 2, . . . , n} into N+, N o, and N−
corresponding to di > 0, di = 0, and di < 0. Clearly, the direction

d
def
= −sgn(g(k)TL−T v)L−T v(2.3)

with

v ∈ S =

{
v | v =

∑
i∈N−∪No

`iu
i ∀ `i ∈ R

}

satisfies

dTBkd = vTDv =
∑

i∈N−∪No
di`

2
i ≤ 0.

This shows that d is a direction of negative curvature of Bk. In practice, we are
interested in the directions d with v in the set

C =

 v | v =
∑
i∈N̄

riu
i, N̄ ⊂ N− ∪N 0

 ⊂ S,
where N̄ is a selected index set, ri = r(k)Tui, r(k) def

= LT g(k) =
∑n
i=1 riu

i. For such
directions d we have

g(k)TBkd = −sgn
(
g(k)TL−T v

)
g(k)TLDv = −sgn(g(k)TL−T v)dTBkd.(2.4)

A particular choice for the vector v ∈ C is

v = r1u
1,(2.5)

i.e., N̄ = {1}. For such a vector v, the direction d of (2.3) has a desirable property
given in Lemma 2.1 below, but we first show another property of Bunch–Parlett
factorization.

650 JIANZHONG ZHANG AND CHENGXIAN XU

(iii) Suppose Bk is not positive definite and let µ1 and d1 be the most negative
eigenvalues of Bk and D, respectively. Then the following relations hold:

d1‖L‖2 ≤ µ1 ≤ d1/‖L−1‖2.(2.6)

This property can be proved as follows. Let y be the unit eigenvector of Bk corre-
sponding to the eigenvalue µ1 and set z = LT y. Then

‖z‖ ≤ ‖L‖ · ‖y‖ = ‖L‖
and thus

µ1 = yTBky = yTLDLT y = zTDz ≥ d1‖z‖2 ≥ d1‖L‖2,
which gives the first inequality of (2.6). Let d be given by (2.3) with v of (2.5); then

µ1‖d‖2 ≤ dTBkd = d1r
2
1.(2.7)

Since

r2
1 = ‖v‖2 = ‖LT d‖2 ≥ ‖d‖2

‖L−1‖2 ,(2.8)

we obtain the second inequality of (2.6) by combining (2.7) and (2.8).
Lemma 2.1. Suppose µ1 < 0. If we set v = r1u

1 and define d by (2.3), then

dTBkd ≤ µ1

c22c
2
4

‖d‖2.(2.9)

Proof. From (2.7), (2.8), and the first part of (2.6) we obtain

dTBkd = d1r
2
1 ≤ d1

‖d‖2
‖L−1‖2 ≤

µ1

‖L‖2 · ‖L−1‖2 ‖d‖
2.

Using property (ii) we have (2.9) immediately.
We will see in section 5 that d of (2.3) with v = r1u

1 is an appropriate choice for
a direction of negative curvature.

3. Algorithms. In this section we describe the proposed trust region indefinite
dogleg path algorithm. In each iteration, we shall solve a quadratic minimization
subproblem

min

{
qk(δ) = fk + g(k)T δ +

1

2
δTBkδ | δ ∈ Γ(k), ||δ|| ≤ 4k

}
,(3.1)

where Γ(k) is a dogleg path. Let δ(k) be the solution of the subproblem (3.1). Then
either x(k) + δ(k) is accepted as a new iteration point or the trust region radius is
reduced according to a comparison between the actual reduction of the objective
function

ared(δ(k)) = fk − f(x(k) + δ(k))(3.2)

and the reduction predicted by the quadratic model

pred(δ(k)) = −g(k)T δ(k) − 1

2
δ(k)TBkδ

(k).(3.3)

INDEFINITE DOGLEG METHODS 651

That is, if the reduction in the objective function is satisfactory, then we finish the
current iteration by taking

x(k+1) = x(k) + δ(k)

and adjusting the trust region radius; otherwise the iteration is repeated at point x(k)

with a reduced trust region radius. Now we are ready to state the algorithm.
Algorithm TRIDPM

Step 0. Choose parameters 0 < η1 < η2 < 1, 0 < γ1 < 1 < γ2, 4max > 0; give a
starting point x(0) ∈ Rn and an initial trust region radius 40 < 4max. Set
k = 0.

Step 1. Evaluate fk = f(x(k)), g(k) = 5f(x(k)).
Step 2. Termination test. If the iteration is not terminated, form a symmetric matrix

Bk.
Step 3. Form a dogleg path Γ(k).
Step 4. Determine

δ(k) = arg min{ qk(δ) | δ ∈ Γ(k), ||δ|| ≤ 4k}.

Step 5. Calculate ared(δ(k)), pred(δ(k)) and θk =ared(δ(k))/pred(δ(k)).
Step 6. If θk < η1, then 4k = γ14k and go to Step 4.
Step 7. x(k+1) = x(k) + δ(k) and

4k+1 =

 min{γ24k, 4max} if θk ≥ η2 and ||δ(k)|| = 4k,

4k otherwise.

Step 8. Set k ← k + 1 and then go to Step 1.
The dogleg path Γ(k) in Step 3 can be formulated in the following ways.
1. If B(k) is positive definite, Γ(k) is Powell’s single dogleg path

Γ
(k)
Ps = [x(k), x(k)

cp , x
(k)
np]

or Dennis and Mei’s double dogleg path

Γ
(k)
Md = [x(k), x(k)

cp , x̄
(k)
np , x

(k)
np],

where the point

x(k)
cp

def
= x(k) + δ(k)

cp
def
= x(k) − βkg(k), βk =

g(k)T g(k)

g(k)TBkg(k)
,

is called the Cauchy point, in which δ
(k)
cp is the minimizer of qk(δ) in the steepest

descent direction; the point

x(k)
np

def
= x(k) + δ(k)

np
def
= x(k) −B−1

k g(k)

is called the Newton point, where δ
(k)
np is the global minimizer of qk(δ) in the whole

space Rn; and x̄
(k)
np is a point in the Newton direction:

x̄(k)
np = x(k) − γkδ(k)

np

652 JIANZHONG ZHANG AND CHENGXIAN XU

with γk satisfying the condition

(g(k)T g(k))2

g(k)TBkg(k)g(k)TB−1
k g(k)

≤ γk ≤ 1.

2. If Bk is not positive definite, Γ(k) is an infinite dogleg path, and we give three
choices for the path. Suppose the matrix Bk has been factorized into the form (2.1)
and a direction d of negative curvature has been defined by (2.3) with v ∈ C.

(1) If

ξ‖g(k)‖ · ‖L−T v‖ ≥ g(k)TL−T v > 0(3.4)

and

g(k)TBkg
(k)

|dTBkd| ≥ max

{
ρ
‖g(k)‖2
‖d‖2 ,

‖g(k)‖
‖d‖

(‖g(k)‖
‖d‖ − 2

)}
,(3.5)

in which the two parameters ξ ∈ (1/2, 1) and ρ ∈ (0, 1), then Γ(k) is the path

Γ
(k)
Id1 = [x(k), x(k)

ηp , d),

where

x(k)
ηp

def
= x(k) + δ(k)

ηp , δ(k)
ηp = ηkδ

(k)
cp ,

ηk =
1 + g(k)T d

‖g(k)‖‖d‖

1 + ‖g(k)‖
‖d‖

g(k)TBkd

g(k)TBkg(k)

.

(2) If one of (3.4) and (3.5) does not hold, choose µ > 0 such that

the smallest eigenvalue of Bk + µI ≥ ω′,(3.6)

where ω′ > 0 is a given constant, and such that for all k, µ are uniformly bounded if
all Bk are. That is, if ‖Bk‖ ≤ M2 for a constant M2, then there exists M3 > 0 such
that

‖Bk + µI‖ ≤M3 ∀k.(3.7)

An easy way to produce a µ satisfying (3.6) and (3.7) will be given in section 6. Let

δ
(k)
B = −(Bk + µI)−1g(k).(3.8)

Define

δ(k)
µp = −βµg(k), βµ =

g(k)T g(k)

g(k)T (Bk + µI)g(k)
,

δ
(k)
µB =

‖δ(k)
µp ‖
‖δ(k)
B ‖

δ
(k)
B ,

INDEFINITE DOGLEG METHODS 653

and make the direction d of negative curvature satisfy

dT δ
(k)
B ≥ 0.(3.9)

If

qk(δ(k)
µp) ≤ qk(δ

(k)
µB),(3.10)

then choose the path

Γ
(k)
Id2 = [x(k), x(k)

µp , x
(k)
B , d)

as Γ(k); otherwise Γ(k) is the path

Γ
(k)
Id3 = [x(k), x

(k)
B , d),

where

x(k)
µp = x(k) + δ(k)

µp , x
(k)
B = x(k) + δ

(k)
B .

The following lemma exposes our motivation of selecting the path Γ
(k)
Id1. These

results shall be used in the later convergence analysis.
Lemma 3.1. The ηk defined above has the following properties:
(i)

1− ξ
1 + c2c4/ρ

≤ ηk < 1.(3.11)

(ii) ηk is the solution to the equation

−∇qk(ηδ(k)
cp)T

g(k)

‖g(k)‖ = ∇qk(ηδ(k)
cp)T

d

‖d‖ .

And for ηk < η ≤ 1,

−∇qk(ηδ(k)
cp)T

g(k)

‖g(k)‖ > ∇qk(ηδ(k)
cp)T

d

‖d‖ .

(iii)

qk(ηδ(k)
cp) < qk(ηδ

(k)
d) for η ∈ (0, ηk),(3.12)

where δ
(k)
d = ‖δ(k)

cp ‖d/‖d‖.
Proof. For simplicity, we suppress the superscript and subscript k in all proofs of

the paper.
(i) Condition (3.4) means that

−ξ‖g‖‖d‖ ≤ gT d < 0.

As in this case, (2.4) indicates gTBd = −dTBd ≥ 0, and it is obvious that ηk < 1.
We know that ‖d‖ = ‖L−1v‖ ≤ ‖L−1‖‖v‖. Since

LT g =
n∑
i=1

riu
i,

654 JIANZHONG ZHANG AND CHENGXIAN XU

but by the definition of the set C, the vector v chosen in the algorithm is only a partial
sum of the right side, we know that ‖v‖ ≤ ‖LT g‖, resulting in

‖d‖ ≤ ‖L‖ · ‖L−1‖ · ‖g‖ ≤ c2c4‖g‖.
Therefore, by the condition (3.5),

1 +
‖g‖
‖d‖

gTBd

gTBg
≤ 1 +

1

ρ

‖d‖
‖g‖ ≤ 1 + c2c4/ρ,

which leads to the conclusion ηk ≥ 1−ξ
1+c2c4/ρ

.

(ii) By the definition of function q(δ), it is easy to know that the left side of the
equation is

−∇q(ηδcp)T g

‖g‖ = (η − 1)‖g‖,

while the right side is

∇q(ηδcp)T d

‖d‖ =
1

‖d‖
(
gT d− η‖g‖2 g

TBd

gTBg

)
.

Thus, it is straightforward to obtain the two conclusions.
(iii) We know that

q(ηδcp) = f − η ‖g‖
4

gTBg
+

1

2
η2 ‖g‖4
gTBg

is a convex quadratic polynomial of η, whereas

q(ηδd) = f + η
‖g‖3
gTBg

gT d

‖d‖ +
1

2
η2 ‖g‖6

(gTBg)2

dTBd

‖d‖2

is a concave quadratic polynomial. It is easy to obtain the unique nonzero solution
to the equation q(ηδcp) = q(ηδd), which is

η′k = 2
1 + gT d

‖g‖‖d‖
1 + ‖g‖2

‖d‖2
|dTBd|
gTBg

.

Therefore, when η ∈ (0, η′k),

q(ηδd) > q(ηδcp).

By condition (3.5), we have

1 +
‖g‖2
‖d‖2

|dTBd|
gTBg

< 2

(
1 +
‖g‖
‖d‖

gTBd

gTBg

)
,

which immediately leads to the conclusion η′k > ηk, and hence the proof is complet-
ed.

Notice that as ηk < 1, the path Γ
(k)
Id1 turns its direction at the point x

(k)
ηp , which

is closer to x(k) than the Cauchy point x
(k)
cp , and we can see from the conclusions in

(ii) that more reduction in the value of quadratic function qk(δ) can be achieved by

INDEFINITE DOGLEG METHODS 655

turning the direction of the path at point x
(k)
ηp . The two vectors δ

(k)
µp and δ

(k)
µB have

equal length but the predicted reduction along the first direction is larger, which is
proved in the next lemma.

Lemma 3.2. Under the condition (3.10),

pred(ηδ(k)
µp) ≥ pred(ηδ

(k)
µB) ∀ η ∈ [0, 1].(3.13)

Proof. By the definition of pred(.), (3.13) is equivalent to the condition

q(ηδµB) ≥ q(ηδµp), η ∈ [0, 1].

Notice that the graphs of

q(ηδµB) = f + gT δµBη +
1

2
δTµBBδµBη

2

and

q(ηδµp) = f + gT δµpη +
1

2
δTµpBδµpη

2

are two parabolas intersecting at η = 0. Since

−gT δB = gT (B + µI)−1g < ‖g‖‖δB‖,

their slopes at η = 0 have the relation

gT δµp = −‖δµp‖‖g‖ < ‖δµp‖‖δB‖ g
T δB = gT δµB < 0,

which means that for sufficiently small η > 0, the desired result is true. On the other
hand, condition (3.10) tells us that this inequality also holds at η = 1. As the two
parabolas can have at most one intersecting point when η > 0, we know immediately
that the desired inequality must be true for all η ∈ [0, 1].

As a matter of fact, if only theoretical analysis is concerned, when one of (3.4)
and (3.5) does not hold, we can use ΓId3 only to ensure all convergence properties.
However, by Lemma 3.2, under condition (3.10) it is very likely that along the first
piece of ΓId2 the value of function qk will reduce more quickly than along the first
piece of ΓId3. Thus, so that the algorithm will be more efficient, we use indefinite
path ΓId2 when condition (3.10) holds.

4. Properties of indefinite paths. We want the curvilinear paths formulated
to satisfy the following two properties proposed in [4]; that is, when point x proceeds
from x(k) along the path,

(R1) the distance to x(k) is monotonically increasing, and
(R2) the value of qk(δ) is monotonically decreasing.
These two properties ensure that for any given radius ∆k, a unique solution δ(k)

of problem (3.1) along the path exists and can be found easily. In this section, we

will show that the indefinite paths Γ
(k)
Id1 − Γ

(k)
Id3 indeed satisfy both (R1) and (R2).

Lemma 4.1. Indefinite paths ΓId1, ΓId2, and ΓId3 satisfy both properties (R1)
and (R2).

Proof. As the proofs for the three paths are similar, we give only the proof for
the path ΓId2.

656 JIANZHONG ZHANG AND CHENGXIAN XU

Since

δTµp(δB − δµp) = −βµgT [−(B + µI)−1g + βµg]

= βµ[gT (B + µI)−1g − βµgT g]

= βµ
gT (B + µI)−1g · gT (B + µI)g − (gT g)2

gT (B + µI)g
≥ 0,

and δTBd ≥ 0, it is clear that path ΓId2 satisfies property (R1).
The function q(δ) is obviously decreasing along the first piece of ΓId2. In fact,

if gTBg > 0, then δcp is the minimizer of q(δ) in the steepest descent direction −g,
and since ‖δµp‖ ≤ ‖δcp‖, q(δ) is decreasing before reaching xµp. On the other hand,
if gTBg ≤ 0, then −g is a direction of negative curvature of B and hence q(δ) is
always decreasing along the direction −g. Now let x(λ) = x + δ(λ), where δ(λ) =
δµp + λ(δB − δµp) and 0 ≤ λ ≤ 1, be a point on the second piece of path ΓId2. Then,
using

gTB(B + µI)−1g = gT g − µgT (B + µI)−1g,(4.1)

gT (B + µI)−1B(B + µI)−1g = gT (B + µI)−1g − µ‖(B + µI)−1g‖2,(4.2)

gTBg = gT (B + µI)g − µgT g,(4.3)

we obtain

∇q(δ(λ))T (δB − δµp)
= [g +B(δµp + λ(δB − δµp))]T (δB − δµp)
= −gT (B + µI)−1g + βµg

T g + βµg
TB(B + µI)−1g − β2

µg
TBg

+ λgT (B + µI)−1B(B + µI)−1g + λβ2
µg
TBg − 2λβµg

TB(B + µI)−1g

= (λ− 1)(1 + µβµ)
gT (B + µI)g · gT (B + µI)−1g − (gT g)2

gT (B + µI)g

+ λµ(δTµpδB − ‖δB‖2)

< 0 ∀λ ∈ (0, 1),

because ‖δµp‖ < ‖δB‖. This shows that q(δ) is monotonically decreasing along the
second piece of ΓId2. Finally, let x(λ) = x + δ(λ), where δ(λ) = δB + λd and λ > 0,
be a point on the third piece of the path ΓId2. Then, using the facts dT δB ≥ 0 and
dTBd ≤ 0, we have

∇q(δ(λ))T d = [g +B(δB + λd)]T d

= gT d+ dTBδB + λdTBd

= gT d− dTB(B + µI)−1g + λdTBd

= −µdT δB + λdTBd

≤ 0.

Hence, q(δ) is also monotonically decreasing along the third piece of ΓId2. This
completes the proof.

5. Convergence properties. We now analyze the convergence properties of
Algorithm TRIDPM. The following assumptions are often used in this section.

AS1. f(x) is twice continuously differentiable and bounded below.

INDEFINITE DOGLEG METHODS 657

AS2. ‖∇2f(x)‖ ≤ M1 in the level set L(x(0))
def
= { x | f(x) ≤ f(x(0))}, where M1

is a constant.
AS3. 52f(x) is Lipschitz continuous over L(x(0)).

These mild assumptions are commonly used in the convergence analysis of most
optimization algorithms. Shultz, Schnabel, and Byrd [22] presented some general
conditions on the approximate solution δ(k) of problem (1.2) in discussing the conver-
gence properties of trust region-type algorithms. These conditions can be stated as
follows.

C1. There exist ω1, σ1 > 0 such that for all ∆k > 0,

pred(δ(k)) ≥ ‖g(k)‖ min

{
ω1∆k, σ1

‖g(k)‖
‖Bk‖

}
.

If ‖Bk‖ ≤M2, then this condition can be replaced by

pred(δ(k)) ≥ ‖g(k)‖ min

{
ω1∆k, σ1

‖g(k)‖
M2

}
.

C2. There exists ω2 > 0 such that for all ∆k > 0,

pred(δ(k)) ≥ −ω2µ1∆2
k,

where µ1 is the smallest eigenvalue of Bk.
C3. If Bk is positive definite and ‖B−1

k g(k)‖ ≤ ∆k, then

δ(k) = −B−1
k g(k).

Let a trust region algorithm be applied to minimize a function f(x) satisfying the
assumptions AS1 and AS2. It is shown in [22] that

1. If the approximate solution δ(k) generated by the trust region algorithm sat-
isfies condition C1 and ‖Bk‖ ≤M2 for all k, then g(k) converges to 0, where
M2 is a constant.

2. If Bk = ∇2f(x(k)) and δ(k) satisfies conditions C1 and C2, then ∇2f(x) is
positive semidefinite at the accumulation points of the sequence {x(k)}.

3. If Bk = ∇2f(x(k)), δ(k) satisfies conditions C1 and C3, assumption AS3 holds,
and ∇2f(x) is positive definite at limit x∗ of the sequence {x(k)}, then x(k)

converges to x∗ at a quadratic rate.
It follows from our choice of dogleg paths in the case of positive definite matrix

B(k) that condition C3 is obviously satisfied for Algorithm TRIDPM and the algo-
rithm is quadratically convergent if Bk = ∇2f(x(k)) and x(k) converges to x∗, where
∇2f(x∗) is positive definite. Thus, in the following, we prove only that the solution
δ(k) obtained at Step 4 of Algorithm TRIDPM satisfies conditions C1 and C2.

Lemma 5.1. If ‖Bk‖ ≤M2, then the solution δ at Step 4 of Algorithm TRIDPM
satisfies condition C1 with

ω1 =
1

2
min

{
1,

ω′

M

}
, σ1 =

1− ξ
2(1 + c2c4/ρ)

,(5.1)

where ω′, ρ, and ξ are constants given in (3.6), (3.4), and (3.5), and M = max{M2,M3}
with M3 given in (3.7).

Proof. For δ on paths ΓPs and ΓMd it is known that

pred(δ) ≥ 1

2
‖g‖ min

{
∆,
‖g‖
‖B‖

}
.(5.2)

658 JIANZHONG ZHANG AND CHENGXIAN XU

For δ on path ΓId1, if ‖δηp‖ ≥ ∆, then δ = −∆g/‖g‖. As in this case, ∆ ≤
‖δcp‖ = ‖g‖3

gTBg
, it is easy to obtain

pred(δ) ≥ 1

2
∆‖g‖.(5.3)

If ‖δηp‖ < ∆, then δ = δηp+λd for some λ > 0 and it follows from property (R2) and
(3.11) that

pred(δ) ≥ pred(δηp) = η
(

1− η

2

) (gT g)2

gTBg
≥ 1

2

1− ξ
(1 + c2c4/ρ)

‖g‖2
‖B‖ .

Thus, for δ on path ΓId1, we have

pred(δ) ≥ 1

2
‖g‖ min

{
∆,

1− ξ
1 + c2c4/ρ

‖g‖
M

}
.(5.4)

For δ on path ΓId2, if ‖δµp‖ ≥ ∆, then δ = −∆g/‖g‖ and (5.3) holds. If ‖δµp‖ <
∆, using the property (R2) and (4.3) and (3.7), we obtain

pred(δ) ≥ pred(δµp) = −gT δµp − 1

2
δTµpBδµp

=
1

2

(gT g)2

gT (B + µI)g
+

1

2
µ

(gT g)3

(gT (B + µI)g)2

≥ 1

2

‖g‖2
‖B + µI‖ ≥

1

2

‖g‖2
M

.

Thus, for δ on path ΓId2, we have

pred(δ) ≥ 1

2
‖g‖ min

{
∆,
‖g‖
M

}
.(5.5)

For δ on path ΓId3, if ‖δB‖ ≥ ∆, then there exists a λ ∈ (0, 1] such that δ = λδB
and ‖λδB‖ = ∆. We then obtain, using (4.2),

pred(δ) = λ

(
1− λ

2

)
gT (B + µI)−1g +

1

2
µ∆2

≥ λ
(

1− λ

2

) ‖g‖2
‖B + µI‖ .

Using the fact

‖δB‖ ≤ ‖(B + µI)−1‖ · ‖g‖ =
K(B + µI)

‖B + µI‖ ‖g‖,(5.6)

it is immediate to obtain

pred(δ) ≥ 1

2
‖g‖ λ‖δB‖
K(B + µI)

=
1

2
‖g‖ ∆

K(B + µI)
,

where K(·) is the condition number of a matrix. It follows from (3.6) and (3.7) that

K(B + µI) = ‖B + µI‖ · ‖(B + µI)−1‖ ≤ M

ω′
.(5.7)

INDEFINITE DOGLEG METHODS 659

Therefore,

pred(δ) ≥ 1

2

ω′

M
‖g‖∆.

If ‖δB‖ ≤ ∆, then δ = δB + λd for λ > 0. Using (R2), (4.2), and (3.7) we have

pred(δ) ≥ pred(δB) = −gT δB − 1

2
δTBBδB

=
1

2
gT (B + µI)−1g +

1

2
µ‖δB‖2

≥ 1

2

‖g‖2
‖B + µI‖ ≥

1

2

‖g‖2
M

.

Thus, for δ on path ΓId3, we have

pred(δ) ≥ 1

2
‖g‖ min

{
ω′

M
∆,
‖g‖
M

}
.(5.8)

Combining (5.2), (5.4), (5.5), and (5.8) we obtain C1 with ω1 and σ1 given by (5.1).
This completes the proof.

Based on this lemma the following result can be immediately obtained from The-
orem 2.2 of [22].

Theorem 5.2. Let f(x) satisfy assumptions AS1 and AS2 and assume ‖Bk‖ ≤
M2 for all k. Then the sequence {g(k)} generated by Algorithm TRIDPM converges
to 0 (first-order stationary point convergence). Moreover, if f(x) also satisfies as-
sumption AS3, Bk = ∇2f(x(k)) for all k, and x(k) converges to x∗, where ∇2f(x∗) is
positive definite, then the convergence rate is quadratic.

Now we prove the second-order stationary point convergence of the algorithm;
i.e., if the sequence {x(k)} generated by the algorithm with Bk = ∇2f(x(k)) for all k
converges to x∗, then ∇2f(x∗) is at least positive semidefinite.

Lemma 5.3. The solution δ at Step 4 of Algorithm TRIDPM satisfies condition
C2 with ω2 = c/2 if

dTBd ≤ cµ1‖d‖2(5.9)

holds for the direction d of negative curvature, where c ∈ (0, 1) is a constant and µ1

is the smallest eigenvalue of B.
Notice that according to Lemma 2.1, when the direction d is given by (2.3) with

v = r1u
1, the condition (5.9) holds.

Proof. Since condition C2 is clearly satisfied when the matrixB is positive definite,
we consider only the case of indefinite B.

For δ on path ΓId1, if ‖δηp‖ ≥ ∆, then δ = λδcp, 0 < λ ≤ η, ‖λδcp‖ = ∆, and it
follows from (3.12) and (5.9) that

pred(δ) = pred(λδcp) ≥ pred(λδd)

= −λβ ‖g‖‖d‖g
T d− 1

2
λ2β2 ‖g‖2

‖d‖2 d
TBd

≥ −1

2
λ2β2‖g‖2 d

TBd

dT d
≥ −1

2
cµ1∆2,

660 JIANZHONG ZHANG AND CHENGXIAN XU

where δd = ‖δcp‖d/‖d‖. If ‖δηp‖ < ∆, then δ = δηp + λd for λ > 0, and ‖δ‖ = ∆,
leading to

pred(δ) = −gT (δηp + λd)− 1

2
(δηp + λd)TB(δηp + λd)

= η
(

1− η

2

) (gT g)2

gTBg
− λgT d+ ληβgTBd− 1

2
λ2dTBd

≥ η
(

1− η

2

) (gT g)2

gTBg
− λgT d+ ληβgTBd− 1

2
cµ1‖λd‖2,

‖λd‖2 = −η2β2gT g + 2ηλβgT d+ ∆2.

Thus, we have

pred(δ) ≥ η
(

1− 1

2
η +

1

2
cµ1βη

)
(gT g)2

gTBg
− λ(1 + cµ1βη)gT d

+ληβgTBd− 1

2
cµ1∆2.

From (3.11), (5.9), and (3.4) we obtain

1 + cµ1βη ≥ 1 + cµ1β ≥ 0,

1− 1

2
η +

1

2
cµ1βη ≥ 1

2
(1 + cµ1βη) ≥ 0.

Using conditions gTBd ≥ 0 and −gT d > 0 in the case of path ΓId1, we have

pred(δ) ≥ −1

2
cµ1∆2.

Thus for δ on path ΓId1, we always have

pred(δ) ≥ −1

2
cµ1∆2.(5.10)

For δ on path ΓId2, if ‖δµp‖ ≥ ∆, then δ = −∆g/‖g‖. Denote δ̂ = ∆δB/‖δB‖.
Then it follows from Lemma 3.2, ‖δµp‖ < ‖δB‖, and the choice of µ that

pred(δ) ≥ pred(δ̂) = − gT δ̂ − 1

2
δ̂TBδ̂

=
∆

‖δB‖g
T (B + µI)−1g − 1

2

∆2

‖δB‖2 [gT (B + µI)−1g − µ‖δB‖2]

=
∆

‖δB‖
(

1− 1

2

∆

‖δB‖
)
gT (B + µI)−1g +

1

2
µ∆2

≥ −1

2
µ1∆2.(5.11)

If ‖δµp‖ < ∆ ≤ ‖δB‖, then δ = (1− λ)δµp + λδB for a λ ∈ (0, 1] and ‖δ‖ = ∆. Using
(4.1)–(4.3) we obtain

pred(δ) = −gT [(1− λ)δµp + λδB]− 1

2
[(1− λ)δµp + λδB]TB[(1− λ)δµp + λδB]

= (1− λ)βµg
T g + λgT (B + µI)−1g − 1

2
(1− λ)2β2

µg
TBg

INDEFINITE DOGLEG METHODS 661

−1

2
λ2gT (B + µI)−1B(B + µI)−1g − λ(1− λ)βµg

TB(B + µI)−1g

= (1− λ)βµg
T g + λgT (B + µI)−1g − 1

2
(1− λ)2βµg

T g

+
1

2
(1− λ)2β2

µµg
T g − 1

2
λ2gT (B + µI)−1g +

1

2
λ2µ‖δB‖2

−λ(1− λ)βµg
T g + µλ(1− λ)βµg

T (B + µI)−1g

=

[
1− λ− 1

2
(1− λ)2 − λ(1− λ)

]
βµg

T g + λ

(
1− 1

2
λ

)
gT (B + µI)−1g

+
1

2
µ[(1− λ)2‖δµp‖2 + λ2‖δB‖2 + 2λ(1− λ)δTµpδB]

=
1

2
(1− λ)2βµg

T g + λ

(
1− 1

2
λ

)
gT (B + µI)−1g +

1

2
µ‖δ‖2

≥ 1

2
µ∆2 ≥ −1

2
µ1∆2.

If ‖δB‖ < ∆, then δ = δB + λd for λ > 0, and ‖δ|| = ∆. It has been proved in [22]
that in this case,

pred(δ) ≥ −1

2
cµ1∆2.(5.12)

Thus for δ on path ΓId2 we have

pred(δ) ≥ −1

2
cµ1∆2.(5.13)

Finally, for δ on path ΓId3, it comes directly from (5.11) for the case ‖δB‖ ≥ ∆

(because in this case the solution δ = δ̂) and from (5.12) for the case ‖δB‖ < ∆ that
(5.13) holds. Therefore, the result of the lemma comes from (5.10) and (5.13). This
completes the proof.

Based on this lemma, we can immediately obtain, from Theorem 2.2 of [22], the
following second-order stationary point convergence result.

Theorem 5.4. Suppose that f(x) satisfies assumptions AS1 and AS2 and that
Algorithm TRIDPM with Bk = ∇2f(x(k)) for all k is applied to f(x). If the generated
sequence {x(k)} converges to x∗, then ∇2f(x∗) is at least positive semidefinite.

6. Numerical results. In this section we present numerical results for Algo-
rithm TRIDPM. The matrix Bk is evaluated from exact Hessians of test functions
and the Bunch–Parlett factorization [6] is employed to factorize Bk. If Bk is positive
definite, Powell’s single dogleg path is used; if Bk is not positive definite, a nega-
tive curvature direction d will be generated by formula (2.3) with v given in (2.5). As
shown in Lemma 2.1, such a direction d satisfies condition (2.9). Then one of the three
indefinite dogleg paths is selected, depending on the conditions given in section 3.

Notice that in order to obtain a µ = µ(k) which satisfies (3.6) and (3.7), we do not
need to calculate the smallest eigenvalue µ1. Suppose B(k) = {bij} (i, j = 1, . . . , n),
and for i = 1, . . . , n, calculate

ci =
∑
j 6=i
|bij |+ 0.05− bii.

Then we just take µ(k) as

µ(k) = max{0, c1, . . . , cn}.

662 JIANZHONG ZHANG AND CHENGXIAN XU

The rationality of this choice is that such µ(k) must satisfy

µ(k) + bii ≥
∑
j 6=i
|bij |+ 0.05, i = 1, . . . , n,

so that B(k) + µ(k)I is diagonally dominant. Since this matrix is real symmetric, all
its eigenvalues are real numbers. Using the Gerschgorin theorem, we know that the
smallest eigenvalue of B(k) +µ(k)I is no less than 0.05; i.e., (3.6) holds with ω′ = 0.05.
Also, it is easy to see that {µ(k)} must be uniformly bounded if {B(k)} is.

The experiments are carried out in Fortran routines with single precision. The
parameter values set in the program are η1 = 0.001, η2 = 0.75, γ1 = 0.1, γ2 =
2, ∆0 =max{2, ‖x(0)‖/10}, and ∆max = 10∆0. The values ξ=0.8 and ρ = 0.1 are
used in conditions (3.4) and (3.5). The convergence criterion

‖g(k)‖ ≤ 10−5 or f(x(k))− f(x(k+1)) ≤ 10−6max{1.0, |f(x(k))|}

is used for the termination test; that is, when one of the two conditions is satisfied,
computation stops. We also set a maximum iteration number, 500, to terminate
calculation when this number is reached, but this type of termination did not occur
in our experiments.

The first experiment is carried out on 14 standard unconstrained optimization
test problems from Moré, Garbow, and Hillstrom [17]. The top half of Table 6.4 lists
the problem numbers and names and the numbers in [17] for these functions. In [7],
Byrd, Schnabel, and Shultz employed these problems to test their algorithm, which
finds the solution of problem (1.7) as an approximate solution of problem (1.2). Their
results show that their two-dimensional approximate method works as well as the
more expensive exact full-dimensional minimization methods. We quote their results
in Table 6.1 to show that the proposed indefinite dogleg path algorithm in this paper
works as well as their algorithm. We tested all the problems Byrd, Schnabel, and
Shultz reported in [7] except for the Watson problem (problem (20) in [17]), because
the starting point for this problem is not clear.

Table 6.1 contains the results for this experiment, where IDSFA stands for Byrd,
Schnabel, and Shultz’s algorithm and TRIDPM for the algorithm proposed in this
paper. ITR, NF, and NBF are the numbers of iterations, function evaluations, and
matrix factorizations, respectively, needed to reach termination in the algorithms.
NID stands for the number of indefinite matrices Bk that appeared in the iterations
of Algorithm TRIDPM.

The results show that the behavior of the proposed indefinite dogleg path al-
gorithm is as good as that of the IDSFA algorithm. While computing, most time
is spent on matrix factorization. The average number of matrix factorizations per
iteration, performed by the proposed algorithm on the Hessian matrices, in this ex-
periment is 1.016, and the average number of factorizations on indefinite matrices is
1.105, whereas the two average numbers of factorizations performed by the IDSFA
algorithm for the same set of test problems are 1.05 and 1.14, respectively. While the
performances of the two methods for most test problems are comparable, the method
TRIDPM is much better than the method IDSFA in solving Problems 5 and 6. It
can be seen from Table 6.1 that all matrices obtained in using TRIDPM are positive
definite. From our computational experiences, getting into a region where the Hessian
matrices or their approximations are indefinite may delay convergence. As there is no
corresponding information provided in [7], we do not know if the main cause for this

INDEFINITE DOGLEG METHODS 663

Table 6.1
Numerical results for small-scale problems.

10kx(0) TRIDPM IDSFA
Prob. no. n k ITR NF NBF NID ITR NF NBF

1 3 0 9 11 9 3 10 12 12
1 17 19 17 3 15 19 16
2 18 22 18 0 16 20 16

2 6 0 48 59 48 29 47 63 51
3 3 0 2 3 2 0 2 3 2
4 10 0 14 15 14 0 14 15 14

1 16 17 16 0 17 18 17
2 23 24 23 7 23 24 23

5 10 0 14 15 14 0 31 43 31
1 19 20 19 0 36 48 36
2 28 29 28 0 43 57 43

6 4 0 6 7 6 0 75 100 75
1 12 13 12 0 85 115 85
2 18 19 18 0 83 112 83

6 10 0 10 11 10 0 92 123 92
1 17 18 17 0 97 129 97
2 23 24 23 0 105 139 105

7 4 0 9 10 9 0 8 9 8
1 14 15 14 0 14 15 14
2 20 21 20 0 20 21 20

8 3 0 26 29 26 8 25 29 25
9 10 0 11 15 12 6 9 12 9

1 17 20 18 4 17 22 18
2 12 13 15 3 14 15 14

10 2 0 26 32 28 3 22 27 22
1 49 58 51 2 43 55 43
2 120 139 120 1 110 146 110

11 4 0 13 14 13 0 15 16 15
1 19 20 19 0 20 21 20
2 25 26 25 0 26 27 26

12 2 0 8 10 8 3 9 11 11
1 50 60 50 22 57 74 60

13 4 0 44 51 47 7 40 51 42
1 51 57 53 7 45 59 47
2 57 64 59 7 53 67 55

14 7 0 8 12 8 5 7 9 9
14 8 0 14 20 14 8 12 16 15
14 9 0 14 19 14 9 9 12 14
14 10 0 11 15 11 5 10 14 13

difference is that the moving trajectories of their method for these two test problems
entered such a region.

The second experiment we conducted tests the performance of Algorithm TRIDPM
for solving middle- and large-scale unconstrained problems. The test is carried out
on 18 test functions quoted from [1], [15], [17], [19], [21], and [24]. The bottom half
of Table 6.4 lists the problem numbers, names, and their references. The detailed
information on these problems can be found in the corresponding references. We have
not used any sparse technique for the matrix factorization. The experiment is only
to show that the proposed indefinite dogleg path algorithm can also effectively solve
middle- and large-scale optimization problems. Table 6.2 contains the results of this
set of tests. The average number of matrix factorizations performed for this set of
tests is 1.01, and the average number of factorizations for indefinite matrices is 1.02.

After we finished the preparation of this paper, Conn, Gould, and Toint [9] re-

664 JIANZHONG ZHANG AND CHENGXIAN XU

Table 6.2
Numerical results for middle- and large-scale problems.

Prob. no. n ITR NF NBF NID Prob. no. n ITR NF NBF NID
1 25 19 23 19 6 12 200 15 16 15 0

50 25 30 25 15 500 15 16 15 0
2 50 7 8 7 0 1000 16 17 16 0
3 50 45 46 45 0 13 200 25 26 25 0
4 48 174 211 174 132 500 28 29 28 0

100 347 418 347 302 1000 31 32 31 0
5 50 24 28 24 0 14 200 5 6 5 0

100 17 18 17 0 500 5 6 5 0
6 50 13 17 13 9 1000 5 6 5 0

100 22 26 22 19 15 200 7 8 7 0
7 50 16 22 19 3 500 8 9 8 0

100 45 54 48 36 1000 8 9 8 0
8 100 117 142 118 64 16 200 6 7 6 0

200 233 284 233 142 500 8 9 8 0
9 100 19 20 19 8 1000 7 8 7 0

200 22 23 22 13 17 200 56 67 59 22
10 100 6 7 6 0 500 89 107 93 30

200 6 7 6 0 1000 109 129 111 36
500 6 7 6 0 18 200 29 34 32 19

11 100 21 24 21 0 500 25 28 25 17
200 29 35 29 3 1000 48 56 51 38
500 27 32 27 2

Table 6.3
Numbers of iterations of NOPRC and TRIDMP on large-scale problems.

Prob. no. n NOPRC TRIDMP Prob. no. n NOPRC TRIDMP
1 25 52 19 13 500 56 28

50 78 25 1000 55 31
2 50 8 7 14 500 5 5
3 50 38 45 1000 5 5
4 100 18 347 15 500 10 8
5 100 25 17 1000 13 8
10 100 10 6 16 500 (81) 8

500 10 6 1000 (136) 7
12 500 15 15 18 500 4 25

1000 15 16 1000 4 48

ported the results of their numerical experiments with the LANCELOT package (re-
lease A) on a variety of large-scale unconstrained and constrained optimization prob-
lems. The purpose of their paper is to draw some conclusions on the respective merits
of various variants of the algorithm in the LANCELOT package. The aim of the
package is to find minimizers of smooth nonlinear functions with equality and sim-
ple bound constraints using an augmented Lagrangian approach. For unconstrained
optimization, the algorithm reduces to a trust region–type method in which trust
region subproblems are approximately solved using line search techniques; see [9] for
a description of the algorithm. Variants of the algorithm are provided in the package,
depending on different ways to generate gradients and Hessians of problem functions,
use of scaling techniques, choices of different preconditioners, and direct or iterative
solutions of the systems of linear equations in determining search directions.

From these variants we choose the variant NOPRC to compare with our algorithm
because they both use exact gradient and Hessian evaluations but do not adopt scaling
and preconditioning techniques, and therefore the comparison seems more reasonable.

INDEFINITE DOGLEG METHODS 665

Table 6.4
Lists of test problems.

Small-scale problems
Prob. no. Name of prob. No. in [17]
1 Helical Valley Func. 7
2 Biggs EXP6 Func. 18
3 Gaussian Func. 9
4 Variably Dimension Func. 25
5 Penalty Func. I 23
6 Penalty Func. II 24
7 Brown and Dennis Func. 16
8 Gulf research Func. 11
9 Trigonometric Func. 26
10 Extended Rosenbrock Func. 21
11 Extended Powell Singular Func. 22
12 Beal Func. 5
13 Wood Func. 14
14 Chebyquad Func. 35

Middle- and large-scale problems
Prob. no. Name of prob. Source
1 Chained Rosenbrock Func. 3.3 of [24]
2 Operation Research GOR 3.1 of [24]
3 Pseudo Penalty Func. 3.2 of [24]
4 Penalty Func. II 24 of [17]
5 Extended Woods Func. 14 of [17]
6 Trigonometric Func. 26 of [17]
7 Allgower Func. 2 of [15]
8 Generalized Rosenbrock Func. 4 of [19]
9 Zakharov Func. 305 of [21]
10 Extended Freudenstein and Roth 2 of [17]
11 Extended Rosenbrock Func. 21 of [17]
12 Extended Powell Singular Func. 22 of [17]
13 Penalty function I 23 of [17]
14 Broyden Tridiagonal Func. 6 of [1]
15 Broyden Banded Func. 7 of [1]
16 Broyden Seven Diagonal Func. 3.4 of [1]
17 Nearly Separable Func. 9 of [1]
18 Tridiagonal Func. 10 of [1]

Most test problems in our second set, except Problems 6–9 and 11, are also tested in
[10], but only the numbers of iterations are listed for both and hence can be compared.

In Table 6.3 we list the numbers of iterations for all common test problems re-
ported in both [10] for the variant NOPRC and Table 6.2 of this paper for Algorithm
TRIDMP. The problem numbers in Table 6.3 are the same as in Table 6.2, and the
parentheses around numbers indicate that the corresponding algorithm terminates
at a different minimizer. From Table 6.3 we see that the performances of the two
algorithms are comparable as the variant NOPRC is better for some problems (see
Problems 4 and 18) while the algorithm TRIDMP is better for some other problems
(for example, Problems 1, 13, and 16). It seems that Problem 4 has some irregular
region(s) where the computation can make very little progress in each iteration, and
our running of Algorithm TRIDMP enters such a region. However, it is very interest-
ing that when we run the algorithm again by changing the value of the parameter γ2

from 2 to 5 while maintaining other data, the number of iterations decreases drasti-
cally from 347 to 17. A possible reason for the improvement is that, with larger trust
region radii, the iterative points can leave the troublesome region(s) more quickly.

The results obtained in our experiments show that the proposed indefinite dogleg

666 JIANZHONG ZHANG AND CHENGXIAN XU

path algorithm is easy to implement and very efficient for unconstrained optimization.
This indefinite dogleg method has been successfully used as the main subproblem
solver in several optimization problems. For example, in [8], Chen, Deng, and Zhang
considered a partial update inexact Newton method for solving unary optimization
problems by taking advantage of the special structure of the Hessian matrices of unary
functions. As the approximate Hessian may not be positive definite, the method
proposed in this paper was employed to solve their trust region subproblems. The
numerical performance was very encouraging and improved the computational results
of [13] remarkably.

Acknowledgments. The authors wish to express their sincere thanks to the
referees for their constructive comments.

REFERENCES

[1] Y. Bing and G. Lin, An efficient implementation of Merrill’s method for sparse or partially
separable systems of nonlinear equations, SIAM J. Optim., 1 (1981), pp. 206–221.

[2] J. P. Bulteau and J. Ph. Vial, Unconstrained Optimization by Approximation of a Projected
Gradient Path, Research Report 8352, Center for Operations Research and Econometrics,
Université Catholique de Louvain, Belgium, 1983.

[3] J. P. Bulteau and J. Ph. Vial, A restricted trust region algorithm for unconstrained opti-
mization, J. Optim. Theory Appl., 47 (1985), pp. 413–434.

[4] J. P. Buleau and J. Ph. Vial, Curvilinear path and trust region in unconstrained optimization,
a convergence analysis, Math. Programming Stud., 30 (1987), pp. 82–101.

[5] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric indefinite systems of
linear equations, SIAM J. Numer. Anal., 8 (1971), pp. 639–655.

[6] J. R. Bunch, L. Kaufman, and B. N. Parlett, Decomposition of a symmetric matrix, Nu-
mer. Math., 27 (1976), pp. 95–109.

[7] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Approximate solution of the trust region
problem by minimization over two-dimensional subspaces, Math. Programming, 40 (1988),
pp. 247–263.

[8] L. Chen, N. Deng, and J. Zhang, Modified partial-update Newton type algorithms for unary
optimization, J. Optim. Theory Appl., 97 (1998), pp. 385–406.

[9] A. R. Conn, N. Gould, and Ph. L. Toint, Numerical experiments with the LANCELOT
package (release A) for large-scale nonlinear optimization, Math. Programming, 73 (1996),
pp. 73–110.

[10] A. R. Conn, N. Gould, and Ph. L. Toint, Intensive numerical tests with LANCELOT (re-
lease A): The complete results, Tech. Report 92/15, Department of Mathematics, FUNDP,
Namur, Belgium, 1992.

[11] J. E. Dennis and H. H. W. Mei, Two new unconstrained optimization algorithms which use
function and gradient values, J. Optim. Theory Appl., 28 (1979), pp. 453–482.

[12] R. Fletcher, Practical Methods of Optimization, Unconstrained Optimization, Vol. 1, John
Wiley, New York, 1980.

[13] D. Goldfarb and S. Wang, Partial-update Newton methods for unary, factorable, and par-
tially separable optimization, SIAM J. Optim., 3 (1993), pp. 382–397.

[14] M. D. Hebden, An Algorithm for Minimization Using Exact Second Derivatives, Atomic En-
ergy Research Establishment Report TP515, Harwell, England, 1973.

[15] M. Kojima and Y. Yamamoto, A unified approach to the implementation of several fixed
point algorithms and a new variable dimension algorithm, Math. Programming, 28 (1984),
pp. 288–328.

[16] J. J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, Lecture Notes
in Math. 630, G. A. Watson, ed., Springer-Verlag, Berlin, Heidelberg, New York, 1978,
pp. 105–116.

[17] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-
ware, ACM Trans. Math. Software, 7 (1981), pp. 17–41.

[18] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,
4 (1983), pp. 553–572.

[19] S. G. Nash, Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal., 21
(1984), pp. 770–788.

INDEFINITE DOGLEG METHODS 667

[20] M. J. D. Powell, A hybrid method for nonlinear equations, in Numerical Methods for Non-
linear Algebraic Equations, Ph. Rabonowitz, ed., Gordon and Breach, New York, 1970,
pp. 87–114.

[21] K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in
Econom. and Math. Systems, 282, Springer-Verlag, New York, New York, 1987.

[22] G. A. Shultz, R. B. Schnabel, and R. H. Byrd, A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties, SIAM J. Numer.
Anal., 22 (1985), pp. 47–67.

[23] D. C. Sorensen, Newton’s method with a model trust region modification, SIAM J. Numer.
Anal., 19 (1982), pp. 409–426.

[24] Ph. L. Toint, Some numerical results using a sparse matrix updating formula in unconstrained
optimization, Math. Comp., 32 (1978), pp. 839–851.

PROXIMAL DECOMPOSITION VIA ALTERNATING
LINEARIZATION∗

KRZYSZTOF C. KIWIEL† , CHARLES H. ROSA‡ , AND ANDRZEJ RUSZCZYŃSKI§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 668–689

Abstract. A new approximate proximal point method for minimizing the sum of two convex
functions is introduced. It replaces the original problem by a sequence of regularized subproblems
in which the functions are alternately represented by linear models. The method updates the linear
models and the prox center, as well as the prox coefficient. It is monotone in terms of the objective
values and converges to a solution of the problem, if any. A dual version of the method is derived and
analyzed. Applications of the methods to multistage stochastic programming problems are discussed
and preliminary numerical experience is presented.

Key words. convex programming, large scale optimization, decomposition, proximal point
methods, augmented Lagrangians, stochastic programming

AMS subject classifications. Primary, 65K05; Secondary, 90C25, 90C06, 90C15

PII. S1052623495288064

1. Introduction. We present a method for solving structured convex optimiza-
tion problems of the form

minimize F (x) := h(x) + f(x),(1.1)

where h : Rn → (−∞,+∞] and f : Rn → R are closed proper convex functions.
Our method is an approximate version of the proximal point algorithm [Mar70,

Roc76b] which generates a sequence

xk+1 = arg minx F (x) + 1
2ρk|x− xk|2 for k = 1, 2, . . . ,(1.2)

starting from any point x1 ∈ Rn, where | · | is the Euclidean norm and {ρk} is a
sequence of positive numbers. To implement the iteration (1.2) approximately, our
method employs a sequence of subproblems of the form

minx h(x) + f̃k(x) + 1
2ρk|x− xk|2(1.3)

and

minx h̃k(x) + f(x) + 1
2ρk|x− xk|2,(1.4)

where f̃k and h̃k are linear models of f and h, respectively. This is the reason for
naming our approach the alternating linearization method.

Our method makes it possible to exploit structural properties of h and f sep-
arately, which may be useful in many applications. Let us mention two examples,
which will be treated in more detail later.

∗Received by the editors June 22, 1995; accepted for publication (in revised form) May 4, 1998;
published electronically April 19, 1999. This work was supported by the International Institute for
Applied Systems Analysis, Laxenburg, Austria.

http://www.siam.org/journals/siopt/9-3/28806.html
†Systems Research Institute, Newelska 6, 01–447 Warsaw, Poland (kiwiel@ibspan.waw.pl).
‡Sabre Decision Technologies, 1 East Kirkwood Boulevard, Southlake, TX 76092

(rosa@sabre.com).
§Department of Management Science and Information Systems, Rutgers University, 94 Rockafeller

Road, Piscataway, NJ 08854 (rusz@everest.rutgers.edu).

668

ALTERNATING LINEARIZATION 669

Example 1.1. Consider the separable problem with linking constraints:

min

N∑
j=1

ψj(xj) s.t.
N∑
j=1

Ajxj = b,

where ψj : Rnj → (−∞,+∞] are closed proper convex functions and Aj are m × nj
matrices, j = 1, . . . , N . Application of the multiplier method [Ber82, Hes69, Pow69,
Roc76a] leads to subproblems of minimizing the augmented Lagrangian:

min
x

N∑
j=1

(ψj(xj)− 〈λ,Ajxj〉) + 〈λ, b〉+ 1
2ρ|Ax− b|2,

where λ ∈ Rm is the current vector of Lagrange multipliers, ρ > 0 is a penalty
coefficient, x = (x1, . . . , xN), and A = [A1 · · · An]. This problem has the form (1.1)
with f(x) = 1

2ρ|Ax−b|2, in which (1.3) is decomposable into independent subproblems
for each j = 1, . . . , N , while (1.4) is just a least squares problem.

Example 1.2. Let us now consider the decomposable problem with linking vari-
ables:

min
y
ϕ(y) +

N∑
j=1

ψj(y)

with closed proper convex functions ϕ : Rn → (−∞,+∞] and ψj : Rn → (−∞,+∞],
j = 1, . . . , N . Splitting variables and dualization [BeT89, p. 231] lead to the problem

min
x

N∑
j=1

ψ∗j (xj) + ϕ∗
(
−
∑N

j=1
xj

)
,

where ϕ∗ and ψ∗j are the conjugates of ϕ and ψj and xj ∈ Rn, j = 1, . . . , N , are
dual variables. This dual problem has the form (1.1), in which (1.3) decomposes into
independent subproblems for j = 1, . . . , N . All these subproblems and (1.4) are much
easier to solve than the original formulation.

The general objective of our work has been pursued by many researchers; in
particular, the well-known operator splitting methods should be mentioned here (see
[Eck94, EcB92, EcF97, MOT95, MaT93, Spi85, Tse91, Tse90]). Their dual versions
are known as alternating direction methods [BeT89, EcB92, EcF94, Fuk92, Gab83,
KDLM96]. Other related recent research is described in [ChT94, FHN+96, Tse97].

Our approach, although having parallel objectives, is fundamentally different.
Contrary to earlier works, our method is monotone in terms of the values of the
objective F = h+ f . To achieve this, we employ two different types of updates of the
models in (1.3) and (1.4). The first update changes only the approximations f̃k and
h̃k, while keeping xk fixed; the second one updates xk as well. In this way we ensure
that F (xk+1) < F (xk) whenever xk is changed. We also allow changes in the value of
the penalty coefficient ρk. On the other hand, our method is less general than some
other ones because it requires that f be finite-valued; this, however, does not seem to
limit its usefulness, at least in the applications that are of interest to us.

In section 2 we present the main idea of the method: approximate implementation
of the proximal step by using alternating linearizations. In section 3 this idea is used
within a descent algorithm for minimizing F . Its convergence is proved in section
4. The dual version of the method is described in section 5. In section 6 we discuss
applications to stochastic programming. Preliminary computational experience is
reported in section 7.

670 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

2. Proximal step by alternating linearization. Let us first describe and
analyze an algorithm that employs subproblems (1.3) and (1.4) for finding an approx-
imation to the proximal point

p(x̄) = arg minx h(x) + f(x) + 1
2ρ|x− x̄|2,(2.1)

where x̄ ∈ Rn and ρ > 0 are fixed.
Algorithm 2.1.
Step 0: Choose z0

f ∈ Rn and g0
f ∈ ∂f(z0

f). Define f̃1(·) = f(z0
f) + 〈g0

f , · − z0
f 〉.

Set k = 1.
Step 1: Find the solution zkh of the following h-subproblem:

minx h(x) + f̃k(x) + 1
2ρ|x− x̄|2.(2.2)

Set

gkh = −gk−1
f − ρ(zkh − x̄)(2.3)

and define

h̃k(·) = h(zkh) + 〈gkh, · − zkh〉.(2.4)

Step 2: Find the solution zkf of the following f -subproblem:

minx h̃k(x) + f(x) + 1
2ρ|x− x̄|2.(2.5)

Set

gkf = −gkh − ρ(zkf − x̄)(2.6)

and define

f̃k+1(·) = f(zkf) + 〈gkf , · − zkf 〉.(2.7)

Step 3: Increase k by 1 and go to Step 1.
Our objective is to prove that zkh → p(x̄).
Remark 2.2. The necessary and sufficient condition of optimality for (2.2) has

the form

0 ∈ ∂h(zkh) + gk−1
f + ρ(zkh − x̄),(2.8)

so the vector gkh (cf. (2.3)) is the element of ∂h(zkh) that satisfies this condition. Hence

h̃k ≤ h by the subgradient inequality. Similarly, the vector gkf (cf. (2.6)) is the element

of ∂f(zkf) that satisfies the optimality condition for (2.5): 0 ∈ gkh+∂f(zkf)+ρ(zkf − x̄).

Therefore, f̃k+1 ≤ f and F̃k := h + f̃k is a lower approximation of the objective
F = h+ f .

Let us denote by

ηk = h(zkh) + f̃k(zkh) + 1
2ρ|zkh − x̄|2(2.9)

and

ηk+1/2 = h̃k(zkf) + f(zkf) + 1
2ρ|zkf − x̄|2

ALTERNATING LINEARIZATION 671

the optimal values of (2.2) and (2.5), respectively. The way in which the successive
linearizations f̃k and h̃k are generated ensures monotonicity of {ηk}:

ηk ≤ ηk+1/2 ≤ ηk+1.(2.10)

Indeed, the change from (2.2) to (2.5) at iteration k can be described in two steps:
(a) replace h(·) by h̃k(·);
(b) replace f̃k(·) by f .

By construction of h̃k (cf. (2.4)), operation (a) does not change the solution and value
of (2.2), since h̃k(zkh) = h(zkh) and the gradient of h̃k is the subgradient of h at zkh
that satisfies (2.8). Thus

ηk = min
x

h̃k(x) + f̃k(x) + 1
2ρ|x− x̄|2.

Operation (b) can only increase the optimal value of the last problem, because f ≥ f̃k,
so ηk+1/2 ≥ ηk. Similarly, replacing f by f̃k+1 does not change the solution and value

of (2.5), because gkf was chosen to satisfy the optimality condition (cf. Remark 2.2)

and f̃k+1(zkf) = f(zkf). Replacing h̃k by h can only increase the optimal value, so
ηk+1 ≥ ηk+1/2.

To estimate the increase from ηk to ηk+1/2 for operation (b), consider the family
of relaxations of (2.5) at iteration k:

min
x
{Qk(x, µ) = h̃k(x) + (1− µ)(αkp + 〈pk, x〉) + µ(αkg + 〈gk, x〉) + 1

2ρ|x− x̄|2 },
(2.11)

where µ ∈ [0, 1], pk = gk−1
f , αkp = f(zk−1

f)− 〈pk, zk−1
f 〉, and αkg = f(zkh)− 〈gk, zkh〉 for

an arbitrary gk = gf (zkh) ∈ ∂f(zkh). Since f̃k(·) = αkp+〈pk, ·〉 and αkg +〈gk, ·〉 are lower
approximations of f , (2.11) is a relaxation of (2.5) for all µ ∈ [0, 1]. For µ = 0 the
solution and value of (2.11) coincide with those of (2.2). Thus, the difference between
the optimal values of (2.5) and (2.2) can be estimated from below by the increase in
the optimal value Q̂k(µ) of (2.11) when µ moves away from zero. Formally,

ηk+1/2 − ηk ≥ max
µ∈[0,1]

Q̂k(µ)− Q̂k(0).

Lemma 2.3. The following inequalities hold for any gk ∈ ∂f(zkh):

(i) maxµ∈[0,1] Q̂k(µ)− Q̂k(0) ≥ Q̂k(µ̄k)− Q̂k(0) ≥ 1
2 µ̄kδk,

(ii) ηk+1 ≥ ηk+1/2 ≥ ηk + 1
2 µ̄kδk,

where δk = F (zkh)− F̃k(zkh) ≥ 0 and µ̄k = min{1, δkρ/|gk − pk|2}.
Proof. Note that δk ≥ 0, since f ≥ f̃k, so µ̄k ∈ [0, 1]. By direct calculation, the

solution of (2.11) has the form x̂(µ) = x̄ − [gkh + pk + µ(gk − pk)]/ρ, so using the

definitions following (2.11) and the fact that x̂(0) = zkh, the derivative of Q̂k can be
expressed as follows:

Q̂′k(µ) = 〈gk − pk, x̂(µ)〉+ αkg − αkp
= 〈gk − pk, x̂(µ)− x̂(0)〉+

[
αkg + 〈gk, x̂(0)〉]− [αkp + 〈pk, x̂(0)〉]

= 〈gk − pk, x̂(µ)− x̂(0)〉+ F (zkh)− F̃k(zkh)

= −µ|gk − pk|2/ρ+ δk.

672 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

Thus

Q̂k(µ̄k)− Q̂k(0) =

∫ µ̄k

0

Q̂′k(µ)dµ = µ̄k
(
δk − 1

2 µ̄k|gk − pk|2/ρ
)
.

Substituting the definition of µ̄k in the expression in the parentheses yields (i). As-
sertion (ii) follows from (i) and (2.10).

Theorem 2.4. The sequences of points {zkh} and approximations {F̃k} generated
by Algorithm 2.1 have the following properties:

(i) |zkh − p(x̄)| ≤
{

[F (zkh)− F̃k(zkh)]/ρ
}1/2

for k = 1, 2,

(ii) limk→∞
[
F (zkh)− F̃k(zkh)

]
= 0.

(iii) limk→∞zkh = p(x̄).

Proof. Since F ≥ F̃k and zkh solves the strongly convex problem (2.2), we have
[Roc76b]

F (p(x̄)) + 1
2ρ|p(x̄)− x̄|2 ≥ F̃k(p(x̄)) + 1

2ρ|p(x̄)− x̄|2
≥ F̃k(zkh) + 1

2ρ|zkh − x̄|2 + 1
2ρ|p(x̄)− zkh|2.(2.12)

Similarly, p(x̄) solves the strongly convex problem in (2.1), so

F (zkh) + 1
2ρ|zkh − x̄|2 ≥ F (p(x̄)) + 1

2ρ|p(x̄)− x̄|2 + 1
2ρ|p(x̄)− zkh|2.

Adding the last two inequalities and simplifying, we get F (zkh)−F̃k(zkh) ≥ ρ|p(x̄)−zkh|2,
which proves assertion (i). Next, (2.12) can be equivalently written as (cf. (2.9))

1
2ρ|p(x̄)− zkh|2 ≤ F (p(x̄)) + 1

2ρ|p(x̄)− x̄|2 − ηk.(2.13)

By Lemma 2.3, {ηk} is nondecreasing, so (2.13) implies that {zkh} is bounded. Then
{gk} is bounded as well, because gk ∈ ∂f(zkh) for all k and f is finite-valued (cf.
[Roc70, Thm. 24.7]). By an analogous argument, using the inequality

1
2ρ|p(x̄)− zkf |2 ≤ F (p(x̄)) + 1

2ρ|p(x̄)− x̄|2 − ηk+1/2,

we see that zkf and pk = gk−1
f ∈ ∂f(zk−1

f) are bounded. By (2.13), the sequence {ηk}
is bounded from above, so Lemma 2.3 implies that it converges and µ̄kδk → 0. Since
{|gk−pk|} is bounded, assertion (ii) follows from the definition of µ̄k (cf. Lemma 2.3).
The final assertion is a consequence of (i) and (ii).

Remark 2.5. Algorithm 2.1 can be used in the implementable proximal point
schemes of [Aus86, CoL93, EcB92, GoT89, Gül91, Lem89, Roc76b]. Indeed, Theorem
2.4 ensures that for every ε > 0 we can find in finitely many steps a point zkh such
that |zkh − p(x̄)| ≤ ε. An alternative scheme will be presented in the next section.

3. The alternating linearization method. The algorithm below employs a
simple descent test for terminating the loop of Algorithm 2.1 in order to update the
prox center.

Algorithm 3.1.
Step 0: Select x1 ∈ domh, z0

f ∈ Rn, and g0
f ∈ ∂f(z0

f). Define f̃1(·) = f(z0
f) +

〈g0
f , · − z0

f 〉. Choose parameters ρ1 ≥ ρmin > 0, κ > 1, β0 > 0, β1 ∈ (0, 1). Set k = 1.

Step 1: Find the solution zkh of the h-subproblem:

minx h(x) + f̃k(x) + 1
2ρk|x− xk|2.(3.1)

ALTERNATING LINEARIZATION 673

Set gkh = −gk−1
f − ρk(zkh − xk) and define h̃k(·) = h(zkh) + 〈gkh, · − zkh〉.

Step 2: Let F̃k = h+ f̃k. Set

vk = F (xk)− F̃k(zkh).(3.2)

If

F (zkh) ≤ F (xk)− β1vk,(3.3)

then set xk+1 = zkh (descent step); otherwise set xk+1 = xk (null step).
Step 3: If xk+1 = zkh, then choose ρk+1 ∈ [max{ρmin, ρk/κ}, ρk]. If xk+1 = xk

and

δk := F (zkh)− F̃k(zkh) ≥ β0
vk

|zkh − xk|
,

then choose ρk+1 ≥ ρk; else set ρk+1 = ρk.
Step 4: Find the solution zkf of the f -subproblem:

minx h̃k(x) + f(x) + 1
2ρk+1|x− xk+1|2.(3.4)

Set gkf = −gkh − ρk+1(zkf − xk+1) and define f̃k+1(·) = f(zkf) + 〈gkf , · − zkf 〉.
Step 5: Increase k by 1 and go to Step 1.
We shall preserve the notation of the previous section, with only necessary changes.

Thus

ηk = F̃k(zkh) + 1
2ρk|zkh − xk|2(3.5)

will denote the optimal value of (3.1), and ηk+1/2 that of (3.4).

By construction (cf. Remark 2.2), gkf ∈ ∂f(zkf) and F̃k ≤ F , so ηk ≤ F (xk) and

vk ≥ 0. Thus (3.3) implies that {F (xk)} is nonincreasing and {xk} ⊂ domF . It will
become clear that if vk = 0 or ηk = F (xk), then xk ∈ Arg minF . As observed by a
referee, one can write the conditions of Steps 2 and 3 alternatively as

F (xk)− F (zkh) ≥ β1[F (xk)− F̃k(zkh)],

F (xk)− F (zkh) ≤ (1− β0/|zkh − xk|)[F (xk)− F̃k(zkh)],

with some flavor of a trust-region scheme.

4. Convergence. Let us first make a simple observation concerning the optimal
values of (3.1) and (3.4).

Lemma 4.1. The following inequalities are true for all k = 1, 2, . . . :
(i) 1

2ρk|zkh − xk|2 ≤ 1
2vk ≤ F (xk)− ηk ≤ vk,

(ii) 1
2ρk+1|zkf − xk+1|2 ≤ F (xk+1)− ηk+1/2.

Proof. Relations (3.2) and (3.5) yield F (xk) − vk ≤ ηk and hence the right
inequality of (i). Next, note that by construction (cf. Step 1),

−ρk(zkh − xk) = gkh + gk−1
f ∈ ∂F̃k(zkh).(4.1)

Therefore, the left inequality in (i) follows from the subgradient inequality, since

vk = F (xk)− F̃k(zkh) ≥ F̃k(xk)− F̃k(zkh) ≥ ρk|zkh − xk|2.

674 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

Thus

ηk = F (xk)− vk + 1
2ρk|zkh − xk|2 ≤ F (xk)− 1

2vk,

which completes the proof of (i). Assertion (ii) can be obtained similarly.
The following result is a simple consequence of Lemma 4.1 and Theorem 2.4.
Corollary 4.2. If vk = 0, then xk ∈ Arg minF .
Proof. By Lemma 4.1(i) and (3.2), zkh = xk and F̃k(zkh) = F (zkh) = F (xk). Then

Theorem 2.4(i) yields xk = zkh = arg minF + 1
2ρk| · −xk|2, so we have xk ∈ Arg minF

[Roc76b].
We split our convergence analysis into several stages, starting from the case of

an infinite series of null steps. Our objective is to prove that in this case the optimal
values of (3.1) and (3.4) converge to F (xk0), where xk0 is the last point to which a
descent step was made.

Lemma 4.3. If a null step is made at iteration k, then

ηk+1 ≥ ηk + 1
2 (1− β1)µ̄kvk,

where µ̄k ≥ min{1, (1− β1)vkρk/|gf (zkh)− gk−1
f |2} for any gf (zkh) ∈ ∂f(zkh).

Proof. If (3.3) fails, then δk = F (zkh)− F̃k(zkh) = F (zkh)−F (xk)+vk > (1−β1)vk.
Hence if ρk+1 = ρk, then Lemma 2.3(ii) yields ηk+1/2 ≥ ηk + 1

2 (1 − β1)µ̄kvk. When
ρk+1 > ρk, the minimum value of (3.4) can only be greater. Finally, ηk+1 ≥ ηk+1/2

as in (2.10).
Lemma 4.4. If the set K = {k : xk+1 6= xk} is finite, then vk → 0.
Proof. Let k0 be such that xk = xk0 for all k ≥ k0. By Lemma 4.3, {ηk} is

nondecreasing for k ≥ k0, and hence convergent, because ηk ≤ F (xk0), so ηk+1−ηk →
0. Since ρk ≥ ρmin > 0 for all k, and {xk} is bounded, so are {zkh} and {zkf} (cf. Lemma

4.1), and hence also gf (zkh) ∈ ∂f(zkh) and gkf ∈ ∂f(zkf), because f is locally Lipschitz
(cf. [Roc70, Thm. 24.7]). Therefore, Lemma 4.3 yields µ̄kvk → 0 and vk → 0.

Let us now pass to the case of infinitely many descent steps.
Lemma 4.5. Suppose the set K = {k : xk+1 6= xk} is infinite and inf F > −∞.

Then
(i)
∑
k∈K vk <∞;

(ii) limk→∞ vk = 0;
(iii) limk→∞

[
F (xk)− ηk

]
= 0;

(iv) limk→∞
[
F (xk+1)− ηk+1/2

]
= 0.

Proof. For each k ∈ K, a descent step occurs with F (xk) − F (xk+1) ≥ β1vk ≥
0. Summing these inequalities over k and using monotonicity and boundedness of
{F (xk)}, we get (i) and vk → 0 for k ∈ K. In view of Lemma 4.1, F (xk)− ηk → 0 for
k ∈ K. To show convergence of the whole sequences, let us denote by l(k) the number
of the last iteration with a descent step preceding iteration k. By Lemma 4.3,

0 ≤ F (xk)− ηk ≤ F (xl(k)+1)− ηl(k)+1.(4.2)

From (i) and Lemma 4.1 we obtain F (xl(k)) − ηl(k) → 0. It remains to relate

F (xl(k)+1) − ηl(k)+1 to F (xl(k)) − ηl(k). The changes in (3.1) following a descent
step at iteration l = l(k) can be decomposed into the following operations:

(a) linearization of h and the shift of the prox center xl to xl+1 = zlh;
(b) the change of the penalty parameter ρl to ρl+1 ∈ [ρl/κ, ρl];
(c) replacement of f̃l by f̃l+1.

ALTERNATING LINEARIZATION 675

Denote by η
(b)
l the resulting optimal value of (3.1) after partial modifications (a) and

(b), and let F̄l = h̃l + f̃l (F̄l is linear and F̄l ≤ F ; cf. Remark 2.2). By construction,
F̄l(x

l+1) = F̃l(x
l+1) and gl

F̃
= glh + gl−1

f ∈ ∂F̃l(xl+1) is such that gl
F̃

= ∇F̄l(xl+1),

xl+1 − xl = −gl
F̃
/ρl (cf. (4.1)) and

ηl = minx F̄l(x
l+1) + 〈gl

F̃
, x− xl+1〉+ 1

2ρl|x− xl|2,
so

ηl = F̄l(x
l+1) + 1

2 |glF̃ |2/ρl = F̄l(x
l)− 1

2 |glF̃ |2/ρl.
Similarly,

η
(b)
l = minx{ F̄l(xl+1) + 〈gl

F̃
, x− xl+1〉+ 1

2ρl+1|x− xl+1|2 } = F̄l(x
l+1)− 1

2 |glF̃ |2/ρl+1,

so

F̄l(x
l)− ηl =

1

2ρl
|gl
F̃
|2 =

ρl+1

ρl

[
F̄l(x

l+1)− η(b)
l

]
≥ 1

κ

[
F̄l(x

l+1)− η(b)
l

]
.

Finally, operation (c) is a hypothetical null step, so by Lemma 2.3

ηl+1 ≥ ηl+1/2 ≥ η(b)
l .

Combining the last two relations and noting that at descent steps F (xl+1) ≤ F (xl) =
F̄l(x

l+1) + vl, we obtain for each descent step l(k) the relation

F (xl(k)+1)− ηl(k)+1 ≤ κ
[
F (xl(k))− ηl(k)

]
+ vl(k).

Since the right side of the above inequality converges to 0, and the left side is non-
negative, we must have limk→∞ F (xl(k)+1)− ηl(k)+1 = 0. Using this relation in (4.2)

we conclude that F (xk)− ηk → 0 and F (xk+1)− ηk+1/2 → 0; i.e., (iii) and (iv) hold.
Assertion (ii) follows from Lemma 4.1.

Lemma 4.6. Suppose the set K = {k : xk+1 6= xk} is infinite. If there exists a
point x̃ such that F (xk) ≥ F (x̃) for all k, then {xk} converges to a point x̄ ∈ domF .

Proof. Fix k ∈ K. We have

|xk+1 − x̃|2 = |xk − x̃|2 + 2〈xk+1 − x̃, xk+1 − xk〉 − |xk+1 − xk|2.(4.3)

By (4.1), gk
F̃

= gkh + gk−1
f = −ρk(xk+1 − xk) ∈ ∂F̃k(xk+1), so

ρk〈xk+1 − x̃, xk+1 − xk〉 = 〈x̃− xk+1, gk
F̃
〉

≤ F̃k(x̃)− F̃k(xk+1) ≤ F (x̃)− F (xk) + vk

by (3.2). Using this inequality in (4.3) yields

|xk+1 − x̃|2 ≤ |xk − x̃|2 + 2vk/ρk, k ∈ K.
Since {ρk} is bounded away from zero by construction, the last inequality and as-
sertion (i) of Lemma 4.5 imply that the sequence {xk} is bounded. Hence, it has an
accumulation point x̄. By monotonicity of {F (xk)} and closedness of F , F (x̄) ≤ F (xk)
for all k, so we can replace x̃ by x̄ in the preceding argument, concluding that x̄ is
the only accumulation point, since

∑
k∈K,k≥l vk → 0 as l→∞.

Lemma 4.7. If there exists a point x̃ such that F (xk) ≥ F (x̃) for all k, then

676 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

(i) vk → 0, F (xk)− ηk → 0, and F (xk+1)− ηk+1/2 → 0, as k →∞;

(ii) the sequence {xk} converges to a point x̄ ∈ Arg minF , and F (xk) ↓ F (x̄).
Proof. By Lemmas 4.4–4.6, {xk} converges to some x̄ ∈ domF and assertion (i)

holds.
By construction, the linear function F̄k = h̃k + f̃k minorizes F , and F̄k(zkh) =

F̃k(zkh) = F (xk)− vk, so for all x ∈ Rn,

F (x) ≥ F̄k(x) = F̄k(zkh) + 〈gkh + gk−1
f , x− zkh〉 = F (xk) + 〈gkh + gk−1

f , x− zkh〉 − vk.
(4.4)

By Lemma 4.1(i),

ρk|zkh − xk|2 ≤ vk → 0.(4.5)

However, ρk ≥ ρmin for all k, so zkh − xk → 0. Similarly, zkf − xk → 0. Thus zkh → x̄

and zkf → x̄, so gkf ∈ ∂f(zkf) are bounded, since f is locally Lipschitz. We have to
consider two cases.

Case 1. There exists ρ̄ such that ρk ≤ ρ̄ for all k. Since zkh − xk → 0, at Step 1

gkh + gk−1
f = −ρk(zkh − xk)→ 0.(4.6)

Hence (4.4) yields F (x) ≥ limF (xk) ≥ F (x̄), using the closedness of F .
Case 2. lim supk ρk = +∞. Since f is locally Lipschitz,

δk = F (zkh)− F̃k(zkh) = f(zkh)− f̃k(zkh)

= f(zkh)− f(zk−1
f)− 〈gk−1

f , zkh − zk−1
f 〉 → 0.(4.7)

The penalty coefficient is increased infinitely many times, so (cf. Step 3) there must
be a subsequence K such that

δk ≥ β0vk/|zkh − xk| for all k ∈ K.
Hence, dividing the inequality in (4.5) by |zkh − xk| and using (4.7), we get at Step 1

gkh + gk−1
f = −ρk(zkh − xk)→ 0, k ∈ K.(4.8)

Passing to the limit in (4.4) for k ∈ K and using (4.8), we obtain (ii) in this case,
too.

Our results can be summarized as follows.
Theorem 4.8. Algorithm 3.1 generates a sequence {xk} with the following prop-

erties:
(i) F (xk) ↓ inf F .
(ii) If Arg minF 6= ∅ then {xk} converges to a point x̂ ∈ Arg minF .

(iii) If Arg minF = ∅ then |xk| → ∞.
(iv) If Arg minF 6= ∅ and the sequence {ρk} is bounded, then the sequences {gkf}

and {gkh} are bounded, gkh + gk−1
f → 0, gkh + gkf → 0, and every accumulation

point (ĝf , ĝh) of {(gkf , gkh)} satisfies the relations ĝf ∈ ∂f(x̂), ĝh ∈ ∂h(x̂),
and ĝf + ĝh = 0.

Proof. If Arg minF contains a point x̃, one has F (xk) ≥ F (x̃) for all k. Then by
Lemma 4.7, xk → x̂ ∈ Arg minF and F (xk) ↓ F (x̂) = inf F , so (i) and (ii) hold in
this case.

ALTERNATING LINEARIZATION 677

Suppose now that Arg minF = ∅. If there existed x̃ such that F (xk) ≥ F (x̃)
for all k, then Lemma 4.7 would imply convergence of {xk} to a minimizer of F , a
contradiction. Therefore, for every x̃ we can find k such that F (xk) < F (x̃). This
implies that F (xk) ↓ inf F in this case, too; i.e., (i) is true. Moreover, if {xk} had a
bounded subsequence, then (by the closedness of F) each of its accumulation points
would minimize F , another contradiction. Therefore (iii) must be true.

As for (iv), we may use the proof of Lemma 4.7 with x̄ = x̂. The sequence
gkf ∈ ∂f(zkf) is bounded and each of its accumulation points is in ∂f(x̂), since ∂f is
upper semicontinuous (cf. [Roc70, Thm. 24.4]).

Next, we have (4.6) and, by the definition of gkf , gkf +gkh = −ρk+1(zkf −xk+1)→ 0.

Thus {gkh} must be bounded, too, and the required result follows from the upper
semicontinuity of ∂h.

Remark 4.9.

(i) Without boundedness of {ρk} we obtain (iv) only on some subsequence, as
follows from (4.8).

(ii) Inequality (4.4) may serve as a global lower bound for the objective value at
iteration k. If Arg minF 6= ∅, then, by (4.6) and (4.8), the right side of (4.4)
approaches minF (at least on some subsequence even if {ρk} is unbounded).

(iii) As observed by a referee, our framework may be generalized by considering
other iterative methods for subproblem (1.2) that eventually satisfy descent
criteria similar to (3.2)–(3.3) which ensure global convergence; cf. Remark
2.5 and [Kiw96]. Also, extensions to the case of Bregman or φ-divergence
proximal terms can be developed along the lines of [Kiw96, Kiw97, Teb97];
we have restricted ourselves to the Euclidean norm in (1.2) for simplicity only.

5. Dual application. Let us now discuss the application of the alternating
linearization method to structured problems of the form

infy ϕ(y) + ψ(My)(5.1)

with closed proper convex functions ϕ : Rm → (−∞,+∞], ψ : Rn → (−∞,+∞], and
an n×m matrix M . Splitting variables yields the problem

infw,y ϕ(y) + ψ(w),(5.2a)

w −My = 0,(5.2b)

with the Lagrangian L(y, w, x) = ϕ(y) + ψ(w) + 〈x,My − w〉, where x ∈ Rn is the
vector of dual variables. The dual problem

sup
x

{
LD(x) := inf

y,w
L(y, w, x)

}
can be equivalently written as

inf
x

{
F (x) = ψ∗(x) + ϕ∗(−MTx)

}
,(5.3)

using the conjugates ϕ∗(·) = supy{〈·, y〉 − ϕ(y)}, ψ∗(·) = supw{〈·, w〉 − ψ(w)} (see,
e.g., [HUL93, section XII.5.4]). The dual problem (5.3) has the form (1.1) with

678 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

h(x) = ψ∗(x),

f(x) = ϕ∗(−MTx).

Let us assume that ϕ∗ ◦ (MT) is finite-valued. Then both f and h are closed proper
convex functions [Roc70, Thm. 12.2] and dom f = Rn. Therefore problem (5.3) sat-
isfies all the assumptions required for applying the alternating linearization method.

The algorithm below will be shown to constitute a dual version of Algorithm 3.1.
Algorithm 5.1.
Step 0: Select x1 ∈ domh and calculate F (x1) = h(x1)+f(x1). Choose z0

f ∈ Rn.
Calculate

f(z0
f) = −min

y

{
ϕ(y) + 〈z0

f ,My〉} .(5.4)

Choose a minimizer y0 in the problem above. Select ρ1 ≥ ρmin > 0, κ > 1, β0 > 0,
β1 ∈ (0, 1). Set k = 1.

Step 1: Find

wk = arg min
w

ψ(w)− 〈xk, w〉+ 1
2ρk|w −Myk−1|2,(5.5)

and set

zkh = xk − (wk −Myk−1)/ρk.(5.6)

Step 2: Calculate

h(zkh) = 〈wk, zkh〉 − ψ(wk),(5.7)

f(zkh) = −min
y

{
ϕ(y) + 〈zkh,My〉} ,(5.8)

f̃k(zkh) = − [ϕ(yk−1) + 〈zkh,Myk−1〉] .(5.9)

Set F (zkh) = h(zkh) + f(zkh) and F̃k(zkh) = h(zkh) + f̃k(zkh). Set vk = F (xk)− F̃k(zkh). If
F (zkh) ≤ F (xk)− β1vk, then set xk+1 = zkh; otherwise set xk+1 = xk.

Step 3: Choose ρk+1 as at Step 3 of Algorithm 3.1.
Step 4: Find

yk ∈ Arg miny ϕ(y) + 〈xk+1,My〉+ 1
2ρk+1|wk −My|2.(5.10)

Step 5: Increase k by 1 and go to Step 1.
Of course, the applicability of Algorithm 5.1, and other related proximal-based

dual methods, is limited to problems for which the necessary operations on conjugate
functions can be implemented. Some examples are provided at the end of this section
and in section 6.

The analysis of Algorithm 5.1 will be based on the following fact [Roc70, Thm.
23.5].

Fact 5.2. For a closed proper convex function f the following conditions are
equivalent : x∗ ∈ ∂f(x), x ∈ ∂f∗(x∗), f(x) + f∗(x∗) = 〈x, x∗〉, x ∈ Arg min{f(·) −
〈x∗, ·〉}.

Theorem 5.3. Algorithm 5.1 generates sequences {xk}, {yk}, and {wk} such
that

ALTERNATING LINEARIZATION 679

(i) F (xk) ↓ inf F .
(ii) If Arg minF 6= ∅ then {xk} converges to a point x̂ ∈ Arg minF .

(iii) If Arg minF = ∅ then |xk| → ∞.
(iv) If Arg minF 6= ∅ and the sequence {ρk} is bounded, then the sequences

{Myk} and {wk} are bounded, wk−Myk → 0 and wk−Myk−1 → 0. Further,
each accumulation point ŷ of {yk} is a solution of (5.1).

Proof. We shall prove that Algorithm 5.1 is equivalent to Algorithm 3.1 applied
to the dual problem (5.3).

First, let us note that the minimizer y0 in (5.4) chosen at Step 0 (which exists
because ϕ∗◦(MT) is finite-valued) satisfies the relation y0 ∈ ∂ϕ∗(−MT z0

f). Therefore,

by Fact 5.2, −My0 ∈ ∂f(z0
f) and we can define g0

f = −My0.
We shall use induction. Assume that for some k we have

yk−1 ∈ ∂ϕ∗(−MT zk−1
f)(5.11)

and

gk−1
f = −Myk−1.(5.12)

By (5.12), problem (3.1) can be formulated as follows:

min
x

ψ∗(x)− 〈Myk−1, x〉+ 1
2ρk|x− xk|2.(5.13)

We now show that (5.5) and (5.6) define its solution zkh. Indeed, the optimality
condition for (5.5) yields

zkh = xk − (wk −Myk−1)/ρk ∈ ∂ψ(wk),(5.14)

which by Fact 5.2 is equivalent to

wk ∈ ∂ψ∗(zkh).(5.15)

Using (5.6) we can rewrite the last relation as Myk−1−ρk(zkh−xk) ∈ ∂ψ∗(zkh), which
is necessary and sufficient for the optimality of zkh in (5.13). From (5.15), using Fact
5.2, we obtain ψ∗(zkh) = 〈wk, zkh〉−ψ(wk), which validates (5.7). Relation (5.8) follows
directly from the definition. Next, (5.11) and Fact 5.2 yield

f(zk−1
f) = ϕ∗(−MT zk−1

f) = −ϕ(yk−1)− 〈MT zk−1
f , yk−1〉.

Combining this relation with (5.12), we obtain

f̃k(zkh) = f(zk−1
f) + 〈gk−1

f , zkh − zk−1
f 〉

= −ϕ(yk−1)− 〈MT zk−1
f , yk−1〉 − 〈Myk−1, zkh − zk−1

f 〉,
which is equivalent to (5.9). The remaining parts of Steps 2 and 3 are identical to
those in Algorithm 3.1.

By direct calculation, using (5.12) and (5.6), we obtain

gkh = −gk−1
f − ρk(zkh − xk) = wk.(5.16)

Therefore, problem (3.4) can be written as

min
x
〈wk, x〉+ ϕ∗(−MTx) + 1

2ρk+1|x− xk+1|2.(5.17)

680 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

We now show that the point zkf , the solution of (5.17), has the form

zkf = xk+1 − (wk −Myk)/ρk+1,(5.18)

where yk is given by (5.10). Indeed, the optimality condition for (5.10) reads

−MT zkf = −MTxk+1 +MT (wk −Myk)/ρk+1 ∈ ∂ϕ(yk),(5.19)

which by Fact 5.2 is equivalent to the relation yk ∈ ∂ϕ∗(−MT zkf); i.e., (5.11) holds for

k. The last relation is equivalent to −Myk ∈ ∂f(zkf) (Fact 5.2). Substitution of Myk

from (5.18) yields the optimality condition for (5.17): −wk−ρk+1(zkf−xk+1) ∈ ∂f(zkf).
Finally, from (5.16) and (5.18) we get

gkf = −gkh − ρk+1(zkf − xk+1) = −Myk,(5.20)

which proves (5.12) for k and completes the induction.
Therefore, assertions (i)–(iii) follow from those of Theorem 4.8. To show (iv),

observe that from (5.16) and (5.20), by Theorem 4.8(iv), the sequences {Myk} and
{wk} are bounded,

wk −Myk → 0,(5.21)

and wk −Myk−1 → 0. To complete the proof of (iv), let (wk, yk) → (ŵ, ŷ), k ∈ K.
Taking limits in (5.14) and (5.19), we obtain x̂ ∈ ∂ψ(ŵ), −MT x̂ ∈ ∂ϕ(ŷ), and, by
(5.21), ŵ −Mŷ = 0. This proves the optimality of (ŵ, ŷ) in (5.2).

As mentioned in sections 1 and 2, the alternating linearization method fits the
framework of inexact proximal point algorithms and bears some resemblance to the op-
erator splitting methods. Therefore it is not surprising that its dual version, Algorithm
5.1, is intimately related to augmented Lagrangian methods and alternating direction
methods of multipliers [BeT89, DLMK+94, EcB92, EcF94, Fuk92, Gab83, KDLM96].

Specifically, consider the augmented Lagrangian for (5.2):

Λρ(y, w, x) = ϕ(y) + ψ(w)− 〈x,w −My〉+ 1
2ρ|w −My|2,(5.22)

where x ∈ Rn is the vector of multipliers and ρ > 0 is a penalty coefficient. Assuming
that in Algorithm 5.1 the points xk remain fixed at x and the penalty coefficients
ρk fixed at ρ, we see that (5.5) and (5.10) implement the Gauss–Seidel (blockwise
minimization) method for minimizing the augmented Lagrangian (5.22). Note, how-
ever, that in the alternating direction method the multipliers are updated after each
blockwise minimization iteration. In Algorithm 5.1, the classical update (cf. (5.6))

xk+1 = xk − (wk −Myk−1)/ρk

takes place only under the descent conditions of Step 2. Moreover, the penalty coeffi-
cient is allowed to change within the Gauss–Seidel loop as well as after the multiplier
update.

Example 5.4. Consider the problem

min
y

ϕ(y) +
N∑
j=1

ψj(y),

ALTERNATING LINEARIZATION 681

with closed proper convex functions ϕ : Rm → (−∞,+∞) and ψj : Rm → (−∞,+∞],
j = 1, . . . , N . This is a special case of (5.1) with My = (y, y, . . . , y), ψ(w) =∑N
j=1 ψj(wj), and n = Nm. The key operations of Algorithm 5.1 can be substantially

simplified in this case. With x = (x1, . . . , xN) ∈ RNm problem (5.5), solved at Step
1, decomposes into parallel subproblems for j = 1, . . . , N :

wkj = arg min
wj

ψj(wj)− 〈xkj , wj〉+
1

2ρk
|wj − yk−1|2,

(zkh)j = xkj − (wkj − yk−1)/ρk,

while (5.10) takes the form

yk = arg min
y

ϕ(y) +

〈
N∑
j=1

xk+1
j , y

〉
+

1

2ρk+1

N∑
j=1

|wkj − y|2.

We recognize some similarities with the algorithms of [FHN+96, HaL88, MNS91,
Tse91], but our approach has different rules for updating the multipliers and a variable
penalty coefficient.

6. Applications to stochastic programming. We now consider an important
class of optimization models known as multistage stochastic programming problems.

We use the modeling methodology developed in [RoW91] (see also [ChR95, MuR95,
Rob91]). The basic object in the model is the scenario tree, whose levels 1, . . . , T
(counted from the root to the leaves) correspond to time stages and each path from the
root to a leaf (scenario) has exactly T nodes. With each scenario path j (j = 1, . . . , N)
the following objects are associated: the decision subvector

wj = (wj(1), . . . , wj(T)) ∈ Rq1 × · · · × RqT ,

the closed convex cost function ψj : Rq1×· · ·×RqT → (−∞,+∞], and the probability
pj . The entire decision vector w = (w1, . . . , wN) ∈ RqN , where q = q1 + · · · + qT ,
must satisfy the nonanticipativity constraint: for all t = 1, . . . , T − 1 and for all pairs
(i, j) of scenarios (paths) with identical first t nodes, one must have

wi(τ)− wj(τ) = 0, τ = 1, . . . , t.

All these constraints (or a sufficient subset of them) can be put into one linear equation

Aw =
∑N
j=1Ajwj = 0, where A = [A1 · · ·AN] has dimension mA × qN . The entire

problem can be formulated as follows:

min

N∑
j=1

pjψj(wj),(6.1a)

s.t.

N∑
j=1

Ajwj = 0.(6.1b)

682 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

6.1. Augmented Lagrangian decomposition. Consider the augmented La-
grangian for (6.1):

Λ(w, λ) =

N∑
j=1

pjψj(wj) +

〈
λ,

N∑
j=1

Ajwj

〉
+

1

2
ρ

∣∣∣∣∣∣
N∑
j=1

Ajwj

∣∣∣∣∣∣
2

,(6.2)

where λ ∈ RmA and ρ > 0 is a penalty parameter. A solution of (6.1) can be obtained
by the following method of multipliers (cf. [Ber82, Hes69, Pow69, Roc76a]).

Algorithm 6.1.
Step 0: Choose λ1 ∈ RmA . Set l = 1.
Step 1: Find wl ∈ Arg minw Λ(w, λl).
Step 2: Set λl+1 = λl + ρAwl, increase l by 1, and go to Step 1. It remains to

determine an efficient method for minimizing (6.2). In fact, the alternating lineariza-
tion algorithm is a good candidate. To see this, note that the problem in question is
nearly identical to that presented in Example 1.1. In particular, we have

h(w) =

N∑
j=1

{pjψj(wj) + 〈λ,Ajwj〉}

and

f(w) = 1
2ρ |Aw|2 .

The functions h and f have all the properties required by the alternating lineariza-
tion algorithm. The separability of h means that Step 1 of Algorithm 3.1 can be
decomposed into parallel subproblems for j = 1, . . . , N ,

zkh,j = arg min
wj

pjψj(wj) + 〈λ+ ρAzkf , Ajwj〉+ 1
2ρk|wj − wkj |2,

whereas Step 4 requires solving the least squares problem:

zkf = arg min
w
〈gkh, w〉+ 1

2ρ|Aw|2 + 1
2ρk+1

N∑
j=1

|wj − wk+1
j |2.

Algorithm 6.1 effectively comprises three layers of methods: the method of multipliers
at the top level, the alternating linearization method at the middle layer, and the
subproblem solver at the bottom layer. In the next section we show that the dual
approach allows us to remove one of these layers and to develop a more efficient
method.

6.2. Dual strategy. All nonanticipative vectors w = (w1, . . . , wN) form a linear
subspace L of RqN . The orthogonal projection on L will be denoted ΠL. Given
w, its projection u = ΠLw can be calculated as follows (see [RoW91]). For every
j = 1, . . . , N and t = 1, . . . , T , we find the set of scenarios indistinguishable from
scenario j until stage t,

Ij(t) = {i : ντ (i) = ντ (j), τ = 1, . . . , t} ,
and we average wi(t) over this subset:

uj(t) =
1

|Ij(t)|
∑
i∈Ij(t)

wi(t).

ALTERNATING LINEARIZATION 683

Using the indicator function δL of L we can formulate (6.1) equivalently as

min
w

δL(w) +
N∑
j=1

pjψj(wj).(6.3)

Let r majorize the Euclidean norm of a solution to (6.1) and let B = {y ∈ RqN : |y| ≤
r}. With

ϕ(w) = δL∩B(w)

and

ψ(w) =
N∑
j=1

pjψj(wj)

we can regard problem (6.3) as an instance of (5.1), where M = I (the identity). The
purpose of introducing B was to make ϕ∗ finite-valued. For x = (x1, . . . , xN) ∈ RqN ,
we have

h(x) = −
N∑
j=1

inf
wj
{ pjψj(wj)− 〈xj , wj〉 } ,(6.4a)

f(x) = max
y
{ 〈−x, y〉 : |y| ≤ r, y ∈ L} = r|ΠLx|,(6.4b)

and the entire algorithm simplifies as follows.
Algorithm 6.2.
Step 0: Select x1 ∈ RqN and calculate F (x1) = h(x1) + f(x1), using (6.4).

Choose z0
f ∈ RqN . Calculate f(z0

f) = r|ΠLz0
f | and y0 = −rΠLz0

f/|ΠLz0
f | (y0 = 0 if

z0
f ⊥ L). Choose ρ1 ≥ ρmin > 0, κ > 1, β0 > 0, β1 ∈ (0, 1). Set k = 1.

Step 1: For scenarios j = 1, . . . , N , calculate

wkj = arg min
wj

pjψj(wj)− 〈xkj , wj〉+
1

2ρk
|wj − yk−1

j |2

and set zkh = xk − (wk − yk−1)/ρk.
Step 2: Calculate

h(zkh) =
N∑
j=1

{ 〈wkj , (zkh)j〉 − pjψj(wkj)
}
,

f(zkh) = r|ΠLzkh|,

f̃k(zkh) = −〈zkh, yk−1〉.

Set F (zkh) = h(zkh) + f(zkh) and F̃k(zkh) = h(zkh) + f̃k(zkh). Set vk = F (xk)− F̃k(zkh). If
F (zkh) ≤ F (xk)− β1vk, then set xk+1 = zkh; otherwise set xk+1 = xk.

Step 3: Choose ρk+1 as at Step 3 of Algorithm 3.1.

684 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

Step 4: Calculate yk as the orthogonal projection of ỹk = ΠL(wk − ρk+1x
k+1)

on the ball {y : |y| ≤ r}.
Step 5: Increase k by 1 and go to Step 1.
To justify Step 4 of Algorithm 6.2 we note that

arg min
y

{
ϕ(y) + 〈xk+1, y〉+

1

2ρk+1
|wk − y|2

}
= arg min

y

{
〈xk+1, y〉+

1

2ρk+1
|wk − y|2 : |y| ≤ r, y ∈ L

}
= arg min

y

{ |wk − ρk+1x
k+1 − y|2 : |y| ≤ r, y ∈ L} .

Algorithm 6.2 bears some similarities to the scenario aggregation method of
[RoW91], which is a version of the alternating direction method of multipliers (see
also [Spi85, ChT94]). There are differences, though, in the way the multipliers xk

are updated and in the variable penalty coefficient. It is worth noting that the de-
scent test in the dual space (Step 2) does not require much work, because the values
of F = h + f are easily available. Compared to the augmented Lagrangian decom-
position of section 6.1, we have only two layers of algorithms here: the alternating
linearization method in the dual space and the subproblem solver.

7. Numerical illustration. We consider a multistage stochastic macroeconomic
energy model described in detail in [Ros94]. The model has the form (6.1) with N = 8,
n = 610, and mA = 3240. Each function ψj has a simple analytic form, but its domain
is defined by 398 constraints, of which 25 are nonlinear (with 85 nonlinear variables).
Thus, of 4880 variables in the entire model, 680 are nonlinear variables. The scenario
model was formulated in GAMS [BKM92], and MINOS [MuS82] was used to solve
scenario subproblems (with default parameters).

Table 7.1
Results for the augmented Lagrangian decomposition method.

Outer Alternating Descent Null vk

1+|F (xk)| |Awl|2/2
iteration (l) steps (k) steps steps

1 10 6 4 1.9E-3 1284
2 431 256 175 7.9E-7 1.429
3 24 11 13 4.5E-7 0.276
4 11 5 6 2.0E-7 0.133
5 13 9 4 1.6E-7 0.104
6 107 76 31 1.2E-7 0.076
7 1 1 0 1.2E-7 0.049

7.1. Augmented Lagrangian decomposition. Algorithm 6.1 was run with
ρ = 1 and λ1 = 0. At Step 1 we used Algorithm 3.1 with the following parameters:
κ = 2, β0 = 1, β1 = 0.1, ρ1 = ρ, ρmin = ρ/1000. It started from x1 = arg minx{h(x)+
1
2 |x|2} at l = 1 and from wl−1 otherwise and terminated when max{vk, |zkh−xk|2/2} ≤
0.1|Awl−1|2/2 (with w0 = x1).

Seven major iterations of Algorithm 6.1 were made; the accuracy of the final so-
lution was comparable with that obtained by other methods [RoR96, Rus95]. Table
7.1 illustrates our results. Each row of the table corresponds to one iteration of the
multiplier method (outer loop). Columns 2–5 provide information about the perfor-
mance of the alternating linearization method (inner loop). The relative accuracy of

ALTERNATING LINEARIZATION 685

Iterations

A
b

so
lu

te
 E

rr
o

r

0

50

100

150

200

250

300

350

0 100 200 300 400

Fig. 7.1. Absolute error in the objective value: major iteration 2.

Iterations

A
b

so
lu

te
 E

rr
o

r

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

Fig. 7.2. Absolute error in the objective value: major iteration 6.

minimization in the inner loop was estimated by vk/(1 + |F (xk)|). The last column
gives the error in the nonanticipativity constraints.

The progress of the alternating linearization method at major iterations 2 and 6

686 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

Iterations

A
b

so
lu

te
 E

rr
o

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400

Fig. 7.3. Dual method: absolute error in the objective value.

Iterations

N
o

na
nt

ic
ip

a
tiv

ity
 E

rr
o

r

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 100 200 300 400

Fig. 7.4. Dual method: nonanticipativity.

is illustrated in Figures 7.1 and 7.2. The label “Iterations” refers to alternating steps
(the inner loop).

The absolute error in the objective value was calculated as F (xk)−F (xk∗) + vk∗ ,
where k and k∗ are the current and final iterations (alternating steps) of Algorithm
3.1, respectively. We see that the algorithm can attain relatively high accuracy.

ALTERNATING LINEARIZATION 687

7.2. Dual strategy. We chose r = 3×103 large enough to majorize the solution
obtained by other methods, so f (which may be interpreted as an exact penalty
function) had rather steep walls. Accordingly, in Algorithm 6.2 we used a larger value
of ρ1 = 106. The other parameters were the same as in section 7.1. The starting point
was x1 = 0.

Figure 7.3 illustrates the progress of the method in terms of the absolute error in
the dual objective—F (xk) − Fmin (where Fmin is the known optimal value)—and
Figure 7.4 shows the decrease in the measure of nonanticipativity of the current
solution— 1

2 |wk − yk−1|2. Again, we see that the method converges quickly at the
initial stage, although the speed of convergence at the tail is not high, because of the
essential nonsmoothness of f .

Summing up, this preliminary numerical experience indicates that the alternating
linearization method, both in the primal and in the dual form, has the potential to
become a useful tool for large scale nonsmooth optimization.

Acknowledgments. We wish to thank the associate editor and an anonymous
referee for their comments, which allowed us to improve the paper.

REFERENCES

[Aus86] A. Auslender, Numerical methods for nondifferentiable convex optimization, Math.
Programming Stud., 30 (1986), pp. 102–126.

[Ber82] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Aca-
demic Press, New York, 1982.

[BeT89] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-
merical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[BKM92] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User’s Guide, Scientific
Press, San Francisco, 1992.

[ChR95] B. J. Chun and S. M. Robinson, Scenario analysis via bundle decomposition, Ann.
Oper. Res., 56 (1995), pp. 39–63.

[ChT94] G. Chen and M. Teboulle, A proximal-based decomposition method for convex
minimization problems, Math. Programming, 64 (1994), pp. 81–101.

[CoL93] R. Correa and C. Lemaréchal, Convergence of some algorithms for convex min-
imization, Math. Programming, 62 (1993), pp. 261–275.

[DLMK+94] R. De Leone, R. R. Meyer, and S. Kontogiorgis, Z. Zakarian and G. Zakeri,
Coordination in coarse-grained decomposition, SIAM J. Optim., 4 (1994), pp.
777–793.

[EcB92] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators, Math. Program-
ming, 55 (1992), pp. 293–318.

[EcF94] J. Eckstein and M. Fukushima, Some reformulations and applications of the alter-
nating direction method of multipliers, in Large Scale Optimization: State of the
Art, W. W. Hager, D. W. Hearn, and P. M. Pardalos, eds., Kluwer, Dordrecht,
the Netherlands, 1994, pp. 115–134.

[EcF97] J. Eckstein and M. C. Ferris, Operator-splitting methods for monotone affine
variational inequalities, with a parallel application to optimal control, INFORMS
J. Comput., 10 (1998), pp. 218–235.

[Eck94] J. Eckstein, Some saddle-function splitting methods for convex programming, Op-
tim. Methods Softw., 4 (1994), pp. 75–83.

[FHN+96] M. Fukushima, M. Haddou, V. H. Nguyen, J.-J. Strodiot, and E. Yamakawa,
A parallel descent algorithm for convex programming, Comput. Optim. Appl., 5
(1996), pp. 5–37.

[Fuk92] M. Fukushima, Application of the alternating direction method of multipliers to
separable convex programming problems, Comput. Optim. Appl., 1 (1992), pp.
93–111.

[Gab83] D. Gabay, Applications of the method of multipliers to variational inequalities, in
Augmented Lagrangian Methods: Applications to the Solution of Boundary-

688 K. C. KIWIEL, C. H. ROSA, AND A. RUSZCZYŃSKI

Value Problems, M. Fortin and R. Glowinski, eds., North-Holland, Amsterdam,
1983, pp. 299–331.

[GoT89] E. G. Golshtein and N. V. Tretyakov, Modified Lagrange Functions; Theory and
Optimization Methods, Nauka, Moscow, 1989 (in Russian).

[Gül91] O. Güler, On the convergence of the proximal point algorithm for convex minimiza-
tion, SIAM J. Control Optim., 29 (1991), pp. 403–419.

[HaL88] S.-P. Han and G. Lou, A parallel algorithm for a class of convex programs, SIAM
J. Control Optim., 26 (1988), pp. 345–355.

[Hes69] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969),
pp. 303–320.

[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization
Algorithms, Springer-Verlag, Berlin, 1993.

[KDLM96] S. Kontogiorgis, R. De Leone, and R. R. Meyer, Alternating direction splittings
for block angular parallel optimization, J. Optim. Theory Appl., 90 (1996), pp.
1–29.

[Kiw96] K. C. Kiwiel, A Bundle Bregman Proximal Method for Convex Nondifferentiable
Minimization, Tech. Report, Systems Research Institute, Warsaw, June 1996.
Revised September 1997.

[Kiw97] K. C. Kiwiel, Proximal minimization methods with generalized Bregman functions,
SIAM J. Control Optim., 35 (1997), pp. 1142–1168.

[Lem89] B. Lemaire, The proximal algorithm, in New Methods in Optimization and Their
Industrial Uses, J. P. Penot, ed., International Series of Numerical Mathematics
87, Birkhäuser, Basel, 1989, pp. 73–87.

[Mar70] B. Martinet, Régularisation d’inéquations variationelles par approximations suc-
cessives, RAIRO Rech. Opér., 4(R3) (1970), pp. 154–158.

[MaT93] P. Mahey and P.-D. Tao, Partial regularization of the sum of two maximal mono-
tone operators, RAIRO Modél. Math. Anal. Numér. 27 (1993) 375–392.

[MNS91] K. Mouallif, V. H. Nguyen, and J.-J. Strodiot, A perturbed parallel decompositon
method for a class of nonsmooth convex minimization problems, SIAM J. Control
Optim., 29 (1991), pp. 829–847.

[MOT95] P. Mahey, S. Oualibouch, and P.-D. Tao, Proximal decomposition on the graph
of a maximal monotone operator, SIAM J. Optim. 5 (1995) 454–466.

[MuR95] J. M. Mulvey and A. Ruszczyński, A new scenario decomposition method for large-
scale stochastic optimization, Oper. Res., 43 (1995), pp. 477–490.

[MuS82] B. A. Murtagh and M. A. Saunders, A projected Lagrangian algorithm and its
implementation for sparse nonlinear constraints, Math. Programming Stud., 16
(1982), pp. 84–117.

[Pow69] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in
Optimization, R. Fletcher, ed., Academic Press, London, 1969, pp. 283–298.

[Rob91] S. M. Robinson, Extended scenario analysis, Ann. Oper. Res., 31 (1991), pp. 385–
398.

[Roc70] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ,
1970.

[Roc76a] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point
algorithm in convex programming, Math. Oper. Res., 1 (1976), pp. 97–116.

[Roc76b] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM
J. Control Optim., 14 (1976), pp. 877–898.

[RoR96] C. H. Rosa and A. Ruszczyński, On augmented Lagrangian decomposition methods
for multistage stochastic programs, Ann. Oper. Res., 64 (1996), pp. 289–309.

[Ros94] C. H. Rosa, Pathways of Economic Development in an Uncertain Environment: A
Finite Scenario Approach to the U.S. Region under Carbon Emission Restric-
tions, WP-94-41, International Institute for Applied Systems Analysis, Laxen-
burg, Austria, 1994.

[RoW91] R. T. Rockafellar and R. J.-B. Wets, Scenarios and policy aggregation in opti-
mization under uncertainty, Math. Oper. Res., 16 (1991), pp. 1–23.

[Rus95] A. Ruszczyński, On convergence of an augmented Lagrangian decomposition method
for sparse convex optimization, Math. Oper. Res., 20 (1995), pp. 634–656.

[Spi85] J. E. Spingarn, Applications of the method of partial inverses to convex program-
ming: Decomposition, Math. Programming, 32 (1985), pp. 199–223.

[Teb97] M. Teboulle, Convergence of proximal-like algorithms, SIAM J. Optim., 7 (1997),
pp. 1069–1083.

[Tse90] P. Tseng, Further applications of a splitting algorithm to decomposition in varia-

ALTERNATING LINEARIZATION 689

tional inequalities and convex programming, Math. Programming, 48 (1990), pp.
249–263.

[Tse91] P. Tseng, Applications of a splitting algorithm to decomposition in convex pro-
gramming and variational inequalities, SIAM J. Control Optim., 29 (1991), pp.
119–138.

[Tse97] P. Tseng, Alternating projection-proximal methods for convex programming and
variational inequalities, SIAM J. Optim., 7 (1997), pp. 951–965.

NONSMOOTH CONSTRAINED OPTIMIZATION AND
MULTIDIRECTIONAL MEAN VALUE INEQUALITIES∗

DIDIER AUSSEL† , JEAN-NOËL CORVELLEC† , AND MARC LASSONDE‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 690–706

Abstract. We establish a general Fermat rule for the problem of minimizing a lower semicon-
tinuous function on a convex subset of a Banach space. Our basic tool is a constrained variational
principle derived from the “smooth” variational principle of Borwein and Preiss. Specializing the
Fermat rule to the case when the convex set is a “drop,” we obtain a multidirectional Rolle-type in-
equality from which, in turn, we deduce a multidirectional mean value inequality, in the line of Clarke
and Ledyaev. We follow the abstract approach of our previous paper [Trans. Amer. Math. Soc., 347
(1995), pp. 4147–4161], thus covering all standard situations met in applications, while stressing the
links between the results and the few key properties that are needed.

Key words. subdifferential, smooth norms, constrained variational principle, Fermat rule,
optimality condition, multidirectional mean value inequality

AMS subject classifications. Primary 49J52; Secondary 49J45, 49K27

PII. S105262349732339X

1. Introduction. Consider the constrained optimization problem

(P) minimize f(x) subject to x ∈ C,
where C is a nonempty closed convex subset of a Banach space X, and f : X →
R ∪ {+∞} is lower semicontinuous, bounded below on C, and finite at some point
of C. In case the function f is “smooth,” the well-known Fermat rule provides a
necessary condition for a point x̄ ∈ C to be a solution to (P). Here, by “smooth,” we
understand that either f is differentiable at the potential solution x̄ or f is convex
lower semicontinuous and satisfies a so-called constraint qualification. What can be
said in the most general situations where (P) may have no solution and f is not
“smooth”?

We study this problem in the first part of the paper. We begin with a constrained
version of the smooth variational principle, from which we derive a necessary condition
for a sequence to be minimizing for (P). Roughly speaking, we establish that any
minimizing sequence for (P) is close to another minimizing sequence, the points of
which satisfy an approximate Fermat rule. When x̄ is a solution of (P) and f is either
differentiable at x̄ or convex qualified, we recover the classical results.

In the rest of the paper, we assume that the constraint set is a “drop.” In that case,
the Fermat rule can be refined to yield first a multidirectional Rolle-type inequality,
and next, with some extra work, a multidirectional mean value inequality in the line
of Clarke and Ledyaev. This result, in turn, provides interesting complements to our
bootstrapping Fermat rule.

The case where the constraint set is compact deserves special attention, since it
is both easier and important for applications. We find it convenient to give a self-

∗Received by the editors June 13, 1997; accepted for publication (in revised form) July 15, 1998;
published electronically May 21, 1999.

http://www.siam.org/journals/siopt/9-3/32339.html
†Département de Mathématiques, Université de Perpignan, 66860 Perpignan Cedex, France

(aussel@univ-perp.fr, corvellec@univ-perp.fr).
‡Département de Mathématiques, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre

Cedex, Guadeloupe, France (lassonde@univ-ag.fr).

690

NONSMOOTH OPTIMIZATION AND MEAN VALUE INEQUALITIES 691

contained treatment of this case in an appendix. This can be read independently from
the rest; it provides a clear overview of the interconnections between the results.

This paper is a sequel to [3], where a mean value inequality and subdifferential
criteria were established using an abstract notion of subdifferential. Here we use the
same approach to express the aforementioned results in terms of our abstract sub-
differential, thus pointing out the only properties pertinent to the theory. Examples
of settings covered by our approach are specified at appropriate places in the text.

After this paper was submitted for publication, we were informed of a closely
related work of Zhu [18], where the multidirectional mean value inequality is estab-
lished for the subdifferentials ∂# (see section 2 for the notation) in spaces with a
#-differentiable norm.

2. Subdifferential and associated smooth concepts. Throughout this pa-
per, X stands for a real Banach space, X∗ for its topological dual, and 〈·, ·〉 for the
duality pairing. Let C be a nonempty convex subset of X. For x ∈ X and ‖ · ‖ a
norm on X, we set

dC(x) := inf
c∈C
‖x− c‖ ,

and for δ ≥ 0, we let Bδ(C) = {x ∈ X | dC(x) ≤ δ}.
All the functions f : X → R ∪ {+∞} considered are lower semicontinuous. As

usual, we set dom f = {x ∈ X | f(x) <∞} and we write xn →f x to express that the
sequence (xn, f(xn)) ⊂ dom f × R converges to (x, f(x)). For a set-valued operator
A : X → X∗, we let domA = {x ∈ X | A(x) 6= ∅}.

We recall from [3] the abstract notions of subdifferential operator ∂ and of corre-
sponding ∂-smoothness of a norm.

Definition 2.1. We call subdifferential operator, denoted by ∂ any operator that
associates a subset ∂f(x) of X∗ to any lower semicontinuous f : X → R ∪ {+∞},
any space X, and any x ∈ X and that satisfies the following properties:

(P1) ∂f(x) = {x∗ ∈ X∗ | 〈x∗, y − x〉 + f(x) ≤ f(y) ∀y ∈ X} whenever f is
convex;

(P2) 0 ∈ ∂f(x) whenever f attains a local minimum at x ∈ dom f ;
(P3) ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x) whenever g is real-valued, convex, continuous,

and ∂-differentiable at x;
where g ∂-differentiable at x means that both ∂g(x) and ∂(−g)(x) are nonempty.

Remark 2.1. The consideration of abstract subdifferentials was initiated by Ioffe
[12] in a different context; see also Correa, Jofré, and Thibault [7], Thibault and
Zagrodny [16], and Ioffe and Penot [13]. Our definition, however, is less restrictive.

Definition 2.2. A norm ‖.‖ on X is said to be ∂-smooth if the functions of the
following form are ∂-differentiable:

x 7→ ∆2(x) :=
∑
n

µn‖x− vn‖2,

where µn ≥ 0, the series
∑
n µn is convergent, and the sequence (vn) converges in X.

Remark 2.2. In the definition of a ∂-smooth norm as given in [3, Definition
2.2], it is required that only the functions ∆2 with

∑
n µn = 1 be ∂-differentiable. Al-

lowing
∑
n µn to take any nonnegative value is necessary for the proof of [3, Theorem

3.1], while it does not affect the rest of the paper. It is also required in [3, Definition
2.2] that for any compact segment [a, b] ⊂ X, the function x 7→ d2

[a,b](x) be ∂-
differentiable. It turns out, however, that this property is automatically fulfilled
as soon as the above condition on the functions ∆2 holds; see Proposition 2.3 below.

692 DIDIER AUSSEL, JEAN-NOËL CORVELLEC, AND MARC LASSONDE

As was already observed in [3], the ∂# subdifferentials considered by Borwein and
Preiss [4], the Ioffe approximate subdifferential ∂I (see, e.g., Ioffe and Penot [13]), and
the Clarke–Rockafellar subdifferential ∂CR (see, e.g., Clarke [5]), among others, satisfy
properties (P1), (P2), and (P3) of Definition 2.1. We recall that a function f is ∂-
differentiable at x for a subdifferential ∂ = ∂# if and only if ∂f(x) = −∂(−f)(x)
contains a single element, which is the usual Gâteaux derivative ∇Gf(x), while a
function is ∂I - or ∂CR-differentiable at x whenever it is Lipschitz continuous near x.
It follows that a norm on X is ∂#-smooth if and only if it is #-differentiable off the
origin, and that any norm on X is ∂I - and ∂CR-smooth. Other noteworthy examples
are the viscosity subdifferentials. See [3] for more details.

The following proposition provides crucial examples of ∂-differentiable functions.
Recall that a subset A of a normed space (X, ‖.‖) is said to be proximinal if every point
in X has a closest point in A (with respect to ‖.‖). Any boundedly weakly compact
set is proximinal ; in particular, any nonempty closed convex set in a reflexive Banach
space is proximinal.

Proposition 2.3. Let X be a Banach space with a ∂-smooth norm and let C ⊂ X
be convex and proximinal. Then, for any δ ≥ 0, the function

x 7→ d2
Bδ(C)(x)

is ∂-differentiable.
Proof. For any δ ≥ 0, Bδ(C) is clearly convex and also proximinal: if x /∈

Bδ(C) and xC is a closest point to x in C, then y := xC + δ(x − xC)/‖x − xC‖
is a closest point to x in Bδ(C). The proof thus reduces to show that for every
x ∈ X and every nonempty A ⊂ X, the set ∂d2

A(x) is nonempty provided A is convex,
while the set ∂(−d2

A)(x) is nonempty provided A is proximinal. The first assertion
follows from property (P1) and convex analysis because d2

A is convex continuous.
Now assume that A is proximinal. Let xA be a closest point to x in A and define
ϕ : X → R by ϕ(y) := ‖y − xA‖2. Since ϕ − d2

A attains its minimum at x, and ϕ
is convex, continuous, and ∂-differentiable (because ‖.‖ is ∂-smooth), we derive from
properties (P2) and (P3) that 0 ∈ ∂ϕ(x) + ∂(−d2

A)(x), proving the nonemptiness of
∂(−d2

A) (x).
This motivates the next definition.
Definition 2.4. A pair (X,C), with ∅ 6= C ⊂ X, is said to be ∂-smooth if X

admits a ∂-smooth renorm such that for any δ ≥ 0, the function

x 7→ d2
Bδ(C)(x)

is ∂-differentiable.
Combining Proposition 2.3 with classical renorming theorems, we easily get ex-

amples of ∂-smooth pairs (X,C), e.g.,
—X and C arbitrary, with ∂ = ∂I or ∂ = ∂CR;
—X having a ∂-smooth renorm, C boundedly weakly compact and convex, with

∂ arbitrary;
—X reflexive, C closed and convex, with ∂ = ∂F (where ∂F stands for the Fréchet

subdifferential);
—X superreflexive, C closed and convex, with ∂ = ∂HS (where ∂HS stands for

the Hölder-smooth subdifferential);
—X = Lp, with 2 ≤ p < ∞, C closed and convex, with ∂ = ∂LS (where ∂LS

stands for the Lipschitz-smooth subdifferential);
—X Hilbert space, C closed and convex, with ∂ = ∂π (where ∂π stands for the

proximal subdifferential).

NONSMOOTH OPTIMIZATION AND MEAN VALUE INEQUALITIES 693

3. The ε-variational principle for constrained minimization problems.
The ε-variational principle of Ekeland [11] and its smooth version by Borwein and
Preiss [4] are aimed at unconstrained optimization problems. In this section, we pro-
vide a variant of the smooth principle suitable for constrained optimization problems.
The proof is based on the following adaptation of Borwein and Preiss’s theorem; see
[3, Theorem 3.1].

Theorem 3.1. Let X be a Banach space with a ∂-smooth norm and let f : X →
R ∪ {+∞} be lower semicontinuous. Let A ⊂ X be a closed set and let ε > 0 be a
given constant. Suppose that x0 ∈ A and λ > 0 satisfy

Bλ(x0) ⊂ A and f(x0) < inf
A
f + ε.

Then there exists x̄ in X verifying

‖x̄− x0‖ < λ, f(x̄) < inf
A
f + ε, and

0 ∈ ∂f(x̄) + 2(ε/λ)B∗,

where B∗ is the dual closed unit ball.
In the general framework of a nonsmooth function f : X → R ∪ {+∞} to be

minimized on a constraint set C, the natural value to be considered is

rC(f) := sup
δ>0

inf
Bδ(C)

f.

Note that rC(f) is independent of the norm used to describe the topology of X.
Plainly, rC(f) ≤ infC f . The following proposition lists important cases where equal-
ity holds.

Proposition 3.2. Let X be a Banach space, f : X → R ∪ {+∞} lower semicon-
tinuous, and C ⊂ X with dom f ∩ C 6= ∅. Then, rC(f) = infC f in the following
cases:

(1) C = X;
(2) f is uniformly continuous on a uniform neighborhood of C;
(3a) f is T -lower semicontinuous on a neighborhood of C and C is T -compact,

where T is any vector space topology on X that is weaker than the norm topology;
(3b) f is T -inf-compact and C is T -closed, where T is any vector space topology

on X which is weaker than the norm topology;
(4) X = R+(dom f − C), f is convex lower semicontinuous, and C is closed and

convex.
Proof. Case (1) is obvious, and cases (2), (3a), and (3b) can easily be proved

directly. Otherwise, observe that rC(f) = infC f if and only if the function x 7→
h(x) := infy∈X(f(y) + ψC(y − x)) is lower semicontinuous at 0. Then, to prove case
(4), invoke a standard result of convex analysis stating that, under such a qualification
condition, h is in fact continuous at 0.

Our constrained version of the ε-variational principle can now be stated.
Theorem 3.3. Let X be a Banach space with a ∂-smooth norm; let C ⊂ X be

nonempty, closed, and convex such that the function d2
C is ∂-differentiable; and let

f : X → R ∪ {+∞} be lower semicontinuous. Let ε > 0 be a given constant and
suppose that x0 ∈ X satisfies

x0 ∈ C and f(x0) < rC(f) + ε.

694 DIDIER AUSSEL, JEAN-NOËL CORVELLEC, AND MARC LASSONDE

Then, for any λ > 0 such that f is bounded below on Bλ(x0), there exist x̄ ∈ X and
K > 0 verifying

‖x̄− x0‖ < λ, f(x̄) < f(x0) + ε, and

0 ∈ ∂f(x̄) +K∂d2
C(x̄) + 2(ε/λ)B∗.

Proof. Let 0 < ε′ < ε such that f(x0) < rC(f) + ε′. By the definition of rC(f),
there exists δ > 0 such that

f(x0) < inf
Bδ(C)

f + ε′.

Set A := Bδ(C) ∪Bλ(x0) and let K > 0 such that

f(x0) < inf
A
f +Kδ2 + ε′.

Consider g := f +Kd2
C . We have

g(x0) = f(x0) < inf
A
g + ε;

indeed, if x ∈ Bδ(C), then g(x) ≥ f(x) > f(x0) − ε′, while if x ∈ A \ Bδ(C), then
g(x) = f(x) +Kd2

C(x) ≥ f(x) +Kδ2 > f(x0)− ε′.
Applying Theorem 3.1, we find x̄ ∈ X satisfying

‖x̄− x0‖ < λ, g(x̄) < inf
A
g + ε, 0 ∈ ∂g(x̄) + 2(ε/λ)B∗.

It follows that f(x̄) ≤ g(x̄) < g(x0) + ε = f(x0) + ε, and, using (P3), that

0 ∈ ∂f(x̄) +K∂d2
C(x̄) + 2(ε/λ)B∗.

Remark 3.1. As was observed in [3], if f is “smooth,” i.e., f = g + h with g
Gâteaux-differentiable and h convex, Theorem 3.1 remains true for ∂ = ∂G without
requiring that the norm be ∂G-smooth. Equally in that case, Theorem 3.3 remains
true without assuming that the norm is ∂G-smooth or that d2

C is ∂-differentiable.

4. Fermat rules. As a straightforward consequence of Theorem 3.3, we obtain
a general Fermat rule for nonsmooth constrained minimization problems.

Theorem 4.1. Let (X,C) be a ∂-smooth pair, with C closed and convex, and
let f : X → R ∪ {+∞} be lower semicontinuous and bounded below on a uniform
neighborhood of C. Assume that dom f ∩C 6= ∅, and let (yn) be a sequence in X such
that

dC(yn)→ 0 and f(yn)→ rC(f).

Then, there exist a subsequence (ykn) of (yn) and sequences (xn) ⊂ dom ∂f and
x∗n ∈ ∂f(xn) such that

(i) ‖xn − ykn‖ → 0, f(xn)→ rC(f);
(ii) 〈x∗n, c− xn〉 ≥ −(1/n)‖c− xn‖ for all c ∈ C and all n ∈ N.
Proof. Without any loss of generality, we may assume that the given norm of X

is ∂-smooth and that for any δ ≥ 0 the function d2
Bδ(C) is ∂-differentiable. Note that

the assumptions imply that rC(f) ∈ R. Define a sequence γn → 0+ such that

rC(f) + 1/2n2 < rBγn (C)(f) + 1/n2.

NONSMOOTH OPTIMIZATION AND MEAN VALUE INEQUALITIES 695

Then, take a subsequence (ykn) of (yn) such that

dC(ykn) < γn and f(ykn) < rBγn (C)(f) + 1/n2.

Clearly, we may assume that f is bounded below on Bγn(C) ∪ B2/n(ykn). For each
n ∈ N, apply Theorem 3.3 to Bγn(C) with ε := 1/n2, x0 := ykn , and λ := 2/n to
obtain sequences (xn) ⊂ X and Kn > 0 such that

‖xn − ykn‖ ≤ 2/n,

f(xn) < f(ykn) + 1/n2,

0 ∈ ∂f(xn) +Kn∂d
2
Bγn (C)(xn) + (1/n)B∗.

The above inequalities yield assertion (i). The third expression gives x∗n ∈ ∂f(xn),
ξ∗n ∈ ∂d2

Bγn (C)(xn), and β∗n ∈ B∗ satisfying

0 = x∗n +Knξ
∗
n + (1/n)β∗n,

from which assertion (ii) follows, since for any c ∈ C it holds that

〈ξ∗n, c− xn〉 ≤ 0,

so that

〈x∗n, c− xn〉 ≥ −(1/n)〈β∗n, c− xn〉 ≥ −(1/n) ‖c− xn‖.
Remark 4.1. Because of Remark 3.1, if f is “smooth,” Theorem 4.1 is still valid

for arbitrary pairs (X,C), with C closed and convex, and ∂ = ∂G. Of course, this
remark applies also to the following corollaries and to the results of the subsequent
sections.

Theorem 4.1 covers a wide range of situations. As an illustration, we consider
three typical special cases:

—C = X;
—f is Lipschitz near a local minimum over C;
—f = g + h with g Fréchet differentiable, h convex “qualified,” and f attaining

a local minimum over C.
Corollary 4.2. Let X be a Banach space with a ∂-smooth renorm, and

f: X → R ∪ {+∞} be lower semicontinuous and bounded below. Assume that dom f 6=
∅, and let (yn) be a minimizing sequence. Then, there exist sequences (xn) ⊂ dom ∂f,
x∗n ∈ ∂f(xn) such that

‖xn − yn‖ → 0, f(xn)→ inf
X
f, and ‖x∗n‖ → 0.

Proof. Letting C = X in Theorem 4.1, it is easy to see from the proof that the
conclusions hold without passing to a subsequence of (yn). Assertion (ii) clearly gives
that ‖x∗n‖ → 0.

If, in Corollary 4.2, we assume further that f = g + h : X → R ∪ {+∞} with
g Gâteaux-differentiable and h convex, then X may be any Banach space (see Re-
mark 4.1), and the conclusion reads thusly: there exist (xn) ⊂ dom ∂h and x∗n ∈
∂h(xn) such that

‖xn − yn‖ → 0, f(xn)→ inf
X
f, and ‖g′(xn) + x∗n‖ → 0.

696 DIDIER AUSSEL, JEAN-NOËL CORVELLEC, AND MARC LASSONDE

This improves, e.g., Aubin and Ekeland [1, Corollary 7, p. 259].
We now elaborate on the case when f achieves a local minimum over C at point

x0 ∈ C. In that case, an approximate variational inequality involving x0 can be
obtained (see Corollary 6.2 below) but, as simple examples show, one cannot expect
that ∂f(x0) be nonempty without further regularity or qualification conditions. We
end this section by showing how two such classical conditions can be recovered from
Theorem 4.1. The first result is well known for the case ∂ = ∂CR; the second one can
be obtained through standard arguments of convex analysis.

Given a subdifferential ∂, f : X → R ∪ {+∞} lower semicontinuous and x ∈ X,

we let ∂̂f(x) be the set of weak∗ cluster points of sequences x∗n ∈ ∂f(xn) as xn →f x.
Corollary 4.3. Let (X,C) be a ∂-smooth pair, with C closed and convex, and

f : X → R ∪ {+∞} be lower semicontinuous. Assume that f attains a local minimum
over C at x0 and that the following regularity condition holds:

(R) ∂f is locally bounded at x0.

Then, there exists x∗0 ∈ ∂̂f(x0) such that

〈x∗0, c− x0〉 ≥ 0 for all c ∈ C.
Proof. Let B be a ball around x0 such that f(x0) = minC∩B f and ∂f(B) is

bounded. Then f is Lipschitz on B (see [3, Theorem 5.2]), so f(x0) = rC∩B(f) by
Proposition 3.2 (2). Applying Theorem 4.1 with yn := x0, we get sequences xn →f x0,
x∗n ∈ ∂f(xn) such that

〈x∗n, c− xn〉 ≥ −(1/n) ‖c− xn‖ for all c ∈ C ∩B.
Since the sequence (x∗n) eventually lies in the bounded set ∂f(B), it has a weak∗

cluster point x∗0 ∈ ∂̂f(x0). Clearly, 〈x∗0, c− x0〉 ≥ 0 for all c ∈ C ∩B. The conclusion
follows.

The regularity condition (R) in Corollary 4.3 is satisfied in particular if f is
Lipschitz near x0 and ∂f ⊂ ∂CRf . Thus, Corollary 4.3 applies whenever f is Lipschitz
near x0, and, e.g.,

—X is any Banach space and ∂ = ∂I or ∂CR, or
—X is reflexive and ∂ = ∂F , or
—X is a Hilbert space and ∂ = ∂π.

Moreover, if X admits a Gâteaux renorm (for example, X reflexive or X separable),

then instead of ∂̂ in Corollary 4.3 we may use the sequential limit of ∂ given by

∂̃f(x) := {x∗ ∈ X∗ | x∗n w∗→ x∗, x∗n ∈ ∂f(xn), xn → x},
because in that case every bounded sequence of X∗ has a weak∗ converging subse-
quence.

Corollary 4.4. Let X be a Banach space, C ⊂ X be nonempty closed convex,
and f := g+h, with g : X → R Fréchet differentiable and h : X → R ∪ {+∞} convex
lower semicontinuous. Assume that f attains a local minimum over C at x0 and that
the following qualification condition holds:

(Q) X = R+(domh− C).
Then, there exists x∗0 ∈ ∂h(x0) such that

〈∇F g(x0) + x∗0, c− x0〉 ≥ 0 for all c ∈ C.
Proof. For each k ∈ N, let γk > 0 such that the convex lower semicontinuous

function ϕk := ∇F g(x0)+(1/k)‖ .−x0‖+h attains its minimum over Ck := C∩Bγk(x0)

NONSMOOTH OPTIMIZATION AND MEAN VALUE INEQUALITIES 697

at x0. Of course, X = R+(domϕk−Ck), and because of Proposition 3.2 (4), rCk(ϕk) =
ϕ(x0). Applying Theorem 4.1, we get sequences xn →ϕk x0 and y∗n ∈ ∂ϕk(xn) such
that

〈y∗n, c− xn〉 ≥ −(1/n) ‖c− xn‖ for all c ∈ Ck.
Writing y∗n = ∇F g(x0) + (1/k)β∗n + x∗n with β∗n ∈ ∂(‖ .− x0‖)(xn) and x∗n ∈ ∂h(xn),
we obtain

〈∇F g(x0) + x∗n, c− xn〉 ≥ −(1/n+ 1/k) ‖c− xn‖ for all c ∈ Ck.
Since xn →ϕk x0, we have xn →h x0. Combining the above inequality with the
qualification condition, we derive that (x∗n) is pointwise bounded, hence norm bounded
by the uniform boundedness principle. If x∗0 is a weak∗ cluster point of (x∗n), then
x∗0 ∈ ∂h(x0) and we deduce from the previous inequality that

〈∇F g(x0) + x∗0, c− x0〉 ≥ −(1/k) ‖c− x0‖ for all c ∈ Ck.
By convexity of C and homogeneity, this inequality actually holds for all c ∈ C, and
the conclusion follows from the arbitrariness of k.

5. Multidirectional Rolle-type inequalities. For a nonempty closed convex
set C ⊂ X and a ∈ X, we let

[a,C] := {x ∈ X | x = a+ t(c− a) for some t ∈ [0, 1] and some c ∈ C}
be the closed convex “drop” joining a and C.

Proposition 5.1. Let D = [a,C], with C ⊂ X nonempty, closed, convex, and
a ∈ X. Let x ∈ X be such that dD(x) < dC(x). Then, for any V := Bδ(D), δ ≥ 0,
and any ξ∗ ∈ ∂d2

V (x), it holds that

〈ξ∗, d− a〉 ≤ 0 for all d ∈ D.
Proof. It follows from the classical chain rule of subdifferential calculus that

ξ∗ = 2dV (x)ζ∗, where ζ∗ ∈ ∂dV (x). If x ∈ V , then ξ∗ = 0, so we assume that x /∈ V .
In this case, we have dD(x) = dV (x) + δ, hence ζ∗ ∈ ∂dD(x). Let k ∈ N such that

dD(x) + 2/k < dC(x),

and let xk ∈ D such that

‖x− xk‖ ≤ dD(x) + 1/k2.

For any d ∈ D, we have

〈ξ∗, d− xk〉 = 〈ξ∗, d− x〉+ 〈ξ∗, x− xk〉
= 2dV (x)(〈ζ∗, d− x〉+ 〈ζ∗, x− xk〉)
≤ 2dV (x)(−dD(x) + ‖x− xk‖)
≤ 2dV (x)/k2.

On the other hand, it is easily seen that dC(xk) ≥ 1/k, hence xk − a = t(c̄− xk) for
some c̄ ∈ C and 0 ≤ t ≤ k‖xk − a‖. So, for any d ∈ D, it holds that

〈ξ∗, d− a〉 = 〈ξ∗, d− xk〉+ 〈ξ∗, xk − a〉
= 〈ξ∗, d− xk〉+ t〈ξ∗, c̄− xk〉
≤ 2dV (x)(1/k2 + t/k2)

≤ 2dV (x)(1/k2 + ‖xk − a‖/k).

698 DIDIER AUSSEL, JEAN-NOËL CORVELLEC, AND MARC LASSONDE

Since ‖xk − a‖ is bounded (by ‖x − a‖ + dD(x) + 1), letting k → ∞ yields the
result.

Combining the above proposition with Theorem 3.3, we readily obtain a multidi-
rectional Rolle-type inequality.

Theorem 5.2. Let (X,D) be a ∂-smooth pair with D = [a,C], where C is closed
and convex and a ∈ X. Let f : X → R ∪ {+∞} be lower semicontinuous and bounded
below on a uniform neighborhood of D. Assume that dom f ∩D 6= ∅ and that (yn) is
a sequence in X such that

dD(yn)→ 0, f(yn)→ rD(f), and (yn) ⊂ X \Bδ(C) for some δ > 0.

Then, there exist a subsequence (ykn) of (yn) and sequences (xn) ⊂ dom ∂f and
x∗n ∈ ∂f(xn) such that

(i) ‖xn − ykn‖ → 0, f(xn)→ rD(f) ;

(ii) 〈x∗n, d− xn〉 ≥ −(1/n)‖d− xn‖ for all d ∈ D and all n ∈ N;

(iii) 〈x∗n, d− a〉 ≥ −(1/n)‖d− a‖ for all d ∈ D and all n ∈ N.

Proof. The sequences (ykn), (xn), and (x∗n) are constructed as in the proof of
Theorem 4.1, with D in place of C. To prove assertion (iii), recall that x∗n ∈ ∂f(xn)
satisfies

0 = x∗n +Knξ
∗
n + (1/n)β∗n,

with ξ∗n ∈ ∂d2
Bγn (D)(xn) and β∗n ∈ B∗. Since dD(ykn) → 0, (ykn) ⊂ X \ Bδ(C)

and ‖xn − ykn‖ → 0, we have that dD(xn) < dC(xn) for large n. It follows from
Proposition 5.1 that for any d ∈ D it holds that

〈ξ∗n, d− a〉 ≤ 0,

whence

〈x∗n, d− a〉 ≥ −(1/n)〈β∗n, d− a〉 ≥ −(1/n)‖d− a‖.

In view of applications of Theorem 5.2, it is worth noting that if f satisfies
rD(f) < rC(f), then any sequence (yn) verifying dD(yn) → 0 and f(yn) → rD(f)
automatically satisfies (yn) ⊂ X \ Bδ(C) for some δ > 0, eventually. Another useful
situation is described in the following corollary.

Corollary 5.3. Let X, D := [a,C], and f be as in Theorem 5.2. Assume
that there exists x0 ∈ D \ C such that f(x0) ≤ rC(f). Then, there exist sequences
(xn) ⊂ dom ∂f , x∗n ∈ ∂f(xn) such that

(i) dD(xn)→ 0, f(xn)→ rD(f), (xn) ⊂ X \Bδ(C) for some δ > 0;

(ii) 〈x∗n, d− xn〉 ≥ −(1/n)‖d− xn‖ for all d ∈ D and all n ∈ N;

(iii) 〈x∗n, d− a〉 ≥ −(1/n)‖d− a‖ for all d ∈ D and all n ∈ N.

Furthermore, if f(x0) = rD(f), we may choose (xn) so that xn →f x0.

Proof. If f(x0) = rD(f), the result follows from Theorem 5.2 with yn = x0 for all
n ∈ N. If f(x0) > rD(f), then rD(f) < rC(f) and the result follows from Theorem 5.2
through the above remark.

Remark 5.1. Corollary 5.3 contains our previous result [3, Theorem 4.1], which is
the case when C is a singleton (so that D is a compact segment) and f(x0) = rD(f) =
minD f .

NONSMOOTH OPTIMIZATION AND MEAN VALUE INEQUALITIES 699

6. Multidirectional mean value inequalities. The approximate mean value
theorem of Zagrodny [17] has proved to be a powerful tool in nonsmooth analysis
(see, e.g., Correa, Jofré, and Thibault [7], Thibault and Zagrodny [16], and Aussel,
Corvellec, and Lassonde [2, 3]). The multidirectional mean value inequality of Clarke
and Ledyaev [6] is a (nontrivial) partial extension of Zagrodny’s theorem: instead of
dealing with segments [a, c], it is concerned with “drops” [a,C], where C is a closed
bounded convex set. In this section, we establish a general multidirectional mean
value inequality containing both Zagrodny’s and Clarke and Ledyaev’s results, by
applying Corollary 5.3 in the Banach space X × R. To this end, we need specific
assumptions concerning the ∂-smoothness of the space X × R and the behavior of ∂
on a certain class of functions of X × R.

Throughout this section, we assume that X and ∂ satisfy the following:
(S) For every nonempty closed convex C ⊂ X×R, the pair (X×R, C) is ∂-smooth.
(P4) If ϕ : X × R→ R ∪ {+∞} is such that ϕ(x, t) = f(x) + αt, where f : X →

R ∪ {+∞} is lower semicontinuous and α ∈ R, then ∂ϕ(x, t) ⊂ ∂f(x)× {α}.
These properties are verified in most situations met in applications, e.g.,
—X is a Banach space and ∂ = ∂I or ∂CR;
—X is a reflexive Banach space and ∂ = ∂F ;
—X is a superreflexive Banach space and ∂ = ∂HS ;
—X is an Lp space, with 2 ≤ p < +∞, and ∂ = ∂LS ;
—X is a Hilbert space and ∂ = ∂π.
Theorem 6.1. Let X and ∂ satisfy (S) and (P4), and let D = [a,C], with

C ⊂ X nonempty, closed, convex, and a ∈ X. Let f : X → R ∪ {+∞} be lower
semicontinuous and bounded below on a uniform neighborhood of D. Assume that
a ∈ dom f , and let r ∈ R with r ≤ rC(f). Then, there exist sequences (xn) ⊂ dom ∂f
and x∗n ∈ ∂f(xn) such that

(i) dD(xn)→ 0 , f(xn)→ ρ with rD(f) ≤ ρ ≤ rD(f) + |r − f(a)|;
(ii) 〈x∗n, d− xn〉 ≥ −|r − f(a)| − (1/n)‖d− xn‖ − 1/n for all d ∈ D and all n;
(iii) 〈x∗n, c− a〉 ≥ r − f(a)− (1/n)‖c− a‖ − 1/n for all c ∈ C and all n.

Furthermore, if f(a) = r = rD(f), we may choose (xn) so that xn →f a , while if
f(a) ≤ r and a /∈ C, we may choose (xn) so that (xn) ⊂ X \Bδ(C) for some δ > 0.

Proof. Supply X × R, say, with the Euclidean product norm

‖(x, t)‖X×R := (‖x‖2 + t2)1/2 ;

define ϕ : X × R→ R ∪ {+∞} by

ϕ(x, t) := f(x)− (r − f(a))t

and let ã := (a, 0), C̃ := C × {1}, D̃ := [ã, C̃], so that

D̃ = {(x, t) ∈ X × [0, 1] | x = a+ t(c− a) for some c ∈ C}.

We claim that

ϕ(ã) = f(a) ≤ rC̃(ϕ) .

Indeed, let ε > 0 be an arbitrary constant, and let δ > 0 be such that r−ε < infBδ(C) f .
It follows that f(a)− ε < infBδ(C) f − (r − f(a)), whence

f(a)− ε < inf
Bδ(C)

f − (r − f(a))t for any t close to 1.

700 DIDIER AUSSEL, JEAN-NOËL CORVELLEC, AND MARC LASSONDE

Therefore, some γ > 0 exists such that

f(a)− ε < ϕ(x, t) for all (x, t) ∈ Bγ(C)×Bγ({1}) ,
which implies f(a)− ε ≤ rC̃(ϕ). The claim is proved.

On the other hand, ϕ is lower semicontinuous and bounded below on a uniform
neighborhood of D̃, and ã ∈ D̃ \ C̃. Thanks to (S), we may apply Corollary 5.3 to ϕ,
D̃, and ã, getting sequences (x̃n) ⊂ dom ∂ϕ and x̃∗n ∈ ∂ϕ(x̃n) with

dD̃(x̃n)→ 0, ϕ(x̃n)→ rD̃(ϕ);(6.1)

〈x̃∗n, d̃− x̃n〉 ≥ −(1/n)‖d̃− x̃n‖ for all d̃ ∈ D̃ and all n ∈ N;(6.2)

〈x̃∗n, d̃− ã〉 ≥ −(1/n)‖d̃− ã‖ for all d̃ ∈ D̃ and all n ∈ N.(6.3)

Writing x̃n := (xn, tn), we derive from (6.1) that, up to a subsequence, tn → τ ∈
[0, 1], dD(xn) → 0, and f(xn) → ρ := rD̃(ϕ) + (r − f(a))τ . From the very definition
of rD(f), we have that ρ ≥ rD(f). To complete the proof of assertion (i), it remains
to show that

ρ ≤ rD(f) + |r − f(a)|.
The following straightforward observation will be helpful: for any δ > 0 and any x ∈
Bδ(D), there exists t ∈ [0, 1] such that (x, t) ∈ Bδ(D̃). Assume first that r−f(a) ≥ 0.
Then, ϕ(x, t) ≤ f(x) for all x ∈ X and t ≥ 0, which, combined with the previous
observation, gives rD̃(ϕ) ≤ rD(f), whence the result. Assume now that r− f(a) ≤ 0.
Then, ϕ(x, t) ≤ f(x) − (r − f(a)) for all x ∈ X and t ≤ 1, so that, as above, we get
rD̃(ϕ) ≤ rD(f)− (r − f(a)), whence the result again.

Now, according to (P4) we have x̃∗n = (x∗n,−(r − f(a))) with x∗n ∈ ∂f(xn).
Substitution in (6.2) gives the following: for each d ∈ a + t(C − a), with 0 ≤ t ≤ 1,
and each n ∈ N, it holds that

〈x∗n, d− xn〉≥ (t− tn)(r − f(a))− (1/n)(‖d− xn‖+ |t− tn|)
≥ −|r − f(a)| − (1/n)‖d− xn‖ − 1/n− |τ − tn|(|r − f(a)|+ 1/n),

from which assertion (ii) follows if we agree that (6.2) could be given with 1/2n instead
of 1/n and that tn could be such that |τ − tn|(|r− f(a)|+ 1) ≤ 1/2n. Similarly, (6.3)
yields

〈x∗n, c− a〉 ≥ r − f(a)− (1/n)‖c− a‖ − 1/n for all c ∈ C and all n ∈ N.
This is assertion (iii), so the first part of the theorem is proved.

The last statements follow from observations on the above proof. Assume that
f(a) ≤ r. If rD̃(ϕ) = ϕ(ã) = f(a), by Corollary 5.3 we may choose x̃n →ϕ ã, which
implies that xn →f a. This case holds in particular whenever f(a) = r = rD(f). If
rD̃(ϕ) < ϕ(ã) = f(a), we have

ρ = rD̃(ϕ) + (r − f(a))τ
≤ rD̃(ϕ) + r − f(a)
< r ≤ rC(f);

but f(xn) → ρ < rC(f) and dD(xn) → 0, so necessarily xn /∈ Bδ(C) for some δ > 0
and large n.

NONSMOOTH OPTIMIZATION AND MEAN VALUE INEQUALITIES 701

Remark 6.1. If C is weakly compact, then the set D̃ considered in the proof is
also weakly compact. In that case, the property (S) can therefore be relaxed to simply

(S′) X × R admits a ∂-smooth renorm,
which, for all natural subdifferentials, amounts to saying that X admits a ∂-smooth
renorm (see Fact 1 in the Appendix). This remark also applies to the forthcoming
results.

Theorem 6.1 brings interesting complements to the Fermat rule (Theorem 4.1).
Corollary 6.2. Let X and ∂ satisfy (S) and (P4); let C ⊂ X be nonempty,

closed, and convex; and let f : X → R ∪ {+∞} be lower semicontinuous. Assume that
dom f ∩ C 6= ∅, and that x0 ∈ C verifies f(x0) = rC(f). Then, there exist sequences
(xn) ⊂ dom ∂f and x∗n ∈ ∂f(xn) such that

(i) xn →f x0;
(ii) 〈x∗n, c− xn〉 ≥ −(1/n)‖c− xn‖ − 1/n for all c ∈ C and all n ∈ N;
(iii) 〈x∗n, c− x0〉 ≥ −(1/n)‖c− x0‖ − 1/n for all c ∈ C and all n ∈ N.
Proof. Apply Theorem 6.1 with a := x0 (so that D = C) and r := f(a) =

rD(f).
Corollary 6.3. Let X and ∂ satisfy (S′) and (P4), let Y be a closed vector

subspace of X, and let f : X → R ∪ {+∞} be lower semicontinuous. Assume that f
attains a local minimum over Y at x0 ∈ Y and that either

(i) Y is finite-dimensional, or
(ii) Y is reflexive and f is weakly lower semicontinuous near x0, or
(iii) Y is reflexive and f is uniformly continuous near x0.

Then, there exist sequences (xn) ⊂ dom ∂f and x∗n ∈ ∂f(xn) such that
(a) xn →f x0;
(b) ‖x∗n‖Y ∗ → 0.
Proof. Apply Corollary 6.2 with C := Bδ(x0) ∩ Y, where δ > 0 is such that

f(x0) = minC f and f is weakly lower semicontinuous (respectively, uniformly contin-
uous) around C in case (ii) (respectively, (iii)). Note that C is compact in case (i) and
weakly compact in the other cases, so that minC f = rC(f) by Proposition 3.2. More-
over, (S) can indeed be relaxed to (S′); see Remark 6.1. Assertion (iii) of Corollary 6.2
obviously gives assertion (b) above.

Assuming that the convex set C in Theorem 6.1 is bounded, we obtain a more
precise and somewhat simpler result.

Theorem 6.4. Let X and ∂ satisfy (S) and (P4), and let D = [a,C], with
C ⊂ X nonempty, closed, bounded, convex, and a ∈ X. Let f : X → R ∪ {+∞} be
lower semicontinuous and bounded below on a uniform neighborhood of D. Assume
that a ∈ dom f, and let r ∈ R with r ≤ rC(f). Then, there exist 0 ≤ τ < 1 and
sequences (xn) ⊂ dom ∂f and x∗n ∈ ∂f(xn) such that

(i) da+τ(C−a)(xn)→ 0 , f(xn)→ ρ with rD(f) ≤ ρ ≤ rD(f) + |r − f(a)|;
(ii) for any 0 ≤ t ≤ 1, lim infn→∞ infx∈a+t(C−a) 〈x∗n, x−xn〉 ≥ (t− τ)(r− f(a));
(iii) lim infn→∞ infc∈C〈x∗n, c− a〉 ≥ r − f(a) .

Furthermore, if f(a) = r = rD(f), we may choose (xn) so that xn →f a, while if
f(a) ≤ r and a /∈ C, we may choose (xn) so that (xn) ⊂ X \Bδ(C) for some δ > 0.

Proof. The proof is the same as that of Theorem 6.1, except for the following
details. Observe that Corollary 5.3 provides the sequence (x̃n = (xn, tn)) with

dD̃(x̃n)→ 0, ϕ(x̃n)→ rD̃(ϕ), (x̃n) ⊂ X × R \Bδ(C̃) for some δ > 0 .

From the boundedness of C, it is thus easily seen that there exists 0 ≤ τ < 1 such
that, up to a subsequence, tn → τ and da+τ(C−a)(xn)→ 0.

702 DIDIER AUSSEL, JEAN-NOËL CORVELLEC, AND MARC LASSONDE

Also, recalling that x̃∗n = (x∗n,−(r − f(a))) with x∗n ∈ ∂f(xn), (6.2) and (6.3),
respectively, yield

lim inf
n→∞ inf

x∈a+t(C−a)
〈x∗n, x−xn〉 ≥ lim

n→∞(t−tn)(r−f(a)) = (t−τ)(r−f(a)), 0 ≤ t ≤ 1,

lim inf
n→∞ inf

c∈C
〈x∗n, c− a〉 ≥ r − f(a) .

The case f(a) ≤ rC(f) in Theorem 6.4 is worth stating explicitly (compare with
Corollary 5.3).

Corollary 6.5. Let X and ∂ satisfy (S) and (P4), and let D = [a,C], with
C ⊂ X nonempty, closed, bounded, convex, and a ∈ X. Let f : X → R ∪ {+∞} be
lower semicontinuous and bounded below on a uniform neighborhood of D. Assume
that a ∈ dom f \C and that f(a) + ε ≤ rC(f) with ε ≥ 0. Then, there exist 0 ≤ τ < 1
and sequences (xn) ⊂ dom ∂f and x∗n ∈ ∂f(xn) such that

(i) dD(xn)→ 0, f(xn)→ ρ with rD(f) ≤ ρ ≤ rD(f) + ε, and (xn) ⊂ X \Bδ(C)
for some δ > 0 ;

(ii) for any t ≥ 0, lim infn→∞ infx∈a+t(C−a)〈x∗n, x− xn〉 ≥ (t− τ)ε;
(iii) for any t ≥ 0, lim infn→∞ infx∈a+t(C−a)〈x∗n, x− a〉 ≥ tε.
Proof. Apply Theorem 6.4 with r := f(a) + ε to get assertion (i), assertion (ii)

for 0 ≤ t ≤ 1, and assertion (iii) for t = 1. Then observe that, if t > 1, it holds that

inf
x∈a+t(C−a)

〈x∗n, x− xn〉 ≥ inf
c∈C
〈x∗n, c− xn〉+ (t− 1) inf

c∈C
〈x∗n, c− a〉

so that

lim inf
n→∞ inf

x∈a+t(C−a)
〈x∗n, x− xn〉 ≥ (1− τ)ε+ (t− 1)ε = (t− τ)ε ,

while if t ≥ 0 it holds that

lim inf
n→∞ inf

x∈a+t(C−a)
〈x∗n, x− a〉 = t lim inf

n→∞ inf
c∈C
〈x∗n, c− a〉 ≥ tε.

Remark 6.2. (a) Theorem 6.1, as well as Theorem 6.4, contains the following:
the Clarke–Ledyaev multidirectional mean value theorem [6, Theorem 2.1], where X
is a Hilbert space, C is bounded, and ∂ = ∂π is the proximal subdifferential; Theorem
3.2 in Radulescu and Clarke [15], where X is a uniformly smooth Banach space, C
is bounded, and ∂ = ∂F ; the main results in Luc [14], where C is norm (respec-
tively, weakly) compact, f is norm (respectively, weakly) lower semicontinuous, and
∂ satisfies more restrictive properties than ours; and our previous result [3, Theo-
rem 4.2], where C is a singleton, which is an extension of Zagrodny’s approximate
mean value inequality [17] for abstract subdifferential. Compare also with [15, Theo-
rem 3.1], where X is a Banach space admitting a Lipschitz C1 bump function, f is
locally Lipschitz, and ∂ = ∂F: this result is obtained via the variational principle of
Deville, Godefroy, and Zizler [9] instead of the variational principle of Borwein and
Preiss.

(b) For ∂ = ∂F , cases (i) and (iii) of Corollary 6.3 are established in Deville and
Ivanov [10, Theorem 2.1] and Deville and El Haddad [8, Theorem II-4], respectively,
with slightly different assumptions (and completely different proofs). The case of a
one-dimensional space Y is contained in [3, Theorem 4.1].

(c) Corollary 6.5 can be used to derive “subdifferential criteria,” as in the case
when C is a singleton; see [3, Corollary 4.3]. For example, we have the following weak
monotonicity result generalizing [6, Theorem 6.1]:

NONSMOOTH OPTIMIZATION AND MEAN VALUE INEQUALITIES 703

Let X and ∂ satisfy (S) and (P4); let Y ⊂ X be nonempty, closed,
bounded, and convex; and let f : X → R ∪ {+∞} be lower semicon-
tinuous. If

inf
y∈Y
〈x∗, y〉 ≤ 0 for all x∗ ∈ Im ∂f,

then f(a) ≥ ra+τY (f) for all a ∈ X and all τ > 0.
Indeed, if we suppose that a ∈ X and τ > 0 are such that f(a) < ra+τY (f), applying
Corollary 6.5 (iii) with C := a+ τY , we get x ∈ dom ∂f , x∗ ∈ ∂f(x) such that

inf
z∈a+(1/τ)(C−a)

〈x∗, z − a〉 = inf
y∈Y
〈x∗, y〉 > 0.

Appendix: The compact case. This appendix provides complete, self-
contained proofs of our main results in the (much easier) case where the constraint set
is (weakly) compact. We use the notions of subdifferential operator ∂ and ∂-smooth
norm as given in [3] (see Definitions 2.1 and 2.2). We assume further that ∂ satisfies
the following natural properties:

(P0) ∂g(t) = {g′(t)} whenever g : R→ R is of class C∞;
(P4)′ If ϕ : X × R → R ∪ {+∞} is such that ϕ(x, t) = f(x) + g(t), where

f : X → R ∪ {+∞} is lower semicontinuous and g : R → R is of class C∞, then
∂ϕ(x, t) ⊂ ∂f(x)× {g′(t)} with equality if either f or g is a constant function.

Of course, property (P4)′ is a strengthening of property (P4).
Hereafter, X denotes a Banach space with a ∂-smooth renorm, C a nonempty,

T -compact, convex subset of X, and f : X → R ∪ {+∞} a T -lower semicontinuous
function, where T is either the weak or the norm topology of X.

The proofs of our results are based on Borwein and Preiss’s smooth variational
principle in the form given in [3, Theorem 3.1] (also see our Theorem 3.1), and on the
following two elementary facts.

Fact 1. X × R admits a ∂-smooth renorm.
Indeed, if ‖.‖ is a ∂-smooth norm on X, then the corresponding Euclidean product

norm on X × R, namely,

‖(x, t)‖X×R = (‖x‖2 + t2)1/2,

is ∂-smooth. Thus, let

∆2(x, t) :=
∑
n µn‖(x, t)− (vn, τn)‖2X×R =

∑
n µn‖x− vn‖2 +

∑
n µn(t− τn)2

=: ∆2(x) + ∆2(t),

where µn and (vn, τn) ⊂ X × R are as in Definition 2.2. It follows from (P1) and

convex analysis that ∂∆2(x, t) is not empty. Now, define ∆̃2 and ∆2 on X × R by

∆̃2(x, t) := ∆2(x) , ∆2(x, t) := ∆2(t)

so that ∆2 = ∆̃2 + ∆2. According to (P4)′, ∂(−∆̃2)(x, t) = ∂(−∆2)(x) × {0} and

∂(−∆2)(x, t) = {0} × {−∆′2(t)}; hence, ∆̃2 and ∆2 are both convex continuous and

∂-differentiable. Writing −∆2 + ∆2 = −∆̃2, we deduce from (P3) that

∅ 6= ∂(−∆̃2)(x, t) ⊂ ∂(−∆2)(x, t) + ∂∆2(x, t) ,

704 DIDIER AUSSEL, JEAN-NOËL CORVELLEC, AND MARC LASSONDE

proving that ∂(−∆2)(x, t) is nonempty.
Fact 2. x 7→ d2

D(x) := inf{‖x− d‖2 | d ∈ D} is ∂-differentiable whenever D ⊂ X
is nonempty, weakly compact, convex and ‖.‖ is ∂-smooth.

Indeed, it follows from (P1) and convex analysis that the set ∂d2
D(x) is nonempty.

On the other hand, let xD be a closest point to x in D and define ϕ : X → R
by ϕ(y) := ‖y − xD‖2. Since ϕ − d2

D attains its minimum at x, and ϕ is convex,
continuous, and ∂-differentiable (because ‖.‖ is ∂-smooth), we derive from proper-
ties (P2) and (P3) that 0 ∈ ∂ϕ (x) + ∂ (−d2

D) (x), proving the nonemptiness of
∂(−d2

D) (x).
Theorem A (multidirectional mean value inequality). Let D = [a,C] with a ∈

dom f , and let r ∈ R with r ≤ minC f . Then, there exist 0 ≤ τ < 1, x0 ∈ a+τ(C−a),
and sequences (xn) ∈ dom ∂f and x∗n ∈ ∂f(xn) such that

(i) xn →f x0 and f(x0)−minD f ≤ |r − f(a)|;
(ii) for any 0 ≤ t ≤ 1, lim infn→∞ infx∈a+t(C−a) 〈x∗n, x− xn〉 ≥ (t− τ)(r − f(a));
(iii) lim infn→∞ infc∈C 〈x∗n, c− a〉 ≥ r − f(a).

Furthermore, if f(a) = r = minD f, we may choose x0 = a, while if f(a) ≤ r and
a /∈ C, we may choose x0 /∈ C.

Theorem B (Fermat rule). Assume that C∩dom f 6= ∅, and that x0 ∈ C verifies
f(x0) = minC f. Then, there exist sequences (xn) ⊂ dom ∂f and x∗n ∈ ∂f(xn) such
that

(i) xn →f x0;
(ii) lim infn→∞ infc∈C 〈x∗n, c− xn〉 ≥ 0;
(iii) lim infn→∞ infc∈C〈x∗n, c− x0〉 ≥ 0.
Theorem C (multidirectional Rolle-type inequality). Let D = [a,C] with a ∈ X.

Assume that there exists x0 ∈ D \ C such that f(x0) = minD f . Then, there exist
sequences (xn) ⊂ dom ∂f and x∗n ∈ ∂f(xn) such that

(i) xn →f x0;
(ii) lim infn→∞ infd∈D 〈x∗n, d− xn〉 ≥ 0;
(iii) lim infn→∞ infd∈D〈x∗n, d− a〉 ≥ 0.
We first observe that the above three theorems can be easily derived from each

other:
A ⇒ B. In Theorem A, let a : = x0 (so that D = C) and r : = f (a) =

minD f .
B ⇒ C. Since x0 ∈ [a,C] \ C, we have x0 − a = t(c − x0) for some t ≥ 0 and

some c ∈ C, so that assertion (iii) of Theorem B gives

lim inf
n→∞ inf

d∈D
〈x∗n, d− a〉 = lim inf

n→∞ (inf
d∈D
〈x∗n, d− x0〉+ t〈x∗n, c− x0〉) ≥ 0.

C ⇒ A. Consider the T -lower semicontinuous function ϕ : X × R→ R ∪ {+∞}
given by

ϕ(x, t) = f(x)− (r − f(a))t,

and set ã := (a, 0), C̃ := C × {1}, and D̃ := [ã, C̃]. Since

ϕ(ã) = f(a) ≤ f(a) + f(c)− r = ϕ(c, 1) for all c ∈ C,
there exists x̃0 ∈ D̃ \ C̃ such that ϕ(x̃0) = minD̃ ϕ. Because the space X × R has a
∂-smooth renorm (Fact 1), we may apply Theorem C to find sequences (x̃n) ⊂ dom ∂ϕ
and x̃∗n ∈ ∂ϕ(x̃n) such that

x̃n →ϕ x̃0 ,(A.1)

NONSMOOTH OPTIMIZATION AND MEAN VALUE INEQUALITIES 705

lim inf
n→∞ inf

d̃∈D̃
〈x̃∗n, d̃− x̃n〉 ≥ 0 ,(A.2)

lim inf
n→∞ inf

d̃∈D̃
〈x̃∗n, d̃− ã〉 ≥ 0 .(A.3)

Writing x̃0 = (x0, τ) with τ < 1 and x̃n = (xn, τn), then x0 ∈ a + τ(C − a), τn → τ ,
and xn →f x0, because of (A.1). Moreover, for all t ∈ [0, 1] and x ∈ a + t(C − a),
we have ϕ(x̃0) = f(x0) − (r − f(a))τ ≤ ϕ(x, t) = f(x) − (r − f(a))t, which gives
f(x0) ≤ f(x) + |r− f(a)|, proving assertion (i). Now, according to property (P4), we
can write x̃∗n = (x∗n,−(r − f(a))) with x∗n ∈ ∂f(xn). It is easily seen that assertions
(ii) and (iii) follow from (A.2) and (A.3), respectively.

The last statements come from the fact that if f(a) = r = minD f , then

ϕ(a, 0) = f(a) ≤ f(x) = ϕ(x, t)

for all (x, t) ∈ D̃, so we may choose x̃0 = ã, while if f(a) ≤ r, then

ϕ(a, 0) = f(a) ≤ f(c)− r + f(a) ≤ f(c)− (r − f(a))t = ϕ(c, t)

for all (c, t) ∈ C × [0, 1]; so if ã /∈ C × [0, 1], we may also choose x̃0 /∈ C × [0, 1].
To complete the proofs of our theorems, it thus suffices to give a direct proof of

Theorem C. This goes exactly as in the case where D = [a, c] is a compact segment;
see [3, Theorem 4.1]. We briefly recall the arguments.

Direct proof of Theorem C. Let ‖ · ‖ be a ∂-smooth renorm on X and A be a
closed neighborhood of D on which f is bounded below. For any natural number n
such that B1/n(x0) is contained in A, let γn > 0 be such that

f(x0) < inf
Bγn (D)

f + 1/n2.

Note that this is always possible since f is T -lower semicontinuous and D is T -
compact. Then let Kn > 0 be such that

f(x0) < inf
A
f +Knγ

2
n + 1/n2,

and consider the function fn := f +Knd
2
D. Clearly,

fn(x0) = f(x0) < inf
A
fn + 1/n2.

Applying [3, Theorem 3.1] to fn with ε := 1/n2 and λ := 1/n produces a sequence
(xn) ⊂ A such that

‖x0 − xn‖ < 1/n,

f(xn) ≤ fn(xn) < f(x0) + 1/n2, and

∂fn(xn) ∩ (2/n)B∗ 6= ∅.
Since f is lower semicontinuous, the first two formulae show that xn →f x0. The
function d2

D being ∂-differentiable (Fact 2), the third formula combined with (P3)
shows that there exist x∗n ∈ ∂f(xn), ξ∗n ∈ ∂d2

D(xn), and β∗n ∈ B∗ with x∗n + Knξ
∗
n =

(2/n)β∗n.
From elementary subdifferential calculus of convex analysis, we infer that

〈ξ∗n, d− xn〉 ≤ 0 for all d ∈ D,(A.4)

706 DIDIER AUSSEL, JEAN-NOËL CORVELLEC, AND MARC LASSONDE

〈ξ∗n, d− Pxn〉 ≤ 0 for all d ∈ D,(A.5)

where Pxn ∈ D is such that ‖xn − Pxn‖ = dD(xn). We get from (A.4) that 〈x∗n, d−
xn〉 ≥ (2/n)〈β∗n, d − xn〉, and assertion (ii) follows. Since Pxn → x0 and x0 /∈ C, we
may assume that Pxn /∈ C. Hence Pxn − a = tn(yn − Pxn) for some tn ≥ 0 and
yn ∈ C. According to (A.5), for any d ∈ D we have 〈ξ∗n, d − a〉 = 〈ξ∗n, d − Pxn〉 +
tn〈ξ∗n, yn−Pxn〉 ≤ 0, which yields 〈x∗n, d−a〉 ≥ (2/n)〈β∗n, d−a〉, and proves assertion
(iii).

Theorems A, B, and C are special cases of, respectively, Theorem 6.4, Corol-
lary 6.2, and Corollary 5.3 given in the text. They are sufficient to obtain the results
of Luc and of Deville and Ivanov mentioned in Remark 6.2. For various corollaries,
please refer to the main text.

REFERENCES

[1] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984.
[2] D. Aussel, J.-N. Corvellec, and M. Lassonde, Subdifferential characterization of quasicon-

vexity and convexity, J. Convex Anal., 1 (1994), pp. 195–201.
[3] D. Aussel, J.-N. Corvellec, and M. Lassonde, Mean value property and subdifferential cri-

teria for lower semicontinuous functions, Trans. Amer. Math. Soc., 347 (1995), pp. 4147–
4161.

[4] J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferen-
tiability and to differentiability of convex functions, Trans. Amer. Math. Soc., 303 (1987),
pp. 517–527.

[5] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983;
reprinted as Classics Appl. Math. 5, SIAM, Philadelphia, PA, 1990.

[6] F. H. Clarke and Yu. S. Ledyaev, Mean value inequalities in Hilbert space, Trans. Amer.
Math. Soc., 344 (1994), pp. 307–324.

[7] R. Correa, A. Jofré, and L. Thibault, Subdifferential monotonicity as characterization of
convex functions, Numer. Funct. Anal. Optim., 15 (1994), pp. 531–535.

[8] R. Deville and E. M. El Haddad, The subdifferential of the sum of two functions in Banach
spaces, I. First order case, J. Convex Anal., 3 (1996), pp. 295–308.

[9] R. Deville, G. Godefroy, and V. Zizler, A smooth variational principle with applications to
Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal., 111 (1993), pp. 197–212.

[10] R. Deville and M. Ivanov, Smooth variational principles with constraints, Arch. Math., 69
(1997), pp. 418–426.

[11] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), pp. 324–353.
[12] A. Ioffe, Approximate subdifferentials and applications. I: The finite dimensional theory,

Trans. Amer. Math. Soc., 281 (1984), pp. 389–416.
[13] A. Ioffe and J.-P. Penot, Subdifferentials of performance functions and calculus of coderiva-

tives of set-valued mappings, Serdica Math. J., 22 (1996), pp. 359–384.
[14] D. T. Luc, A strong mean value theorem and applications, Nonlinear Anal., 26 (1996), pp. 915–

923.
[15] M. L. Radulescu and F. H. Clarke, The multidirectional mean value theorem in Banach

spaces, Canad. Math. Bull., 40 (1997), pp. 88–102.
[16] L. Thibault and D. Zagrodny, Integration of subdifferentials of lower semicontinuous func-

tions on Banach spaces, J. Math. Anal. Appl., 189 (1995), pp. 33–58.
[17] D. Zagrodny, Approximate mean value theorem for upper subderivatives, Nonlinear Anal., 12

(1988), pp. 1413–1428.
[18] Q. J. Zhu, Clarke-Ledyaev mean value inequalities in smooth Banach spaces, Nonlinear Anal.,

32 (1998), pp. 315–324.

HOMOGENEOUS ANALYTIC CENTER CUTTING PLANE
METHODS FOR CONVEX PROBLEMS AND

VARIATIONAL INEQUALITIES∗

YU. NESTEROV† AND J.-PH. VIAL‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 707–728

Abstract. In this paper we consider a new analytic center cutting plane method in an extended
space. We prove the efficiency estimates for the general scheme and show that these results can be
used in the analysis of a feasibility problem, the variational inequality problem, and the problem
of constrained minimization. Our analysis is valid even for problems whose solution belongs to the
boundary of the domain.

Key words. cutting plane, analytic centers, convex problems, variational irregularities

AMS subject classifications. 65K05, 65K10

PII. S1052623497324813

1. Introduction. Cutting plane methods are designed to solve convex problems
with the following property. A so-called oracle provides first-order information in the
form of cutting planes that separate the query point from the set of solutions. Given
a sequence of query points, the oracle provides a set of cutting planes that generates
a polyhedral relaxation of the solution set. As the sequence of query points increases,
the relaxation becomes increasingly refined, until one obtains a solution to the original
problem to the given degree of accuracy. In a worst-case analysis, one assumes that
the oracle provides, each time, the least informative cutting plane. In that respect, the
choice of some kind of center of the current relaxation is rather intuitive, as it should
force the oracle to cut off at each iteration a significant part of the current relaxation.
One can conceive of many possible centers, but the analytic center—a concept first
introduced by Sonnevend [20]1— is well adapted. Analytic centers underlie the theory
of most interior point methods; their analytical properties are well studied, and there
are powerful algorithms to compute them or to retrieve a new center after one side
of the polyhedron has been shifted. We name this class of cutting plane method the
analytic center cutting plane method (ACCPM).

Goffin, Haurie, and Vial [6] proposed the first ACCPM; they also provided some
evidence of its practical efficiency. See also [3, 4, 5]. Atkinson and Vaidya [2] and
Nesterov [15] gave the first complexity analysis of some closely related methods.
The proof technique of [15] has been subsequently applied to analyzing the original
ACCPM method for different problems: finding a point in a convex set [7, 8, 10], min-
imizing a convex function [1, 11], or solving a variational inequality problem [9]. An
interesting extension of the method concerns the case where part of the information
on the problem is given under the form of some self-concordant functions. By incor-

∗Received by the editors July 18, 1997; accepted for publication (in revised form) June 23, 1998;
published electronically May 21, 1999.

http://www.siam.org/journals/siopt/9-3/32481.html
†CORE, Catholic University of Louvain, 34 voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium

(nesterov@core.ucl.ac.be).
‡HEC/LOGILAB, University of Geneva, 102 bd Carl-Vogt, 1211-Geneva 4, Switzerland (jpvial@

uni2a.unige.ch). The research of this author was partially supported by Fonds National Suisse grant
12-42503.94.

1In this paper, among many other applications, Sonnevend also mentioned the possibility of using
the analytic center of a polytope in nondifferentiable optimization schemes.

707

708 YU. NESTEROV AND J.-PH. VIAL

porating this information directly into the algorithm, one can presumably enhance
the practical convergence. This issue has been addressed by shifting nonlinear cuts,
in the case of quadratic constraints [12] or a nonlinear objective [13].

All the quoted papers dealing with the complexity analysis, except [2], use an
inequality due to Nesterov [15]. This inequality bounds the growth of the Hessian of
the barrier function as the new cutting planes are added to the existing collection.
This inequality is rather weak; besides, it involves the dimension n of the space in
which the problem is posed. This introduces an undesirable factor n in the complexity
analysis and thus calls for another approach to the problem.

In this paper, we propose an approach that circumvents some of the difficulties
and shortcomings of the previous papers. The new cutting plane scheme offers the
further advantage of a unified framework to deal with three different convex problems
for which part of the information is given under the form of self-concordant functions.
The main idea is to embed the original problem in an extended space and to apply a
homogeneous ACCPM to this new conic formulation. This scheme uses a logarithmic
barrier for the cutting planes, a ν-self-concordant barrier for the feasible set, and
a proximal term. We present here an idealized version of the method based on the
exact analytic center. Although it is not implementable, this idealized version is much
simpler to analyze. However, let us mention that one can remove the assumption of
an exact analytic center at the cost of some technicalities. In the idealized framework,
we are able to derive, at any feasible point, a bound on the weighted average of the
slacks to the cutting planes. We use this inequality in three different cases. We first
apply it to the problem of finding a point in a closed convex set. We next deal with
monotone variational inequalities over a bounded convex set. Finally, we consider the
problem of minimizing a convex function over a compact convex set.

In the three cases, we can bound the number of iterations by a quantity of order

O(exp(
√
ν)

ε2), where ν is the parameter of the self-concordant barrier for the explicit
feasible set and ε is the required accuracy. For the simple feasibility problem, we can
take ν = 2. In the minimization of a convex function over a convex set, we can further
improve the result to get O(νε2). Note that the complexity estimate is independent of
the dimension n of the underlying space. Thus, for large n our result is optimal (see
[14]).

Notation. Given a symmetric positive definite matrix B, we define the norm

‖ u ‖B= 〈Bu, u〉 12 .
2. Homogeneous cutting plane scheme. In this section, we consider a ho-

mogeneous feasibility problem and propose a homogeneous cutting plane scheme to
solve it. The feasibility problem of interest is

find x ∈ K
⋂
X∗, x 6= 0,(2.1)

where K is a closed convex cone with nonempty interior and X∗ is a closed convex
cone. As will be shown in the next sections, the formulation of problem (2.1) is general
enough to include a variety of convex problems of interest.

The natural black-box description of problem (2.1) can be produced using the
concept of the homogeneous separation oracle.

Definition 2.1. A separation oracle is a mapping g(x) such that 〈g(x), x−x∗〉 ≥
0 for any x∗ ∈ X∗. The oracle is homogeneous if g(tx) = g(x) for any x ∈ intK and
t > 0, and if 〈g(x), x〉 = 0.

HOMOGENEOUS ACCPM 709

Thus, in this paper, we always assume the following.
Assumption 2.2.
(1) Problem (2.1) is endowed with a homogeneous separation oracle g(x), x ∈

intK, with ‖ g(x) ‖= 1.
(2) K is equipped with a ν-normal barrier F (x).
We recall that a ν-normal barrier F (x) is a convex function

F (y) ≥ F (x) + 〈F ′(x), y − x〉,(2.2)

which is self-concordant and ν-logarithmically homogeneous:

F (τx) = F (x)− ν ln τ, x ∈ intK, τ > 0.(2.3)

(See Definition 2.3.2 in [17, p. 40].) Since, for logarithmically homogeneous functions,
we have F ′(τx) = 1

τ F
′(x), the convexity condition (2.2) can be written in a stronger

form:

F (y) ≥ F (x)− ν ln

[
1

ν
〈−F ′(x), y〉

]
.(2.4)

(To see this, replace x by τx in (2.2) and find the maximum of the right-hand side in
τ > 0.)

The homogeneous cutting plane scheme can be briefly described as follows:

(0) Set F0(x) = ρ
2 ‖ x ‖2 +F (x).

(1) kth iteration (k ≥ 0):

(a) compute xk = arg min
x
Fk(x);

(b) set Fk+1(x) = Fk(x)− ln〈g(xk), xk − x〉.

(2.5)

The coefficient ρ must be positive, but it is otherwise arbitrary. Indeed, the aim
of the proximal term is just to normalize the iterates. We prove this statement at
the end of the section. Below, we refer to this xk as the proximal analytic center
generated by Fk(x) (or simply as the analytic center).

As stated above, the cutting plane method assumes that the exact minimizer xk of
the function Fk(x) can be computed. In practice, one can only compute approximate
minimizers satisfying the usual proximity condition

‖ F ′k(xk) ‖[F ′′
k

(xk)]−1≤ η < 3−√5

2
.

Following [15], it is possible to carry out the analysis under this milder hypothesis at
the cost of greater technicalities. The issues are then twofold. First, it must be checked
that an appropriate choice of η allows us to compute an approximate minimizer in a
bounded number of Newton steps after adding a cutting plane. Next, any time we use
the first-order optimality condition associated with an exact minimizer, we should
replace the equation by an appropriate inequality. Similarly, the inequality on the
potential change that is used in the proofs should be weakened appropriately. We
shall not perform the detailed analysis in this paper.

Let us write the extensive form of function Fk:

Fk(x) =
ρ

2
‖ x ‖2 +F (x)−

k−1∑
i=0

ln〈g(xi), xi − x〉.

710 YU. NESTEROV AND J.-PH. VIAL

The first-order optimality condition for the minimizer xk is

ρxk + F ′(xk) = −
k−1∑
i=0

g(xi)

〈g(xi), xi − xk〉 .(2.6)

Lemma 2.3. The equation ρ ‖ xk ‖2= k + ν holds for all k = 0, 1,
Proof. Since F is logarithmically homogeneous, one has (see Theorem 2.3.13 of

[17])

〈F ′(xk), xk〉 = −ν.
Using the first-order optimality condition (2.6), we get

ρ ‖ xk ‖2= k − 〈F ′(xk), xk〉 = k + ν,

since 〈g(xi), xi〉 = 0.
In what follows, we shall use the notation

λik =
1

〈g(xi), xi − xk〉 > 0 for 0 ≤ i < k − 1 and Sk =

k−1∑
i=0

λik.

Let x ∈ K. We introduce the quantity

µk(x) =
1

Sk

k−1∑
i=0

λik〈g(xi), xi − x〉,

which will play a central role in the analysis. Note that µk(x) is the weighted average
of the slacks at x in the cutting plane inequalities.

Lemma 2.4. For all x ∈ K,

µk(x) ≤ √ρ
√
ν + k

Sk
‖ x ‖ .(2.7)

Proof. Multiplying (2.6) by x and using 〈g(xi), xi〉 = 0, we get

ρ〈xk, x〉+ 〈F ′(xk), x〉 =
k−1∑
i=0

λik〈g(xi), xi − x〉 = Skµk(x).(2.8)

In view of Corollary 2.3.1 of [17, p. 39], we have, for all x ∈ K,
〈F ′(xk), x〉 ≤ 0.

Consequently,

Skµk(x) ≤ ρ〈xk, x〉 ≤ ρ ‖ xk ‖ · ‖ x ‖= √ρ
√
ν + k ‖ x ‖ .

The lemma is proved.
Lemma 2.4 calls for an analysis of the behavior of Sk as k increases. This behavior

is closely related to the potential values Fk(xk). Denote F ∗k = Fk(xk), where xk =
arg minx Fk(x). We also define the constants

θ1 = 1
2 (
√

5− 1)− ln
√

5+1
2 > 0 and θ2 =

√
5+1
2 .

HOMOGENEOUS ACCPM 711

Lemma 2.5. For any k ≥ 0,

√
ρ ‖ xk+1 − xk ‖≤‖ xk+1 − xk ‖F ′′

k
(xk+1)≤ θ2

and

F ∗k+1 ≥ F ∗k + θ1 − ln
θ2√
ρ
.

Proof. The first-order optimality conditions on Fk+1(x) = Fk(x)−ln〈g(xk), xk−x〉
at xk+1 are

F ′k+1(xk+1) = F ′k(xk+1) +
g(xk)

〈g(xk), xk − xk+1〉 = 0.

Multiplying by xk − xk+1 and using F ′k(xk) = 0 yields

〈F ′k(xk+1)− F ′k(xk), xk+1 − xk〉 = 1.(2.9)

From (2.9) and Lemma A.6 in the appendix, we get

1 = 〈F ′k(xk+1)− F ′k(xk), xk+1 − xk〉 ≥
‖ xk − xk+1 ‖2F ′′

k
(xk+1)

1+ ‖ xk − xk+1 ‖F ′′
k

(xk+1)
.(2.10)

Therefore,

‖ xk − xk+1 ‖F ′′
k

(xk+1)≤
√

5+1
2 = θ2.(2.11)

Since ρI � F ′′k , we get

√
ρ ‖ xk − xk+1 ‖≤‖ xk − xk+1 ‖F ′′

k
(xk+1)≤ θ2,

hence the bound on ‖ xk+1 − xk ‖.
To prove the second part of the theorem, we first show that (

√
5− 1)/2 is a lower

bound for ‖ xk−xk+1 ‖F ′′
k

(xk). Indeed, assume ‖ xk−xk+1 ‖F ′′
k

(xk)≤ (
√

5− 1)/2 < 1.
Since Fk(x) is a self-concordant function, in view of Lemma A.7 in the appendix, we
have

1 = 〈F ′k(xk+1)− F ′k(xk), xk+1 − xk〉 ≤
‖ xk − xk+1 ‖2F ′′

k
(xk)

1− ‖ xk − xk+1 ‖F ′′
k

(xk)
.

Hence,

‖ xk − xk+1 ‖F ′′
k

(xk)≥
√

5−1
2(2.12)

always holds. By Lemma A.6 in the appendix and with F ′k(xk) = 0, we get

Fk(xk+1) ≥ F ∗k + ω(‖ xk − xk+1 ‖F ′′
k

(xk)),

where ω(t) = t− ln(1 + t). Hence,

Fk(xk+1) ≥ F ∗k +
√

5−1
2 − ln

√
5+1
2 = F ∗k + θ1.

712 YU. NESTEROV AND J.-PH. VIAL

Finally, from the definition of Fk+1 and ‖ g(xk) ‖= 1, we have

F ∗k+1 = Fk+1(xk+1) = Fk(xk+1)− ln〈g(xk), xk − xk+1〉
≥ F ∗k + θ1 − ln ‖ xk − xk+1 ‖(2.13)

≥ F ∗k + θ1 − ln
θ2√
ρ
.(2.14)

The next lemma gives a lower bound for Sk.
Lemma 2.6. For any k ≥ 0 we have

Sk ≥ θ3k
√
ρ · exp

{
1

k
(F (x0)− F (xk))

}
,

where θ3 = 1
θ2

exp(θ1 − 1
2).

Proof. Using the inequality between the arithmetic and the geometric means, we
have

Sk =
k−1∑
i=0

1

〈g(xi), xi − xk〉 ≥ k exp

{
1

k

k−1∑
i=0

ln
1

〈g(xi), xi − xk〉

}
.

From the definition of Fk and Lemmas 2.3 and 2.5,

k−1∑
i=0

ln
1

〈g(xi), xi − xk〉 = −ρ
2
‖ xk ‖2 −F (xk) + Fk(xk)

≥
(
−ν + k

2
− F (xk)

)
+

(
k

(
θ1 − ln

θ2√
ρ

)
+ F (x0) +

ν

2

)
= k

(
θ1 − 1

2
− ln

θ2√
ρ

)
+ F (x0)− F (xk).

Hence,

Sk ≥
k
√
ρ

θ2
exp

{
θ1 − 1

2

}
· exp

{
1

k
(F (x0)− F (xk))

}
.

We now state the main result of this section.
Theorem 2.7. For any x ∈ K,

µk(x) ≤
√
k + ν

kθ3
exp

{
1

k

(
F (xk)− F (x0)

)}
‖ x ‖ .(2.15)

Besides,

F (xk)− F (x0) ≤ k√νθ2.(2.16)

Proof. Combining inequality (2.7) with Lemma 2.6 yields the first inequality. To
prove the second inequality, we use

F (xk+1)− F (xk) ≤ 〈F ′(xk+1), xk+1 − xk〉
≤ ‖ F ′(xk+1) ‖[F ′′(xk+1)]−1 · ‖ xk+1 − xk ‖F ′′(xk+1) .

HOMOGENEOUS ACCPM 713

Recall that F ′′ � F ′′k . Hence,

‖ xk+1 − xk ‖F ′′(xk+1)≤‖ xk+1 − xk ‖F ′′
k

(xk+1) .

By Lemma 2.5, ‖ xk+1−xk ‖F ′′
k

(xk+1)≤ θ2. On the other hand, F is a ν-self-concordant
barrier; thus

‖ F ′(xk+1) ‖[F ′′(xk+1)]−1≤ √ν.
The theorem is proved.

By inserting (2.16) into (2.15), we get the general bound

µk(x) ≤
√
k + ν

kθ3
eθ2
√
ν ‖ x ‖.(2.17)

This inequality is useful if the parameter ν is small. For large values of ν, the expo-
nential term on the right-hand side considerably weakens the bound on µk.

To conclude this section, we prove that the proximal term is just a convenient
way to normalize the iterates.

Lemma 2.8. Let ρj > 0, j = 1, 2, be two arbitrary positive numbers. Let {xji}ki=0,
j = 1, 2, be the sequences of proximal analytic centers generated by the standard
scheme with ρ = ρj , j = 1, 2, respectively. Then, x2

i = τx1
i for all i = 0, 1, . . . , k, with

τ =
√

ρ1

ρ2
.

Proof. Consider the sequence {x̂i = τx1
i }ki=0, where τ =

√
ρ1

ρ2
. Define the sequence

of potentials

F̂k(x) =
ρ2

2
‖ x ‖2 +F (x)−

k−1∑
i=0

ln〈g(x̂i), x̂i − x〉.

Taking the derivative of F̂k at x̂k and using the fact that g is homogeneous and F is
a ν-normal barrier, we get

F̂ ′k(x̂k) = ρ2x̂k + F ′(x̂k) +
k−1∑
i=0

g(x̂i)

〈g(x̂i), x̂i − x̂k〉

= ρ2τx
1
k +

1

τ
F ′(x1

k) +
k−1∑
i=0

g(x1
i)

〈g(x1
i), τ(x1

i − x1
k)〉

=
1

τ

{
ρ1x

1
k + F ′(x1

k) +
k−1∑
i=0

g(x1
i)

〈g(x1
i), x

1
i − x1

k〉

}
= 0.

Hence, {x̂i}ki=0 coincides with the sequence of proximal analytic centers {x2
i }ki=0 gen-

erated by the algorithm with ρ = ρ2.
Since ρ is arbitrary, we may well choose ρ = ν. By Lemma 2.3, this choice implies

‖ x0 ‖= 1. For the sake of simpler formulas, we shall assume throughout the rest of
the paper that ρ = ν, and thus ‖ x0 ‖= 1.

3. Convex feasibility problems. Suppose we are given the following convex
feasibility problem:

find y ∈ Y ∗,

714 YU. NESTEROV AND J.-PH. VIAL

where Y ∗ is a closed bounded convex set with a nonempty interior. Thus there are
constants ε and R and a point ȳ ∈ Y ∗ such that

B(ȳ, ε) ⊂ Y ∗ ⊂ B(0, R),

where B(ȳ, ε) is the Euclidean ball centered at ȳ with radius ε. (The assumption does
not imply that ȳ is known, only that it exists.) We assume that ε and R are known
constants. Finally, we assume that for any ŷ 6∈ Y ∗ a separation oracle returns a vector
h(ŷ):

〈h(ŷ), ŷ − y〉 ≥ 0 for all y ∈ Y ∗,
with ‖ h(ŷ) ‖= 1; if y ∈ Y ∗, the oracle confirms that a solution has been found.
Note that for any ŷ /∈ Y ∗ the point ȳ + εh(ŷ) belongs to Y ∗. Therefore, we have the
following inequality:

0 ≤ 〈h(ŷ), ŷ − (ȳ + εh(ŷ))〉 = 〈h(ŷ), ŷ − ȳ〉 − ε.(3.1)

To embed the problem in an extended space, we define

X∗ = {x = (y, t) | y = ty∗, y∗ ∈ Y ∗, t > 0} .
We also define the cone

K = {x = (y, t) | y = tȳ, ‖ ȳ ‖≤ R, t > 0} ,
and the associated barrier

F (x) = − ln
(
t2R2− ‖ y ‖2) .

This barrier is ν-normal, with parameter ν = 2.
Let us construct the separation oracle for X∗. Assume x = (y, t) 6∈ X∗, with

t > 0; then, 〈h(yt), yt − y∗〉 ≥ 0 for all y∗ ∈ Y ∗. Let

ĝ(x) =
(
h
(y
t

)
,−
〈
h
(y
t

) y
t

〉)
and

g(x) =
ĝ(x)

‖ ĝ(x) ‖ .

Note that for all x ∈ K, we have ‖ ĝ(x) ‖≤ √1 +R2. From this definition we check
that g is a homogeneous separation oracle, with ‖ g(x) ‖= 1, 〈g(x), x〉 = 0, and
g(τx) = g(x) for all τ > 0.

The convex feasibility problem is now embedded in a homogeneous problem of the
form (2.1). We can apply the homogeneous cutting plane algorithm with a stopping
criterion. Assume that x 6∈ X∗, i.e., that y/t 6∈ Y ∗. Let x̄ = (ȳ, 1). In view of (3.1),
we get

〈ĝ(x), x− x̄〉 = −〈ĝ(x), x̄〉 = −
〈
h
(y
t

)
, ȳ
〉

+
〈
h
(y
t

)
,
(y
t

)〉
≥ ε.

Hence,

〈g(x), x− x̄〉 ≥ ε

‖ ĝ(x) ‖ ≥
ε√

1 +R2
.

HOMOGENEOUS ACCPM 715

At the kth iteration of the cutting plane algorithm, either the algorithm stops
with xk ∈ X∗ or, by (2.17),

ε√
1 +R2

≤ min
i
〈g(xi), xi − x̄〉 ≤ µk(x̄) ≤

√
k + 2

kθ3
eθ2
√

2 ‖ x̄ ‖

≤
√
k + 2

kθ3
eθ2
√

2
√

1 +R2.

This inequality implies that the iteration number is bounded by

k ≤ (1 +R2)2

ε2
M, with M = 3

(
eθ2
√

2

θ3

)2

.

To conclude this section, we point out that the unconstrained minimization of
a nondifferentiable convex function f with a known optimal value of the function
f∗ = f(y∗) can be converted into a simple convex feasibility problem. Indeed, the
level set {y | f(y) ≤ f∗ + η} contains the ball B(y∗, ηL), where L is the Lipschitz
constant for f(x). However, section 5 provides a sharper analysis for minimization
problems.

4. Variational inequalities. Let H(y) be a multivalued operator defined on a
closed bounded set Q. We associate with it the variational inequality problem

find y∗ ∈ Q : 〈hy, y − y∗〉 ≥ 0 for all y ∈ Q and all hy ∈ H(y).(4.1)

Such a y∗ is called a weak solution to the variational inequality problem. (For a
discussion relating strong and weak solutions, see [17].)

Assumption 4.1.

(1) Q is bounded and R is a constant such that, for all y ∈ Q, ‖ y ‖≤ R.
(2) The mapping H is uniformly bounded on Q and is monotone; i.e., ‖ hy ‖≤ L

for all y ∈ Q, and

〈hu − hy, u− y〉 ≥ 0

for all u, y ∈ Q and any hu ∈ H(u), hy ∈ H(y).

Denote by Y ∗ the set of solutions to (4.1). For practical purposes, we need to
enlarge this definition to include approximate solutions. To this end, we introduce
the so-called gap function

φ(y) = max
u∈Q
{〈hu, y − u〉 | hu ∈ H(u)}.

Clearly, φ(y) is a closed convex function, which is strictly positive for all y ∈ Q \ Y ∗
and φ(y) = 0 for all y ∈ Y ∗. Given ε > 0, we define an ε-approximate solution ȳ
by φ(ȳ) ≤ ε. In what follows we will give a complexity estimate for finding an ε-
approximate solution. Finally, we observe that there is an obvious separation oracle
for Y ∗. Given u ∈ Q and hu ∈ H(u), the following inequality holds:

〈hu, u− y〉 ≥ 0 for all y ∈ Y ∗.

716 YU. NESTEROV AND J.-PH. VIAL

Embedding in an extended space. Let us transform the problem (4.1) into
a conic form. To this end let us introduce a projective variable t > 0 and set

K =
{
x = (y, t) | t > 0,

y

t
∈ Q

}
.

Denote by F (x) a ν-self-concordant barrier for the cone K. It is known that any ν-
self-concordant barrier H(y) for Q can be transformed into a self-concordant barrier
for K (see [17]):

F (x) = c1H
(y
t

)
− c2ν ln t,

where ci are some absolute constants. However, the theoretical values of ci are rather
large. Therefore, in some particular cases it is reasonable to find a self-concordant
barrier directly for the cone K. For example, if

Q = {y | 〈ai, y〉 ≤ bi, i = 1 . . .m},
then

K = {x = (y, t) | 〈ai, y〉 ≤ tbi, i = 1 . . .m, t ≥ 0},
and we can use the logarithmic barrier

F (x) = −
m∑
i=1

ln(tbi − 〈ai, y〉)− ln t, ν = m+ 1.

If Q is a set defined by convex quadratic inequalities,

Q = {y | 〈Aiy, y〉+ 〈ai, y〉 ≤ bi, i = 1 . . .m},
then

K = {x = (y, t) | 〈Aiy, y〉 ≤ t(tbi − 〈ai, y〉), i = 1 . . .m, t ≥ 0},
and we can use the self-concordant barrier

F (x) = −
m∑
i=1

ln[t(tbi − 〈ai, y〉)− 〈Aiy, y〉], ν = 2m.

Note that in both cases the barrier can be represented as a restriction of a self-
scaled barrier [19, 18] onto an affine hyperplane. For the first example this transfor-
mation is straightforward. For the second one, it proceeds as follows:

Ki = {z = (y, t, ξi, τi) | 〈Aiy, y〉+ ξ2
i ≤ τ2

i , t ≥ 0},
with

ξi = 1
2 [t− (tbi − 〈ai, y〉)] and τi = 1

2 [t+ (tbi − 〈ai, y〉)].
The self-scaled property will be used in section 5 only.

Our problem in the extended space is to approximate, in the sense made precise
earlier, a point from the intersection K

⋂
X∗, with

X∗ = {x = (y, t) | y = ty∗, y∗ ∈ Y ∗, t ≥ 0}.
Without loss of generality, we can put forth the following assumption.
Assumption 4.2. The set Q contains the origin, 0 ∈ Q, and F ′y(0, t) = 0.
In other words, y0 = 0 is the analytic center of the set Q. Then, x0 = (0, t0) with

t0 = 1, since ‖ x0 ‖= 1 (see Lemma 2.3). Note that F ′y(0, t) = 0 implies that 0 ∈ intQ.

HOMOGENEOUS ACCPM 717

Separation oracle. Let us construct for problem (4.1) a separation oracle sat-
isfying the assumptions of problem (2.1). For any x = (y, t) ∈ intK, define y(x) =
y/t ∈ Q and

ĝ(x) =
(
hy(x),−〈hy(x), y(x)〉) .

Then, for any x ∈ intK, we have 〈ĝ(x), x〉 = 0 and ĝ(τx) = ĝ(x) for τ > 0.
The oracle enjoys a simple property that will prove useful in the analysis.
Lemma 4.3. Let x̄ = (ȳ, τ̄) ∈ K. Then,

〈ĝ(x), x− x̄〉 = τ̄〈hy(x), y(x)− y(x̄)〉.(4.2)

Proof. The proof is a direct consequence of the definition of ĝ :

〈ĝ(x), x− x̄〉 = −〈ĝ(x), x̄〉 = −〈hy(x), ȳ〉+ τ̄〈hy(x), y(x)〉
= τ̄〈hy(x), y(x)− y(x̄)〉.

The lemma will often be used with τ̄ = 1. Note also that, for x∗ ∈ X∗, we have

〈ĝ(x), x− x∗〉 ≥ 0.

Finally, let us define g(x) = ĝ(x)/ ‖ ĝ(x) ‖. Note that

‖ ĝ(x) ‖ =
[‖ hy(x) ‖2 +〈hy(x), y(x)〉2] 1

2 ≤ L
√

1 +R2.(4.3)

Complexity estimate. Assume {xi}∞i=0 is a sequence generated by the algo-
rithm. Define

πik =
λik

‖ ĝ(xi) ‖ , Pk =
k−1∑
i=0

πik,

and

ȳk =
1

Pk

k−1∑
i=0

πiky(xi).

Let u ∈ Q and hu ∈ H(u). Since H is monotone,

〈hu, ȳk − u〉 =
1

Pk

k−1∑
i=0

πik〈hu, y(xi)− u〉

≤ 1

Pk

k−1∑
i=0

πik〈hy(xi), y(xi)− u〉.(4.4)

Let v = (u, 1). In view of Lemma 4.3, we have

1

Pk

k−1∑
i=0

πik〈hy(xi), y(xi)− u〉 =
1

Pk

k−1∑
i=0

πik〈ĝ(xi), xi − v〉

=
1

Pk

k−1∑
i=0

λik〈g(xi), xi − v〉 =
Sk
Pk
µk(v).

718 YU. NESTEROV AND J.-PH. VIAL

Note that

Pk =
k−1∑
i=0

λik
‖ ĝ(xi) ‖ ≥

Sk

L
√

1 +R2
(4.5)

and ‖ v ‖≤ √1 +R2. Therefore, in view of inequality (2.17), we get the following
bound:

φ(ȳk) ≤ Sk
Pk

max
v
{µk(v) | v = (u, 1) ∈ K}

≤ Sk
Pk
·
√
k + ν

kθ3
eθ2
√
ν
√

1 +R2 ≤
√
k + ν

kθ3
eθ2
√
νL(1 +R2).

Thus, we have proved the following theorem.
Theorem 4.4. The proximal analytic center cutting plane method yields an ε-

approximate solution for problem (4.1) after k iterations, with k satisfying

k√
k + ν

≤ L(1 +R2)

εθ3
eθ2
√
ν .

The result of Theorem 4.4 exhibits a quadratic dependence on R. For this problem
class, we should rather expect a linear dependence. We shall show in the next section
that a proper scaling of the variable y may restore this property.

To illustrate the necessity to use the average of the sequence of iterates and not
the last analytic center, we apply the homogeneous cutting plane algorithm to the
operator

h(y1, y2) =

(−y2

y1

)
on the box

−1 ≤ y1 ≤ 2 and − 1 ≤ y2 ≤ 1.

Figure 4.1 plots the iterates of the homogeneous cutting plane method when projected
back into the original affine space. This same picture also shows the plot of the can-
didate solution ȳ. Clearly, the sequence of analytic centers does not converge to the
solution point (0, 0), while the sequence of candidate solutions does.

Figure 4.2 displays the evolution of the upper bound for the gap function. This
bound is computed from (4.4). More precisely, we solve the problem

max

{
1

Pk

k−1∑
i=0

πik〈hy(xi), y(xi)− u〉 | u ∈ Q
}
.

Note that the objective is linear. Thus the solution lies at one of the corners of the
box. We hope that the procedure can be extended to more complex examples, thus
providing a practical stopping criterion for an implementation of the algorithm. Note
that the decrease of the bound is linear, a fact that seems to be quite typical of analytic
center cutting plane schemes. Of course, no conclusion on the actual behavior of the
method should be drawn from this simplistic example.

HOMOGENEOUS ACCPM 719

-1 0 2
-1

0

1

 * analytic centers

 o candidate solutions

Fig. 4.1. Iterates in the affine space.

0 5 10 15
10-5

10-4

10-3

10-2

10-1

100

iterations

lo
ga

rit
hm

 o
f t

he
 g

ap

Fig. 4.2. Bound for the gap function.

5. Nonsmooth constrained minimization. Consider the problem

min{f(y) | y ∈ Q},(5.1)

where Q is a closed bounded convex set with nonempty interior and the function
f(y) is convex and subdifferentiable on some open convex set containing Q. Then the
subgradients of f(y) are uniformly bounded on Q by some constant L. Denote by R
any constant such that ‖ y ‖≤ R for all y ∈ Q and by Y ∗ the set of the optimal
solutions to (5.1).

Using the same argumentation as in section 4 we can embed the problem (5.1)
into a conic form and provide it with a separation oracle satisfying the assumptions

720 YU. NESTEROV AND J.-PH. VIAL

of the problem (2.1). To this end let us introduce a projective variable t > 0 and set

K =
{
x = (y, t) | t > 0,

y

t
∈ Q

}
.

Denote by F (x) a ν-self-concordant barrier for the cone K. Just as before, we assume
that 0 ∈ Q and F ′y(0, t) = 0. Then x0 = (0, t0) with t0 = 1, since ‖ x0 ‖= 1. Thus, our
problem is to approximate a point from the intersection K

⋂
X∗, with

X∗ = {x = (y, t) | y = ty∗, y∗ ∈ Y ∗, t ≥ 0}.
The separation oracle for X∗ can be defined as follows. Let x = (y, t) ∈ intK. Define
y(x) = x/t ∈ Q and

ĝ(x) = (f ′(y(x)),−〈f ′(y(x)), y(x)〉) ,
where f ′(u) is a subgradient of f(u) at u ∈ Q. Then, for any x ∈ K, we have
〈ĝ(x), x〉 = 0 and ĝ(τx) = ĝ(x) for τ > 0. Moreover, as in section 4, we have

〈ĝ(x), x− x̄〉 = τ̄〈f ′(y(x)), y(x)− y(x̄)〉 ≥ τ̄(f(y(x))− f(y(x̄)))(5.2)

for any x̄ = (ȳ, τ̄) ∈ K. In particular, for x̄ = x∗ ∈ X∗, we have

〈ĝ(x), x− x∗〉 ≥ 0.

Let us set g(x) = ĝ(x)/ ‖ ĝ(x) ‖. Then

‖ ĝ(x) ‖= [‖ f ′(y(x)) ‖2 +〈f ′(y(x)), y(x)〉2]1/2 ≤ L√1 +R2.(5.3)

Complexity estimate. Suppose we generate a sequence of the analytic centers
{xk}∞k=0 using the scheme (2.5). Denote yk = y(xk). Then, in view of inequalities
(5.2), (5.3), and the definition of µk, we have

min
0≤i≤k−1

f(yi)−f(y(x)) ≤ 1
t min

0≤i≤k−1
〈ĝ(xi), xi − x〉

≤ 1
t min

0≤i≤k−1
〈g(xi), xi − x〉L

√
1 +R2 ≤ 1

tµk(x)L
√

1 +R2.
(5.4)

Inserting the bound for µk(x) from (2.15) into (5.4) yields

min
0≤i≤k−1

f(yi)− f(y(x)) ≤
√
k + ν

kθ3t
exp

{
1

k
(F (xk)− F (x0))

}
‖ x ‖ ·L

√
1 +R2.(5.5)

Let us fix some x∗ = (y∗, 1) ∈ X∗ and α ∈ (0, 1). Consider the point

xα = (1− α)x∗ + αx0 = ((1− α)y∗, 1).

Then yα ≡ y(xα) ∈ Q. There are two possibilities. First, it might be that 〈g(xi), xα−
xi〉 ≥ 0 for some i ∈ [0 . . . k − 1]. Then, in view of our assumption, we have

0 ≥ 〈ĝ(xi), xi − xα〉 = 〈ĝ(xi),−xα〉 = −(1− α)〈f ′(yi), y∗〉+ 〈f ′(yi), yi〉.
Consequently,

f(yα)≥ f(yi) + 〈f ′(yi), yα − yi〉

= f(yi) + 〈f ′(yi), (1− α)y∗ − yi〉 ≥ f(yi).

HOMOGENEOUS ACCPM 721

Therefore,

min
0≤i≤k−1

f(yi) ≤ f(yα) ≤ (1− α)f∗ + αf(0),

implying that,

min
0≤i≤k−1

f(yi)− f∗ ≤ α(f(0)− f∗) ≤ αL ‖ y∗ ‖≤ αLR.(5.6)

Let us assume now that 〈g(xi), xi−xα〉 ≥ 0 for all i ∈ [0 . . . k− 1]. Then, in view
of (2.6), we have

〈−F ′(xk), xα〉 =

〈
νxk +

k−1∑
i=0

g(xi)

〈g(xi), xi − xk〉 , xα
〉

= ν〈xk, xα〉+

k−1∑
i=0

〈g(xi), xα − xi〉
〈g(xi), xi − xk〉

≤ ν〈xk, xα〉 ≤
√
ν(k + ν)· ‖ xα ‖ .

The last inequality follows from Lemma 2.3. Therefore, using (2.4), we have

F (xk) ≤ F (xα) + ν ln
〈−F ′(xk), xα〉

ν
≤ F (xα) + ν ln

[√
1 +

k

ν
· ‖ xα ‖

]
.

In what follows we assume that F (x) is a restriction of some self-scaled barrier
[19, 18]. More precisely, we assume that the set Q consists of points x, for which
there exist some s (dependent on x) such that Ax + s = b and s ∈ K̂, where K̂ is
a symmetric cone (or self-scaled cone in the terminology of [19, 18]) endowed with a
self-scaled barrier Φ(s). We assume that F (x) = Φ(b−Ax).

Let

p = −(y∗, 0) = x0 − x∗, σ =
1

sup{γ | x0 − γp ∈ K} .

Then xα = x0 − βp, with β = 1 − α. Note that σ ≤ 1 and ‖ p ‖F ′′(xk)≤
√
νσ. (See

Proposition 3.2 in [18].) Moreover,

〈F ′(x0), xα − x0〉 = 〈F ′y(x0), yα〉 = 0.

Therefore, in view of inequality (4.7) of [19], we have

F (xα)− F (x0) ≤ ‖p‖
2
F ′′(xk)

σ2 (−σβ − ln(1− βσ))

≤ ν(−β − ln(1− β)) = ν
(
α− 1 + ln 1

α

) ≤ ν ln 1
α .

Combining these inequalities we obtain

F (xk)− F (x0) ≤ ν ln 1
α + ν ln

[√
1 + k

ν · ‖ xα ‖
]

= ν ln

[√
1 + k

ν · 1
α ‖ xα ‖

]
.

722 YU. NESTEROV AND J.-PH. VIAL

Substituting this inequality in (5.5) with x = xα, we get

min
0≤i≤k−1

f(yi)− f∗ ≤ f(yα)− f∗ +
√
k+ν
kθ3

[√
1 + k

ν · 1
α

]ν/k
‖ xα ‖1+ν/k ·L√1 +R2

≤ αLR+
√
k+ν
kθ3

[√
1 + k

ν · 1
α

]ν/k
· L(1 +R2)1+ ν

2k .

Since (1 + k/ν)ν/k < e, we obtain for α = 1/
√

1 + k/ν

min
0≤i≤k−1

f(yi)− f∗ ≤
√
νLR√
k + ν

+
e
√
k + ν

kθ3
· L(1 +R2)1+ ν

2k .(5.7)

Clearly, the upper bound given by (5.6) is smaller than the one provided by (5.7).
Therefore, (5.7) proves the following theorem.

Theorem 5.1. For any k ≥ 1 we have

min
0≤i≤k−1

f(yi)− f∗ ≤ L√
k + ν

[√
ν +

e

θ3

(
1 +

ν

k

)]
[1 +R2]1+ ν

2k .

Scaling. The result of Theorem 5.1 exhibits a quadratic dependence on R. That
is not a standard dependence, since for our problem class it should be proportional
to LR. In order to improve the situation we need only introduce a scaling parameter
in our scheme. Indeed, let our initial problem be

min
y∈Q1

φ(y).(5.8)

Let us assume that this problem satisfies the assumptions on problem (5.1). Namely,
we assume that ‖ φ′(y) ‖≤ L1 and ‖ y ‖≤ R1 for all y ∈ intQ1. Let us fix some κ > 0
and apply our minimization scheme to problem (5.1) with

f(y) = φ(κy), Q =
1

κ
Q1.

Then the parameters of this problem become

L = κL1, R =
1

κ
R1.

Note that both problems have the same optimal value. The sequence of objective
function values is the same for the two minimizing sequences, {yi}∞i=0 and {κyi}∞i=0,
which are generated for the first and the second problem, respectively. Therefore, in
view of Theorem 5.1, we have

min
0≤i≤k−1

φ(κyi)− φ∗ ≤ L1√
k + ν

[√
ν +

e

θ3

(
1 +

ν

k

)]
· κ
[

1 +

(
R1

κ

)2
]1+ ν

2k

.

Thus, if we make the choice κ = γR1 with some γ > 0, we get

min
0≤i≤k−1

φ(κyi)− φ∗ ≤ L1R1√
k + ν

[√
ν +

e

θ3

(
1 +

ν

k

)]
γ[1 + γ−2]1+ ν

2k .

The factor depending on γ in the right-hand side of this inequality approaches γ + 1
γ

as k → ∞. Asymptotically the best choice is γ = 1. However, if we do not have
exact information about R1, we must pay for it, but the price is only an absolute
multiplicative factor.

Note that the same reasoning also applies to the efficiency estimates for the convex
feasibility problem and for variational inequalities.

HOMOGENEOUS ACCPM 723

Iterations in the original space. Let us discuss the interpretation of the ho-
mogeneous analytic center cutting plane scheme for the constrained minimization
problem. Recall that at each iteration of this scheme we minimize the potential

1

2
‖ x ‖2 +F (x)−

k−1∑
i=0

ln〈g(xi), xi − x〉,

where g(x) = ĝ(x)/ ‖ ĝ(x) ‖ and

ĝ(x) =
(
f ′
(y
t

)
,−
〈
f ′
(y
t

)
,
(y
t

)〉)
with y

t ∈ Q. Thus, in fact, we deal with the following potential:

1

2
‖ x ‖2 +F (x)−

k−1∑
i=0

ln[−〈ĝ(xi), x〉].

Let us represent a point x ∈ intK as x = (tŷ, t) with ŷ ∈ intQ and t > 0. Note that

−〈ĝ(xi), x〉 = −〈f ′(ŷi), tŷ〉+ 〈f ′(ŷi), ŷi〉t = t〈f ′(ŷi), ŷi − ŷ〉.

Moreover,

F (x) = F (tŷ, t) = F (ŷ, 1)− ν ln t

and F̂ (ŷ) = F (ŷ, 1) is a ν-self-concordant barrier for the set Q. Thus, in terms of the
variables ŷ, our potential is

1

2
‖ x ‖2 + F̂ (ŷ)− ν ln t−

k−1∑
i=0

ln〈f ′(ŷi), ŷi − ŷ〉 − k ln t

=
1

2
t2(1+ ‖ ŷ ‖2) + F̂ (ŷ)−

k−1∑
i=0

ln〈f ′(ŷi), ŷi − ŷ〉 − (k + ν) ln t.

(5.9)

Let y be given. The potential achieves its minimum value at

t∗k =

√
k + ν

1+ ‖ ŷ ‖2 .

Therefore, replacing t by t∗k in (5.9), we get the following function in the ŷ-space:

ψk(ŷ) =
k + ν

2
ln(1+ ‖ ŷ ‖2) + F̂ (ŷ)−

k−1∑
i=0

ln〈f ′(ŷi), ŷi − ŷ〉+ ck,

where ck = k+ν
2 (1− ln(ν + k)).

Thus, the homogeneous analytic center method can be seen as a standard ana-
lytic center scheme augmented by the logarithm of a proximal term. Note that this
logarithmic term is quasi-convex in ŷ, but the convexity or even quasi-convexity of
the function ψk is under question. These considerations indicate that the practical
implementation of the proposed scheme must be done in the extended space.

724 YU. NESTEROV AND J.-PH. VIAL

6. Conclusion. As pointed out in section 2, a practical implementation of the
algorithm must work with approximate analytic centers. A complexity estimate for
the implementable version of the algorithm can be obtained by using the standard
argumentation, based on the theory of self-concordant functions. One should prove
two things: the bound on the number of iterations is of the same order as with
exact analytic centers; and the number of auxiliary Newton steps to compute an
approximate center at each iteration is bounded by an absolute constant. (See [15]
for an example of this reasoning.)

Note that in the proposed schemes the complexity of finding an analytic center
increases as the number of cutting planes increases. Therefore, it would be interesting
to study the possibility of dropping old or shallow cutting planes. However, up to
now there is no known scheme which can bound the number of cutting planes for the
analytic center cutting plane methods (see [2] and references therein). Solving this
problem would have obvious practical consequences, but it would also significantly
improve the theoretical complexity results. This is therefore an important open ques-
tion.

The complexity result of this paper is of the same order as for the proximal
analytic center method of [15]. However, the new scheme is much more flexible in
terms of the accuracy of the initial information. (In [15] it is necessary to choose a
parameter R >‖ y ‖ for all y ∈ Q.) Besides, we managed to prove the complexity
result of an analytic center scheme for the constrained problems whose solutions may
belong to the boundary of the basic feasible set. These results seem to be new.

Finally, we would like to recall two earlier comments. First, in section 2 we showed
that the proximal term could be multiplied by an arbitrary constant without changing
the iterates. Secondly, in section 5, we gave evidence that the embedding into an
extended space is necessary for both theoretical and practical purposes.

Appendix. In section 2 we used results on self-concordant functions from the
notes [16]. Since the notes have not yet appeared in the open literature, we include
them in the appendix for the sake of completeness.

Let us consider a closed convex function f(x) ∈ C3(dom f) with open domain.
Definition A.1. We call a function f self-concordant if the inequality

| D3f(x)[u, u, u] |≤ 2 ‖ u ‖3/2f ′′(x)

holds for any x ∈ dom f and u ∈ Rn.
Let us fix x ∈ dom f and u ∈ Rn, u 6= 0. Consider the two functions of one

variable:

ψ(t) = 〈f ′′(x+ tu)u, u〉
and

φ(t) = ψ(t)−1/2.

Clearly, domψ = {t ∈ R | x + tu ∈ dom f} and domφ = {t ∈ domψ | ψ(t) > 0}.
Note that domψ and domφ are open.

Lemma A.2. For all t ∈ domφ we have | φ′(t) |≤ 1.
Proof. Indeed,

φ′(t) = − f ′′′(x+ tu)[u, u, u]

2〈f ′′(x+ tu)u, u〉3/2 .

HOMOGENEOUS ACCPM 725

Therefore, | φ′(t) |≤ 1 in view of Definition A.1.
Corollary A.3. If domφ 6= φ, then domφ = domψ.
Proof. Let t̂ ∈ domφ. Denote by ∆ the largest connected open interval such that

t̂ ∈ ∆ ⊆ domφ. Then ∂∆ ⊆ ∂domφ.
Assume first that an end point of ∆, t̄ belongs to the intersection ∂domφ

⋂
domψ.

Then, for any sequence ti ∈ ∆, ti → t̄, we have

φ(ti) ≤ φ(t0)+ | ti − t̂ | .

Then

ψ(t̄) = lim
i→∞

ψ(ti) ≥ lim
i→∞

1

[φ(t0)+ | ti − t̂ |]2
≥ 1

[φ(t0)+ | ∆ |]2 > 0.

Therefore, t̄ ∈ domφ. This is a contradiction, which proves that t̄ ∈ ∂domψ. Thus,
domφ = domψ.

Corollary A.4. Either ψ(0) = 0 and x + tu ∈ dom f for all t ∈ R, or
(−φ(0), φ(0)) ⊆ domφ; i.e., x+ tu ∈ dom f for all t such that −φ(0) < t < φ(0).

Proof. Assume first that ψ(0) > 0. In view of Lemma A.2 and Corollary A.3, we
have φ(t) ≥ φ(0)− | t | for all t ∈ domψ. Therefore, for all t such that |t| ≤ φ(0) − ε
with some ε > 0, we have that ψ(t) is uniformly bounded. Hence, [−φ(0)+ε, φ(0)−ε] ⊆
domψ.

Consider now the case when ψ(0) = 0. Then domφ = ∅. This means that ψ(t) =
〈f ′′(x+ tu)u, u〉 = 0 for all t. Therefore, the function f(x+ tu) is linear in t. Hence,
x+ tu ∈ dom f for any t.

Denote ‖ u ‖x= 〈f ′′(x)u, u〉1/2. Let us consider the following ellipsoid:

W 0(x; r) = {y ∈ Rn | ‖ y − x ‖x< r},

W (x; r) = Cl
(
W 0(x; r)

)
= {y ∈ Rn | ‖ y − x ‖x≤ r}.

This ellipsoid is called the Dikin ellipsoid of function f at x.
Lemma A.5.
(1) For any x ∈ dom f we have W 0(x; 1) ⊆ dom f .
(2) For all x, y ∈ dom f the following inequality holds:

‖ y − x ‖y≥ ‖ y − x ‖x
1+ ‖ y − x ‖x .(A.1)

(3) If ‖ y − x ‖x< 1, then

‖ y − x ‖y≤ ‖ y − x ‖x
1− ‖ y − x ‖x .(A.2)

Proof. (1) In view of Corollary A.4, either ‖ u ‖x= 0 and the line x+ tu belongs
to dom f , or 0 ∈ domφ and (−φ(0), φ(0)) ∈ domφ with φ(0) = 1/ ‖ u ‖x. The latter
implies that dom f contains the set {y = x+ tu | t2 ‖ u ‖2x< 1}, which is identical to
W 0(x; 1).

(2) Let us choose u = y − x. Then

φ(1) =
1

‖ y − x ‖y , φ(0) =
1

‖ y − x ‖x ,

726 YU. NESTEROV AND J.-PH. VIAL

and φ(1) ≤ φ(0) + 1 in view of Lemma A.2. This is the same as (A.1).
(3) If ‖ y − x ‖x< 1, then φ(0) > 1, and in view of Lemma A.2, φ(1) ≥ φ(0)− 1.

This is the same as (A.2).
Lemma A.6. For any x, y ∈ dom f we have

〈f ′(y)− f ′(x), y − x〉 ≥ ‖ y − x ‖2x
1+ ‖ y − x ‖x ,(A.3)

f(y) ≥ f(x) + 〈f ′(x), y − x〉+ ω(‖ y − x ‖x),(A.4)

where ω(t) = t− ln(1 + t).
Proof. Denote yτ = x+ τ(y − x), τ ∈ [0, 1], and r =‖ y − x ‖x. Then, in view of

(A.1), we have

〈f ′(y)− f ′(x), y − x〉 =

∫ 1

0

〈f ′′(yτ)(y − x), y − x〉dτ =

∫ 1

0

1

τ2
‖ yτ − x ‖2yτ dτ

≥
∫ 1

0

r2

(1 + τr)2
dτ = r

∫ r

0

1

(1 + t)2
dt =

r2

1 + r
.

Further, using (A.3), we obtain

f(y)− f(x)− 〈f ′(x), y − x〉 =

∫ 1

0

〈f ′(yτ)− f ′(x), y − x〉dτ

=

∫ 1

0

1

τ
〈f ′(yτ)− f ′(x), yτ − x〉dτ

≥
∫ 1

0

‖ yτ − x ‖2x
τ(1+ ‖ yτ − x ‖x)

dτ

=

∫ 1

0

τr2

1 + τr
dτ =

∫ r

0

tdt

1 + t
= ω(r).

Lemma A.7. Let x ∈ dom f and ‖ y − x ‖x< 1. Then

〈f ′(y)− f ′(x), y − x〉 ≤ ‖ y − x ‖2x
1− ‖ y − x ‖x ,(A.5)

f(y) ≤ f(x) + 〈f ′(x), y − x〉+ ω∗(‖ y − x ‖x),(A.6)

where ω∗(t) = −t− ln(1− t).
Proof. Denote yτ = x+τ(y−x), τ ∈ [0, 1], and r =‖ y−x ‖x. Since ‖ yτ −x ‖< 1,

in view of (A.2) we have

〈f ′(y)− f ′(x), y − x〉 =

∫ 1

0

〈f ′′(yτ)(y − x), y − x〉dτ =

∫ 1

0

1

τ2
‖ yτ − x ‖2yτ dτ

≤
∫ 1

0

r2

(1− τr)2
dτ = r

∫ r

0

1

(1− t)2
dt =

r2

1− r .

HOMOGENEOUS ACCPM 727

Further, using (A.5), we obtain

f(y)− f(x)− 〈f ′(x), y − x〉 =

∫ 1

0

〈f ′(yτ)− f ′(x), y − x〉dτ

=

∫ 1

0

1

τ
〈f ′(yτ)− f ′(x), yτ − x〉dτ

≤
∫ 1

0

‖ yτ − x ‖2x
τ(1− ‖ yτ − x ‖x)

dτ =

∫ 1

0

τr2

1− τr dτ

=

∫ r

0

tdt

1− t = ω∗(r).

Acknowledgment. B. Büeler worked out the computations on the small example
of section 4. We thank him for letting us use his results. We are also grateful for his
comments on the paper.

REFERENCES

[1] A. Altman and K. C. Kiwiel, A note on some cutting plane methods for convex feasibility
and minimization problems, Comput. Optim. Appl., 5 (1996), pp. 175–180.

[2] D. S. Atkinson and P. M. Vaidya, A cutting plane algorithm for convex programming that
uses analytic centers, Math. Programming, 69 (1995), pp. 1–43.

[3] O. Bahn, O. du Merle, J.-L. Goffin, and J.-P. Vial, A cutting plane method from analytic
centers for stochastic programming, Math. Programming, 69 (1995), pp. 45–73.

[4] O. Bahn, J.-L. Goffin, J.-P. Vial, and O. du Merle, Experimental behaviour of an inte-
rior point cutting plane algorithm for convex programming: An application to geometric
programming, Discrete Appl. Math., 49 (1994), pp. 2–23.

[5] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial, Solving nonlinear multicommodity
flow problems by the analytic center cutting plane method, Math. Programming, 76 (1997),
pp. 131–154.

[6] J.-L. Goffin, A. Haurie, and J.-P. Vial, Decomposition and nondifferentiable optimization
with the projective algorithm, Management Sci., 38 (1992), pp. 284–302.

[7] J.-L. Goffin, Z. Q. Luo, and Y. Ye, On the complexity of a column generation algorithm
for convex and quasiconvex feasibility problems, in Large Scale Optimization: State of the
Art, W. Hager, D. Hearn, and P. Pardalos, eds., Kluwer Academic Publishers, Norwell,
MA, 1993, pp. 187–196.

[8] J.-L. Goffin, Z.-Q. Luo, and Y. Ye, Complexity analysis of an interior cutting plane method
for convex feasibility problems, SIAM J. Optim., 6 (1996), pp. 638–652.

[9] J.-L. Goffin, P. Marcotte, and D. Zhu, An analytic center cutting plane method for pseu-
domonotone variational inequalities, Oper. Res. Lett., 20 (1997), pp. 1–6.

[10] J.-L. Goffin and J.-P. Vial, Shallow, Deep and Very Deep Cuts in the Analytic Center
Cutting Plane Method, Math. Programming, 84 (1999), pp. 89–103.

[11] K. C. Kiwiel, Efficiency of the analytic center cutting plane method for convex minimization,
SIAM J. Optim., 7 (1997), pp. 336–346.

[12] Z. Luo and J. Sun, An analytic center based column generation algorithm for convex quadratic
feasibility problems, SIAM J. Optim., 9 (1999), pp. 217–235.

[13] F. S. Mokhtarian and J. L. Goffin, A nonlinear analytic center cutting plane method for a
class of convex programming problems, SIAM J. Optim., 8 (1998), pp. 1108–1131.

[14] A. Nemirovsky and D. Yudin, Informational Complexity and Efficient Methods for Solution
of Convex Extremal Problems, John Wiley, New York, 1983.

[15] Y. Nesterov, Complexity estimates of some cutting plane methods based on the analytic cen-
ter, Math. Programming, 69 (1995), pp. 149–176.

[16] Y. Nesterov, Introductory Lectures on Convex Optimization, CORE, Louvain, Belgium, 1996.
[17] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-

ming, SIAM Stud. Appl. Math. 13, Philadelphia, 1994.
[18] Yu. E. Nesterov and M. J. Todd, Primal-dual interior-point methods for self-scaled cones,

SIAM J. Optim., 8 (1998), pp. 324–364.
[19] Y. Nesterov and M. Todd, Self-scaled cones and interior-point methods in nonlinear pro-

gramming, Math. Oper. Res., 22 (1997), pp. 1–42.

728 YU. NESTEROV AND J.-PH. VIAL

[20] G. Sonnevend, New algorithms in convex programming based on a notion of “centre” (for
systems of analytic inequalities) and on rational extrapolation, in Trends in Mathematical
Optimization: Proceedings of the 4th French–German Conference on Optimization, Irsee,
Germany, April 1986, Internat. Ser. Numer. Math. 84, K. H. Hoffmann, J.-B. Hiriat-Urruty,
C. Lemarechal, and J. Zowe, eds., Birkhäuser, Basel, 1988, pp. 311–327.

A POTENTIAL REDUCTION NEWTON METHOD FOR
CONSTRAINED EQUATIONS∗

RENATO D. C. MONTEIRO† AND JONG-SHI PANG‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 729–754

Abstract. Extending our previous work [T. Wang, R. D. C. Monteiro, and J.-S. Pang, Math.
Programming, 74 (1996), pp. 159–195], this paper presents a general potential reduction Newton
method for solving a constrained system of nonlinear equations. A major convergence result for
the method is established. Specializations of the method to a convex semidefinite program and a
monotone complementarity problem in symmetric matrices are discussed. Strengthened convergence
results are established in the context of these specializations.

Key words. potential reduction algorithm, constrained equation, Newton method, interior point
methods, global convergence, potential function, complementarity problems, variational inequality,
semidefinite programming, primal-dual methods

AMS subject classifications. 65K05, 90C25, 90C33

PII. S1052623497318980

1. Introduction. In the paper [36], we have introduced the problem of solving
a system of nonlinear equations subject to additional constraints on the variables, i.e.,
a constrained system of equations. We have demonstrated that constrained equations
(CEs) provide a unifying framework for the study of complementarity problems of
various types, including the standard nonlinear complementarity problem and the
Karush–Kuhn–Tucker system of a variational inequality. Postulating a partitioning
property of the CE, we have introduced an interior point potential reduction algorithm
for solving the CE and have applied this method to convex programs and monotone
complementarity problems of different kinds. The goal of this paper is to present a
potential reduction Newton method for solving a CE, without assuming the existence
of the partitioning property that is key to the previous work.

The central problem studied in section 2 of this paper is as follows. Let H : <n →
<n be a given mapping from the real Euclidean space <n into itself and let Ω be a
given closed subset of <n. The constrained equation defined by the pair (Ω, H) is to
find a vector x ∈ <n such that

H(x) = 0, x ∈ Ω.

We refer the reader to [36] for the initial motivation to study the CE. The method
proposed in this paper for solving the CE (Ω, H) combines ideas from the classical
damped Newton method for solving the unconstrained system of equations H(x) = 0,
x ∈ <n, and the family of interior point methods for solving constrained optimiza-
tion and complementarity problems. A general convergence theory for the proposed

∗Received by the editors March 26, 1997; accepted for publication (in revised form) June 22, 1998;
published electronically May 21, 1999.

http://www.siam.org/journals/siopt/9-3/31898.html
†School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

30332-0205 (monteiro@isye.gatech.edu). The research of this author was supported by the National
Science Foundation under grants INT-9600343 and CCR-9700448 and the Office of Naval Research
under grant N00014-94-1-0340.
‡Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD 21218-

2682 (jsp@vicp1.mts.jhu.edu). The research of this author was supported by the National Science
Foundation under grant CCR-9624018 and by the Office of Naval Research under grant N00014-93-
1-0228.

729

730 R. D. C. MONTEIRO AND J.-S. PANG

method is presented in section 2.4. Unlike the previous study [36], where we assume
that the function H(x) has a certain partition conformal to the set Ω, we make no such
assumption herein. Instead, the present work is based on a set of broad hypotheses
on the pair (Ω, H).

In sections 3 and 4, we consider applications of our results to a monotone comple-
mentarity problem and a semidefinite convex program on the cone of positive semidef-
inite matrices. These applications yield new interior point methods for solving these
problems whose convergence can be established under some mild assumptions. It
should be noted that many interior point methods for the linear version of these
problems have been proposed in the literature (e.g., see [1, 2, 3, 4, 6, 9, 10, 11, 12, 15,
16, 19, 20, 22, 23, 24, 25, 26, 27, 29, 32, 34, 35, 37]).

We explain some terminology and fix the notation used throughout the paper.
For a given subset S of <n, we let int S, cl S, and bd S denote, respectively, the
interior, closure, and boundary of S. If the mapping H is (Fréchet) differentiable at a
point x in its domain, the Jacobian matrix of H at x is denoted H ′(x); thus the (i, j)-
entry of H ′(x) is equal to ∂Hi(x)/∂xj for i, j = 1, . . . , n. We write H ′(x; v) ≡ H ′(x)v
for any vector v ∈ <n; thus H ′(x; v) is the Fréchet derivative of H at x along the
direction v. If H(x, y) is a function of two arguments (x, y) ∈ <n+m, then H ′x denotes
the partial Jacobian matrix of H with respect to the variable x. For a real-valued
function φ : <n → <, we write ∇φ(x) for the gradient vector of φ at the vector x ∈ <n.
The p-norm of a vector x is denoted by ‖x‖p; in particular, its 2-norm or Euclidean
norm is denoted by ‖x‖. For a vector a ∈ <n, we let [0, a] denote the line segment
joining the origin and a. For a positive vector u, we let u−1 denote the vector whose
components are the reciprocals of the corresponding components of u. For a mapping
G : M → N with domain M , range N , and subsets D ⊂M and E ⊂ N , we let

G(D) ≡ {G(u) : u ∈ D } and G−1(E) ≡ {u ∈ M : G(u) ∈ E }.
The set of real matrices of order n is denoted byMn; the subset of symmetric matrices
inMn is denoted by Sn. The setMn forms a finite-dimensional inner-product vector
space with the inner product given by

X • Y ≡ tr(XTY), (X,Y) ∈ Mn,

where “tr” denotes the trace of a matrix. This inner product induces the Frobenius
norm for matrices given by

‖X ‖F ≡
√

tr(XTX), X ∈Mn.

The subsets of Sn consisting of the positive semidefinite and positive definite matrices
are denoted by Sn+ and Sn++, respectively. For two matrices A and B in Sn, we write
A � B if B−A ∈ Sn+; similarly, A ≺ B means B−A ∈ Sn++. For any matrix A ∈ Sn+,

A1/2 denotes the square root of A; i.e., A1/2 is the unique matrix in Sn+ such that

(A1/2)2 = A.

2. Description and analysis of the algorithm. In this section, we describe
the potential reduction Newton algorithm for solving the CE (Ω, H), where Ω is a
closed subset of <n and H is a continuous mapping from <n into itself. This section
is divided into four subsections as follows: in the first subsection, we lay down the basic
assumptions on the pair (Ω, H); in the second subsection, we give some results which
guarantee the existence of a solution for the CE (Ω, H); in the third subsection, we
present the detailed statement of the algorithm; in the fourth subsection, we establish
a convergence theorem for the algorithm.

NEWTON METHOD FOR CONSTRAINED EQUATIONS 731

2.1. Basic assumptions. We introduce several key assumptions on the pair
(Ω, H). Subsequently, these assumptions will be verified in the context of several ap-
plications of the CE. Among these assumptions, we postulate the existence of a closed
convex subset S that relates to the range of H and possesses certain special properties.
Based on such a set S and a corresponding potential function p, an algorithm for solv-
ing the CE is developed. Part of the generality of the present framework stems from
the freedom in the choice of S. There are two immediate benefits of this generality.
One is that our framework provides a unified basis for the study of many iterative
algorithms for solving nonlinear equations and mathematical programs. More impor-
tantly, the other benefit is that new algorithms can be constructed with novel choices
of S. Of particular interest is the construction of sets S and associated potential func-
tions that depend on given starting points. These details will appear in subsequent
sections. The blanket assumptions are as follows.

(A1) The closed set Ω has a nonempty interior.
(A2) There exists a closed convex set S ⊂ <n such that

(a) 0 ∈ S;
(b) the (open) set ΩI ≡ H−1(int S) ∩ int Ω is nonempty;
(c) the set H−1(int S) ∩ bd Ω is empty.

(A3) H is continuously differentiable on ΩI , and H ′(x) is nonsingular for all
x ∈ ΩI .

Assumption (A1) is needed for the applicability of an interior point method. The
sets S and ΩI in assumption (A2) contain the key elements of the proposed algorithm.
(As noted by a referee, if H is considered to be a mapping with domain Ω, conditions
(b) and (c) in (A2) are equivalent to the condition that ∅ 6= H−1(int S) ⊂ int Ω.)
Whereas S pertains to the range of H, ΩI pertains to the domain. Initiated at a
vector x0 in ΩI , the algorithm generates a sequence of iterates {xk} ⊂ ΩI so that the
sequence {H(xk)} ⊂ int S will eventually converge to zero, thus accomplishing the
goal of solving the CE (Ω, H), at least approximately. Assumption (A3) facilitates
the application of a Newton scheme for the generation of {xk}; this scheme relies
on a potential function for the set ΩI that is induced by such a function for int S.
Specifically, we postulate the existence of a potential function p : int S → < satisfying
the following properties:

(A4) for every sequence {uk} ⊂ int S such that

either lim
k→∞

‖uk‖ = ∞ or lim
k→∞

uk = ū ∈ bd S \ {0},

we have

lim
k→∞

p(uk) = ∞.(1)

(A5) p is continuously differentiable on its domain and uT∇p(u) > 0 for all nonzero
u ∈ int S.

A condition equivalent to (A4) is stated in the following straightforward result.
Lemma 1. Condition (A4) holds if and only if for all γ ∈ < and ε > 0, the set

Λ(ε, γ) ≡ {u ∈ int S : p(u) ≤ γ, ‖u‖ ≥ ε }

is compact.
The notion of the central path has played a fundamental role in all interior point

methods for solving optimization and complementarity problems [7, 13, 14]. Inspired

732 R. D. C. MONTEIRO AND J.-S. PANG

by this notion, we introduce an important vector a that will be used to define a
modified Newton direction that is key to the generation of the iterates for solving the
CE (Ω, H). Although the vector a is inspired by the central vector of all ones in the
case where S is the nonnegative orthant, since our present setting is very broad, the
vector a should not be thought of as just a “central vector” for int S; instead, a is
closely linked with the potential function p, which itself is fairly loosely restricted.

(A6) There exists a pair (a, σ̄) ∈ <n × (0, 1] such that

‖a‖2 (uT∇p(u)
) ≥ σ̄ (aTu)(aT∇p(u)) ∀ u ∈ int S.

Trivially, (A6) holds with a = 0 and any σ̄ ∈ (0, 1]. It follows that the entire
development in this paper holds with a = 0. Nevertheless, the interesting case is
when a 6= 0. The purpose of (A6) is to identify a broad class of such vectors a for
which one can establish the convergence of the potential reduction algorithm of section
2.3. For many problems (such as those described in this paper), a nonzero vector a
satisfying (A6) can be identified easily; for others, we could always resort to the zero
vector.

The basic role of the potential function p is to keep the sequence {H(xk)} away
from the set bd S\{0} while leading it toward the zero vector. Hence, its role is slightly
different from that of a standard barrier function used in nonlinear programming,
which in contrast penalizes an iterate when it gets close to any boundary point of S.

Our framework includes the most basic case of solving a smooth system of un-
constrained equations. This case corresponds to Ω = <n. In this case, we may simply
take S to be the entire space <n (so that bd S = ∅), p(u) to be the function ‖u‖2, a
to be any vector, and σ̄ = 1. It is then clear that (A2) and (A4)–(A6) all hold easily.

Another simple case to illustrate the above assumptions (with an unspecified Ω)
is when S is the nonnegative orthant <n+. In what follows, we establish the validity
of conditions (A4)–(A6) for the function

p(u) = ζ log uTu−
n∑
i=1

log ui, u > 0

and the pair (a, σ̄) = (e, 1), where ζ > n/2 is an arbitrary scalar and e is the n-
dimensional vector of all ones. (Note: The `1-norm of u, instead of uTu, could also be
used in the first logarithmic term. The analysis remains the same with the constant
ζ properly adjusted.) Clearly, p is norm-coercive on <n++; i.e.,

lim
u>0

‖u‖→∞
p(u) = ∞,

because for u > 0,

p(u) ≥ ζ
(

2 log

(
n∑
i=1

ui

)
− log n

)
−

n∑
i=1

log ui

> (2 ζ − n) log

(
n∑
i=1

ui

)
− (ζ − n) log n,

where the first and second inequalities follow from the fact that ‖u‖1 ≤
√
n‖u‖ and

n log(
∑n
i=1 ui) −

∑n
i=1 log ui ≥ n log n, respectively. Moreover, for any positive se-

NEWTON METHOD FOR CONSTRAINED EQUATIONS 733

quence {uk} converging to a nonzero nonnegative vector with at least one zero com-
ponent, the limit (1) clearly holds. Thus (A4) follows. Since

uT∇p(u) = uT
(

2 ζ

‖u ‖2 u− u
−1

)
= 2 ζ − n > 0,

(A5) holds. Moreover, with (a, σ̄) = (e, 1), we now show that (A6) also holds. Indeed,
we have for u > 0,

aT∇p(u) =
2 ζ
∑n
i=1 ui∑n

i=1 u
2
i

−
n∑
i=1

u−1
i ;

thus

(aT∇p(u)) (aTu)

‖a‖2 = n−1

[
2 ζ ‖u‖21
‖u‖2 −

(
n∑
i=1

u−1
i

) (
n∑
i=1

ui

)]
≤ 2 ζ − n = uT∇p(u),

where the last inequality follows from the fact that ‖u‖1 ≤
√
n ‖u‖ and from the

arithmetic-geometric mean inequality.
Other choices for the function p exist for S = <n+. The above choice will be

generalized to the case where S involves the cone of symmetric positive semidefinite
matrices.

Admittedly, the set S, function p, and vector a as stated in the general assump-
tions (A2) and (A4)–(A6) are somewhat abstract. In particular, a question raised by
a referee is whether our framework is applicable to a linear program over a general
convex cone, the latter being an elegant problem that has received substantial interest
in the optimization community in recent years. Needless to say, to be amenable to
our framework, the cone linear program has to be written in the form of a CE. (We
are convinced that this can be done via duality theory.) After this conversion, the
ability to identify S, p, and a depends on how much we know about the given cone.
We believe that for cones arising most frequently in applications (such as the well-
known quadratic cone), this set, function, and vector can be identified (although the
identification could entail considerable additional efforts). For general cones without
additional properties, the applicability of our approach is not clear. A careful in-
vestigation may reveal some interesting connection between S, p, and a and certain
intrinsic conic properties; nevertheless, such an investigation is clearly beyond the
scope of this paper.

2.2. Existence of solutions. In this subsection, we study conditions that guar-
antee the existence of solutions of the CE (Ω, H). We start by giving a few definitions.
Assume that M and N are two metric spaces and that G : M → N is a map between
these two spaces. The map G is said to be proper with respect to a set E ⊂ N if
G−1(K) ⊂M is compact for every compact set K ⊂ E. If G is proper with respect to
N , we will simply say that G is proper. For D ⊂M , and E ⊂ N such that G(D) ⊂ E,
the restricted map G̃ : D → E defined by G̃(u) ≡ G(u) for all u ∈ D is denoted by
G|(D,E); if E = N , then we write this G̃ simply as G|D. We will also refer to G|(D,E)

as “G restricted to the pair (D,E),” and to G|D as “G restricted to D.” We say
that (V1, V2) forms a partition of the set V if V1 ⊂ V , V2 ⊂ V , V1 ∪ V2 = V , and
V1 ∩ V2 = ∅. A metric space M is said to be connected if there exists no partition

734 R. D. C. MONTEIRO AND J.-S. PANG

(O1,O2) for which both O1 and O2 are nonempty and open. A metric space M is
said to be path-connected if for any two points u0, u1 ∈ M , there exists a continuous
p : [0, 1]→M such that p(0) = u0 and p(1) = u1.

The following result and its proof can be found in Monteiro and Pang [17] (see
Corollary 1 of this reference).

Proposition 1. Let M and N be two metric spaces and F : M → N be a
continuous map. Let M0 ⊂ M and N0 ⊂ N be given sets satisfying the following
conditions: F |M0

is a local homeomorphism and ∅ 6= F−1(N0) ⊂ M0. Assume that
F is proper with respect to some set E such that N0 ⊂ E ⊂ N . Then F restricted
to the pair (F−1(N0), N0) is a proper local homeomorphism. If, in addition, N0 is
connected, then F (M0) ⊇ N0 and F (cl M0) ⊇ E ∩ cl N0.

Using Proposition 1, we now derive two existence results for the CE (Ω, H).
Theorem 1. Assume that conditions (A1)–(A3) hold and that there exists a

convex set E ⊂ S such that 0 ∈ E, E ∩ H(ΩI) is nonempty, and H : <n → <n is
proper with respect to E. Then

(a) E ⊂ H(Ω); in particular, CE (Ω, H) has a solution;
(b) H restricted to the pair (ΩI ∩ H−1(E), E ∩ int S) is a proper local home-

omorphism.
Proof. To apply Proposition 1, let M ≡ Ω, N ≡ <n, M0 ≡ ΩI , N0 ≡ E ∩ int S,

and F ≡ H|Ω. Using (A2) and the assumption that E ∩ H(ΩI) 6= ∅, we easily see
that ∅ 6= F−1(N0) ⊂ M0. Moreover, by (A3) and the inverse function theorem, it
follows that F |M0 is a local homeomorphism. Since F is proper with respect to E by
assumption, it follows from Proposition 1 that

H(Ω) ⊇ H(cl ΩI) = F (cl M0) ⊇ E ∩ cl N0 = E ∩ cl (E ∩ int S) = E,

where the last equality follows from the fact that cl (E∩ int S) = (cl E)∩cl (int S) =
(cl E) ∩ S, by elementary properties of convex sets (see section 2.1 in Chapter 3 of
[5]). Hence, (a) holds. It also follows from Proposition 1 that F restricted to the pair
(F−1(N0), N0) is a proper local homeomorphism. Since by (A2) and the definition of
F , we have

F−1(N0) = Ω ∩H−1(E ∩ int S) = ΩI ∩ H−1(E),

we conclude that (b) holds.
Theorem 2. Assume that conditions (A1)–(A3) hold and that H is proper with

respect to S. Then (i) S ⊂ H(Ω) and (ii) H restricted to ΩI maps each path-connected
component of ΩI homeomorphically onto int S. In particular, CE (Ω, H) has a solu-
tion.

Proof. Conclusion (i) follows immediately from Theorem 1(a) with E = S. Using
Theorem 1(b) with E = S, we conclude that H restricted to the pair (ΩI , int S) is a
proper local homeomorphism. If T ⊂ ΩI is a path-connected component of ΩI , then
H restricted to the pair (T , int S) is a proper local homeomorphism since T is both
open and closed with respect to ΩI . Since every proper local homeomorphism from a
path-connected set into a convex set is a homeomorphism (see, for example, Theorem
1 of [17]), (ii) follows.

2.3. The algorithm. The algorithm for solving the CE (Ω, H) is a modified,
damped Newton method applied to the equation H(x) = 0. Referring the reader to
[28] for the basic family of Newton methods for solving this unconstrained equation,
we highlight the modifications to deal with the presence of the constraint set Ω. In

NEWTON METHOD FOR CONSTRAINED EQUATIONS 735

essence, there are two major modifications. One, the Newton equation to compute the
search directions is modified using the (central) vector a in assumption (A6). Two,
the merit function for the line searches is based on the merit function:

ψ(x) ≡ p(H(x)), x ∈ ΩI .(2)

This is different from the norm functions of H that are the common merit functions
used in a classical damped Newton method. Note that by (A3) and (A5) the function
ψ is continuously differentiable on ΩI .

With the above explanation, we now give the full details of the Newton method
for solving the CE (Ω, H) under the setting given in the last subsection.

Step 0. (Initialization) Let a vector x0 ∈ ΩI and scalars ρ ∈ (0, 1) and α ∈ (0, 1)
be given. Let a sequence of scalars {σk} ⊂ [0, σ̄) also be given. (The scalar σ̄ is as
given in assumption (A6).) Set the iteration counter k = 0.

Step 1. (Computing the modified Newton direction) Solve the system of linear
equations

H(xk) +H ′(xk; d) = σk
aTH(xk)

‖a‖2 a(3)

to obtain the search direction dk. (The right-hand side of the above equation is
assumed to be zero if a = 0. This convention will be assumed throughout our presen-
tation.)

Step 2. (Armijo line search) Let mk be the smallest nonnegative integer m such
that xk + ρmdk ∈ ΩI and

ψ(xk + ρmdk)− ψ(xk) ≤ αρm∇ψ(xk)T dk.

Set xk+1 ≡ xk + ρmkdk.

Step 3. (Termination test) If

‖H(xk+1) ‖ ≤ prescribed tolerance,

stop; accept xk+1 as an approximate solution of the CE (Ω, H). Otherwise, return to
Step 1 with k replaced by k + 1.

By (A3) and the fact that xk ∈ ΩI , the Newton equation (3) has a unique
solution which we have denoted by dk. The following lemma guarantees that dk is a
descent direction for the function ψ at xk. This property, along with the openness
of ΩI , ensures that the integer mk can be determined in a finite number of trials
(starting with mk = 0 and increasing it by one at each trial), thus guaranteeing the
well-definedness of the next iterate xk+1.

Lemma 2. Suppose that conditions (A5) and (A6) hold. Assume also that x ∈ ΩI ,
d ∈ <n, and σ ∈ < are such that

H(x) 6= 0, 0 ≤ σ < σ̄,(4)

H ′(x; d) = −H(x) + σ
aTH(x)

‖a‖2 a,(5)

where a ∈ <n and σ̄ ∈ [0, 1] are as in condition (A6). Then, ∇ψ(x)T d < 0.

736 R. D. C. MONTEIRO AND J.-S. PANG

Proof. Let u ≡ H(x). Then, 0 6= u ∈ int S due to (4) and the assumption that
x ∈ ΩI . This together with (2), (5), (4), (A5), and (A6) imply

∇ψ(x)T d = ∇p(H(x))TH ′(x; d) = ∇p(u)T
(
−u+ σ

aTu

‖a‖2 a
)

≤ −∇p(u)Tu
(

1− σ

σ̄

)
< 0,

as claimed.

2.4. A convergence result. In what follows, we state and prove a limiting
property of an infinite sequence of iterates {xk} generated by the algorithm. Before
stating the theorem, we observe that such a sequence necessarily belongs to the set
ΩI ; thus {H(xk)} ⊂ int S. Since the sequence {xk} is infinite, we have H(xk) 6= 0
for all k. Theorem 3 below contains four conclusions, (a)–(d). The first three of these
do not assert the boundedness of the sequence {xk}; this boundedness is established
under the assumptions of statement (d), which implies the existence of a solution of
the CE (Ω, H). A consequence of statement (c) in the theorem is

inf { ‖H(x) ‖ : x ∈ Ω } = 0;

consequently, CE (Ω, H) has “ε-solutions” for every ε > 0 in the sense that for any
such ε, there exists a vector xε ∈ Ω satisfying ‖H(xε) ‖ ≤ ε; moreover xε can be
computed by the potential reduction Newton method starting at the given vector x0.

Theorem 3. Assume conditions (A1)–(A6) hold and that lim supk σk < σ̄. Let
{xk} be any infinite sequence produced by the potential reduction Newton algorithm.
Then, the following statements hold:

(a) the sequence {H(xk)} is bounded;
(b) any accumulation point of {xk}, if it exists, solves the CE (Ω, H); in partic-

ular, if {xk} is bounded, then the CE (Ω, H) has a solution.
Moreover, for any closed subset E of S containing the sequence {H(xk)},

(c) if H is proper with respect to E ∩ int S, then limk→∞H(xk) = 0;
(d) if H is proper with respect to E, then {xk} is bounded.
Proof. Let γ ≡ ψ(x0) and uk ≡ H(xk) ∈ int S for all k. Clearly, p(uk) = ψ(xk) ≤

ψ(x0) = γ for all k. Hence, for any ε > 0 we have {uk} ⊂ Λ(ε, γ)∪{u ∈ <n : ‖u‖ ≤ ε}.
Since by Lemma 1 the set Λ(ε, γ) is compact, and hence bounded, we conclude that
{uk} is bounded. Hence, (a) follows.

To show (b), let x∞ be an accumulation point of {xk}. Clearly x∞ ∈ Ω because Ω
is a closed set. Assume for contradiction that u∞ ≡ H(x∞) 6= 0. Let {xk : k ∈ κ} be a
subsequence converging to x∞ and assume without loss of generality that {σk : k ∈ σ}
converges to some scalar σ∞. Since σk ≥ 0 for all k and lim supk σk < σ̄, we must
have σ∞ ∈ [0, σ̄). Since p(uk) ≤ p(u0) = γ for all k and

lim
k(∈κ)→∞

uk = u∞ 6= 0,

there exists ε > 0 such that the subsequence {uk : k ∈ κ} ⊂ Λ(ε, γ). Since by Lemma
1 the set Λ(ε, γ) is compact, we conclude that u∞ = H(x∞) ∈ Λ(ε, γ) ⊂ int S, and
hence that x∞ ∈ H−1(int S). By assumption (A2), it follows that x∞ ∈ ΩI . Hence,
by assumption (A3), H ′(x∞)−1 exists. This implies that the sequence {dk : k ∈ κ}
converges to a vector d∞ satisfying

H(x∞) +H ′(x∞; d∞) = σ∞
aTH(x∞)

‖a‖2 a.

NEWTON METHOD FOR CONSTRAINED EQUATIONS 737

Hence, it follows from Lemma 2 that ∇ψ(x∞)T d∞ < 0.
Since {xk : k ∈ κ} converges to x∞ ∈ ΩI where ψ is continuous, it follows that

{ψ(xk) : k ∈ κ} converges. This implies that the whole sequence {ψ(xk)} converges
due to the fact that it is monotonically decreasing. Using the relation

ψ(xk+1)− ψ(xk) = ψ(xk + ρmkdk)− ψ(xk) ≤ αρmk ∇ψ(xk)T dk < 0

for all k, we conclude that

lim
k→∞

ρmk ∇ψ(xk)T dk = 0

and hence that

lim
k(∈κ)→∞

ρmk = 0

because

lim
k(∈κ)→∞

∇ψ(xk)T dk = ∇ψ(x∞)T d∞ < 0.

Thus

lim
k(∈κ)→∞

mk = ∞,

which implies that mk ≥ 2 for all k ∈ κ sufficiently large. Consequently, by the
definition of mk, we deduce that

ψ(xk + ρmk−1dk)− ψ(xk)

ρmk−1
> α∇ψ(xk)T dk

for all k ∈ κ sufficiently large. Letting k ∈ κ tend to infinity in the above expression,
we obtain

∇ψ(x∞)T d∞ ≥ α∇ψ(x∞)T d∞,

which contradicts the fact that α < 1 and ∇ψ(x∞)T d∞ < 0. Consequently, we must
have H(x∞) = 0, and hence (b) follows.

Assume now that E is a closed subset of S containing the sequence {H(xk)}. To
prove (c), assume for contradiction that for an infinite subset κ ⊂ {0, 1, 2, . . .}, we
have

lim inf
k(∈κ)→∞

‖uk ‖ > 0.

By an argument similar to that employed above, we conclude that for some ε > 0
we have {uk : k ∈ κ} ⊂ Λ(ε, γ) ∩ E. By Lemma 1 and the fact that E is closed, we
conclude that Λ(ε, γ) ∩ E is a compact subset of int S ∩ E. Since H is proper with
respect to int S ∩E, the inverse image of Λ(ε, γ)∩E under H is compact, and hence
bounded. This implies that {xk : k ∈ κ} is bounded. By (b), every accumulation
point of the latter subsequence is a zero of H. This contradiction establishes (c).

Finally, using (a) and the fact that E is closed, we conclude that {uk} is contained
in a compact subset E1 of E. Since H is proper with respect to E, it follows that the
set H−1(E1) ⊃ {xk} is bounded. Hence, (d) follows.

The framework of the CE (Ω, H) that we have set forth so far is very broad. In
addition to not assuming any sign restriction on the components of H (like we did
in [36]; see Assumption 1 therein), as we have mentioned before, the freedom in the
choice of the set S and the associated potential function p and vector a adds to the
versatility of the framework. The results in the next two sections will demonstrate how
S, p, and a can easily be constructed in important cases under very mild assumptions.

738 R. D. C. MONTEIRO AND J.-S. PANG

3. Monotone complementarity problems in symmetric matrices. We
consider a mixed complementarity problem defined on the cone of symmetric pos-
itive semidefinite matrices. The linear version of this problem was introduced by
Kojima, Shindoh, and Hara [10] and has received a great deal of research attention
recently. In what follows, we consider a nonlinear version of this problem defined in
[18]. This reference contains a fairly extensive bibliography on interior point meth-
ods for solving optimization and complementarity problems defined on the cone of
semidefinite matrices; it will be the source for several results that will be used freely
in the subsequent development.

3.1. Implicit mixed complementarity problems. We recall the framework
considered in [18]. Let F : Sn+ × Sn+ × <m → Sn × <m be a given mapping. The
mixed complementarity problem in symmetric matrices is to find a triple (X,Y, z) ∈
Sn × Sn ×<m satisfying

F (X,Y, z) = 0, X • Y = 0, (X,Y) ∈ Sn+ × Sn+.(6)

As explained in [18] and the references therein, there are several equivalent ways
of stating the complementarity condition X • Y = 0, each leading to a different
interior point method for solving the above problem. In what follows, we consider the
equivalent formulation of this problem as the CE defined by the pair (Ω, H), where
the set Ω and the map H : Sn+ × Sn+ ×<m → Sn × Sn ×<m are defined by

Ω ≡ Sn+ × Sn+ ×<m,(7)

H(X,Y, z) ≡
(

(XY + Y X)/2

F (X,Y, z)

)
, (X,Y, z) ∈ Sn+ × Sn+ ×<m.(8)

Similar treatment can be applied to other equivalent formulations and to generaliza-
tions of the basic problem (6). Throughout the following discussion, F is assumed to
be continuous on its domain and continuously differentiable on Sn++ × Sn++ ×<m.

Associated with the above mapping H, define the set

U ≡ { (X,Y) ∈ Sn++ × Sn++ : XY + Y X ∈ Sn++ }.(9)

The set U was introduced in [31] and subsequently used in the papers [8, 33] for the
analysis of primal-dual semidefinite programming algorithms based on the Alizadeh–
Haeberly–Overton (AHO) direction [2]. It has also been used in [18] for the study of
the fundamental properties of the interior point map (8). The fundamental role of the
set U in the study of the problem (6) is well explained in the above-cited references.
It has been shown in Lemma 1 of [18] that

U = { (X,Y) ∈ Sn+ × Sn+ : XY + Y X ∈ Sn++ }.(10)

We introduce an important assumption on the mapping F that will be used to
verify the nonsingularity of the Jacobian matrix H ′(X,Y, z).

(B1) The mapping F is (X,Y)-differentiably-monotone at every triple (X,Y, z) ∈
U × <m; i.e., for any such triple,

F ′((X,Y, z); (dX, dY, dz)) = 0

(dX, dY, dz) ∈ Sn × Sn ×<m

}
=⇒ dX • dY ≥ 0.(11)

NEWTON METHOD FOR CONSTRAINED EQUATIONS 739

(B2) The mapping F is z-differentiably-injective at every triple (X,Y, z) ∈ U×<m;
i.e., for any such triple,

F ′((X,Y, z); (0, 0, dz)) = 0 =⇒ dz = 0.(12)

The following lemma asserts that the basic assumptions (A1)–(A3) in section 2.1
are valid under the above hypotheses.

Lemma 3. Consider the CE (Ω, H) with Ω and H defined by (7) and (8), and let
S ≡ Sn+ × Sn ×<m. If conditions (B1) and (B2) hold, then

ΩI ≡ H−1(int S) ∩ int Ω = U × <m;

moreover, the pair (Ω, H) and the set S satisfy conditions (A1), (A2), and (A3).
Proof. Only the second assertion requires a proof. Conditions (A1) and (A2)(a)

obviously hold. Clearly U is an open set; since (I, I) ∈ U , (A2)(b) holds. Moreover,
it is easy to see that the alternative representation (10) implies (A2)(c). Next we
establish that (A3) holds under (B1) and (B2). This amounts to showing that for
every (X,Y, z) ∈ ΩI = U × <m, the following implication holds:

H ′((X,Y, z); (dX, dY, dz)) = 0

(dX, dY, dz) ∈ Sn × Sn ×<m

}
=⇒ (dX, dY, dz) = 0.

Assume the left-hand condition holds. Then,

X(dY) + (dY)X + Y (dX) + (dX)Y = 0,(13)

F ′((X,Y, z); (dx, dy, dz)) = 0.(14)

Condition (B1) and (14) imply that dX • dY ≥ 0. This together with (13) and the
fact that (X,Y) ∈ U yield dX = dY = 0 (see the proof of Theorem 3.1(iii) of [31]).
In turn, this together with (14) imply

F ′((X,Y, z); (0, 0, dz)) = 0,

which yields dz = 0 due to (B2).
From the above result, we see that the set U is naturally associated with the map

H given by (8). We observe that, based on the analysis of Monteiro and Zanjácomo
[21], it can be shown that H ′(X,Y, z) is invertible over the set U ′×<m with U ′ given
by

U ′ ≡
{

(X,Y) ∈ Sn++ × Sn++ :
∥∥∥X1/2Y X1/2 − µI

∥∥∥ ≤ 1

2
µ

}
,

where µ ≡ (X • Y)/n. However, the set U ′ does not fit well with the map H in the
sense of Lemma 3 even for different choices of the set S. Instead, U ′ naturally arises
in connection with the interior point map H̃(X,Y, z) ≡ (X1/2Y X1/2, F (X,Y, z)) by
choosing the set S as

S ≡
{
U ∈ Sn++ :

∥∥∥∥U − (trU

n

)
I

∥∥∥∥
F

≤ 1

2

trU

n

}
.

Even though this provides a viable alternative approach, we will not pursue it any
further.

740 R. D. C. MONTEIRO AND J.-S. PANG

Next we deal with conditions (A4)–(A6). For this purpose, consider the potential
function p : Sn++ × Sn ×<m → < defined by

p(M,N, v) ≡ ζ log
(‖M‖2F + ‖N‖2F + ‖v‖2)− log(detM)(15)

for every (M,N, z) ∈ Sn++ × Sn ×<m, where ζ > n/2 is an arbitrary constant.
Lemma 4. The potential function (15), the vector a ≡ (I, 0, 0) ∈ Sn × Sn ×<m,

and the scalar σ̄ ≡ 1 satisfy conditions (A4), (A5), and (A6).
Proof. Since, for a matrix Z ∈ Sn, ‖Z‖2F is equal to the sum of the squares of

the n eigenvalues of Z, and detZ is equal to the product of these eigenvalues, the
verification of (A4) for the function p(M,N, v) is the same as in the previous case of a
nonnegatively constrained equation (discussed at the end of section 2.1). Noting that

∇p(M,N, v) =

2 ζ

‖M‖2F + ‖N‖2F + ‖v‖2 M −M
−1

2 ζ

‖M‖2F + ‖N‖2F + ‖v‖2 N

2 ζ

‖M‖2F + ‖N‖2F + ‖v‖2 v

,

we have

(M,N, v) • ∇p(M,N, v) = 2 ζ − n > 0,

and thus (A5) holds. We now show that (A6) is satisfied with the given a and σ̄.
Indeed we have

(I, 0, 0) • ∇p(M,N, v) =
2 ζ

‖M‖2F + ‖N‖2F + ‖v‖2 tr(M)− tr(M−1),

which implies

[(I, 0, 0) • ∇p(M,N, v)] [(I, 0, 0) • (M,N, v)]

=
2 ζ

‖M‖2F + ‖N‖2F + ‖v‖2 (tr(M))2 − tr(M−1) tr(M).

Noting that (i) tr(M) equals the sum of the eigenvalues of M , (ii) tr(M−1) equals
the sum of the inverses of the same eigenvalues, and (iii) ‖M‖2F = tr(M2) equals the
sum of these eigenvalues squared, it follows from the same derivation as at the end of
section 2.1 that condition (A6) holds.

According to (2), the potential function (15) induces the following merit function
on the set ΩI = U × <m:

ψ(X,Y, z) ≡ p(H(X,Y, z))

= ζ log

(‖XY + Y X ‖2F
4

+ ‖F (X,Y, z) ‖2F,2
)
− log

(
det

(
XY + Y X

2

))
,

for any triple (X,Y, z) ∈ U ×<m. Here, ‖ ·‖F,2 denotes the norm on Sn×<m defined
by ‖(N, v)‖2F,2 ≡ ‖N‖2F + ‖v‖2 for every (N, v) ∈ Sn ×<m.

NEWTON METHOD FOR CONSTRAINED EQUATIONS 741

We now give a detailed description of a specialized algorithm for solving the
mixed complementarity problem in symmetric matrices (6), based on the potential
reduction Newton method for solving the CE (Ω, H) with Ω, H, S, p : int S → <, a
and σ̄ defined as in (7), (8), Lemma 3, (15), and Lemma 4, respectively.

Step 0. (Initialization) Let a pair of matrices (X0, Y 0) ∈ U , a vector z0 ∈ <m,
and scalars ρ ∈ (0, 1) and α ∈ (0, 1) be given. Let a sequence of scalars {σk} also be
given, where σk ∈ [0, 1) for all k. Set the iteration counter k = 0.

Step 1. (Computing the modified Newton direction) Solve the system of linear
equations:([

XkY k + Y kXk +Xk(dY) + (dY)Xk + Y k(dX) + (dX)Y k
]
/2

F (Xk, Y k, zk) + F ′((Xk, Y k, zk); (dX, dY, dz))

)
=

(
σkµkI

0

)

(dX, dY, dz) ∈ Sn × Sn ×<m,

where µk ≡ tr(XkY k)/n, to obtain the search triple (dXk, dY k, dzk).
Step 2. (Armijo line search) Let mk be the smallest nonnegative integer m such

that (
Xk + ρm dXk

Y k + ρm dY k

)
∈ ΩI

and

ψ(Xk + ρmdXk, Y k + ρmdY k, zk + ρmdzk)− ψ(Xk, Y k, zk)

≤ αρm ψ ′((Xk, Y k, dzk); (dXk, dY k, dzk)).

Set
Xk+1

Y k+1

dzk+1

 ≡

Xk + ρmk dXk

Y k + ρmk dY k

zk + ρmk dzk

 .

Step 3. (Termination test) If

‖H(Xk+1, Y k+1, zk+1) ‖ ≤ prescribed tolerance,

stop; accept the triple (Xk+1, Y k+1, zk+1) as an approximate solution of the problem
(6). Otherwise, return to Step 1 with k replaced by k + 1.

We observe that the direction obtained in Step 1 of the above algorithm is an
extension of the AHO direction introduced in [2] in the context of semidefinite pro-
gramming.

As an immediate consequence of Lemma 3, Lemma 4, and Theorem 3, we have
the following convergence result for the above algorithm.

Theorem 4. Assume that conditions (B1) and (B2) hold and lim supk σk < 1.
Let {(Xk, Y k, zk)} be any infinite sequence produced by the above algorithm for solving
problem (6). Then, the following statements hold:

(a) the sequence {H(Xk, Y k, zk)} is bounded;

742 R. D. C. MONTEIRO AND J.-S. PANG

(b) any accumulation point of {(Xk, Y k, zk)}, if it exists, solves the problem (6);
in particular, if {(Xk, Y k, zk)} is bounded, then problem (6) has a solution.

We now make a few remarks. The above theorem guarantees neither that {(Xk,
Y k, zk)} is bounded nor that it has an accumulation point. The conclusion that
{(Xk, Y k, zk)} is bounded would follow from Theorem 3(d) with E = S if we could
prove that the map H is proper with respect to the set S ≡ Sn+ × Sn × <m. Un-
fortunately, this requirement is rather strong. For monotone mixed complementarity
problems, we state in Proposition 2 below a result (from Monteiro and Pang [18,
Lemma 2]) asserting that the map H is proper with respect to Sn × F (U × <m).
Hence, if the latter set contains the set S = Sn+ × Sn × <m, or equivalently if the
equality F (U × <m) = Sn × <m holds, then the sequence generated by the above
algorithm {(Xk, Y k, zk)} is bounded. Intuitively, the equality F (U ×<m) = Sn×<m
might hold for maps F satisfying some kind of strong monotonicity condition. But
since this type of condition is fairly restrictive, we do not pursue this issue any further.

Another possible approach which would guarantee the boundedness of {(Xk, Y k,
zk)} is to reduce the set S so as to have S ⊂ Sn×F (U ×<m). This approach requires
some knowledge of the set F (U × <m). We will see that for the complementarity
problems studied in sections 3.2 and 4, enough information about the set F (U×<m) is
available to allow us to choose a set S together with a potential function p : int S → <
satisfying the inclusion S ⊂ Sn×F (U ×<m) and the conditions (A1)–(A6) of section
2.1.

Before stating the properness result mentioned above, we give a few basic defini-
tions.

Definition 1. A mapping J(X,Y, z) defined on a subset dom(J) of Mn ×
Mn × <m is said to be (X,Y)-equilevel-monotone on a subset V ⊂ dom(J) if for
any (X,Y, z) ∈ V and (X ′, Y ′, z′) ∈ V such that J(X,Y, z) = J(X ′, Y ′, z′), there
holds (X ′ − X) • (Y ′ − Y) ≥ 0. When V = dom(J), we will simply say that J is
(X,Y)-equilevel-monotone.

In the following two definitions, we assume that W , Z, and N are three normed
spaces and that φ(w, z) is a function defined on a subset of W ×Z with values in N .

Definition 2. The function φ(w, z) is said to be z-bounded on a subset V ⊂
dom(φ) if for every sequence {(wk, zk)} ⊂ V such that {wk} and {φ(wk, zk)} are
bounded, the sequence {zk} is also bounded. When V = dom(φ), we will simply say
that φ is z-bounded.

Definition 3. The function φ(w, z) is said to be z-injective on a subset V ⊂
dom(φ) if the following implication holds: (w, z) ∈ V, (w, z′) ∈ V, and φ(w, z) =
φ(w, z′) implies z = z′. When V = dom(φ), we will simply say that φ is z-injective.

The following is the promised result from Lemma 2 of Monteiro and Pang [18].
Proposition 2. Let F : Sn+ × Sn+ × <m → Sn × <m be a continuous map and

let H : Sn+ × Sn+ × <m → Sn × Sn × <m be the map defined by (8). Assume that
the map F is (X,Y)-equilevel-monotone and z-bounded on its domain. If the map
H restricted to U × <m is a local homeomorphism, then H is proper with respect to
Sn × F (U × <m).

3.2. Standard complementarity problem. In this section, we consider the
standard nonlinear complementarity problem (NCP) in symmetric matrices:

X • f(X) = 0, X � 0, f(X) � 0,(16)

where f : Sn+ → Sn is a given continuous mapping that is continuously differentiable
on Sn++. This problem is a special case of the implicit mixed complementarity problem

NEWTON METHOD FOR CONSTRAINED EQUATIONS 743

of section 3.1, where m = 0 (i.e., the free variable z is not present) and F : Sn+×Sn+ →
Sn is given by

F (X,Y) ≡ Y − f(X) ∀(X,Y) ∈ Sn+ × Sn+.(17)

We make the following assumption on the mapping f .
(C1) f : Sn+ → Sn is monotone on Sn+; i.e., for all X and X ′ in Sn+,

(X −X ′) • (f(X)− f(X ′)) ≥ 0.

Lemma 5. If condition (C1) holds, then the map F : Sn+ × Sn+ → Sn defined by
(17) satisfies condition (B1) of section 3.1.

Proof. By (C1), it follows that for every X ∈ Sn+, the linear map f ′(X) is
monotone in the sense that

U • f ′(X;U) ≥ 0 ∀U ∈ Sn.(18)

To verify (B1), assume that (dX, dY) ∈ Sn × Sn satisfies F ′(X,Y)(dX, dY) = 0, or
equivalently that dY − f ′(X; dX) = 0. Then, by (18), we have

dX • dY = dX • f ′(X; dX) ≥ 0.

This shows that implication (11) holds for m = 0, and since implication (12) holds
vacuously for m = 0, (C1) follows.

It is possible to solve the NCP (16) with the use of the potential reduction algo-
rithm described in section 3.1. However, the sequence of iterates {(Xk, Y k)} generated
by this algorithm might not be bounded. We now develop a different potential re-
duction algorithm in which the set S is reduced so as to satisfy S ⊂ Sn+ × F (U), thus
ensuring the boundedness of the sequence {(Xk, Y k)} (see the discussion at the end
of the previous subsection).

To describe the alternative algorithm, it is sufficient to identify the pair (Ω, H),
the set S, the potential function p : int S → <, and the vector a and scalar σ̄ in
condition (A6). We let Ω ≡ Sn+ × Sn+ and define H : Sn+ × Sn+ → Sn × Sn by

H(X,Y) ≡
(

(XY + Y X)/2

F (X,Y)

)
, (X,Y) ∈ Sn+ × Sn+,(19)

where F is given by (17). Moreover, we let S ≡ Sn+×Sn+ and p : int S → < be defined
by

p(M,N) ≡ ζ log
(‖M‖2F + ‖N‖2F

)− log(detM)− log(detN)

for every (M,N) ∈ Sn++ ×Sn++, where ζ > n is an arbitrary constant. Finally, we let
a ≡ (I, I) and σ̄ ≡ 1. Clearly, the set ΩI and the merit function ψ : ΩI → < become

ΩI = { (X,Y) ∈ U : Y � f(X) }
and

ψ(X,Y) ≡ ζ log

(‖XY + Y X‖2F
4

+ ‖Y − f(X) ‖2
)

− log

(
det

(
XY + Y X

2

))
− log(det(Y − f(X))) for (X,Y) ∈ ΩI .

744 R. D. C. MONTEIRO AND J.-S. PANG

Lemma 6. The pair (Ω, H), the set S, the potential function p : int S → <, the
vector a, and the scalar σ̄ defined above satisfy conditions (A1)–(A6) of section 2.1.

Proof. Condition (A2)(b) follows from the fact that (I, δI) ∈ ΩI for all δ > 0
sufficiently large. The other conditions are either straightforward or are shown using
Lemma 5 and the same arguments used in the proofs of Lemmas 3 and 4.

Before giving the convergence result for the potential reduction Newton method
in the above framework, we state the following result, which will be used to establish
boundedness of the iterates generated by this method.

Lemma 7. Suppose that f : Sn+ → Sn is a continuous map that is continuously
differentiable on Sn++ and satisfies condition (C1). Then, for the maps F and H
defined by (17) and (19), respectively, we have

(a) F (U) = F (Sn++ × Sn++);
(b) if 0 ∈ F (Sn+ × Sn+), then H is proper with respect to Sn × Sn++;
(c) if 0 ∈ F (Sn++ × Sn++), then H is proper with respect to Sn × Sn+.
Proof. By Proposition 4(a) and Corollary 3 of [18] with m = 0, it follows that

{I}×F (Sn++×Sn++) ⊂ H(Sn+×Sn+). Using this inclusion, we easily see that statement
(a) holds.

We next show (b). By Lemma 6, H ′(X,Y) is invertible for all (X,Y) ∈ U .
Thus H restricted to U is a local homeomorphism. Thus it follows from Lemma 2
that H is proper with respect to Sn × F (U). Hence, (b) follows once we prove that
Sn++ ⊂ F (U) = F (Sn++ × Sn++). Let U ∈ Sn++ be arbitrary. Since 0 ∈ F (Sn+ × Sn+),

there exists (X̃, Ỹ) ∈ Sn+ × Sn+ such that Ỹ = f(X̃). For ε > 0, let Xε ≡ X̃ + εI and

Yε ≡ U + f(Xε) = U + Ỹ + f(Xε) − f(X̃). Clearly, Xε � 0 for every ε > 0. By the
continuity of f and the fact that U + Ỹ � 0, we have Yε � 0 for ε > 0 sufficiently
small. Since U = Yε − f(Xε), it follows that U belongs to F (Sn++ × Sn++).

We omit the proof of (c), which is similar to that of (b).
We will skip the straightforward formulation of the potential reduction Newton

method specialized to the above choices of the pair (Ω, H), set S, potential function
p : int S → <, vector a, and scalar σ̄; instead, we directly give the convergence
properties of the method. Among the three conclusions (a), (b), and (c) of Theorem
5, (b) provides a constructive proof that a feasible monotone complementarity problem
in symmetric matrices on the positive semidefinite cone always has “ε-solutions”; (c)
implies the well-known fact that for such a problem, strict feasibility yields solvability.

Theorem 5. Let f : Sn+ → Sn be a continuous function which is continuously
differentiable on Sn++ and satisfies condition (C1). Suppose that {(Xk, Y k)} is a
sequence generated by the potential reduction Newton method with the pair (Ω, H), set
S, potential function p : int S → <, vector a, and scalar σ̄ as specified above. Then,
the following statements hold:

(a) every accumulation point of {(Xk, Y k)} is a solution of the NCP (16);
(b) if there exists X̃ ∈ Sn+ such that f(X̃) ∈ Sn+, then limk→∞H(Xk, Y k) = 0;

(c) if there exists X̂ ∈ Sn++ such that f(X̂) ∈ Sn++, then the sequence {(Xk, Y k)}
is bounded.

Proof. Statement (a) follows from Theorem 3(b). To prove statement (b), note
first that the assumption implies that 0 ∈ F (Sn+ × Sn+). Hence, by Lemma 7(b), we
conclude that H is proper with respect to Sn × Sn++. It follows from Theorem 3(c)
with E = S that {H(Xk, Y k)} converges to zero. The proof of (c) follows similarly
from Lemma 7(c) and Theorem 3(d) with E = S.

Statement (a) is within expectation; statement (b) is interesting because its as-
sumption is the feasibility of the NCP in symmetric matrices (16). A consequence of

NEWTON METHOD FOR CONSTRAINED EQUATIONS 745

statement (b) is that feasibility of this problem (which is also monotone by assump-
tion (C1)) is sufficient for the sequence {H(Xk, Y k)} to converge to zero, although
no boundedness of the sequence {(Xk, Y k)} is asserted. The latter assertion is estab-
lished under the strict feasibility of the problem (16); this is statement (c).

4. Convex semidefinite programs. In this section we consider the convex
semidefinite program studied in [18, 30], namely,

minimize θ(x)

subject to G(x) � 0,

h(x) = 0,

(20)

where θ : <m → <, G : <m → Sn, and h : <m → <p are given smooth mappings.
Under a suitable constraint qualification, if x∗ is a locally optimal solution of the
semidefinite program, then there must exist (η∗, U∗) ∈ <p × Sn+ such that

∇xL(x∗, U∗, η∗) = 0, U∗G(x∗) = 0, U∗ � 0,(21)

where L : <m × Sn ×<p → < is the Lagrangian function defined by

L(x, U, η) ≡ θ(x) + U •G(x)− ηTh(x) for (x, U, η) ∈ <m × Sn ×<p.(22)

Clearly, the first-order optimality condition (21) and the feasibility of x∗ is equivalent
to the implicitly mixed complementarity problem (6) in which the map F : Sn+×Sn+×
<p+m → Sn ×<p+m is defined by

F (U, V, η, x) ≡

 V +G(x)

h(x)

∇xL(x, U, η)

 ∀(U, V, η, x) ∈ Sn+ × Sn+ ×<p+m,(23)

and the following correspondence of variables are made: (U, V)↔ (X,Y) and (η, x)↔
z. Hence, as in section 3.1, the feasibility of x∗ and the first-order optimality condition
(21) can be formulated as the CE (Ω, H), where the set Ω and the map H : Sn+ ×
Sn+ ×<p+m → Sn ×<p+m are defined by

Ω ≡ Sn+ × Sn+ ×<p+m,(24)

H(U, V, η, x) ≡
(

(UV + V U)/2

F (U, V, η, x)

)
for (U, V, η, x) ∈ Sn+ × Sn+ ×<p+m.(25)

Our goal is to solve the CE (Ω, H) by the potential reduction Newton method.
For this purpose, we make several blanket assumptions on problem (20). These are all
fairly standard assumptions; in particular, (D4) is a second-order sufficiency condition.
The assumptions are as follows.

(D1) The objective function θ : <m → < is twice continuously differentiable and
convex.

(D2) The map G : <m → Sn is twice continuously differentiable and positive
semidefinite convex (psd-convex); that is,

G(tx+ (1− t)y) � tG(x) + (1− t)G(y) ∀x, y ∈ <m ∀t ∈ (0, 1).

746 R. D. C. MONTEIRO AND J.-S. PANG

(D3) The map h : <m → <p is affine, and the (constant) gradients {∇hj(x)}pj=1

are linearly independent.
(D4) For every (x, U, η) ∈ <m × Sn++ ×<p, the following implication holds:

h′(x; v) = 0

G′(x; v) = 0

v 6= 0

 =⇒ vTL′′xx(x, U, η)v > 0.

(D5) The feasible set

X ≡ {x ∈ <m : G(x) � 0; h(x) = 0 }
is nonempty and bounded.

We propose below a new interior point method for solving the convex semidefinite
program (20) based on the potential reduction Newton algorithm of section 2.3. This
method not only generalizes the algorithm developed in section 4.2 of [36] to the con-
text of the nonlinear semidefinite programming problem, but it also allows for a more
general choice of starting points. The new algorithm uses a novel potential function
ψ which depends on the starting point. A key advantage of the new algorithm is that
good convergence properties can be established for arbitrary starting points. This
differs from the results in [36], which either require the starting point to satisfy the
linear equality constraint h(x) = 0 (Theorem 5 in the reference) or do not guarantee
the boundedness of the sequence of multipliers (Theorem 4 in the reference).

Let (U0, V 0, η0, x0) ∈ U × <p+m denote an arbitrary starting point and let c0 ≡
h(x0) and G0 ∈ Sn be any matrix such that

G(x0) ≺ G0 ≺ G(x0) + V 0 if c0 6= 0;

G0 � 0 if c0 = 0.

Define

S ≡

{

(A,B, c, d) ∈ Sn+ × Sn ×<p+m : B � cT c0

‖c0‖2 G
0

}
if c0 6= 0,

Sn+ × Sn+ ×<p+m if c0 = 0.

(26)

Note that S depends on the starting point when h(x0) 6= 0.
The following technical lemma is a partial restatement of Lemma 6 of [18] and

is used in the subsequent Lemma 9 to establish that the CE (Ω, H) and the set S
defined above satisfy conditions (A1)–(A3) of section 2.1.

Lemma 8. Assume that G : <m → Sn is psd-convex and h : <m → <p is an
affine function. Then the following statements hold:

(a) for every U ∈ Sn+, the function x ∈ <m 7→ U •G(x) is convex;
(b) if condition (D5) holds then, for every B̄ ∈ Sn and γ̄ ∈ <, the set

{x ∈ <m : G(x) � B̄, ‖h(x) ‖ ≤ γ̄ }
is bounded.

Lemma 9. Assume that problem (20) satisfies conditions (D1)–(D4). The follow-
ing three statements hold:

(a) the map F defined by (23) satisfies (B1) and (B2) of section 3.1;

NEWTON METHOD FOR CONSTRAINED EQUATIONS 747

(b) the pair (Ω, H) with Ω and H defined by (25) and (24), respectively, and the
set S defined by (26) satisfy conditions (A1), (A2), and (A3) of section 2.1;
and

(c) the map H restricted to the set U × <p+m is a local homeomorphism.
Proof. Since the case where c0 = 0 is easy to deal with, the proof below focuses

on the case where c0 6= 0. Conditions (A1) and (A2)(a) are obvious. Clearly, we have

ΩI =

{
(U, V, η, x) ∈ U × <p+m : V +G(x) � h(x0)Th(x)

‖h(x0)‖2 G0

}
,(27)

which is nonempty because it contains the tuple (U0, V 0, η0, x0). Moreover, using
(10) we easily see that the set H−1(int S) ∩ bd Ω is empty. We have thus proved
that condition (A2) holds. Using the same arguments as in the proof of Lemma 3,
we can show that if statement (a) holds, then H ′(U, V, η, x) is nonsingular for every
(U, V, η, x) ∈ U × <p+m; in particular, we can conclude that (A3) holds due to (27),
and that H restricted to the set U × <p+m is a local homeomorphism by the inverse
function theorem. Thus the remaining proof is to show that F satisfies (B1) and (B2).
For this purpose, assume that (U, V, x, η) ∈ U × <p+m satisfies

F ′((U, V, x, η); (dU, dV, dx, dη)) = 0

for some (dU, dV, dx, dη) ∈ Sn × Sn ×<p+m or, equivalently,

dV +G′(x; dx) = 0,(28)

L′′xx(x, U, η)dx+

n∑
i,j=1

dUij∇Gij(x)−
∑̀
k=1

dηk∇hk(x) = 0,(29)

h′(x; dx) = 0.(30)

Lemma 8(a) together with conditions (D1), (D2), and (D3) and the fact that U � 0
imply that L(x, U, η) is a convex function of x. Hence, we have dxTL′′xx(x, U, η)dx ≥ 0.
Multiplying (29) on the left by dxT and using this last observation together with (28)
and (30), we obtain

dU • dV = −dU •G′(x; dx) + dηTh′(x; dx) = dxTL′′xx(x, U, η)dx ≥ 0.(31)

Thus F satisfies (B1). Assume now that

F ′((U, V, x, η); (0, 0, dx, dη)) = 0.

Then all the relations above hold with (dU, dV) = (0, 0). In particular, (28), (30),
and (31) imply that h′(x; dx) = 0, G′(x; dx) = 0, and dxTL′′xx(x, U, η)dx = 0. Hence,
we conclude that dx = 0 due to (D4). Using this and the fact that relation (29) holds
with dU = 0, we obtain

∑̀
k=1

dηk∇hk(x) = 0,

which in turn implies that dη = 0 due to (D3). We have thus shown that F satisfies
(B2).

748 R. D. C. MONTEIRO AND J.-S. PANG

Associated with the set S, we now introduce the following potential function
p : int S → < defined for any tuple (A,B, c, d) ∈ int S by

p(A,B, c, d) ≡ ζ log

(
‖A ‖2F +

∥∥∥∥B − cT c0

‖ c0 ‖ G
0

∥∥∥∥2

F

+ ‖ c ‖2 + ‖ d ‖2
)

− log(detA)− log

(
det

(
B − cT c0

‖ c0 ‖2 G
0

))
,(32)

where ζ is a suitable constant.
We establish in the next result that if ζ ≥ 3n/2, then the above potential function

satisfies conditions (A4), (A5), and (A6) of section 2.1.
Lemma 10. If ζ ≥ 3n/2, then the potential function (32), the tuple a ≡ (I, 0, 0, 0) ∈

Sn × Sn × <p+m, and the constant σ̄ ≡ 1/2 satisfy conditions (A4), (A5), and (A6)
of section 2.1.

Proof. The verification of (A4) is similar to that of Lemma 4. Define

τ ≡ ‖A ‖2F +

∥∥∥∥B − cT c0

‖ c0 ‖ G
0

∥∥∥∥2

F

+ ‖ c ‖2 + ‖ d ‖2,

B̃ ≡ B − cT c0

‖ c0 ‖ G
0.

It is easy to see that

∇p(A,B, c, d) =

2 ζ

τ
A−A−1

2 ζ

τ
B̃ − B̃−1

2 ζ

τ

(
c− B̃ •G0

‖c0‖2 c0

)
+
B̃−1 •G0

‖c0‖2 c0

2 ζ

τ
d

.

The definition of τ and B̃ together with a simple algebraic manipulation reveals that

∇p(A,B, c, d) • (A,B, c, d) = 2(ζ − n) > 0 for all (A,B, c, d) ∈ int S,

and hence that (A5) holds. Moreover, using the fact that

(trP)2 ≤ n ‖P ‖2F and (trP−1) (trP) ≥ n2

for every P ∈ Sn and ζ ≥ 3n/2, we obtain for every (A,B, c, d) ∈ int S,

[∇p(A,B, c, d) • (I, 0, 0, 0)] [(A,B, c, d) • (I, 0, 0, 0)]

‖ (I, 0, 0, 0) ‖2F

=
1

n

[
2ζ

τ
(trA)2 − (trA−1) (trA)

]
≤ 2ζ (trA)2

n ‖A ‖2F
− (trA−1) (trA)

n

≤ 2 ζ − n < 4 ζ − 4n = 2 [p(A,B, c, d) • (A,B, c, d)].

NEWTON METHOD FOR CONSTRAINED EQUATIONS 749

Hence (A6) holds with a = (I, 0, 0, 0) and σ̄ = 1/2.
The next two results will be used in Theorem 3 to establish the boundedness of

the sequence of iterates generated by the potential reduction Newton method under
the framework of this section.

Lemma 11. Assume that problem (20) satisfies conditions (D1)–(D5). Then the
map H : Sn+ × Sn+ ×<p+m → Sn ×<p+m defined in (25) is proper with respect to the
set Sn × F (U × <p+m).

Proof. Using Proposition 4(a) and Lemma 7 of [18], we conclude that the map
F defined in (23) is (U, V)-equilevel monotone on Sn+ × Sn+ × <p+m. Moreover, by
Proposition 4(c) and Lemma 9 of [18], it follows that F is (η, x)-bounded on Sn+ ×
Sn+ × <p+m. Since, by Lemma 9, the map H restricted to U × <m+p is a local
homeomorphism, we conclude from Proposition 2 that H is proper with respect to
Sn × F (U × <p+m).

In the next result we describe in more detail the set F (U ×<p+m) for the map F
given by (23).

Lemma 12. Assume that problem (20) satisfies conditions (D1)–(D5). Then
F (U × <p+m) = F × <m, where F is the map given by (23) and

F ≡ { (B, c) ∈ Sn ×<p : ∃x ∈ <m such that G(x) ≺ B and h(x) = c }.
Moreover, F is a convex set.

Proof. The inclusion F (U ×<p+m) ⊂ F ×<m follows straightforwardly from the
definition of the map F and the set U . Assume now that (B, c, d) ∈ F × <m. We
have proved in Lemma 10 of [18] that if conditions (D1)–(D5) hold and (0, 0) ∈ F ,
then (0, 0, 0) ∈ F (U × <p+m). Consider now the problem

minimize θ̃(x)

subject to G̃(x) � 0, h̃(x) = 0,

where θ̃(x) ≡ θ(x) − dTx, G̃(x) ≡ G(x) − B, and h̃(x) ≡ h(x) − c for all x ∈
<m. It is easy to see that the functions θ̃, G̃, and h̃ also satisfy conditions (D1)–
(D5). Hence, applying Lemma 10 of [18] to this new problem, we conclude that
(0, 0, 0) ∈ F̃ (U × <p+m), where F̃ is defined like the function F in (23) with θ,
G, and h replaced by θ̃, G̃, and h̃, respectively. A simple verification shows that
(0, 0, 0) ∈ F̃ (U × <p+m) is equivalent to (B, c, d) ∈ F (U × <p+m). We have thus
shown that F (U × <p+m) ⊇ F × <m. Using conditions (D2) and (D3), and some
standard arguments, we can easily show that F is a convex set.

We establish one technical lemma, which will be used to prove an important
conclusion of the main result of this section, Theorem 6.

Lemma 13. Let {Uk} and {V k} be two sequences in Sn++ such that

lim
k→∞

(UkV k + V kUk) = 0.

Then

lim
k→∞

(Uk)1/2V k(Uk)1/2 = 0.(33)

Proof. Since (Uk)1/2 V k (Uk)1/2 is a symmetric matrix, its eigenvalues are all real.
Since

(Uk)−1/2 (UkV k) (Uk)1/2 = (Uk)1/2 V k (Uk)1/2,

750 R. D. C. MONTEIRO AND J.-S. PANG

it follows that all the eigenvalues of UkV k are real too. This implies that the eigen-
values of (UkV k)2 are all positive. Therefore,

2 ‖UkV k ‖2F ≤ 2 ‖UkV k ‖2F + 2 tr
(
UkV k

)2
= ‖UkV k + V kUk ‖2F .

Since the right-hand norm converges to zero as k → ∞, the same holds for the
left-hand norm. Thus the spectrum of UkV k converges to the single element {0}.
Since this spectrum is the same as that of (Uk)1/2V k(Uk)1/2, the desired limit (33)
follows.

The following is the main convergence result of the potential reduction Newton
method specialized to the convex semidefinite program (20). A noteworthy remark
about this result is that part (d) does not require the sequence of multipliers {(Uk, ηk)}
to be bounded.

Theorem 6. Suppose that problem (20) satisfies conditions (D1)–(D5), and that
{(Uk, V k, ηk, xk)} is a sequence generated by the potential reduction Newton method
of section 2.3 initialized at an arbitrary tuple (U0, V 0, η0, x0)} ∈ U × <p+m, and
with (Ω, H), S, p : int S → < given by (24), (25), (26), and (32), respectively,
a ≡ (I, 0, 0, 0) ∈ Sn × Sn × <p+m, and σ̄ ≡ 1/2. Assume also that ζ ≥ 3/2 and
lim supk σk < 1/2. Then, the following statements hold:

(a) every accumulation point of {(Uk, V k, ηk, xk)} is a solution of the CE (Ω, H);
(b) the sequence {(V k, xk)} is bounded; thus {xk} has at least one accumulation

point;
(c) limk→∞H(Uk, V k, ηk, xk) = 0;
(d) every accumulation point of the sequence {xk} is an optimal solution of prob-

lem (20);
(e) if there exists x̄ ∈ <m such that h(x̄) = 0 and G(x̄) ≺ 0 (that is, problem (20)

has a Slater point), then the whole sequence {(Uk, V k, ηk, xk)} is bounded.
Proof. By Lemmas 9 and 10, the assumptions of the theorem guarantee that

(Ω, H), S, p : int S → <, a = (I, 0, 0, 0), and σ̄ = 1/2 satisfy conditions (A1)–
(A6) of section 2.1. Hence, by Theorem 3, we conclude that statement (a) holds
and that the sequence {H(Uk, V k, ηk, xk)} is bounded. By the definition of H, this
implies that {V k + G(xk)} and {h(xk)} are bounded, and hence {xk} ⊂ {x ∈ <m :
G(x) � B̄, ‖h(x)‖ ≤ γ̄} for some (B̄, γ̄) ∈ Sn × <. Since by Lemma 8(b) the latter
set is bounded, we conclude that {xk} is bounded. Clearly, this and the fact that
{V k + G(xk)} is bounded imply that {V k} is also bounded. Hence, statement (b)
follows.

The proofs of statements (c) and (e) are based on statements (c) and (d) of
Theorem 3. For simplicity, we assume in the remaining proof that c0 ≡ h(x0) 6= 0;
the proof when c0 = 0 is analogous. Define

E ≡ Sn+ ×
{

(B, c) ∈ Sn × [0, c0] : B � cT c0

‖c0‖2 G
0

}
×<m.

Note that E is a closed subset of S. Moreover, using (D3) and the fact that the third
component of a is zero, we easily see that {h(xk)} ⊂ [0, c0]. Clearly, this implies that
{H(Uk, V k, ηk, xk)} ⊂ E. In view of (c) and (d) of Theorem 3, statements (c) and
(e) follow once we establish that the map H is proper with respect to

E ∩ int S = Sn++ ×
{

(B, c) ∈ Sn × [0, c0] : B � cT c0

‖ c0 ‖2 G
0

}
×<m

NEWTON METHOD FOR CONSTRAINED EQUATIONS 751

and also proper with respect to E under the assumption that (0, 0) ∈ F . We prove
first the properness assertion with respect to int S ∩ E. By Lemmas 11 and 12, we
know that H is proper with respect to Sn × F (U × <p+m) = Sn × F × <m. Hence,
it suffices to show that int S ∩ E is contained in Sn ×F ×<m, or equivalently that{

(B, c) ∈ Sn × [0, c0] : B � cT c0

‖c0‖2 G
0

}
⊂ F .(34)

Using the definition of F and Lemma 8(b), it is easy to see that

cl F = { (B, c) ∈ Sn ×<p : ∃x ∈ <m such that G(x) � B and h(x) = c }.(35)

Moreover, it follows immediately from the definition of F and (35) that

(B, c) ∈ F ⇒ (B′, c) ∈ F ∀B′ � B,(36)

(B, c) ∈ cl F ⇒ (B′, c) ∈ F ∀B′ � B.(37)

Let (B, c) be an arbitrary element of the left-hand set in (34). Since c ∈ [0, c0], we
have c = tc0 for some t ∈ [0, 1]. Hence,

B � cT c0

‖c0‖2G
0 = tG0.(38)

Since (0, 0) ∈ cl F by (D5), (G0, c0) ∈ F by (26), and cl F is a convex set due to
Lemma 12 and Proposition III.1.2.7 of [5], we conclude that (tG0, tc0) = t(G0, c0) +
(1 − t)(0, 0) ∈ cl F . Hence, by (37) and (38), we have (B, c) = (B, tc0) ∈ F . Hence,
(34) holds.

Assume now that (0, 0) ∈ F . To prove the properness assertion with respect to
E, it suffices to show that E ⊂ Sn ×F ×<m or, equivalently, that{

(B, c) ∈ Sn × [0, c0] : B � cT c0

‖ c0 ‖2 G
0

}
⊂ F .(39)

If (B, c) is in the left-hand set, then we have c = tc0 and B � tG0 for some t ∈ [0, 1].
Since (0, 0) ∈ F by assumption, (G0, c0) ∈ F by (26), and F is convex by Lemma 12,
we conclude that (tG0, tc0) ∈ F . Hence, by (36) and the fact that B � tG0, we have
(B, c) = (B, tc0) ∈ F . Hence, (39) holds.

Finally, we prove statement (d). For each k, let Bk ≡ G(xk) +V k, B̃k ≡ G(xk) +
(Uk)−1, and dk ≡ ∇xL(xk, Uk, ηk). It follows that xk is an optimal solution of the
convex program

min
{
f(x)− (dk)Tx− log det

(
B̃k −G(x)

)
: h(x) = h(xk)

}
,(40)

due to the fact that xk together with the multiplier pair (Uk, ηk) satisfy the optimality
condition for this problem. Now let x∞ be an arbitrary accumulation point of {xk}.
Clearly, x∞ is a feasible solution of (20) due to Theorem 6(c). To show the global
optimality of x∞, assume that x̃ is an arbitrary feasible solution of (20). Let tk ∈ [0, 1]
be such that h(xk) = tkh(x0) and define x̃k ≡ tkx0 + (1− tk)x̃. Clearly, x̃k is feasible
to (40). Since {tk} converges to zero, it follows that {x̃k} converges to x̃. Moreover,
since H(Uk, V k, ηk, xk) ∈ S, by the definition of S (26), we have for each k (cf. (38)),

Bk � tkG
0.

752 R. D. C. MONTEIRO AND J.-S. PANG

Hence, it follows that

f(x̃k)− (dk)T x̃k − log det
(
B̃k −G(x̃k)

)
≥ f(xk)− (dk)Txk − log det

(
B̃k −G(xk)

)
= f(xk)− (dk)Txk + log det

(
Uk
)

for all k. Rearranging this inequality, we obtain

f(x̃k)− f(xk)− (dk)T (x̃k − xk)

≥ log det
(

(Uk)1/2
[
B̃k −G(x̃k)

]
(Uk)1/2

)
= log det

(
I + (Uk)1/2

[
G(xk)−G(x̃k)

]
(Uk)1/2

)
= log det

(
I − (Uk)1/2V k(Uk)1/2 + (Uk)1/2

[
Bk −G(x̃k)

]
(Uk)1/2

)
≥ log det

(
I − (Uk)1/2V k(Uk)1/2

)
,

where the last inequality follows from the fact that

Bk −G(x̃k) � Bk − tkG(x0)− (1− tk)G(x̃) � Bk − tkG(x0) � Bk − tkG0 � 0.

Hence, as k goes to ∞, we may invoke Lemma 13 to conclude that f(x̃)− f(x∞) ≥ 0.
We have thus proved that x∞ is an optimal solution of (20).

Assuming that G0 � 0, it is possible to show that the potential function (32),
a ≡ (I, I, 0, 0), and σ̄ = 1 satisfy the inequality in condition (A6) for every (A,B, c, d)
in the set E ∩ int S, where E is defined as in the proof of Theorem 6. Using this fact,
it is possible to establish a convergence result similar to Theorem 6 for a ≡ (I, I, 0, 0)
and σ̄ = 1. The interesting point to note is that Theorem 3 still holds if we assume
the inequality in condition (A6) to be valid only for points in the sequence {H(xk)}.
Details are omitted.

Acknowledgment. The authors would like to thank the two anonymous referees
for their constructive comments.

REFERENCES

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[2] F. Alizadeh, J.-P. Haeberly, and M. Overton, Primal-dual interior-point methods for
semidefinite programming: Convergence rates, stability and numerical results, SIAM J.
Optim., 8 (1998), pp. 746–768.

[3] R. M. Freund, Complexity of an Algorithm for Finding an Approximate Solution of a Semidef-
inite Program with No Regularity Condition, Working Paper OR 302-94, Operations Re-
search Center, Massachusetts Institute of Technology, Cambridge, December 1994.

[4] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, An interior-point method
for semidefinite programming, SIAM J. Optim., 6 (1996), pp. 342–361.

[5] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms
I, Comprehensive Study in Mathematics 305, Springer-Verlag, New York, 1993.

[6] F. Jarre, An interior-point method for minimizing the maximum eigenvalue of a linear com-
bination of matrices, SIAM J. Control and Optim., 31 (1993), pp. 1360–1377.

[7] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point
Algorithms for Linear Complementarity Problems, Lecture Notes in Comput. Sci. 538,
Springer-Verlag, Berlin, 1991.

NEWTON METHOD FOR CONSTRAINED EQUATIONS 753

[8] M. Kojima, M. Shida, and S. Shindoh, A predictor-corrector interior-point algorithm for the
semidefinite linear complementarity problem using the Alizadeh-Haeberly-Overton search
direction, SIAM J. Optim, 9 (1999), pp. 444–465.

[9] M. Kojima, M. Shida, and S. Shindoh, Local convergence of predictor-corrector infeasible-
interior-point algorithms for SDPs and SDLCPs, Math. Programming, 80 (1998), pp. 129–
160.

[10] M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the monotone semidefinite
linear complementarity problem in symmetric matrices, SIAM J. Optim., 7 (1997), pp. 86–
125.

[11] C.-J. Lin and R. Saigal, A Predictor-Corrector Method for Semi-Definite Programming,
Working Paper, Dept. of Industrial and Operations Engineering, The University of Michi-
gan, Ann Arbor, 1995.

[12] Z.-Q. Luo, J. F. Sturm, and S. Zhang, Superlinear convergence of a symmetric primal-
dual path following algorithm for semidefinite programming, SIAM J. Optim., 8 (1998),
pp. 59–81.

[13] L. McLinden, The complementarity problem for maximal monotone multifunctions, in Vari-
ational Inequalities and Complementarity Problems, R. Cottle, F. Giannessi, and J.-L.
Lions, eds., John Wiley, New York, 1980, pp. 251–270.

[14] N. Megiddo, Pathways to the optimal set in linear programming, in Progress in Mathematical
Programming: Interior Point and Related Methods, N. Megiddo, ed., Springer-Verlag, New
York, 1989, pp. 131–158.

[15] R. D. C. Monteiro, Primal-dual path-following algorithms for semidefinite programming,
SIAM J. Optim., 7 (1997), pp. 663–678.

[16] R. D. C. Monteiro, Polynomial convergence of primal-dual algorithms for semidefinite pro-
gramming based on the Monteiro and Zhang family of directions, SIAM J. Optim., 8 (1998),
pp. 797–812.

[17] R. D. C. Monteiro and J.-S. Pang, Properties of an interior-point mapping for mixed com-
plementarity problems, Math. Oper. Res., 21 (1996), pp. 629–654.

[18] R. D. C. Monteiro and J.-S. Pang, On two interior-point mappings for nonlinear semidefinite
complementarity problems, Math. Oper. Res., 23 (1998), pp. 39–60.

[19] R. D. C. Monteiro and T. Tsuchiya, Polynomial convergence of a new family of primal-dual
algorithms for semidefinite programming, SIAM J. Optim., 9 (1999), pp. 551–577.

[20] R. D. C. Monteiro and T. Tsuchiya, Polynomiality of Primal-Dual Algorithms for Semidef-
inite Linear Complementarity Problems Based on the Kojima-Shindoh-Hara Family of
Directions, Manuscript, School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, August 1996; Math. Programming, to appear.

[21] R. D. C. Monteiro and P. Zanjácomo, A note on the existence of the Alizadeh-Haeberly-
Overton direction for semidefinite programming, Math. Programming, 78 (1997), pp. 393–
396.

[22] R. D. C. Monteiro and Y. Zhang, A unified analysis for a class of path-following primal-dual
interior-point algorithms for semidefinite programming, Math. Programming, 81 (1998),
pp. 281–299.

[23] Yu. E. Nesterov and A. S. Nemirovskii, Polynomial barrier methods in convex programming,
Ekonomika i Mat. Metody, 24 (1988), pp. 1084–1091 (in Russian).

[24] Yu. E. Nesterov and A. S. Nemirovskii, Self-Concordant Functions and Polynomial Time
Methods in Convex Programming, Preprint, Central Economic & Mathematical Institute,
USSR Acad. Sci. Moscow, 1989.

[25] Yu. E. Nesterov and A. S. Nemirovskii, Interior Point Methods in Convex Programming:
Theory and Applications, SIAM, Philadelphia, PA, 1994.

[26] Yu. E. Nesterov and M. Todd, Self-scaled barriers and interior-point methods for convex
programming, Math. Oper. Res., 22 (1997), pp. 1–42.

[27] Yu. E. Nesterov and M. Todd, Primal-dual interior-point methods for self-scaled cones,
SIAM J. Optim., 8 (1998), pp. 324–364.

[28] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, San Diego, 1970.

[29] F. A. Potra and R. Sheng, A superlinearly convergent primal-dual infeasible-interior-point
algorithm for semidefinite programming, SIAM J. Optim., 8 (1998), pp. 1007–1028.

[30] A. Shapiro, First and second order analysis of nonlinear semidefinite programs, Math. Pro-
gramming, 77 (1997), pp. 301–320.

[31] M. Shida, S. Shindoh, and M. Kojima, Existence and uniqueness of search directions in
interior-point algorithms for the SDP and the monotone SDLCP, SIAM J. Optim., 8
(1998), pp. 387–396.

754 R. D. C. MONTEIRO AND J.-S. PANG

[32] J. F. Sturm and S. Zhang, Symmetric Primal-Dual Path-Following Algorithms for Semidefi-
nite Programming, Report 9554/A, Econometric Institute, Erasmus University, Rotterdam,
The Netherlands, November 1995.

[33] M. J. Todd, K. C. Toh, and R. H. Tütüncü, On the Nesterov–Todd direction in semidefinite
programming, SIAM J. Optim., 8 (1998), pp. 769–796.

[34] P. Tseng, Search directions and convergence analysis of some infeasible path-following methods
for the monotone semi-definite LCP, Optim. Methods. Softw., 9 (1998), pp. 245–268.

[35] L. Vandenberghe and S. Boyd, A primal-dual potential reduction method for problems in-
volving matrix inequalities, Math. Programming, 69 (1995), pp. 205–236.

[36] T. Wang, R. D. C. Monteiro, and J.-S. Pang, An interior point potential reduction method
for constrained equations, Math. Programming, 74 (1996), pp. 159–195.

[37] Y. Zhang, On extending some primal-dual interior-point algorithms from linear programming
to semidefinite programming, SIAM J. Optim., 8 (1998), pp. 365–386.

A PRACTICAL ALGORITHM FOR GENERAL LARGE SCALE
NONLINEAR OPTIMIZATION PROBLEMS∗

PAUL T. BOGGS† , ANTHONY J. KEARSLEY‡ , AND JON W. TOLLE§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 755–778

Abstract. We provide an effective and efficient implementation of a sequential quadratic pro-
gramming (SQP) algorithm for the general large scale nonlinear programming problem. In this
algorithm the quadratic programming subproblems are solved by an interior point method that can
be prematurely halted by a trust region constraint. Numerous computational enhancements to im-
prove the numerical performance are presented. These include a dynamic procedure for adjusting
the merit function parameter and procedures for adjusting the trust region radius. Numerical results
and comparisons are presented.

Key words. nonlinear programming, interior point, SQP, merit function, trust region, large
scale

AMS subject classifications. 49M37, 65K05, 90C30

PII. S105262349426722X

1. Introduction. In a series of recent papers, [3], [6], and [8], the authors have
developed a new algorithmic approach for solving large, nonlinear, constrained op-
timization problems. This proposed procedure is, in essence, a sequential quadratic
programming (SQP) method that uses an interior point algorithm for solving the
quadratic subproblems and achieves global convergence through the application of a
special merit function and a trust region strategy. Over the past several years the
theory supporting this approach has been analyzed and strengthened. This theory is
presented in a companion paper [4]. In addition, implementations of the algorithm
have been extensively tested on a variety of large problems, including standard test
problems and problems of engineering and scientific origin, ranging in size from sev-
eral hundred to several thousand variables with up to several thousand constraints.
Specific strategies have been developed for handling the parameters utilized by the
algorithm and for dealing with nontrivial pathologies (e.g., linearly dependent active
constraint gradients or inconsistent linearized constraints in the quadratic subprob-
lem) that often occur in large scale problems. In this paper we present the results of
these efforts.

Based on its theoretical foundation and on our numerical experience we are con-
fident that this algorithm provides an efficient means for attacking a large, sparse,
nonlinear program with equality or inequality constraints. Rigorous comparison of
algorithms for large nonlinear problems is notoriously difficult, especially given the
extensive set of options typically available in codes for such problems. Nevertheless,

∗Received by the editors May 6, 1994; accepted for publication (in revised form) November 14,
1997; published electronically May 21, 1999. This work was performed by an employee of the U.S.
Government or under U.S. Government contract. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. government purposes. Copyright is owned by SIAM to the extent not limited by
these rights.

http://www.siam.org/journals/siopt/9-3/26722.html
†Computational Sciences and Mathematics Research Department, Sandia National Laboratories,

Livermore, CA 94550 (ptboggs@ca.sandia.gov).
‡Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890.
§Departments of Mathematics and Operations Research, University of North Carolina, Chapel

Hill, NC 27599.

755

756 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

our algorithm, with the (conservative) default parameter settings, has been successful
on problems that have caused difficulties for other algorithms, and consequently we
are encouraged to believe that it is competitive at the current stage in the development
of methods for solving these large problems.

Below we give an outline of our basic procedure, and in the succeeding sections
we provide more specific detail on the component parts of the implemented algorithm,
including the strategies and safeguards that we have used. We also exhibit and com-
ment on the results of some of our numerical tests. This paper relies heavily on the
results from the paper [4] on the theory for motivation of the basic ideas.

We assume the general nonlinear programming problem to be of the form

(NLP)
min
x

f(x)

subject to g(x) ≤ 0,

where f : Rn → R1 and g : Rn → Rm are smooth functions. Nonlinear equality
constraints are not included in our description here in order to avoid distracting
technicalities. The modifications necessary for their insertion can be inferred from [6].
Nonlinear equality constraints are included in our code and in some of the problems
we tested. The SQP method is the backbone of our algorithm. (See [7] for a review
of these techniques.) At the kth step we have an iterate, xk, denoting the current
approximation to the solution of (NLP). In addition to the x-iterate we also maintain
a nonnegative iterate, zk ∈ Rm, which measures the infeasibility at xk. At this stage
(NLP) is modeled by a quadratic program of the form

(QP)
min
δ
∇f(xk)Tδ + 1

2δ
TBkδ

subject to ∇g(xk)Tδ + g(xk) ≤ 0.

Here Bk is taken to be an appropriate approximation to the Hessian of the Lagrangian
for (NLP), i.e.,

Bk ≈ Hxx`(x
k, λk),

where

`(x, λ) = f(x) + g(x)Tλ

and Hxx represents the Hessian with respect to x of the function to which it is applied.
(See section 4.5 for a discussion of the choice of Bk used in our numerical experiments.)
In this form (QP) generates a step that provides a search direction for improving the
current iterate.

There are two significant points to be made concerning this phase of our algorithm.
First, we apply an interior point quadratic program solver to (QP); more specifically,
we use the method found in [1], where solutions are calculated by solving a sequence of
low-dimensional quadratic programs. Pertinent details of this solver and its properties
relative to its use in our SQP method can be found in section 2. Second, we do not try
to solve (QP) with complete accuracy at each iteration; rather, we often terminate
the interior point method prematurely. In particular, we halt the quadratic program
solver when the steplength exceeds a “trust region radius” that is modified at each
iteration according to how well the improvement in our merit function is predicted.
Thus our algorithm can be said to be a “truncated Newton method” in the sense of
[18] (see also [15]). This particular merit function and a more useful “working version”

A PRACTICAL ALGORITHM FOR NLPs 757

are discussed in section 3, and our strategy for updating the trust region radius is
given in section 4.2.

The output of the (QP) solver is a vector that determines the direction of the
step in the x-variable, which in turn yields a step direction for the “slack” variable
z as explained in section 3. The combined step direction of these two variables is a
descent direction for the working version of the merit function and also for constraint
infeasibility; thus we can choose the steplength in this direction to decrease the merit
function or the infeasibility of the iterate. The choice of steplength determines the new
iterate xk+1 and also the new value zk+1. The strategy for choosing the steplength
and other algorithmic details, including the modifications and safeguards necessary
to make an implementation robust, is given in section 4.

The results of our numerical tests are contained in section 5. These results demon-
strate the overall effectiveness of the procedure and highlight the beneficial effect of
our trust region strategy and other procedures. Finally, in section 6 we briefly con-
sider weaknesses in the current version of the algorithm and suggest possible avenues
of research to improve its efficiency.

For a discussion of the theoretical and practical questions related to large scale
nonlinear programming, see the recent surveys [12], [14], and [21].

2. An interior point QP solver. Interior point methods for linear program-
ming have been demonstrated to be very successful, especially on large problems, and
recent research has led to their extension to quadratic programs. A particular method,
the method of optimizing over low-dimensional subspaces, has performed well on lin-
ear programs and has been extended to the quadratic programming case (see [1], as
well as [2] and the references contained therein). This method, for which good nu-
merical results for quadratic programs have been reported, has properties that make
it particularly compatible with the SQP algorithm we are describing in this paper. A
brief description of the essential features of this method and their importance for our
purposes follow. The many details of the actual algorithm that are not reported here
may be found in the above references.

The quadratic program that we solve, (QP), has the form

min
s

cTs+ 1
2s

TQs

subject to ATs+ b ≤ 0,
(2.1)

where c, s ∈ Rn, Q ∈ Rn×n, A ∈ Rn×m, and b ∈ Rm. The assumptions on (2.1) that
are necessary to apply the interior point algorithm are that the problem be bounded,
that A have full column rank, and that there exist feasible points (i.e., that the
constraints be consistent). Note that Q can be indefinite and that no assumption of
a full-dimensional interior is required. If equality constraints are present, they are
handled by writing them as two inequalities.

An important prerequisite for solving (2.1) by an interior point method is a fea-
sible initial point. Our algorithm uses a “big M” method to construct the Phase I
problem

min
s,θ

cTs+ 1
2s

TQs+Mθ

subject to ATs+ b− eθ ≤ 0,
(2.2)

where e is a vector of ones and θ is the “artificial” variable. Clearly, for θ∗ large
enough, the point (s, θ) = (0, θ∗) is feasible for (2.2), and if M is sufficiently large, the

758 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

algorithm applied to (2.2) will reduce θ until the artificial variable is nonpositive, at
which point the current value of s is feasible and the Mθ and eθ terms are dropped.
If no such value of the artificial variable can be found, then (2.2) is not consistent and
the algorithm stops. As discussed below, we make use of the step obtained from (2.2)
even if it is not feasible for (QP). Note that when equality constraints are present,
the entire solution procedure takes place in Phase I and θ will always be present.

The defining characteristic of the algorithm is that it proceeds by solving a se-
quence of low-dimensional subspace approximations to (2.1). In our application we
follow the reported results in which the dimension of the subspace is taken as 3. The
following is an outline of the O3D (for “optimizing over three-dimensional” subspaces)
version of the algorithm. As the variable θ is treated essentially the same as the com-
ponents of s in the O3D algorithm (see, however, step 6 below), the dependence on θ
is incorporated into the formulation given in (2.1).

O3D Algorithm for Quadratic Programming
1. Given a feasible point, s0; set j := 0.
2. Generate three independent search directions pi, i = 1, 2, 3, and let P j be

the matrix whose columns are pi.
3. Form and solve the restricted quadratic program

min
ζ

cTs̃+ 1
2 s̃

TQs̃

subject to ATs̃+ b ≤ 0,

where s̃ = sj + P jζ and ζ ∈ R3. Call the solution ζ∗.
4. Set sj+1 := sj + ρP jζ∗ for an appropriate value of the steplength ρ ∈ (0, 1).
5. If stopping criteria are met, exit.
6. Go to 2. (At this step, if the component of the vector s corresponding to

the artificial variable θ has become nonpositive, it is eliminated from the
problem.)

The search directions in step 2 are solutions to[
AD2AT +Q/β

]
pi = ti, i = 1, 2, 3,(2.3)

where β is a scalar depending on the current iterate,

D = diag{1/rk, k = 1, . . . ,m},
with rk = −(As+ b)k, and the ti are particular values chosen such that one of these
directions is always a descent direction with respect to the objective function. The
steplength ρ is set to the lesser of 99% of the distance to the boundary or the distance
to the minimum of the objective function.

The form of the matrix in (2.3) allows for efficient exploitation of the sparsity.
Note that if Q is positive semidefinite, then the matrix in (2.3) is positive definite for
all interior points; otherwise, it may not be. In the latter case, a modification similar
to that in [20] is used. In our application of this algorithm, using this procedure
obviates the need for the matrix Bk to be positive definite, which in turn allows us
to use the Hessian of the Lagrangian or a finite difference approximation thereof.

The standard stopping criterion for the algorithm is that at least one of the fol-
lowing holds: (a) the relative change in two successive values of the objective function
is small; (b) the relative difference between the primal and the dual objective function
values is small; or (c) the difference between two successive iterates is small. For use
in our SQP algorithm we have added (d) the length of the solution vector exceeds

A PRACTICAL ALGORITHM FOR NLPs 759

a specified value. This additional condition has been implemented to allow for trust
region strategies; in particular, this criterion will cause the algorithm to halt if (QP)
is unbounded. In any case, the terminal vector will be a useful direction in the context
of our purposes; this point will be discussed in the next section.

The most recent version of O3D described in [1] contains an option to perform
a special “recentering step” after each subspace optimizing step (step 4) that has
generally improved the efficiency. This option is not used in the results reported here.
(See section 6 for a further comment.)

3. Updating the iterates: The merit functions. In this section we review
the definitions and properties of our merit functions and provide formulas for updat-
ing the iterates. The reader is referred to the companion paper [4] for proofs and
motivations of these concepts.

As stated in section 1, at each iteration our algorithm yields a pair (xk, zk), where
xk is an approximation to the solution of (NLP) and zk is the corresponding approxi-
mate slack vector. The step directions for the updated values of these approximations
are based on the (approximate) solution, (δk, θk), to the quadratic program

min
δ,θ
∇f(xk)Tδ + 1

2δ
TBkδ +Mθ

subject to ∇g(xk)Tδ + g(xk)− e θ ≤ 0,
(3.1)

obtained as described in the preceding section. The vector δk gives the step direction
for xk, and we determine the step direction, qk, for the slack vector zk by the formula

qk = − [∇g(xk)Tδk + g(xk) + zk − e θk] .(3.2)

Note that if δk is feasible for (QP), then θk = 0 and hence

qk = − [∇g(xk)Tδk + g(xk) + zk
]
.

In this case zk + qk is the slack vector for (QP) corresponding to δk and thus is the
slack variable for the linear approximation of g(xk+1). Given the step direction we
then update the iterate by means of the formulas

xk+1 = xk + αδk,

zk+1 = zk + αqk

for some value of the steplength parameter α. Observe that if zk ≥ 0, then the fact
that (δk, θk) is feasible for (3.1) means that zk+1 will be nonnegative if α ∈ [0, 1]. In
our algorithm the nonnegativity of the slack vector iterates is preserved and, in fact,
it sometimes turns out to be useful to maintain the zk at a positive level (see section
4.8).

It is important to emphasize that the δk are determined by (QP), the quadratic
approximation to (NLP), and are not dependent on the choice of zk. The zk are
generated solely for use with the merit function described below. That is, we do not
solve the slack variable problem. A comment on the notation is also in order at this
point: We denote the iterate by (xk, zk) and the step by (δk, qk), whereas conventional
notation would be to use (

xk

zk

)
and

(
δk

qk

)
.

760 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

It should be clear from the context what is meant.
In optimization algorithms the value of a steplength parameter is generally chosen

so as to reduce the value of a suitably chosen merit function. Typically, a merit
function for (NLP) is a scalar-valued function that has an unconstrained minimum at
x∗, a solution to (NLP). Because a reduction in this function implies that progress is
being made toward the solution, it can be used to determine an appropriate steplength
in a given search direction.

In [5] and [6] a merit function for equality-constrained problems was derived that
has important properties vis-à-vis the steps generated by the SQP algorithm. Using a
slack-variable formulation of (NLP), a merit function for the inequality constrained
problem can be constructed having the form

ψd(x, z) = f(x) + λ̄(x, z)Tc̄(x, z) +
1

d
c̄(x, z)TĀ(x, z)−1c̄(x, z),(3.3)

where z is nonnegative, d is a scalar,

c̄(x, z) = g(x) + z,

Ā(x, z) = ∇g(x)T∇g(x) + Z,

λ̄(x, z) = −Ā(x, z)−1∇g(x)T∇f(x),

and

Z = diag{z1, . . . , zm}.

We use this merit function (and its approximations defined below) for choosing the
value of the steplength parameter α. As noted above, the approximate slack vectors
generated by our algorithm, zk, always remain nonnegative; thus the nonnegativity
constraint on the z for ψd imposes no theoretical difficulty.

The function c̄(x, z) defined above plays an important role in our algorithm, as it
is used to measure the feasibility of the pair (x, z). That is, if we define the function

r(x, z) = ‖c̄(x, z)‖2 ,(3.4)

where ‖·‖ denotes the standard Euclidean norm, and set

Cη = {(x, z) : r(x, z) ≤ η and z ≥ 0},(3.5)

then C0 corresponds to the feasible set of (NLP) and hence (xk, zk) is close to feasible
if it is in Cη for small η.

For d sufficiently small the merit function ψd has the desirable property that a
solution of (NLP) corresponds to a (constrained) minimum of ψd. In addition, if d is
small and δk is the exact solution to (QP) (which implies that θk = 0), then the step
(δk, qk) is a descent direction for ψd when (xk, zk) is sufficiently close to feasibility.
Despite these useful properties, ψd has two deficiencies that limit its use in an efficient
algorithm. First, (δk, qk) is a descent direction of ψd only near feasibility, and, second,
the evaluation of ∇f and ∇g and additional nontrivial computational algebra are
required to assess a prospective point. In order to overcome these difficulties, the
approximate merit function

ψkd(x, z) = f(x) + c̄(x, z)Tλ̄k +
1

d
c̄(x, z)T(Āk)−1c̄(x, z),

A PRACTICAL ALGORITHM FOR NLPs 761

where

Āk = ∇g(xk)T∇g(xk) + Zk,

λ̄k = −(Āk)−1∇g(xk)T∇f(xk)

is developed as a “working” version of ψd at (xk, zk). As the values of λ̄k and Āk

are fixed, ψkd can be more easily evaluated than ψd in a line search algorithm for
choosing an appropriate value of α. This approximate merit function, ψkd , not only
has essentially the same properties as ψd with respect to the step (δk, qk), but it has
the stronger property that the step is a descent direction for ψkd everywhere. Moreover,
for η sufficiently small and (xk, zk) outside of a ball around the solution a “sufficient”
reduction in ψkd implies a sufficient reduction in ψd. (We mean by sufficient reduction
that a Wolfe condition is satisfied.) Thus we are able to use ψkd as a surrogate for ψd
for testing the progress of our iterates toward a minimum.

A further important property of the step δk, under the assumption that it is the
exact solution to (QP), is that it is a descent direction for the function r defined by
(3.4). Thus a basic algorithm for the case where the (QP) can be solved exactly is as
follows: Given an initial value of η use the steps (δk, qk) to reduce r until the iterates
are in Cη. Once the iterates are contained in Cη, if a sufficient reduction in ψkd does
not yield a sufficient reduction in ψd, then reduce η. If, in the course of the algorithm,
η remains bounded away from zero, then convergence follows from the fact that the
Wolfe condition is satisfied for ψd. If η goes to zero, then convergence follows from
the observation that the radius of the ball in which the Wolfe condition is not satisfied
also goes to zero. This is essentially the algorithm for which global convergence is
proved in the paper on the theory [4].

In this paper we are primarily interested in enhancements that convert the theo-
retical algorithm into one that is practical and efficient. This requires that we make
provisions for situations when the assumptions under which we performed the con-
vergence analysis are not valid and that we adopt numerical procedures to reduce the
computational effort. As we note below, not all of these modifications have been (or
even can be) theoretically justified, but we believe that the firm foundation of the
underlying algorithm and the evidence accumulated in extensive numerical testing
validate their use.

In the implementation of our algorithm a trust region constraint is used that
possibly truncates the quadratic programming algorithm before an exact solution
is achieved. In this case the theory described above does not apply for the step
(δk, qk) obtained from the approximate solution, (δk, θk), to (3.1). Although a general
convergence theory based on this step is not yet available, it is shown in the theory
paper [4] that if the approximate solution is obtained from the O3D algorithm and if
θk is not too large, then the resulting step has the appropriate descent properties for
the functions r, ψd, and ψkd at (xk, zk). In particular, convergence can be achieved if
θk goes to zero in a suitable manner. These properties justify our use of the truncation
procedure to speed up the algorithm. It is important to note that this approximation
procedure also allows us to handle the difficulty that arises in SQP methods when the
quadratic subproblem is inconsistent.

4. The truncated SQP algorithm. In this section we give a somewhat de-
tailed description of our algorithm. Initially we assume that the Hessian approxima-
tions, Bk, are positive definite, the matrices Āk are nonsingular, and the linearized
constraints in (QP) are consistent. In real-world applications these assumptions are

762 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

not always valid, so we have tried to make our algorithm flexible enough to perform
well in situations where these assumptions fail to hold. We describe some of these
adaptations at the end of this section.

The implementation of the algorithm depends upon four important parameters
that need to be either computed or modified throughout the course of the algorithm.
The globalization parameter, η, was introduced in (3.5). It is a measure of the size
of the domain about the feasible region in which the direction (δk, qk) is a descent
direction for the true merit function ψd. A current estimate of η is maintained in the
algorithm. The trust region parameter, τ , is an upper bound on the (weighted) norm
of our approximate solution to (QP),

‖Dδ‖ ≤ τ,
where D is a positive definite diagonal matrix. The trust region radius τ is updated
at every iteration. The parameter, α, is the steplength parameter. It determines
the length of the step in the variables (x, z) in the direction (δk, qk). It is chosen to
guarantee progress toward the solution in decreasing either the merit function or infea-
sibility. Finally, d, the merit function parameter, must be small enough to guarantee
that the theoretical properties described in the preceding section are valid. Although
the theory allows arbitrarily small values of d, the algorithm becomes very slow if d
is too small, thus it is monitored throughout the algorithm and either increased or
decreased as appropriate.

The outline of the algorithm is followed by specific comments on the procedures
and their justifications. This version contains some of the practical modifications
described above. To simplify the notation we define

(xα, zα) = (xk + αδk, zk + αqk).

Recall that r is given by (3.4).
Basic Truncated SQP Algorithm
1. Initialization: Given x0, B0, τ , η, and d

a. Initialize the slack variable z0 ≥ 0.
b. Set k := 0.

2. Calculation of the basic trust region step:
a. While ‖δ‖ < τ , iterate (using O3D) on

min
δ
∇f(xk)

T
δ + 1

2δ
TBkδ +Mθ

subject to ∇g(xk)Tδ + g(xk)− eθ ≤ 0

to obtain δk and θk.
b. Set

qk =

 −
[∇g(xk)Tδk + g(xk) + zk − eθk] if θk > 0,

− [∇g(xk)Tδk + g(xk) + zk
]

otherwise.

c. Decrease d if necessary.
3. Computation of the steplength parameter:

a. Choose α ∈ (0, 1] such that ψkd is sufficiently reduced.
b. If (xk, zk) /∈ Cη then reduce α if necessary until r is sufficiently reduced.
c. If (xk, zk) ∈ Cη then reduce α if necessary so that (xα, zα) ∈ Cη.

A PRACTICAL ALGORITHM FOR NLPs 763

4. Update of the estimate of the globalization parameter:
a. If

ψd(xα, zα) > ψd(x
k, zk),

set η = 1
2r(x

k, zk).
5. Update of the variables and check for termination:

a. Set

xk+1 := xk + αδk,

zk+1 := zk + αqk.

b. If convergence criteria are met, quit.
c. Update Bk to Bk+1.

6. Adjustment of the merit function and trust region parameters:
a. Update d if necessary.
b. Adjust the trust region radius τ .

7. Return:
a. Set k := k + 1.
b. Go to step 2.

4.1. The globalization parameter. The globalization step is based on work in
[6] and [4]. In step 3 we require that the approximate merit function be reduced and,
in addition, if the current iterate lies outside the set Cη, we require that the constraint
infeasibilities also be reduced. This is possible as a result of the descent properties
described in section 3. If we have a good estimate of η and (xk, zk) ∈ Cη, then the
true merit function can also be reduced; if this is not the case, then our estimate of
η is too large and we reduce its value in step 4. This procedure will eventually lead
to a sufficiently small value of η. Note that this arrangement allows steps that may
increase the merit function, but only in a controlled way. It also allows steps that
may increase the constraint infeasibilities, but only when inside of Cη.

4.2. Updating τ . Our procedure for updating τ , the trust region radius, in
step 6b is similar to the standard strategy used in trust region algorithms (see [17] or
[31]) in that we base the decision on how to change τ on a comparison of a predicted
relative reduction, predk, and an actual relative reduction, aredk, in a function used
to measure the progress toward the solution. (Various formulas for the predicted rela-
tive reduction, predk, have been suggested for different merit functions, especially for
equality constrained programming problems; see, for example, [19].) What is distinc-
tive about our procedure is that we use different functions for computing predk and
aredk depending on the current status of the algorithm. When the linearized con-
straints are satisfied we use the approximate merit function to compute the predicted
and actual reductions. When the trust region constraint causes O3D to terminate in
Phase I, i.e., when the linearized constraints are not satisfied, predicted and actual
reductions in infeasibility are used.

In the case when a feasible solution to (QP) is obtained, then ψkd is used to
compute the predicted and actual reductions. Our method for defining predk differs
from the standard methods used in unconstrained optimization because the step-
finding subproblem is not based solely on the merit function and, moreover, the
trust region constraint does not appear explicitly in the subproblem. Nevertheless, in
updating τ we want to assess how well an approximation to ψkd agrees with ψkd in the

764 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

direction (δk, qk). Since (QP) uses a quadratic approximation of the Lagrangian for
the objective function with linearized constraints, we form our approximation to ψkd
based on a quadratic approximation to the function ψk1 given by

ψk1 (x, z) = f(x) + c̄(x, z)Tλ̄k

and a linear approximation to

ψk2 (x, z) = c̄(x, z)T(Āk)−1c̄(x, z).

Note that ψkd(x, z) = ψk1 (x, z) + (1/d)ψk2 (x, z). Based on these considerations and the
results of [16] we define the predicted relative reduction by

predk =

{
−αk∇ψk1 (xk, zk)T(δk, qk)− (αk)2

2
(δk, qk)T∇2ψk1 (xk, zk)(δk, qk)

− αk

d
∇ψk2 (xk, zk)T(δk, qk)

}
/ψkd(xk, zk),(4.1)

where the derivatives are with respect to x and z and the steplength parameter αk is
the size of the most recently accepted step. The value of the actual relative reduction,
aredk, is taken to be the difference in the values of ψkd at the points (xk+1, zk+1)
and (xk, zk) divided by the value of ψkd(xk, zk). A valid criticism of the formula for
predk is its dependence on higher order derivatives. Therefore, we use the available
approximation of the Hessian of the Lagrangian for ∇2ψk1 . For example, cell-centered
finite difference approximations to the Hessian of the Lagrangian function were used
in the numerical results presented here, unless analytic second derivative formulas
were readily available.

The above choice for predk is not used when the step returned by O3D is not
feasible. In these situations the resulting step is dominated by a feasibility-improving
component, and it makes little sense for the adjustment to τ to be determined by
ψkd ; rather, a comparison of the predicted and actual improvements in constraint
infeasibility seems more appropriate. Therefore, in this case the function r(x, z) is
used for comparison purposes. The values of predk and aredk are given as follows for
the case when the O3D algorithm terminates in Phase I:

predk =
{
r(xk, zk)− ∥∥αk∇g(xk)Tδk + g(xk) + zk+1

∥∥2
}
/r(xk, zk)

and

aredk =
{
r(xk, zk)− r(xk+1, zk+1)

}
/r(xk, zk).

These heuristics for choosing predk and aredk appear to work well. Specifically,
they allow the trust region radius, τ , to be increased even in the event that the step
returned by O3D does not satisfy linearized constraints or it results in an increase in
the true merit function. In our experience, the alternative formulas based solely on
constraint violations are never employed close to the solution. Indeed, the iterates
preceding convergence have always been observed to be well inside Cη, where satisfying
the linearized constraints and decreasing the merit functions usually pose no problem.

A PRACTICAL ALGORITHM FOR NLPs 765

4.3. The steplength α. The steplength α is determined in step 3 of the al-
gorithm. The “sufficient decrease” referred to in 3a and 3b requires that the Wolfe
condition be satisfied. For a given function φ and potential step w from point v, this
condition requires that α satisfy

φ(v + αw) ≤ φ(v) + σ α∇φ(v)Tw

for some fixed σ ∈ (0, 1). In the numerical experiments reported in section 5 we em-
ployed a simple backtracking procedure (with factor one-half) to find α to satisfy this
condition for both ψkd and for r. We have also experimented with more sophisticated
line search methods motivated by unconstrained optimization techniques as in [18],
but the observations to date suggest that the more complicated line searches result in
very little improvement of our algorithm, except when the iterates are quite far from
the solution.

4.4. Adjusting d. Choosing an effective value for the merit function parameter
d is essential in our algorithm. While it is clear that (in a compact set) a sufficiently
small value of d will ensure that the results given in [4] are valid, there are three
very important practical reasons why the parameter must be adjusted rather than
fixed. First, if the angle between the direction generated by O3D and the gradient of
the approximate merit function becomes nearly orthogonal, the steps might become
too small. We adjust d to avoid this possibility. Second, the approximate merit
function, ψkd , is changing at each iteration, and it is possible a previous iterate might
be acceptable to the current ψkd ; i.e., cycling might occur. This worry can also be
alleviated by adjusting d. A third reason for changing d is to allow for larger steps.
It is seen from the theory and has been verified by numerical experience that if d
is too small then the form of the merit function forces the path of the iterates to
follow the “nearly active” constraints closely. This causes the algorithm to take very
small steps and, in particular, to be slow in moving away from a nonoptimal active
set. By making it possible to increase d we can significantly improve the algorithm’s
performance.

In the implementation of our algorithm there are two opportunities to adjust d:
in step 2, after solving the quadratic subproblem, and in step 6, after the step has
been taken. In the first of these adjustments d can only be decreased; in the second,
the parameter may be increased or decreased.

In step 2, the angle between the gradient of the approximate merit function
∇ψkd and the step direction (δk, qk) is computed. If these two vectors become nearly
orthogonal, we conclude that d is not small enough to ensure a good decrease in ψkd ,
and we decrease the parameter. To be more specific, we compute

w(d) =
(∇ψkd(xk, zk))T(δk, qk)∥∥∇ψkd(xk, zk)

∥∥ · ‖(δk, qk)‖ .

If w(d) ≥ −.1 we calculate a value d̂ so that w(d̂) ≈ −.5. We safeguard the procedure
by not allowing more than a certain percentage decrease in d. In the current version
we use 50%.

If d was not decreased in step 2 we consider modifying it after a step has been
taken (step 6). Here the primary concern is to avoid cycling. To do so we compute
an interval for the penalty parameter as follows. For a fixed integer κ we seek a value
of the parameter, d̄, such that

ψkd̄(xk, zk) < ψkd̄(xk−i, zk−i), i = 1, . . . , κ.(4.2)

766 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

Inequality (4.2) implies that none of the past κ iterates will be acceptable to the
approximate merit function with the new value of d̄. (Thus if κ = k, no cycling would
be possible.) To accomplish this, we use the decomposition

ψkd = ψk1 +
1

d
ψk2 ,(4.3)

where ψk1 and ψk2 are defined in section 4.2. We then compute the values of ψk1 (xk−i, zk−i)
and ψk2 (xk−i, zk−i), i = 1, . . . , κ, and consider the inequalities

ψk1 (xk, zk) +
1

d
ψk2 (xk, zk) < ψk1 (xk−i, zk−i) +

1

d
ψk2 (xk−i, zk−i).(4.4)

We define dui and dli to be the upper and lower values of d that ensure that inequality
(4.4) is satisfied. Then letting

du = min{dui : i = 1, . . . , κ}(4.5)

and

dl = max{dli : i = 1, . . . , κ},(4.6)

we obtain an interval (dl, du). Assuming that this interval exists, it is the case that
if the value of d for the next step is chosen in this interval, the next iterate will
not return to one of the previous κ iterates. In practice a value of κ ≈ 5 is usually
more than sufficient to prevent cycling. If the interval doesn’t exist, then we make no
change.

Given that we can choose d to avoid cycling, our second objective at this juncture
is to increase d to allow bigger steps. If the du is larger than the current d, then we
can safely increase d without worrying about possible cycling. However, we safeguard
this increase in two ways. First, we require that the predicted reduction based on the
approximate merit function must be greater than the predicted reduction of infeasi-
bility in the linearized constraints. This restriction prevents d from being increased
prematurely due primarily to a large decrease in constraint infeasibilities. Specifically,
writing the predicted reduction in ψkd (see (4.1)) as

PQ +
1

d
PL,

we insist that for a new value of d

PQ +
1

d
PL > PL.(4.7)

Second, we use a maximum allowable change (currently a factor of 2) to limit the
growth of d. Computationally, these simple procedures for updating d appear to be
effective, especially in the presence of highly nonlinear constraints and poorly scaled
problems.

4.5. The Hessian approximation. In the numerical experimentation reported
here, we have used a finite difference approximation to the Hessian of the Lagrangian
as Bk. Although the Hessian of the Lagrangian at a strong solution is positive definite
on the appropriate subspace, it may be indefinite in general. Even if it is positive
definite, the finite difference approximation may not be. We experimented with two

A PRACTICAL ALGORITHM FOR NLPs 767

approaches for handling this possibility. First, we simply modified the approximate
Hessian matrix by adding nonnegative elements to the diagonal ensuring that the
Cholesky factorization of the matrix had positive elements along its diagonal (see [20]).
This modification was easy to implement, but it was observed to slow convergence
on some problems. While this modification guarantees that a positive definite matrix
will be delivered to the (QP) solver, if it takes place when the iterates get close to
the solution, it generally precludes local q-superlinear convergence.

An alternative to modifying the approximate Hessian of the Lagrangian is simply
to allow O3D to iterate on the indefinite QP subproblem, halting the iterations when
the solution exceeds the trust region radius. We implemented this approach and it
seemed to yield superior results to those obtained by making the approximate Hessian
positive definite (especially when the iterates were close to a solution) although, theo-
retically, we can prove only that we obtain a descent direction when the approximate
Hessian is positive definite.

4.6. Convergence criteria. The convergence criteria used are standard and
similar to those in [3]. We first insist that the constraints be satisfied to a close
tolerance; specifically, we require∥∥max(g(xk), 0)

∥∥
∞ ≤ 10−6.(4.8)

We also require that either

‖∇f(xk) +∇g(xk)λk‖
|f(xk)| ≤ 10−7(4.9)

or ∥∥xk − xk−1
∥∥
∞ ≤ 10−8(1 +

∥∥xk∥∥).(4.10)

The criterion (4.9) is a stronger indication that a KKT point has been reached. The
weaker criterion (4.10) suggests that progress slowed drastically and that iterates may
or may not have drawn close to a solution. For this reason criterion (4.9) is usually
preferable to criterion (4.10). The Lagrange multipliers returned by the quadratic
program are used in (4.9) unless the trust region constraint determines the approxi-
mate solution of the (QP). In that case, we use the least squares approximation to
the multipliers, replacing all negative multipliers with machine zeros. In all of the
problems solved to date, the trust region never comes into play when the iterates get
close to the solution; therefore, the (QP) multipliers are used for the convergence test
at the solution.

4.7. Inconsistent quadratic subproblems. One difficulty that can occur when
making linear approximations to nonlinear constraints is that (QP) may be inconsis-
tent. In this case O3D will, even if it runs to completion, not exit Phase I and will
return a positive value of the artificial variable. (Note that this always occurs if equal-
ity constraints are present.) For small θ the resulting direction is a descent direction
for ψkd and for r. As a result, the step taken in this direction will generally decrease
infeasibility, making it less likely that an inconsistent set of linearized constraints will
be encountered during subsequent iterations.

More recent versions of our algorithm include a constraint relaxation procedure
that appears to yield an acceptable step, δk, even in the event that inconsistent
linearizations of constraints are encountered. Because this situation did not surface

768 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

during the numerical experiments presented in this paper, we do not include a descrip-
tion of our perturbation procedure. We do note, however, that we have encountered
important application problems where this procedure was crucial to the performance
of our algorithm (see, for example, [24]).

4.8. Updating slack variables. One difficulty in our algorithm is the updating
of slacks in the event that the SQP step does not satisfy the linearized constraints
well enough, i.e., θk is not small enough. This can occur when (QP) is inconsistent
or when a trust region bound is encountered during the solution of (QP). In this
case our slack variable updating scheme would ensure that nonnegative slacks remain
nonnegative, but the direction may not be one of descent. We resolve this dilemma by
opting for descent, i.e., computing qk with θk = 0 and replacing any negative slacks
using the following rule:

If zk+1
i < 0, then set

zk+1
i =

{
εMach, gi(x

k+1) ≥ 0,
−gi(xk+1), gi(x

k+1) < 0,

where εMach is machine epsilon. This is sometimes referred to as “closing” the con-
straints (see, for example, [33]).

4.9. Linearly dependent constraint gradients. Linearly dependent constraint
gradients cause many theoretical and computational difficulties in constrained opti-
mization. In our theoretical algorithm we obtain convergence even when there are
linearly dependent constraint gradients provided the approximate multipliers do not
become unbounded. In practice although O3D has no difficulty in dealing with this
problem, evaluating the merit function and computing the least squares approxima-
tion to the Lagrange multipliers become problematical. Computational experience
shows that we solve many problems with degeneracy in the constraints. Simply main-
taining slacks to be positive as described above allows us to factor the crucial matrices
and continue with the algorithm. However, the algorithm failed to solve some prob-
lems that had a large amount of degeneracy in the linearized constraint matrix. This
was, of course, problem dependent but it was observed that the current implemen-
tation can usually solve problems where up to 25% of the constraint gradients are
linearly dependent. This degeneracy causes the performance of the merit functions
to deteriorate. In particular, the least squares approximation to Lagrange multipliers
seems to be especially poor, resulting in only very small steps being allowed, even
close to the solution.

5. Numerical results. The modified algorithm was coded in Fortran and is
installed on a SPARCstation 10 using IEEE floating point arithmetic (64 bit). The
current implementation is being used to solve a wide variety of medium to large scale
problems. In this section we report the results of a set of performance tests designed
specifically to answer questions about the trust region strategy and the procedure to
update the penalty parameter, d. We conclude the section with the results of our
algorithm applied to some test problems that are publicly available. We emphasize
that all of the problems were solved with the same default settings of the parameters
(see Table 5.1); i.e., no attempt was made to pick parameter settings to optimize
performance on individual problems.

Although in many of the applications some analytic derivatives were available,
no use of analytic derivative information was used in these numerical experiments.
When possible, first and second derivatives were computed using forward and central

A PRACTICAL ALGORITHM FOR NLPs 769

Table 5.1
Numerical values of default parameters.

Parameter Value

M 10 min{107, ‖∇f(x0)‖∞min{103, ‖∇f(x0)‖∞}}
θ∗ 2‖g(x0)‖∞
τ0 (‖g(x0)‖∞ + ‖x0‖2)
η0 (1 + ‖c(x0, z0)‖∞)2

z0 εMach + max(−g(x0), εMach)

σ 10−4

finite differences, respectively. A costly one-time calculation provided a zero/nonzero
stencil of the Hessian of the Lagrangian and the Jacobian matrix of the constraint
function. These stencils were then used for the duration of the solution process.
For some problems, these finite difference approximations are not convenient to use.
This can be the case with control problems governed by partial differential equations
(see [29] or [30]). If the partial differential equation is solved using a finite element
method, with piecewise linear elements, then evaluating the derivative of the objective
function with respect to the control variables can be quite cumbersome. In such
cases, which occurred in the control problems in our test suite, one can approximate
the first derivatives of the objective function by solving an adjoint problem with
a computational cost comparable to one function evaluation. (For examples, see
[22].) The objective function portion of the Hessian of the Lagrangian can then be
approximated with forward finite differences.

A set of eight problems was chosen as the first test suite. These problems ranged
in size from 500 to 1000 variables and from 1000 to 2000 constraints. The first four
are relatively straightforward nonlinear programming test examples, while the last
four are from actual applications: two discretized control problems, a density estima-
tion problem from statistics, and a “molecular distance” problem. A more complete
description of these problems is found in the appendix. The problems all have nonlin-
ear inequality constraints and exploitable sparsity. Problem 4 (NLP4) was designed
to have a controllable percentage of linear dependency in the constraint gradients to
demonstrate any weaknesses in the algorithm associated with this difficulty. We ran
three versions of our algorithm on each problem: using a positive definite modification
of the Hessian matrix, as discussed in section 4, with and without the trust region
strategy, and using the unmodified Hessian with the trust region. (Using the unmod-
ified Hessian results in failure in most cases if no trust region strategy is employed.)
In addition, each problem was run from two starting points: one, labeled “c,” which
was close to the solution in the sense that each of the variables was of the same order
of magnitude as in the solution, and a distant start, labeled “f.”

The results of the numerical tests on these problems are summarized in Tables
5.2–5.4. The first two columns of each table give the number of SQP iterations (“nl-i”)
and the total number of O3D iterations (“qp-i”). The next two columns contain the
stopping criterion that was met and the value of the gradient of the Lagrangian at the
solution. Unless the algorithm failed (which is denoted by “Failure” in the tables),
feasibility condition (4.8) was satisfied for all solutions. The stopping criterion is
denoted by either a 1 or a 2 depending on whether (4.9) or (4.10) was satisfied. If
both conditions were satisfied, a 3 appears in the column. The remaining columns give
information about the values of the parameter d for each run: columns 5–8 give the
initial, maximum, minimum, and final values of this parameter, and the final column
gives the last iteration at which d was changed.

770 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

Table 5.2
Modified Hessians with no trust region.

Problem nl-i qp-i Conv ‖∇xl‖∞ d0 Max d Min d Final d Last d-cha

NLP1-c 37 1435 2 1.2e-7 1.00e00 2.08e00 4.45e-2 9.35e-1 34
NLP1-f 49 1656 1 7.3e-8 1.00e00 1.07e00 5.89e-2 9.20e-1 46

NLP2-c 66 2211 1 1.2e-7 1.00e00 2.83e00 6.89e-2 1.72e00 61
NLP2-f 71 2369 1 3.1e-8 6.98e-1 3.00e00 8.31e-2 1.51e00 64

NLP3-c 29 983 1 6.7e-8 1.00e00 1.12e00 8.13e-1 1.03e00 22
NLP3-f 39 1314 1 4.2e-8 1.00e00 1.05e00 9.84e-1 1.03e00 31

NLP4-c – 6 Failure 1.00e00 – – – Failure
NLP4-f – 6 Failure 1.00e00 – – – Failure

Truss-c 103 3561 1 4.4e-8 9.87e-1 1.01e00 9.57e-2 9.57e-1 100
Truss-f 110 3799 2 1.9e-7 1.00e00 1.08e00 8.93e-2 8.93e-1 106

Stat-c 135 4561 3 1.1e-8 1.00e00 2.33e00 8.25e-2 9.70e-1 129
Stat-f 144 4805 1 3.3e-8 1.00e00 2.16e00 7.77e-2 8.49e-1 140

BCHeat-c 257 5398 1 7.8e-8 9.18e-1 1.98e00 5.23e-2 1.24e00 254
BCHeat-f 289 5971 1 1.9e-7 1.00e00 4.21e00 4.92e-2 1.37e00 281
Molec-c 37 1376 1 9.8e-9 9.88e-1 1.21e1 1.17e-2 9.81e-1 34
Molec-f 41 1437 2 6.5e-6 1.00e00 2.38e0 1.49e-1 5.52e-1 39

Table 5.3
Modified Hessians with trust region.

Problem nl-i qp-i Conv ‖∇xl‖∞ d0 Max d Min d Final d Last d-cha

NLP1-c 94 1412 2 3.2e-7 1.00e00 8.58e00 3.13e-3 6.55e-2 88
NLP1-f 108 2947 2 6.8e-8 1.00e00 7.50e00 1.23e-3 2.60e-2 99

NLP2-c 213 2744 1 1.6e-7 1.00e00 3.85e00 1.28e-3 6.48e-1 209
NLP2-f 231 2963 1 5.4e-8 6.98e-1 1.10e01 5.67e-3 8.57e-1 221

NLP3-c 42 932 1 3.7e-8 1.00e00 1.64e00 4.27e-1 9.83e-1 39
NLP3-f 44 946 1 9.1e-8 1.00e00 1.53e00 2.71e-1 9.22e-1 38

NLP4-c 199 2582 2 9.2e-6 1.00e00 1.41e00 8.92e-1 1.18e00 49
NLP4-f 201 2599 2 5.2e-7 1.00e00 2.01e00 9.94e-1 1.21e00 55

Truss-c 195 3528 1 6.1e-8 9.87e-1 1.13e00 9.87e-1 1.11e00 189
Truss-f 195 3544 2 2.9e-7 1.00e00 1.47e00 1.00e00 1.47e00 188

Stat-c 144 4519 3 2.3e-8 1.00e00 2.39e00 1.00e00 1.53e00 140
Stat-f 150 4581 1 4.2e-8 1.00e00 2.48e00 1.00e00 1.89e00 144

BCHeat-c 257 2898 1 8.1e-8 9.18e-1 4.15e00 1.38e-1 4.10e00 249
BCHeat-f 289 3071 1 9.9e-8 1.00e00 3.74e00 2.44e-1 3.89e00 281
Molec-c 39 546 1 1.3e-7 9.88e-1 1.71e01 3.74e-2 2.22e00 36
Molec-f 44 621 1 6.6e-8 1.00e00 1.48e00 7.39e-2 9.52e-2 38

The results of the tests illustrate that using the unmodified Hessian with the trust
region was most effective in reducing the number of O3D iterations and the number
of SQP iterations. The trust region strategy prevented long, unprofitable steps from
being generated when far from the solution, and the use of the unmodified Hessian
allowed the trust region to become inactive near the solution, thus allowing rapid
local convergence. Requiring the Hessian to be positive definite often precluded rapid
local (q-superlinear) convergence and, when used in conjunction with the trust region
strategy, resulted in the trust region’s being active close to the solution.

The results also show that the value of the parameter d varied over several orders
of magnitude. The procedures discussed in section 4 that allowed the value of d to

A PRACTICAL ALGORITHM FOR NLPs 771

Table 5.4
Unmodified Hessians with trust region.

Problem nl-i qp-i Conv ‖∇xl‖∞ d0 Max d Min d Final d Last d-cha

NLP1-c 43 820 2 2.1e-7 1.00e00 3.69e00 5.13e-2 7.13e-1 38
NLP1-f 46 913 3 1.7e-8 1.00e00 6.58e00 6.27e-2 6.14e-1 39

NLP2-c 51 1330 1 9.8e-8 1.00e00 4.11e00 9.65e-2 5.95e-1 44
NLP2-f 53 1351 1 1.1e-7 6.98e-1 2.94e00 1.20e-1 2.47e-1 48

NLP3-c 35 832 1 4.5e-8 1.00e00 1.89e00 2.46e-2 3.79e-1 29
NLP3-f 39 867 1 7.3e-8 1.00e00 1.57e00 2.22e-2 4.52e-1 28

NLP4-c – – Failure – – – – Failure
NLP4-f – – Failure – – – – Failure

Truss-c 94 2242 1 3.9e-8 9.87e-1 1.03e00 1.26e-1 9.11e-1 87
Truss-f 96 2261 1 6.6e-8 1.00e00 1.33e00 5.67e-2 7.84e-1 85

Stat-c 121 1577 3 1.1e-8 1.00e00 2.58e00 1.57e-1 9.34e00 114
Stat-f 121 1585 1 4.7e-8 1.00e00 2.19e00 1.65e-1 7.03e00 111

BCHeat-c 231 2498 1 1.2e-7 9.18e-1 3.24e00 6.04e-2 8.83e-1 226
BCHeat-f 239 2871 3 2.4e-8 1.00e00 1.61e01 3.89e-2 4.98e-1 222
Molec-c 39 550 1 8.76e-8 9.88e-1 1.02e00 4.34e-2 6.04e-1 36
Molec-f 45 658 2 2.3e-7 1.00e00 8.78e00 1.35e-2 6.53e-1 42

increase or decrease greatly enhanced the algorithm; earlier tests using either a fixed
value of d or only allowing a reduction in d yielded inferior results.

Another modification in our algorithm, not reflected in the table or included in
the description in the preceding section, was made to force the O3D algorithm to take
a minimum number of steps. We found that when the trust region radius τ became
small the algorithm would sometimes exit O3D after only one iteration, resulting in
a poor step direction. This poor step would result in a further decrease in τ , and
eventually the algorithm would fail. When we required a minimum number of steps
to be taken in O3D (our choice was seven), this problem disappeared.

Recently a collection of test problems has become available for the testing and
comparing of optimization algorithms (see [13]). The problems in the Constrained
and Unconstrained Testing Enviroment (CUTE) are quickly becoming standards with
which researchers can establish the viability and effectiveness of their numerical al-
gorithms. These problems are replacing the smaller and well-scaled test problems of
Hock and Schittkowski [25] and Schittkowski [32], which were not intended to be used
to test large scale algorithms. Our results on the CUTE test problems are summarized
in Tables 5.5–5.7. These problems were solved to the same stopping conditions as the
problems above. Likewise, the same table format was used to present these numerical
results. For a detailed description of these problems and their structure, motivation,
and sources, see [9].

While it appears that the CUTE test problem set is rich in both large and small
scale unconstrained and equality constrained test problems, at present there are not
many large scale problems that include inequality constraints (and particularly non-
linear inequality constraints). We chose problems that reflected the class of problems
our algorithm was designed to solve. At least one inequality constraint was present
in each problem. The number of variables or constraints was large enough so that the
exploitation of special sparsity structure was important. The problems we selected
from CUTE to report on were CORKSCREW, MANNE, SVANBERG, and ZIGZAG.
The associated problem sizes are recorded in Table 5.8.

772 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

Table 5.5
Modified Hessians with no trust region.

Problem nl-i qp-i Conv ‖∇xl‖∞ d0 Max d Min d Final d Last d-cha

CORKSCREW-c 4 73 1 2.6e-8 1.d0 1.d0 1.d0 1.d0 0
CORKSCREW-f 5 90 1 3.3e-8 1.d0 1.d0 1.d0 1.d0 0

MANNE-c 8 144 1 1.9e-8 1.d0 1.d0 1.d0 1.d0 0
MANNE-f 8 146 2 1.3e-7 1.d0 1.d0 1.d0 1.d0 0

SVANBERG-c 6 111 1 1.9e-8 1.d0 1.d0 1.d0 1.d0 0
SVANBERG-f 6 111 1 3.9e-8 1.d0 1.d0 1.d0 1.d0 0

ZIGZAG-c 5 93 1 1.8e-8 1.d0 1.d0 1.d0 1.d0 0
ZIGZAG-f 6 99 1 9.9e-9 1.d0 1.d0 1.d0 1.d0 0

Table 5.6
Modified Hessians with trust region.

Problem nl-i qp-i Conv ‖∇xl‖∞ d0 Max d Min d Final d Last d-cha

CORKSCREW-c 4 71 1 4.1e-8 1.d0 1.d0 1.d0 1.d0 0
CORKSCREW-f 5 87 1 5.2e-8 1.d0 1.d0 1.d0 1.d0 0

MANNE-c 8 141 1 2.8e-8 1.d0 1.d0 8.51d-1 8.51d-1 2
MANNE-f 8 142 1 5.4e-8 1.d0 1.d0 8.13d-1 8.13d-1 3

SVANBERG-c 5 91 1 2.5e-8 1.d0 1.d0 1.d0 1.d0 0
SVANBERG-f 6 100 1 1.3e-8 1.d0 1.d0 1.d0 1.d0 0

ZIGZAG-c 5 89 1 1.8e-8 1.d0 1.d0 1.d0 1.d0 0
ZIGZAG-f 5 91 1 1.6e-8 1.d0 1.d0 1.d0 1.d0 0

It is worth commenting that much of the machinery developed in this paper deals
with effectively handling nonlinear inequality constraints. The performance of our
algorithm on the CUTE test problem set is, therefore, slightly deceiving since many
of the constraints in these problems are simple bounds on the primal variables or are
purely linear. (For instance, approximately 83% of the constraints in CORKSCREW,
50% of the constraints in MANNE, and 66% of the constraints in ZIGZAG were linear,
and many of them were equality constraints.) Although these caused no problem for
our algorithm, the structure of these constraints was not completely exploited and
the extra machinery of our code resulted in an overhead with no performance benefit.
Clearly, an algorithm designed specifically to deal with linear equality constraints
should outperform our algorithm on these problems. The problem on which our
algorithm appeared to perform best was SVANBERG, a problem with only inequality
constraints (a substantial number of which are nonlinear).

We succeeded in solving all four problems with a reasonable number of inner and
outer iterations. However, many of our algorithmic enhancements contributed little
to the solution process. The measure of distance to feasibility (the η-tube strategy),
the nonmonotone updating of penalty parameter d, and the trust region strategy were
essentially dormant during the solution process regardless of the iterates’ proximity
to the solution or to feasibility. In fact, the only evidence of our enhancements on the
small number of CUTE test problems that we solved occurred when d was decreased
slightly while solving the problem MANNE employing modified Hessians with a trust
region strategy (see the third and fourth rows of Table 5.6). It is noteworthy that the
iterates that resulted from solving this problem with the penalty parameter artificially
held fixed at d = 1 were identical to iterates that resulted for the adjusted d solution.
This appears to illustrate that in this case the adjustment of d was purely superficial.

A PRACTICAL ALGORITHM FOR NLPs 773

Table 5.7
Unmodified Hessians with trust region.

Problem nl-i qp-i Conv ‖∇xl‖∞ d0 Max d Min d Final d Last d-cha

CORKSCREW-c 3 39 1 1.1e-8 1.d0 1.d0 1.d0 1.d0 0
CORKSCREW-f 4 43 1 1.9e-8 1.d0 1.d0 1.d0 1.d0 0

MANNE-c 5 64 1 2.4e-8 1.d0 1.d0 1.d0 1.d0 0
MANNE-f 6 75 1 1.2e-8 1.d0 1.d0 1.d0 1.d0 0

SVANBERG-c 3 30 3 1.0e-8 1.d0 1.d0 1.d0 1.d0 0
SVANBERG-f 3 38 3 9.5e-9 1.d0 1.d0 1.d0 1.d0 0

ZIGZAG-c 3 38 1 9.3e-9 1.d0 1.d0 1.d0 1.d0 0
ZIGZAG-f 4 41 1 4.8e-8 1.d0 1.d0 1.d0 1.d0 0

Table 5.8
Minimization parameters.

Problem Variables Constraints

CORKSCREW 96 159
MANNE 300 600
SVANBERG 500 1500
ZIGZAG 304 1206

6. Future directions. In this paper we have discussed in some detail an SQP
algorithm for solving large scale nonlinear problems. The numerical results with
default parameter settings indicate that the procedures that we have implemented
are robust, effective, and efficient; the convergence theory in [4] provides a sound
theoretical basis for the procedure. Nevertheless, there are several areas in which the
techniques used here can be improved to allow the solution of larger and more difficult
problems.

Algorithmically, we observe that the current implementation requires the factor-
ization of both (∇gT∇g+Z) and (∇g∇gT), the latter in O3D. While the sparse matrix
package makes this reasonable for the problems that we have currently considered, it
is clearly expensive to maintain both.

The results reported here use analytic or finite difference Hessian approximations.
An examination of the details of O3D reveals that a limited memory BFGS or lim-
ited memory SR1 could be readily incorporated into the code. We have done some
experimentation with such techniques; the results will be reported elsewhere [26].

Many of the problems that we have seen have been degenerate, and this signif-
icantly slows the convergence of the method. The primary culprit is the extremely
poor multiplier estimates provided by the least squares procedure. Improvements in
this area are certainly required.

In some problems (not reported here) that have nonlinear equality constraints,
we have occasionally observed significant difficulty in trying to satisfy the linearized
equality constraints, i.e., in completing Phase I. In these cases we have had some suc-
cess in relaxing the constraints [26]. In the context of O3D, this can be accomplished
by simply fixing the artificial variable at some positive value and continuing the O3D
iterations. In this approach, we often find that O3D converges, and the “recentering”
procedure mentioned in section 2 has led to further improvements. The theory in [4]
supports these ideas. The details will, again, be reported elsewhere.

774 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

Appendix. Problem Descriptions.

Nonlinear Program # 1 (NLP1)

min f(x) = 1
2 ((x1 − x100)x2 + x101)2

subject to

x1xi+1 +

(
1 +

2

i

)
xix100 + x101 ≤ 0, i = 1, . . . , 99,

(sin(xj))
2 − 1

2 ≤ 0, j = 1, . . . , 100,

sin((xj)
2) ≥ 0, j = 1, . . . , 100,

xj ≤ j, j = 1, . . . , 100,

−xj ≤ 1, j = 1, . . . , 100,

(x1 + x100)2 = 1.

Explanation. This problem with 101 variables and 500 constraints is taken from
[13], where it was used to illustrate separability in nonlinear programming.

Nonlinear Program # 2 (NLP2)

min f(x) = 1000

(n∑
i=1

x3
i

)2

−
(

n∑
i=1

x2
i

)(
n∑
i=1

x4
i

)
subject to

x1 ≥ 0 and xn ≤ 1,

xi − xi+1 ≤ 0, i = 1, . . . , (n− 1),

x2
i − xix2

i+1 ≤ 0, i = 1, . . . , (n− 1).

Explanation. There are many local extrema for this problem; we made no special
effort to locate global minima. The objective function is highly nonlinear and has a
dense Hessian, but the constraints have sparse banded first derivatives. Our example
uses n = 250.

Nonlinear Program # 3 (NLP3)

min f(x) =

n∑
i=1

[
100(xi+1 − x2

i)
2 + (1− xi)2

]
subject to

x1 ≥ 0 and xn ≥ 0,

xi − xi+1 ≤ 0, i = 1, 3 . . . , (n− 1),

4xi+1 − x2
i − 4 ≤ 0 i = 1, 3 . . . , (n− 1),

2xi+1 + xi − 1 ≤ 0 i = 1, 3 . . . , (n− 1).

Explanation. The objective function here is Rosenbrock’s function. The objective
function is nonlinear and has a tridiagonal Hessian. The constraints have sparse
banded first derivatives. We solved the problem with n = 250.

A PRACTICAL ALGORITHM FOR NLPs 775

Nonlinear Program # 4 (NLP4)

min f(x) = xTL2x

subject to

i− (x2
i + x2

2i) ≤ 0, i = 1, . . . , (n/2),√
2i− (xi + x2i) ≤ 0, i = 1, . . . , (n/2),

log(xi + xi+1 + xi+2)− xi + xi+1 + xi+2 ≤ 0,

i = 1, . . . , n− 2.

Explanation. The matrix L is the discretized tridiagonal Laplacian operator, so
the objective function is convex and quadratic. The constraints are nonlinear and
the gradients of the active constraints at the solution are linearly dependent. The
problem on which we reported results has n = 1000.

Truss Problem (Truss)

min
x
ρ(cTx)

subject to

S(x)−1F − b ≤ 0,

X(x)GS(x)−1F − βx ≤ 0.

Explanation. This problem chooses the state variables x ∈ Rn to minimize the
weight of an optimal n-bar truss design, subject to constraints on the deflection and
stress of the truss. The function ρ is the density of the material and in our problem
was a nonconvex polynomial, ρ(ζ) = ζ4 − ζ2 + 1. c is a vector containing the lengths
of the bars in the truss. The matrix S is the positive definite stiffness matrix, G is
a matrix that represents the geometry of the truss and design, and F is the vector
of applied forces. The vector b and scalar β form bounds on the maximum allowable
deflections in the state variables and the maximum allowable stress in the truss. We
solved a problem with n = 500 and 1500 constraints.

Maximum Penalized Likelihood Estimate (Stat)

min
x
f(x(t)) = −

n∏
i=1

x(t)eφµ(x(t))

subject to

x ∈ H2(−∞,∞),∫ ∞
−∞

x(t)2dt = 1,

−x(t) ≤ 0 for all t.

Explanation. This particular maximum penalized likelihood estimator is some-
times referred to as “the second estimate of Gaskins and Good” (see, e.g., [34] or [35]).
We discretize this problem by taking a finite random sample of ti’s, say, ti ∈ [α, β].
φ(x) is defined by

φ(x) = α

∫ ∞
−∞

x′(t)2dt+ β

∫ ∞
−∞

x′′(t)2dt,(A.1)

776 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

and given µ > 0, the regularized function φµ(x) is defined by

φµ(x) = φ(x)µ

∫ ∞
−∞

x(t)2dt.(A.2)

The discrete approximate of x(t) was taken to be a cubic spline. The resulting problem
had 500 variables and 1000 constraints.

Boundary Control of Heat Equation (BCHeat)

min f(x, y) =

∫ T

0

[
(x(1, t)− xd(t))2 + ay(t)

]
dt

subject to

C(x(z, t))xt(z, t)−∇(λ(x(z, t))∇x(z, t)) = f(z, t) on Ω× [0, T],

λ(x(z, t))∇x(z, t) = b(z, t) on ∂Ω× [0, T],

x(z, 0) = x0 on Ω,

x ∈ L2(0, T ;H1(Ω)),

y ∈ L2(0, T).

Explanation. The desired profile is denoted by xd(t) and Ω is a square in R2.
The inequality constraints are quadratic and linear and arise from enforcing the space
conditions x ∈ L2(0, T) × H1(Ω) and y ∈ L2(0, T). Our discretization results in
500 variables and 1200 constraints. Similar problems have been solved by Newton’s
method (see [10]), conjugate gradient methods (see [11]), and reduced methods (see
[28]).

Molecule Distance Problem (Molec)

min
x∈R3d

‖∆−D(X)‖F
subject to

aij ≤ Dij ≤ bij .

Explanation. Here ∆, D(X), a, b ∈ Rm×m and X ∈ Rn×3, where n is the number
of atoms and m is the number of interatomic distances (2m = n2 − n). ∆ is a set
of observed data, X is a configuration of atoms (their locations in R3), and D is a
transformation into the space of “distance matrices.” The bound matrices a, b are
upper and lower bounds based on estimating errors in measurements. This problem
arises in the processing of NMR data for visualization of large proteins and organic
molecules (see, e.g., [23] and [27]). The results in the tables correspond to a problem
we solved with 100 variables and 5000 constraints.

REFERENCES

[1] P. T. Boggs, P. D. Domich, and J. E. Rogers, An interior-point method for general large
scale quadratic programming problems, Ann. Oper. Res., 62 (1996), pp. 419–437.

[2] P. T. Boggs, P. D. Domich, J. E. Rogers, and C. Witzgall, An interior point method for
linear and quadratic programming problems, Mathematical Programming Society Commit-
tee on Algorithms Newsletter, 19 (1991), pp. 32–40.

[3] P. T. Boggs, A. J. Kearsley, and J. W. Tolle, A Merit Function for Inequality Constrained
Nonlinear Programming Problems, Internal Report 4702, National Institute of Standards
and Research, Gaithersburg, MD, 1991.

A PRACTICAL ALGORITHM FOR NLPs 777

[4] P. T. Boggs, A. J. Kearsley, and J. W. Tolle, A global convergence analysis of an algorithm
for large scale nonlinear programming problems, SIAM J. Optim., to appear.

[5] P. T. Boggs and J. W. Tolle, A family of descent functions for constrained optimization,
SIAM J. Numer. Anal., 21 (1984), pp. 1146–1161.

[6] P. T. Boggs and J. W. Tolle, A strategy for global convergence in a sequential quadratic
programming algorithm, SIAM J. Numer. Anal., 26 (1989), pp. 600–623.

[7] P. T. Boggs and J. W. Tolle, Sequential Quadratic Programming, in Acta Numerica, 1995,
Cambridge University Press, Cambridge, UK, 1995, pp. 1–51.

[8] P. T. Boggs, J. W. Tolle, and A. J. Kearsley, A truncated SQP algorithm for large scale
nonlinear programming problems, in Advances in Optimization and Numerical Analysis:
Proceedings of the Sixth Conference on Numerical Analysis and Optimization, S. Gomez
and J.-P. Hennart, eds., Kluwer, Norwell, MA, 1994, pp. 69–78.

[9] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. T. Toint, CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[10] J. Burger and M. Pogu, Functional and numerical solution of a control problem originating
from heat transfer, J. Optim. Theory Appl., 68 (1991), pp. 49–73.

[11] C. Carthel, R. Glowinski, and J. L. Lions, On exact and approximate boundary controlla-
bilities for the heat equation. A numerical approach, J. Optim. Theory Appl., 82 (1994),
pp. 429–484.

[12] T. F. Coleman, Large scale numerical optimization: Introduction and overview, in Encyclo-
pedia of Computer Science and Technology, Marcel Dekker, New York, 1992.

[13] A. R. Conn, N. I. M. Gould, and P. T. Toint, Lancelot: A Fortran Package for Large-Scale
Nonlinear Optimization, Ser. Comput. Math. 17, Springer-Verlag, Heidelberg, New York,
1992.

[14] A. R. Conn, N. I. M. Gould, and P. T. Toint, Large-scale nonlinear constrained optimiza-
tion, in Proceedings of the Second International Conference on Industrial and Applied
Mathematics, SIAM, Philadelphia, 1992, pp. 51–70.

[15] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408.

[16] J. Dennis, Jr., M. El-Alem, and M. C. Maciel, A global convergence theory for general trust-
region-based algorithms for equality constrained optimization, SIAM J. Optim., 7 (1997),
pp. 177–207.

[17] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[18] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J.
Optim., 4 (1994), pp. 393–422.

[19] M. El-Alem, A robust trust-region algorithm with a nonmonotonic penalty parameter scheme
for constrained optimization, SIAM J. Optim., 5 (1995), pp. 348–378.

[20] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New
York, 1981.

[21] P. E. Gill, M. A. Saunders, W. Murray, and M. H. Wright, Constrained nonlinear pro-
gramming, in Optimization, G. L. Nemhauser, A. H. G. R. Kan, and M. J. Todd, eds.,
North-Holland, Amsterdam, 1989, pp. 171–210.

[22] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,
Berlin, 1984.

[23] W. Glunt, T. L. Hayden, and M. Raydan, Molecular conformations from distance matrices,
J. Comput. Chem., 14 (1993), pp. 114–120.

[24] M. Gockenbach and A. J. Kearsley, Optimal signal sets for non-Gaussian detectors, SIAM
J. Optim., 9 (1999), pp. 316–326.

[25] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Econom. and Math. Systems 187, Springer-Verlag, Berlin, 1981.

[26] A. J. Kearsley, The Use of Optimization Techniques in the Solution of Partial Differential
Equations from Science and Engineering, Ph.D. thesis, Rice University, Houston, TX,
1996.

[27] A. J. Kearsley, R. A. Tapia, and M. Trosset, The solution of the metric stress and stress
problems in multidimensional scaling using Newton’s method, Comput. Statist., 13 (1998),
pp. 369–396.

[28] F.-S. Kupfer and E. W. Sachs, Numerical solution of a nonlinear parabolic control problem
by a reduced SQP method, Comput. Optim. Appl., 1 (1992), pp. 113–135.

[29] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-
Verlag, Berlin, 1971.

[30] J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM

778 PAUL T. BOGGS, ANTHONY J. KEARSLEY, AND JON W. TOLLE

Rev., 30 (1988), pp. 1–68.
[31] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,

4 (1983), pp. 553–572.
[32] K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in

Econom. and Math. Systems 282, Springer-Verlag, Berlin, 1987.
[33] R. A. Tapia, On the role of slack variables in quasi-Newton methods for constrained optimiza-

tion, in Numerical Optimization of Dynamical Systems, L. C. W. Dixon and G. P. Szegö,
eds., North-Holland, Amsterdam, 1980, pp. 235–246.

[34] R. A. Tapia and J. R. Thompson, Nonparametric Probability Density Estimation, The Johns
Hopkins University Press, Baltimore, MD, 1978.

[35] J. R. Thompson and R. A. Tapia, Nonparametric Function Estimation, Modeling, and Sim-
ulation, SIAM, Philadelphia, 1990.

SIMULATED ANNEALING: SEARCHING FOR AN OPTIMAL
TEMPERATURE SCHEDULE∗

HARRY COHN† AND MARK FIELDING†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 779–802

Abstract. A sizable part of the theoretical literature on simulated annealing deals with a
property called convergence, which asserts that the simulated annealing chain is in the set of global
minimum states of the objective function with probability tending to 1. However, in practice, the
convergent algorithms are considered too slow, whereas a number of nonconvergent ones are usually
preferred. We attempt a detailed analysis of various temperature schedules. Examples will be given
of when it is both practically and theoretically justified to use boiling, fixed temperature, or even
fast cooling schedules which have a small probability of reaching global minima. Applications to
traveling salesman problems of various sizes are also given.

Key words. simulated annealing, temperature, cooling, Markov chain, convergence, inhomoge-
neous chain, fundamental matrix, time to absorption

AMS subject classifications. 60J05, 60K35

PII. S1052623497329683

1. Introduction and summary. Suppose that a function f is defined on a
finite (but large) set of states S. The aim of simulated annealing (SA) is to find a
state x such that f(x) = miny∈S f(y). Because, for some large S, such an aim is not
in general feasible in a reasonable time frame, we may confine ourselves to finding a
near optimal x, i.e., a state x for which f(x) is close to miny∈S f(y).

For each state x in S, define a set N(x), called the set of neighbors of x. Write
N for the family of neighborhoods {N(x), x ∈ S}.

A neighbor choosing matrix G with entries G(x, y) is defined for each x and y in
S such that G(x, y) > 0 if and only if y ∈ N(x). The matrix G is called a generation
matrix.

Define

PT (x, y) =

{
G(x, y) exp(−[f(y)− f(x)]+/T) if y 6= x,
1−∑z 6=x PT (x, z) if y = x,

with a+ = max(a, 0).

The parameter T is called temperature. Write Pn for the transition probability
corresponding to T = Tn, where Tn is the temperature at time n. The sequence {Tn}
is called a temperature schedule. If limn→∞ Tn = 0 we say that {Tn} is a cooling
schedule; we say it is a fixed temperature schedule if Tn = T for all n.

An initial probability distribution and the sequence of one-step transition proba-
bilities {Pn} define an inhomogeneous Markov chain {Xn}. This chain will be called
an SA chain. The SA chain is the basis of the SA algorithm. It originates from an
idea that goes back to the paper by Metropolis et al. [24] and was followed up by
many other contributors (see, e.g., Aarts and van Laarhoven [2], Aarts and Korst [3],
Chiang and Chow [5], Connolly [9], Connors and Kumar [10], Gelfand and Mitter [11],

∗Received by the editors October 30, 1997; accepted for publication (in revised form) July 1, 1998;
published electronically June 30, 1999.

http://www.siam.org/journals/siopt/9-3/32968.html
†Department of Mathematics and Statistics, University of Melbourne, Parkville 3052, Victoria,

Australia (harry@ms.unimelb.edu.au).

779

780 HARRY COHN AND MARK FIELDING

Geman and Geman [12], Hajek [15], Hwang and Sheu [16], Romeo and Sangiovanni-
Vincentelli [28]). Recently, Niemiro and Pokarowski [26] and Niemiro [27] have clar-
ified the asymptotic behavior of the SA chain by relating it to the theory of the tail
events (see Cohn [6], [7], [8]).

Write P (m,n)(x, y) = P (Xn = y|Xm = x) for m < n. We shall say that y is
reachable from x if there exist an integer p and states x = x0, x1, x2, . . . , xp = y such
that xk+1 ∈ N(xk) for 0 ≤ k < p. It is easy to see that if y is reachable from x then
there must be a number p such that P (m,m+p)(x, y) > 0 for any m.

We assume that (S,N) is irreducible, i.e., that any state x is reachable from any
state y.

We shall say that state y is reachable at height h from state x if h is the small-
est number such that x = y and f(x) ≤ h or if there is a sequence of states
x = x0, x1, . . . , xp = y for some p ≥ 1 such that xk+1 ∈ N(xk) for 0 ≤ k < p
and f(xk) ≤ h for 0 ≤ k ≤ p.

State x is said to be a local minimum if no state y with f(y) < f(x) is reachable
from x at height f(x). The depth of x, d(x), is defined to be ∞ if x is a global
minimum; otherwise it is the smallest number h, h > 0, such that some y with
f(y) < f(x) can be reached from x at height f(x) + h.

We assume that y is reachable from x at height h if and only if x is reachable
from y at height h. This assumption is called weak reversibility.

Write S∗ for the global minimum set of states, i.e., the set of states x with
f(x) = miny∈S f(y). We say that the SA chain (or algorithm) is convergent if

lim
n→∞P (Xn ∈ S∗) = 1.(1.1)

Hajek [15] identified the smallest value of c for which an SA chain with cooling
schedule of the form

Tn =
c

log(n+ n0)

is convergent. (Here n0 is a positive integer.) It was proved in [15] that the SA
algorithm is convergent if and only if c ≥ d∗, where d∗ is the largest depth of the local
minima, which are not global minima.

Thus Tn = d∗/ log(n + n0) gives the fastest logarithmic-type cooling schedule
leading to convergence. Such a cooling schedule is called canonical, and d∗ is said
to be the canonical constant. It is important to stress that it would be wrong to
assume that a canonical cooling schedule necessarily reaches global minimum faster
than other schedules.

A convergent chain obtains optimality in the long run even if we adopt a memo-
ryless algorithm, i.e., an algorithm that does not recall the past values of the chain.
An algorithm that stores the best solution of all iterations will be called a memory
algorithm.

The aim of this paper is to study the behavior of the SA algorithm in terms of
temperature schedules. It turns out that the key critical points for the limit behavior
of the SA chain occur in the range of logarithmic cooling schedules. We shall describe
a number of optimality criteria corresponding to various situations. Then we study
some theoretical properties of algorithms that are used in practice. It turns out that
there is no theoretical reason why some temperature schedules that are attached to
nonconvergent SA chains should be overruled. Examples are given to illustrate each
case.

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 781

2. Which optimality? An algorithm needs to specify a stopping rule (time),
i.e., a time when the process is terminated and a decision is adopted. This stopping
rule, denoted by τ , may or may not depend on the values taken by the chain up to the
stopping time and may be random. It is also a function of the temperature schedule
and other parameters of the algorithm as well as the optimality criterion adopted for
the problem.

It is usually assumed that an optimal (near optimal) algorithm is one that
(i) with probability 1 reaches the global (near global) minimum in finite time,

and
(ii) is faster than other algorithms.
Both desiderata need to be qualified. It will turn out that (i) may have a different

meaning for memoryless algorithms than for those with memory. Besides, we shall
further see that (i) may be done away with if we consider multiple run algorithms.
As far as (ii) is concerned, there are a number of principles for optimality based on τ ,
the most common one being searching for the algorithm that attains the minimum of
E(τ). However, such a criterion would exclude algorithms with P (τ = ∞) > 0. The
choice of the algorithm and the corresponding optimality criterion may be problem
dependent. A discussion of various criteria of optimality follows.

2.1. Convergent algorithms. A convergent chain, defined by (1.1), ensures
that the global minimum is eventually reached if a sufficiently large number of iter-
ations is allowed. If convergence fails for a cooling schedule {Tn}, there is a positive
probability that the SA chain will never reach a global minimum state (see Hajek
[15]). Some authors seem to assume that convergence is a necessary property of a
successful algorithm. As previously mentioned, the canonical schedule, despite being
the fastest tending to 0, is not necessarily optimal, i.e., the fastest in reaching a global
minimum.

In fact, convergence is not a necessary attribute of a successful algorithm either.
It may be necessary in relation to a memoryless algorithm. For memory algorithms,
there is no a priori reason for a cooling schedule with property (1.1) to be preferred
to temperature schedules that do not satisfy (1.1).

By the same token, one should not a priori eliminate convergent algorithms from
the search of optimal schedules.

2.2. Regular algorithms. For memory algorithms, (2.1) is replaced by the less
restrictive requirement that S∗ be reached with probability 1. In such a case, a
criterion for optimality should depend only on how early S∗ is reached.

Suppose that, for any given temperature schedule {Tn}, we define the stopping
time τ to be the first n such that Xn hits S∗. An algorithm for which

P (τ <∞) = 1(2.1)

is said to be regular and defective otherwise.
For memory algorithms, τ is the variable that should be optimized. The relevant

sequence of random variables is {min(f(X1), . . . , f(Xn))}, and (2.1) is equivalent to

lim
n→∞P (min(f(X1), . . . , f(Xn)) = min

x∈S
f(x)) = 1.(2.2)

Obviously (2.2), or equivalently (2.1), is a convergence property, and it is easy to see
that it holds for a much larger class of temperature schedules than the ones satisfying
(1.1). For example, all the chains corresponding to fixed temperature schedules satisfy

782 HARRY COHN AND MARK FIELDING

it, as they are ergodic Markov chains with stationary transition probabilities. It is well
known that for such chains all states are recurrent and (2.1) holds. On the other hand,
if {πx} is the stationary probability distribution, then limn→∞ P (Xn = x) = πx > 0
for all x and therefore

lim
n→∞P (Xn ∈ S∗) = 1−

∑
x/∈S∗

πx < 1,

so that (1.1) fails.
We shall see later an example where it may be optimal to boil, i.e., to let Tn tend

to∞. This case corresponds to a Markov chain with stationary transition probabilities
given by the generation matrix.

We shall show that there are problems where a fixed optimal temperature may
be identified.

For regular algorithms, a criterion for τ∗ to be optimal is

E(τ∗) = min
τ∈T

E(τ),

where T is the class of stopping times attached to all temperature schedules. This
criterion is often used in operations research.

A number of papers have pointed out the potential usefulness of memory algo-
rithms (see, e.g., Kirkpatrick [20], Gelfand and Mitter [11] for cooling schedules and
Connolly [9] for a fixed temperature algorithm).

We shall study the properties of τ for fixed temperature schedules in a later
section.

2.3. Defective algorithms. It may seem natural to consider optimality with
respect to the class of all temperature schedules defining a regular algorithm. However,
a closer examination does not justify such a criterion. We also need to consider
temperature schedules that may correspond to defective algorithms, even if P (τ <∞)
is not even close to 1. In fact, such algorithms are the ones mostly used in practice.

Suppose that we want to allow for a fixed number of iterations N and choose the
algorithm that performs the best within N iterations.

Consider the case when the numbers N and p are suitably chosen such that, for
a stopping time τ corresponding to some temperature schedule,

P (τ ≤ N) ≥ p.
Define T to be the class of all regular and defective τ , where τ is the first hitting time
of S∗ (or near optimal states). An optimality criterion for such a case will be satisfied
by a stopping time τ∗ in T such that

P (τ∗ ≤ N) = sup
τ∈T

P (τ ≤ N).

In fact, we may achieve a property close to (2.2) in terms of some number, say k,

of independent runs of size N. Indeed, if {X(i)
n , n = 1, . . . ,N} is the ith run with

i = 1, . . . , k, then

P

(
min

i∈{1,...,k}
min

(
f
(
X

(i)
1

)
, . . . , f

(
X

(i)
N

))
= min

x∈S
f(x)

)
≥ 1− (1− p)k.(2.3)

By suitably choosing k such that the right-hand side of (2.3) is as large as desired,
and adopting the stopping rule τN = min (τ,N), we may ensure both the quality of
the algorithm and a limitation on the number of iterations.

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 783

2.4. Near optimality. If optimality requires too many iterations, near optimal-
ity may be a suitable alternative. The latter is in fact the case with most algorithms
used in practice. In fact, many feasible algorithms will only provide a near optimal
solution.

In some cases, getting a near minimum, say, within two percent of the global min-
imum, can be achieved with a drastic reduction in the number of iterations required
for finding a global minimum state. An improvement from two percent to, say, one
percent may result in a huge increase in the number of iterations, which is not always
practical.

3. Fixed temperature schedules. If a simulated annealing chain is run with a
fixed temperature, then, under minor conditions on the generation matrix, the “best
state so far” will, with probability 1, ultimately become a global minimum, and the
expected time and variance of the time until reaching a global minimum will be finite.
This follows from the classical theory of finite Markov chains.

We will see that for some small and medium-size problems, the fixed temperature
schedules seem to work better than the simulated algorithms based on a cooling
schedule.

Define a Markov chain {X∗n} with one absorbing state representing the states of
S∗ lumped together. The states outside S∗, as well as the transition probabilities
among themselves, remain unchanged. Clearly, the first time the chain {X∗n} reaches
S∗ is a stopping time, say, τ . Such a case is well known in the theory of Markov
chains (see, e.g., Kemeny and Snell [18, Theorem 3.5.3]). Denote by Q the transition
matrix corresponding to the states outside S∗. The matrix N = (I −Q)−1 is called
fundamental. The square matrix I, called identity matrix, has the diagonal entries
equal to 1 and is 0 elsewhere. Let A be an arbitrary finite matrix. The matrix Asq
is formed from A by squaring all entries. We denote by ξ a column matrix having all
components equal to 1.

The following result is extracted from Theorem 3.5.4 of [18].
Theorem 3.1. (i) The ith component of Nξ is the mean number of steps needed

to reach S∗ given that the chain starts in i.
(ii) The ith component of (2N − I)Nξ − (Nξ)sq is the variance of the same

function.

3.1. An optimal boiling schedule example. In Hajek [15], a small problem
instance, shown here as Figure 3.1, is given for SA consisting of 26 states. The chain is
used by Hajek to illustrate convergent schedules. Ironically, it turns out that boiling
to ∞ is the optimal temperature schedule.

Shown is the neighborhood structure as well as the cost associated with each state.
The states have been numbered arbitrarily to give the state space S = {1, 2, . . . , 26} .
The relationship y ∈ N(x) is represented by an arrow from x to y. So the set
of neighbors of state 9, for example, is N(9) = {8, 10, 13} , and for state 3, we get
N(3) = {2} .

There are six local minima, states 1, 2, 10, 12, 17, and 26, and the set of global
minima is S∗ = {1, 2, 26} . It is easy to check that this chain is weakly reversible.

We shall assume that the generation matrix is given by G(x, y) = 1/|N(x)| for
all x ∈ S and y ∈ N(y).

We note that this example is only trivial in size. It does, however, allow us to
examine the application of Markov chain theory to SA in a way not plausible for
practical problems. That is the explicit examination of the transition matrix. It may
also raise interesting questions about the behavior of SA in real-life problems.

784 HARRY COHN AND MARK FIELDING

1

4

5

8

10

12

10

17

23

3

45 15 16

1814

13 19

25

6

2

7

8

9

1

11

20

21

22

24

26

12

f

Fig. 3.1. A 26-state example given in Hajek [15].

Table 3.1
Performance of fixed temperature schedules for a 26-state SA chain. Mean and standard devi-

ation of time to hitting a global minimum are given.

T E(τ) SD(τ)
0 ∞ ∞
1 2964.04 2949.57
2 250.77 252.25
3 129.00 126.93
4 97.87 94.48
5 84.73 80.73

10 67.02 62.16
50 58.67 53.48

100 57.91 52.70
∞ 57.20 51.97

Table 3.2
Performance of logarithmic cooling schedules for a 26-state SA chain. Estimates of mean and

standard deviation of time until hitting a global minimum are given. The values at c = ∞ follow
from the calculations with fixed temperature.

c E(time) SD(time)
6 ∞ ∞
8 1026.74 3464.46

10 259.78 499.17
50 64.45 61.70
80 60.39 56.06

100 60.44 55.74
200 58.72 53.84
500 57.81 53.58

1000 57.78 52.50
∞ 57.20 51.97

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 785

To get from the local minimum state 12 to a state of lower cost, it is necessary to
climb at least five units, so the depth of state 12 is equal to 5. Similarly, the depth of
state 10 is 2, the depth of state 17 is 6, and the depth of the globally minimal states
is defined as being infinite. The cups associated with the local minima that are not
global minima are {10}, {11, 12}, and {14, 15, 16, 17, 18}.

The generation matrix for Hajek’s 26-state example is irreducible, and as a result,
the homogeneous SA Markov chain is also irreducible. Thus all states are recurrent.
For Hajek’s example, we investigate how the value of the temperature influences the
time it takes a homogeneous SA chain to reach a global minimum. To this end we
consider the Markov chain formed by making all global minima absorbing states. For
x = 1, 2, 26, we set G(x, y) = 1 for y = x and 0 otherwise. Given Q, we can go
on to calculate the fundamental matrix N = (I −Q)−1. This can then be used to
calculate the mean and variance of the time it takes a homogeneous SA Markov chain
to reach a global minimum given by Theorem 3.1.

Performing these calculations for Hajek’s example, we find, if we start the SA
chain in, say, state 13, that the mean time until absorption is equal to

(8 + 64 δ + 22 δ2 + 190 δ3 + 85 δ4 + 243 δ5 + 318 δ6 + 180 δ7

+ 600 δ8 + 107 δ9 + 632 δ10 + 101 δ11 + 391 δ12 + 127 δ13

+ 135 δ14 + 118 δ15 + 24 δ16 + 65 δ17 + 2 δ18 + 18 δ19 + 2 δ21)/
(δ6 (4 + 16 δ2 + 21 δ4 + 13 δ6 + δ7 + 3 δ8 + δ9 + δ11))

with δ = exp(−1/T), and the variance is equal to

(64 + 896 δ + 4288 δ2 + 5888 δ3 + 26380 δ4 + 25352 δ5 + 82400 δ6

+ 90128 δ7 + 168711 δ8 + 236270 δ9 + 267229 δ10 + 444772 δ11

+ 387603 δ12 + 616478 δ13 + 557847 δ14 + 658450 δ15 + 747564 δ16

+ 582882 δ17 + 849119 δ18 + 481773 δ19 + 779677 δ20 + 418840 δ21

+ 571970 δ22 + 376007 δ23 + 340216 δ24 + 305693 δ25 + 174206 δ26

+ 202119 δ27 + 86565 δ28 + 102605 δ29 + 45346 δ30 + 38468 δ31

+ 23053 δ32 + 10177 δ33 + 9792 δ34 + 1782 δ35 + 3092 δ36

+ 184 δ37 + 654 δ38 + 8 δ39 + 80 δ40 + 4 δ42)/
(δ12(4 + 16 δ2 + 21 δ4 + 13 δ6 + δ7 + 3 δ8 + δ9 δ11)2).

We see from Table 3.1 that, for Hajek’s example, SA with a fixed temperature
will find a global minimum more quickly, on average, for larger temperatures. The
optimum strategy based on E(τ) is to take T =∞, i.e., to adopt the “boiling” schedule
which corresponds to a Markov chain with transition matrix given by the generation
matrix. This strategy is the one that accepts all moves with probability 1.

Shown in Table 3.2 are the results from simulations performed for cooling sched-
ules of a logarithmic type, including the canonical cooling schedule. Ten thousand
runs were performed at each value of c. Again, it is apparent that the optimal strategy
is to adopt boiling.

4. A state classification and eventual traps. As in the homogeneous case,
the states of an inhomogeneous Markov chain may be classified as positive, null,
recurrent, or transient. However, some of the definitions used for the homogeneous
chains do not seem to carry over, whereas other definitions for inhomogenous chains

786 HARRY COHN AND MARK FIELDING

which reduce to the classical ones are available. A state classification for finite and
countable inhomogeneous chains is given in [8]. We shall adapt it here to the particular
case of a SA chain. Also, the atomic sets of the tail σ-field (see [8]) admit in this case
a neat representation in terms of some sets, which we shall call eventual traps.

A state x will be said to be null if limn→∞ P (Xn = x) = 0 and positive if
limn→∞ P (Xn = x) > 0. Such a classification is not a dichotomy for inhomogeneous
chains, but in the case of an SA chain, it is (see [26]). Let {An} be a sequence
of events. Write {An i.o.} = ∩∞n=1 ∪∞m=n Am, where i.o. stands for infinitely often
and {An ult.} = ∪∞n=1 ∩∞m=n Am, where ult. stands for ultimately. We say that
limn→∞An = A almost surely (a.s.) if P ({An ult.}) = P ({An i.o.}) and A is an
event differing from {An ult.} only by a set of probability 0. We say that a state x is
recurrent if

P (Xn = x i.o.) > 0,

and transient otherwise. A positive state x is always recurrent and is called positive
recurrent. Null states may be transient or recurrent. A null state which is recurrent
will be called null recurrent. These definitions were given in [8].

We say that A is a recurrent class if it contains only recurrent states and for any
x ∈ A

{Xn = x i.o.} = {Xn ∈ A i.o.} a.s.

We say that the recurrent class A is an eventual trap if
(i) limn→∞ P (Xn ∈ A) > 0 and
(ii) P (Xn = x i.o.) = P (Xn ∈ A i.o.) = P (Xn ∈ A ult.) for any x ∈ A.
We use the term eventual trap as distinct from trap to emphasize that a Markov

chain reaching A may have a positive probability of escaping from A at all times, but
as n → ∞ such an escape becomes less and less likely and the chain must end up in
an eventual trap with probability 1.

Remark. For an SA chain, it turns out that if A is an eventual trap with
limn→∞ P (Xn ∈ A) < 1, then Ac, the complementary set to A, must contain at
least one eventual trap.

A result of one of the present authors (see [8] and the references therein) describing
the tail σ-field of a finite inhomogeneous Markov chain leads to the assertion that a
chain of SA type has a finite number of disjoint eventual traps A1, . . . , At such that

lim
n→∞P (Xn ∈ ∪ti=1Ai) = 1.

Obviously, the number of eventual traps does not exceed the cardinality of S.

5. Weak and strong ergodicity: Conditional convergence. Write P (m,n)(x, y) =
P (Xn = y|Xm = x) for m < n. We shall say that {Xn} is weakly ergodic if for any
m,x, y, and z,

lim
n→∞(P (m,n)(x, z)− P (m,n)(y, z)) = 0.

A sufficient condition for weak ergodicity is the existence of some constant u such
that

∞∑
k=1

min
x,y

P (k,k+u)(x, y) =∞.(5.1)

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 787

However, it is easy to see that (5.1) requires that for all x

∞∑
n=1

P (Xn = x) =∞.

In general, the above property is not necessary for weak ergodicity.
We say that {Xn} is strongly ergodic if there is a probability distribution π =

(π1, . . . , πs) on S such that for any x, y, and m ≥ 1,

lim
n→∞P

(m,n)(x, y) = πy.(5.2)

It is easy to see that strong ergodicity implies weak ergodicity. For properties of
weakly and strongly ergodic chains, see Seneta [29].

We say that {Xn} is conditionally convergent if for some numbers π
(m)
x,y and any

m ≥ 1,

lim
n→∞P

(m,n)(x, y) = π(m)
x,y .(5.3)

In the literature of inhomogeneous Markov chains, such chains are known as convergent
(see Mukherjea [25] and Cohn [7]), but that term has been used before in relation to
property (1.1), so conditional convergence will be used for (5.3). For weakly ergodic
chains, conditional convergence is equivalent to strong convergence, as defined in (5.2).

6. Slow cooling schedules. Let us write f= min{x∈S} f(x) and denote by d̄
the number with the property

∞∑
k=1

exp(−d̄/Tk) =∞

and

∞∑
k=1

exp(−d/Tk) <∞

for any d > d̄.
If d̄ > 0 we shall say that {Tn} is a slow cooling schedule. If d̄ = 0 we say that

{Tn} is a fast cooling schedule.
The following result is extracted from Niemiro and Pokarowski [26] and Niemiro

[27].
Theorem 6.1. Suppose that {Xn} is an SA chain with d̄ > 0. Then
(i) there exist t recurrent classes A1, . . . , At which are eventual traps;
(ii) the chain is conditionally convergent;
(iii) if x ∈ Ai then y ∈ Ai if and only if y is reachable from x at height lower than

or equal to f(Ai) + d̄, where f(Ai) = minz∈Ai f(z);

(iv) if S̄ is the set consisting of deepest states of A1, . . . , At, then limn→∞ P (Xn ∈
S̄) = 1;

(v) if x ∈ S̄, then limn→∞ P (Xn = x) > 0.
Notice in particular that a convergent chain may admit either only one eventual

trap (the case of a weakly ergodic chain) or several eventual traps, each of them
containing some global minimum states on which the whole probability mass will
eventually concentrate.

788 HARRY COHN AND MARK FIELDING

On the other hand, it is easy to see that by decreasing d̄1 to, say, d̄2, the number
of eventual traps does not decrease, because any eventual trap for d̄2 is either an
eventual trap for d̄1 or belongs to a partition of an eventual trap for d̄1. Thus, if d̄ is
smaller than d∗, the SA algorithm does not converge because the set of eventual traps
will necessarily include some that do not contain any global minima states. Such
eventual traps attract the chain to local minima. Since each of the limit probabilities
limn→∞ P (Xn ∈ Ai) is positive, property (2.1) also fails for chains of this kind.
Indeed, notice that limn→∞ P (Xn ∈ S∗) = 1 −∑i∈Λd̄

limn→∞ P (Xn ∈ Ai), where

{Ai : i ∈ Λd̄} is the collection of eventual traps corresponding to d̄ which do not
contain global minima states. Clearly, limn→∞ P (Xn ∈ S∗) becomes smaller as d̄
decreases and, as a result, the number of eventual traps increases. If d̄ is sufficiently
small, then any local minima states may form the bottom of some eventual trap. This
is the reason why some heuristics cooling faster than logarithmic are not convergent.
Such algorithms may end up in a local minimum. We shall describe a number of such
algorithms later in the paper.

Theorem 6.2. A convergent chain is weakly ergodic if and only if one of the
following two statements holds:

(i) There is only one global minimum state.
(ii) If x and y are two global minima states, then x is reachable from y at height

smaller than or equal to f + d̄.
Proof. It is easy to see that if (i) holds, the only global minima state, say x, is in

a recurrent class A which is an eventual trap. However, A is the only eventual trap
since limn→∞ P (Xn ∈ A) ≥ limn→∞ P (Xn = x) = 1. Thus {Xn} has a trivial tail
σ-field, which implies weak ergodicity (see [6]).

To prove (ii) notice that by Theorem 6.1 (iii) all the global minima states must
be in one recurrent class which is the unique eventual trap. This completes the proof.

Corollary 6.3. A convergent chain is not weakly ergodic if and only if there
exist two global minima states x and y such that y is reachable from x at height higher
than f + d̄.

Theorem 6.4. A weakly ergodic SA chain corresponding to a cooling schedule is
convergent and strongly ergodic.

Proof. Any weakly ergodic chain has a trivial tail σ-field and therefore could not
admit more than one eventual trap. However, the only cooling schedules that are not
convergent are the ones that admit several eventual traps, with at least one having
no global minimum states. This proves convergence. Strong ergodicity follows from
Theorem 6.1 and weak ergodicity.

Remark. If we do not confine ourselves to cooling schedules, then weak ergodicity
may not imply convergence, as we have seen in the case of fixed temperature schedules.

To summarize the above results on convergence, we conclude that
(i) the canonical cooling schedule may result in a chain that is not weakly ergodic;
(ii) the canonical constant d∗ is the cutoff point for d̄ below which the process

exhibits a phase transition, with its class of eventual traps increasing to include some
local minima traps.

Lemma 6.5. Suppose that
∑∞
n=1 Pn(x, y) = ∞, where lim infn→∞ P (Xn = x) >

0. Then P (Xn = x,Xn+1 = y i.o.) > 0.
Proof. Write An = {Xn = x,Xn+1 = y}. We shall show that a divergent part

of the Borel–Cantelli-type lemma holds for the events {An}. Write Fn for the σ-field
generated by X1, . . . , Xn. The Markov property of {Xn} yields

P (An|Fn) = Pn(x, y)1{Xn=x}.(6.1)

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 789

According to the Borel–Cantelli–Levy lemma,

P (An i.o.) > 0 if and only if P

(∞∑
n=1

P (An|Fn) =∞
)
> 0.(6.2)

Consider now the random variable

Yn =

∑n
k=1 Pk(x, y)1{Xk=x}∑n

k=1 Pk(x, y)
.(6.3)

Notice that the denominator in (6.3) tends to ∞ as n → ∞. Since 0 ≤ Yn ≤ 1, for
{Yn} to converge in probability to 0, it is necessary that E(Yn) → 0. However, this
is not the case as lim infn→∞E(Yn) ≥ lim infn→∞ P (Xn = x) > 0, which implies
P (
∑∞
k=1 Pk(x, y)1{Xk=x} = ∞) > 0; the proof is concluded on account of (6.1) and

(6.2).
This lemma provides a criterion of recurrence for a state y which is reachable in

one step from a positively recurrent state.
Theorem 6.6. If {Xn} is convergent, then
(i) {f(Xn)} converges in probability to f ;
(ii) {f(Xn)} converges a.s. to f if and only if

∞∑
n=1

exp

(
−d(x)

Tn

)
<∞(6.4)

for any state x with x /∈ S∗ and x ∈ N(y), where y is a global minimum state.
Proof. Since f is constant on S∗, (i) follows from the definition of convergence

(1.1).
To prove (ii), notice that (6.4) implies

∞∑
n=1

P ({Xn ∈ S∗} ∩ {Xn+1 /∈ S∗}) <∞.

By a Borel–Cantelli-type lemma given by Barndorff-Nielsen [4], the above implies that
P ({Xn ∈ S∗ ult.}) = 1. Thus all states outside S∗ are transient, which proves the
first implication of (ii).

Assume now that (6.4) fails. Thus there exists a state x with f(x) > f , x ∈ N(y),
where y is a global minimum state, and

∞∑
n=1

exp

(
−d(x)

Tn

)
=∞.

According to Theorem 6.1, all states of S∗ are positive. Thus we can use Lemma 6.5 to
conclude that x is recurrent. However, in this case, P ({f(Xn) ≥ f(x) > f i.o.}) > 0,
contradicting the almost sure convergence of {f(Xn)} to f . This completes the proof
of (ii).

7. Critical points for the SA chains. Next we shall identify a number of
critical points for the constant c of an SA chain with logarithmic temperature schedule.

Theorem 7.1. Suppose that the SA chain {Xn} admits a cooling schedule {Tn =
c/ log(n0 + n)} for some constant c.

790 HARRY COHN AND MARK FIELDING

1. Define c0 to be the smallest h > 0 such that

∃x ∈M, y ∈ N(x) : d(x) < h and f(x) < f(y) ≤ f(x) + h,

where M is the set of all local minima, including global minima. Then c0 is the
smallest c such that null recurrent states exist. For c < c0, the SA chain assumes
only positive recurrent and transient states, and its collection of eventual traps is
maximal in number.

2. Define

c1 = min
x∈M,x/∈S∗

d(x),

where M is the set of all local minima states. c1 is the smallest c such that the number
of recurrent classes that are eventual traps decreases.

3. Define

c2 = d∗ = max
x∈M,x/∈S∗

d(x).

Then c2 is the smallest c such that the algorithm is convergent. It is also the smallest
c such that all local minima that are not global minima are null states, or the smallest
c such that the only positive recurrent states are global minima states.

4. Define c3 to be the smallest c such that a null recurrent local minimum exists.
c3 is the smallest h such that there exist a local or global minimum state x and a local
minimum state y with d(x) > h and y reachable at height f(x) + h from x.

5. Define

h∗ = max
x,y∈S∗

{h : y is reachable from x at height f + h}

and c4 = max{d∗, h∗}. Then c4 is the smallest c for which weak ergodicity occurs.

6. Define

c5 = max
x∈S

f(x)−min
y∈S

f(y).

Then c5 is the smallest c for which all states are recurrent.

7. Define c6 = +∞ in the case when the transition probabilities of the SA chain
do not depend on the temperature. Then c6 is the only c for which all states are
positive recurrent.

Proof. Notice first that by simple manipulations we deduce that for any ci with
i ∈ {1, . . . , c6} we have for α ≥ ci

∞∑
k=1

exp(−α/Tk) =∞

and

∞∑
k=1

exp(−α/Tk) <∞

for α < ci.

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 791

Transient

Positive recurrent

5

f

8

6

7 9

12

1 3 13 14 15

10 11

4

1

2

3

4

5

6

2

Fig. 7.1. 0 ≤ c < 1. All local and global minima are positive states. It is a defective algorithm.
No null recurrent states exist. The chain may freeze in any (connected set of) local minima including
global minima. There are four eventual traps. This also is the case for all fast cooling schedules.

1

2

3

4

5

6

f

4

5

2

8

6

7 9

12

1 3 13 14 15

10 11

Transient

Null recurrent

Positive recurrent

Fig. 7.2. 1 ≤ c < 2. A null recurrent state first occurs. One local minimum is rendered
transient. If the SA chain becomes trapped in the eventual trap containing the null recurrent state,
then, strictly speaking, the chain will never freeze. That is, the null recurrent state will be visited
infinitely often. Such visits will, however, become less and less frequent and further apart. There
are three eventual traps.

To prove point 1 we take into account that for c = c0 the positive states will
remain the same as for c < c0 but, according to Lemma 6.5, the set of null recurrent
states will increase.

To prove point 2, notice that for c = c1, at least two eventual traps for c < c1
become merged in one eventual trap. This follows from Theorem 6.1(iii).

Point 3 is also a consequence of Theorem 6.1, because for c = c2 the eventual traps
containing global minima must contain all local minima as well. As the probability
mass concentrates in the bottom states of a recurrent eventual trap the chain must
be convergent.

792 HARRY COHN AND MARK FIELDING

1

2

3

4

5

6

f

4

5

2

8

6

7 9

12

1 3 13 14 15

10 11

Transient

Null recurrent

Positive recurrent

Fig. 7.3. 2 ≤ c < 3. The canonical cooling schedule is reached. The chain is convergent. There
are two eventual traps. All eventual traps contain global minima. Only global minima are positive
recurrent states.

1

2

3

4

5

6

f

4

5

2

8

6

7 9

12

1 3 13 14 15

10 11

Transient

Null recurrent

Positive recurrent

Fig. 7.4. 3 ≤ c < 4. More states become null recurrent, including a local minimum. The two
eventual traps have increased in size.

To prove point 4, notice that c3 is defined in such a way that we may choose x
to be a bottom state of an eventual trap which makes it positive recurrent, and the
condition of Theorem 6.1(iii) is satisfied, implying that y is recurrent. It is easy to
see that x and y belong to the same recurrent class for which x is a bottom state and
f(y) > f(x). This makes y a null state.

Point 5 follows from the observation that c = c4 does not allow two eventual
traps, and this is equivalent to weak ergodicity.

We leave the proofs of 6 and 7 to the reader.

Remark. It has turned out that the critical points identified above belong to
a logarithmic cooling schedule. For cooling schedules that go faster to 0 than a
logarithmic one, we can easily see that the SA chain behavior is the one described
for c < c0. For temperature schedules that are slower than logarithmic, the SA chain

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 793

1

2

3

4

5

6

f

4

5

2

8

6

7 9

12

1 3 13 14 15

10 11

Positive recurrent

Null recurrent

Transient

Fig. 7.5. 4 ≤ c < 5. The chain is weakly ergodic. All global minima are contained in the single
eventual trap.

Positive recurrent

f

4

5

2

8

6

7 9

12

1 3 13 14 15

10 11

Null recurrent

1

2

3

4

5

6

Fig. 7.6. c ≥ 5. There is one eventual trap, incorporating the entire state space. All states are
recurrent, but only global minima are positive recurrent.

behavior is as in the case c ≥ c5. For temperature schedules with a subsequence of
{Tn} bounded away from 0, we get a weakly ergodic {Xn} with all states positive
recurrent.

We shall consider now an example of an SA chain with 15 states to illustrate
the asymptotic behavior of slow cooling schedules described above. The example
is shown in Figures 7.1–7.7, where the properties of states are depicted at various
values of c. The dotted graphs delineate the eventual traps. Marked in black are the
positive recurrent, in gray the null recurrent, and in white the transient states. For
this example we get c0 = c1 = 1, c2 = 2, c3 = 3, c4 = 4, and c5 = 5.

8. Fast cooling schedules. Most of the algorithms applied to large problems
are of the fast cooling type and are therefore nonconvergent. This is the case for the
algorithms of Aarts and van Laarhoven [1], Kirkpatrick, Gellat, and Vecchi [19], and

794 HARRY COHN AND MARK FIELDING

6

f

1 3 13 14 15

Positive recurrent

2

4

65

8

7 9

12

10 11

1

2

3

4

5

Fig. 7.7. c = +∞. The case where boiling is employed and all transitions are accepted. No
cooling takes place. All states are positive recurrent. This also is the case for any fixed positive
temperature.

Lundy and Mees [23], which satisfy the condition

∞∑
n=1

Pn(x, y) <∞(8.1)

for any x, y with f(y) > f(x).
Consider now the Markov chain {XA

n } with state space A and transition proba-
bility matrix R, with entries

R(x, y) =

G(x, y) if f(y) < f(x),
0 if f(y) > f(x),
1−∑z 6=xG(x, z) if f(y) = f(x)

for x, y ∈ A. We shall attach such Markov chains to any (local minima) recurrent
class A.

Theorem 8.1. If (8.1) holds, then
(i) {f(Xn)} converges a.s. to a random variable W whose probability mass is

concentrated on the set of local and global minima;
(ii) all the states except for global and local minima are transient;
(iii) {Xn} eventually freezes in a set of states of constant objective function f ;
(iv) if x belongs to a recurrent class A consisting of local or global minima states,

then limn→∞ P (Xn = x) = P (Λ)πx, where {πx, x ∈ A} is the stationary distribution
of {XA

n }, and Λ = limn→∞{Xn ∈ A} a.s.
Proof. We shall show that if A is a recurrent class consisting only of global or

local minima of constant f -value, then A is an eventual trap. We shall prove first
that for such A we get

P ({Xn ∈ A ult.}) > 0.(8.2)

This is equivalent to showing that

lim
n→∞P (∩∞m=n{Xm ∈ A}) > 0.

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 795

Write

αn = max
x∈A,y/∈A

Pn(x, y).(8.3)

By conditioning, we get

P (∩rm=n{Xm ∈ A}) ≥ P (∩r−1
m=n{Xm ∈ A})(1− αr−1) ≥

.

≥ P ({Xm ∈ A})(1− αm) · · · (1− αr−1).(8.4)

Letting r tend to ∞ in (8.4) and recalling that
∑
n αn < ∞ we get that P ({Xn ∈

A ult.}) > 0 and (8.2) is proved.

Notice now that

∞∑
n=1

P ({Xn ∈ A} ∩ {Xn+1 /∈ A}) <∞,(8.5)

which in conjunction with (8.2) and the Barndorff–Nielsen–Borel–Cantelli-type lemma
[4] imply that A is an eventual trap. The transient states do not have an a.s. con-
tribution in the limit. (Notice that f is constant on A but its value may differ for
various eventual traps being the value of the bottom states which are global or local
minima of f .) This completes the proof of (i).

Obviously, (ii) follows from (i).

It is easy to see that (iii) follows from (i) and (ii).

To prove (iv), notice that the assumption of irreducibility and accessibility of
states from each other makes any chain {XA

n } ergodic and irreducible. Thus

lim
n→∞P

(m,n)(y, x) = πx

for x, y ∈ A, and

lim
n→∞P

(m,n)(y, x) = 0

for x /∈ A. But

P (Xn = x) =
∑
y∈S

P (Xm = y)P (m,n)(y, x).

Thus, if x ∈ A,

lim
n→∞P (Xn = x) = lim

m→∞P (Xm ∈ A)πx = P (Λ)πx,

and the proof is finished.

796 HARRY COHN AND MARK FIELDING

9. Some traveling salesman examples. We next investigate the relative per-
formance of a number of cooling schedules used in applications to which we add a fixed
temperature schedule. There is no claiming that the algorithms chosen are the most
appropriate for the problems. The aim of the exercise is to use statistical analysis to
ascertain the quality of various algorithms which appear to be problem dependent.
Clearly, for some problems there is a need for faster, nonconvergent cooling than
logarithmic cooling. We examine the performance of fast cooling schedules such as
Aarts and van Laarhoven [1] and Lundy and Mees [23] and a basic geometric schedule
as first introduced by Kirkpatrick, Gellat, and Vecchi [19]. The traveling salesman
problems (TSPs) considered vary in size from 48 to 442 cities.

We consider the relative performance of these algorithms allowing a fixed number
of iterations N, for an appropriately chosen N.

9.1. Application of SA to the TSP. For the TSP, we consider a path leading
through all of n cities, starting in an arbitrary city and finally returning to it. A
distance (or possibly time or cost) is given between each pair of cities. We consider
here the symmetric TSP, where the distance is the same in either direction. The
objective is to identify the path that has the smallest total distance. There are
(n− 1)!/2 possible paths.

The neighborhood structure we employ for the TSP is that generated by 2-opt
moves. Consider the cities and the path of the TSP as the vertices and edges of a
graph. A 2-opt move is simply the process of deleting and replacing two edges of the
graph to yield a new path for the TSP. There are n(n− 3)/2 different paths that can
be created by such a move. (Note that once one edge has been deleted, if either of
the neighboring edges is then deleted, it is possible only to reconstruct the original
path, leaving n− 3 edges to choose from.)

The TSP is often stated as a benchmark problem for testing optimization proce-
dures. SA is often outperformed by specially tailored algorithms. The merits of SA
lie in its ease of implementation and its applicability to a wide range of problems. It
is our aim to use the observations of SA on TSPs to gain valuable insight into what
criteria constitute an optimal temperature schedule for problems in general.

9.2. The problem instances. We have considered the six problem instances
of the TSP examined in Aarts and van Laarhoven [2]. Each problem is labeled by the
initials of the author(s) of the reference to it, followed by the number of cities. The
problem instances are gr48 and gr442 from [14], gr120 from [13], kt57 from [17],
kroA100 from [21], and lin318 from [22]. (We have taken lin318 in the form of a
TSP rather than a Hamiltonian circuit.)

9.3. The different schedules. Following are the rules for updating the tem-
perature in each of the schedules considered.

Aarts: Temperature is held fixed during each loop of R = maxx∈S |N(x)| itera-
tions. At the end of each loop the temperature is dropped according to the rule

Tk+1 = Tk

/(
1 +

Tk log(1 + δ)

3σk

)
,

where σk is the standard deviation of the observed values of the cost function during
the kth loop of the algorithm.

Geometric: The temperature is again held fixed during each loop. We have set
the length of each loop to be the same as for Aarts. At the end of each loop the

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 797

temperature is dropped according to the rule

Tk+1 = αTk.

It is worth noting that we found that the number of iterations performed at each loop
had little if any effect on the algorithm’s performance, provided the value of α was
adjusted appropriately.

Lundy: With Lundy’s schedule the temperature is to be dropped after each iter-
ation according to the rule

Tn+1 =
Tn

1 + βTn
,

or equivalently,

Tn =
T0

1 + nβT0
.

To keep this algorithm in the same form as above, we update the temperature at the
end of each loop of the same number of iterations as above. Again, we did not find
this to alter the performance of the algorithm.

Logarithmic: Here again, the temperature is to be updated after each iteration,
the rule for which is

Tn =
c

log(n+ n0)
.

Again we update this temperature at the end of each loop of R iterations.
Fixed temperature: In a fixed temperature algorithm an appropriate temperature

must be found. We have done so experimentally, by running a fixed temperature
schedule for a range of temperatures and choosing the temperature which gives the
best performance, say, the best average solution in N iterations. Connolly [9] gives a
method for determining a fixed temperature by first running a fast cooling algorithm
and noting the temperature at which the best solution found first occurred.

9.4. Method used in comparing the schedules. In an attempt to make a
fair comparison of the different schedules, the following method is used.

Measure of performance: We measure the performance of each algorithm by the
average best solution found in the N iterations. Results of the algorithms with regards
to P (τ ≤ N) are also given, where τ is taken as the time until reaching a global
minimum, as well as within one and two percent of the global minimum.

To choose N: We wish to choose an N for each problem instance that is sufficiently
large, but not too large, for the algorithms to find good heuristic solutions. We
have chosen Aarts’s algorithm to roughly determine such an N, but Lundy’s or the
geometric algorithm also could have been used. First, 100 runs of Aarts’s algorithm
are performed with the parameter setting (δ = 0.1) recommended by its authors. In
choosing N, we consider the number of iterations taken until first visiting the best
solution found in each run. The maximum of these is taken, after removing outliers.
An outlier is taken as a value more than 1.5 times the interquartile range greater than
the third quartile. The initial temperature is determined experimentally to yield an
initial acceptance ratio of 0.95.

Determining the parameters of the schedules: Once N has been chosen for a
given problem, the parameters of Lundy’s algorithm and the geometric schedule are

798 HARRY COHN AND MARK FIELDING

Table 9.1
The parameter settings experimentally found for five temperature schedules for various TSPs. N

is the number of iterations to be allowed for each algorithm and is set according to Aarts’s schedule.

Aarts Geom. Lundy Logar. Fixed
Problem N T0 δ α β c T

gr48 509760 2800 0.1 0.98700 2.546×10−7 250 20
kt57 857223 6000 0.1 0.98920 6.173×10−8 500 40

kroA100 4205532 11500 0.1 0.99220 1.196×10−8 650 45
gr120 7104240 2900 0.1 0.99300 3.704×10−8 150 11
lin318 102173400 11800 0.1 0.99615 1.498×10−9 450 25
gr442 242935584 2420 0.1 0.99670 5.669×10−9 45 2.3

determined experimentally to yield approximately the same N, when determined in
the same way. The initial temperature is set as above. For fixed temperature, the
optimum temperature is found experimentally by trying various temperatures and
finding the one that yields on average the best solution in the N iterations. The
logarithmic schedule is very slow and cooling from a high to a low temperature in the
given amount of time is not possible. We therefore set n0 = 2 in order to maximize
the overall change in temperature, and we determine the optimal value for c in the
same way as we determine the optimum fixed temperature.

Stopping the algorithms: Once parameters are chosen, the algorithms are rerun.
Upon reaching N iterations the temperature is set to zero, and the algorithms are
allowed to (quickly) settle in a local minimum. For the logarithmic schedule the
optimum value of c is found, with this final freezing included in the algorithm. This
final freezing is also included when searching for the optimal fixed temperature.

9.5. Results. Tables 9.1–9.5 show the results from running the five above-
mentioned temperature schemes on the six TSP instances. One hundred runs are
performed for each instance under each temperature schedule. Table 9.1 shows the
number of iterations allowed for each problem instance and the parameters experimen-
tally determined for each algorithm. Reported are the quality of final (best) solutions,
iterations taken to reach these solutions, and the proportion of runs reaching global
or near global minima solutions. Global minima solutions were found only for the
48, 57, and 100 cities instances.

9.6. Remarks regarding simulations. 1. From the simulations carried out,
we see that it is worthwhile having a handful of algorithms available in the application
of SA to a particular problem.

2. In the case of the TSP, we see that for smaller problems, the fixed and logarith-
mic schedules seem to perform as well as and better than the fast cooling schedules.
For larger problems the fast cooling schedules seem to perform better. It appears
that in such cases the schedule of Lundy and Mees outperforms the Aarts and van
Laarhoven and the geometric schedules.

3. The results are likely to differ for different applications of SA. Lundy and Mees’s
algorithm initially cools more rapidly than the other two fast cooling schedules, and
it spends more time at smaller temperatures. It may be the case, however, that the
slower initial cooling of the other schedules is crucial in other applications.

4. We see that for the 48-city and 120-city TSPs, fixed temperature and the
logarithmic schedule outperform the fast cooling schedules. The results suggest that
it is not simply the size of the problem that is important but the structure as well.
It may be the case that for applications other than the TSP, the structure of the

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 799

Table 9.2
A comparison of different temperature schedules, in a fixed number of iterations, for various

TSPs. Mean and standard deviation given for 100 runs in each case. The solution in each run is
taken as the best solution visited.

Average best solution (% above global)
Problem Aarts Geom. Lundy Logar. Fixed

gr48 0.88 0.66 0.38 0.24 0.25
kt57 1.07 0.84 0.40 0.56 0.59

kroA100 0.96 0.75 0.49 0.49 0.54
gr120 1.83 1.40 1.07 0.69 0.85
lin318 1.73 1.45 1.34 2.16 2.37
gr442 1.66 1.34 1.05 2.00 2.10

Standard deviation (% above global)
gr48 0.69 0.54 0.40 0.28 0.28
kt57 0.85 0.77 0.54 0.69 0.69

kroA100 0.70 0.52 0.38 0.38 0.56
gr120 0.72 0.66 0.50 0.39 0.43
lin318 0.52 0.45 0.45 0.67 0.79
gr442 0.51 0.37 0.39 0.47 0.45

Table 9.3
Mean and standard deviation of iterations taken until finding the best solution of each run.

Average iterations until best in run
Problem Aarts Geom. Lundy Logar. Fixed

gr48 478375 440705 280476 280260 247698
kt57 809653 763375 540635 474612 494819

kroA100 4113819 3821121 2927120 2703681 2843458
gr120 6828916 6305855 4467879 4932393 4586938
lin318 100592216 95016256 72002496 99782344 96906464
gr442 237841104 226062032 160714880 222006640 206698016

Standard deviation of iterations until best
gr48 15981 27161 81559 138893 145977
kt57 20622 36932 117102 226153 240173

kroA100 64690 173474 720508 1257878 1339295
gr120 114856 318401 1194903 1658310 2017348
lin318 835365 2079017 11570513 9369117 16177562
gr442 1823134 6554549 31531302 34883836 52499600

Table 9.4
Estimates for P (τ ≤ N), where τ is the time to reaching a global minimum, for N as given in

Table 9.1. A global minimum was never reached in any of the runs for the larger problems.

Proportion reaching global minimum
Problem Aarts Geom. Lundy Logar. Fixed

gr48 0.05 0.17 0.35 0.30 0.34
kt57 0.04 0.06 0.28 0.31 0.30

kroA100 0.03 0.06 0.10 0.04 0.00

problem means that fixed and logarithmic schedules are suited to large problems too.

5. We do not know whether the logarithmic cooling schedule used is convergent,
as we have not identified the canonical constant. Indeed, d∗ is not readily available,
and to get it, when feasible, may require much more extensive work than finding an
optimal state. In fact, as we pointed out before, convergence is not relevant to the
success of the algorithm.

800 HARRY COHN AND MARK FIELDING

Table 9.5
Estimates for P (τ ≤ N) when τ is taken, respectively, as the time to reaching solutions with

the objective function at most one percent and two percent larger than the global minimum.

Proportion reaching within 1% of global
Problem Aarts Geom. Lundy Logar. Fixed

gr48 0.68 0.81 0.97 1.00 1.00
kt57 0.58 0.71 0.86 0.67 0.65

kroA100 0.62 0.76 0.91 0.93 0.88
gr120 0.11 0.27 0.44 0.80 0.69
lin318 0.07 0.13 0.19 0.01 0.02
gr442 0.12 0.23 0.39 0.02 0.00

Proportion reaching within 2% of global
gr48 0.92 0.97 1.00 1.00 1.00
kt57 0.89 0.89 0.99 1.00 1.00

kroA100 0.93 0.98 0.99 1.00 0.96
gr120 0.57 0.81 0.95 0.99 0.99
lin318 0.70 0.88 0.92 0.52 0.34
gr442 0.77 0.98 1.00 0.49 0.43

6. We have seen that obtaining a global minimum is plausible for some small to
medium-size problems. For the 100-city TSP, using Lundy’s schedule, we get for the
time until reaching a global minimum,

P (τ < N) ≈ 0.10,

for N = 4205532. Using k = 50 reruns (2.3) becomes

P (min
i∈{1,...,k}

min(f(X
(i)
1), . . . , f(X

(i)
N)) = min

x∈S
f(x)) ≈ 0.995,

and with k = 100 we get a probability of 0.99997 of reaching the global minimum.

10. Concluding remarks. 1. We have looked at the limit behavior of the SA
chain as a function of its temperature schedule. The quality of an algorithm depends
on its parameters, and the temperature schedule is only one ingredient of an algorithm.
However, the limit behavior of the SA chain is determined only by its temperature
schedule.

2. We have a three-type classification for an algorithm: convergent, regular,
and defective. Examples are provided to illustrate situations when boiling gives the
optimal algorithm, when logarithmic or fixed temperature outperform a number of
faster cooling schedules, or when defective algorithms are better for the problem.

3. We characterized the limit behavior of an algorithm in terms of recurrence,
transience, and eventual traps. It turns out that a convergent chain may have several
eventual traps or may consist of one eventual trap, as in the weakly ergodic case. A
regular algorithm is not necessarily convergent. It may be weakly ergodic but not
convergent. A convergent chain or a chain with a fixed temperature will exhibit a lot
of changes in its objective function values, as there are usually recurrent states that
are neither global nor local minima. Such changes will become less and less frequent
but will not disappear. In contrast, a defective chain does not have recurrent states
outside global or local minima states and will eventually have its objective function
value frozen in a local or global minimum.

4. The critical points for algorithms where the asymptotic behavior changes are
all in the range of logarithmic cooling schedules. There are two extreme types of
behavior: the first, when each local mimimum is an eventual trap, and the second,

SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 801

when all states are recurrent. It may seem that the first case does not lead to a good
algorithm. However, for large problems these type of schedules usually outperform the
convergent and regular ones. It may also seem that the latter compares unfavorably to
the canonical cooling schedule which prescribes a convergent chain with the minimal
number of recurrent states. However, such an impression is also deceptive.

5. When using a memoryless algorithm for a convergent chain or a memory
algorithm for a regular chain, we know that reaching global minima may be achieved
with probability as large as desired if we let the chain run a sufficiently long time.
However, that may not be feasible in practice, as it may require an excessively long
time. In contrast, for defective algorithms we know that the probability of reaching
optimality is limited, often by a small number. However, repeated independent runs
may ensure a high quality for such algorithms, which are often used in practice.

Acknowledgment. The authors are thankful to the referees for a number of
useful comments.

REFERENCES

[1] E. H. L. Aarts and P. J. M. van Laarhoven, Statistical cooling: A general approach to
combinatorial optimization problems, Philips J. Res., 40 (1985), pp. 193–226.

[2] E. H. L. Aarts and P. J. M. van Laarhoven, Simulated Annealing: Theory and Applica-
tions, Reidel, Dordrecht, the Netherlands, 1987.

[3] E. H. L Aarts and J. Korst, Simulated Annealing and Bolzman Machines, John Wiley,
New York, 1989.

[4] O. Barndorff-Nielsen, On the limit behaviour of extreme order statistics, Ann. Math.
Statist., 34 (1963), pp. 992–1002.

[5] T. S. Chiang and Y. Chow On the convergence rate of annealing processes, SIAM J. Control
Optim., 26 (1988), pp. 1455–1470.

[6] H. Cohn, On a paper by Doeblin on non-homogeneous Markov chains, Adv. Appl. Prob., 13
(1981), pp. 388–401.

[7] H. Cohn, On a class of non-homogeneous Markov chains, Math. Proc. Cambridge Philos.
Soc., 92 (1982), pp. 527–534.

[8] H. Cohn, Products of stochastic matrices and applications, Internat. J. Math Math. Sci., 12
(1988), pp. 209–233.

[9] D. T. Connolly, An improved annealing scheme for the QAP, European J. Oper. Res., 46
(1990), pp. 93–100.

[10] D. P. Connors and P. R. Kumar, Balance of recurrence order in time-inhomogeneous
Markov chains with applications to simulated annealing, Probab. Engrg. Inform. Sci.,
2 (1988), pp. 157–184.

[11] S. B. Gelfand and S. K. Mitter, Analysis of simulated annealing for optimization, in Proc.
24th Conference on Decision and Control, Ft. Lauderdale, FL, 1985, pp. 779–786.

[12] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images, IEEE Trans. Pattern. Anal. Machine Intelligence, 6 (1984), pp. 721–
741.

[13] M. Grötschel, Polyedrische Charakterisierungen Kombinatorischer Optimierungsprobleme,
Hain, Meisenheim am Glan, 1977.

[14] M. Grötschel and O. Holland, Solution of large-scale symmetric traveling salesman prob-
lems, Math. Programming, 51 (1991), pp. 141–202.

[15] B. Hajek, Cooling schedules for optimal annealing, J. Math. Oper. Res., 13 (1988), pp. 311–
329.

[16] C. R. Hwang and S. J. Sheu, Singular perturbed Markov chains and the exact behaviors of
simulated annealing processes, J. Theoret. Probab., 5 (1992), pp. 223–249.

[17] R. L. Karg and G. L. Thompson, A heuristic approach to solving traveling salesman prob-
lems, J. Management Sci., 10 (1964), pp. 225–248.

[18] J. G. Kemeny and J. L. Snell Finite Markov Chains, Springer-Verlag, New York, 1976.
[19] S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi Optimization by simulated annealing,

Science, 220 (1983), pp. 671–680.

802 HARRY COHN AND MARK FIELDING

[20] S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies, J. Statist. Phys.,
34 (1983), pp. 975–986.

[21] P. D. Krolak, W. Felts, and G. Marble, A man-machine approach toward solving the
traveling salesman problem, Comm. ACM, 14 (1971), pp. 327–334.

[22] S. Lin and B. W. Kernighan, An effective heuristic algorithm for the traveling salesman
problem, J. Oper. Res., 21 (1973), pp. 498–516.

[23] M. Lundy and A. Mees Convergence of an annealing algorithm, Math. Programming, 34
(1986), pp. 111–124.

[24] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller,
Equations of state calculations by fast computing mashines, J. Chem. Phys., 21 (1953),
pp. 1087–1092.

[25] A. Mukherjea, A new result on the convergence of non-homogeneous Markov chains, Trans.
Amer. Math. Soc., 90 (1981), pp. 167–182.

[26] W. Niemiro, Limit distributions of simulated annealing Markov chains, Disc. Math. Algebra
Stochastic Methods, 15 (1997), pp. 241–269.

[27] W. Niemiro and P. Pokarowski, Tail events of some non-homogeneous Markov chains,
Ann. Appl. Probab., 5 (1995), pp. 261–293.

[28] F. Romeo and A. Sangiovanni-Vincentelli, Probabilistic hill climbing algorithms: Prop-
erties and applications, Proc. Chapel Hill Conference on VLSI, H. Fuchs, ed., Computer
Science Press, Rockville, MD, 1985, pp. 393–417.

[29] E. Seneta, Non-Negative Matrices and Markov Chains, Springer-Verlag, New York, 1981.

DEDICATION TO JOHN E. DENNIS, JR. ON THE OCCASION OF
HIS 60TH BIRTHDAY

SIAM Journal on Optimization would not exist were it not for the vision, energy,
and dedication of John E. Dennis, Jr. It was he who, in the late 1980s, recognized the
need for a SIAM journal focusing broadly on optimization. He was inspired partly
by the success of the SIAM conferences on optimization held regularly since 1984 and
partly by the example of the Mathematical Programming Society, whose effectiveness
in establishing optimization, especially its algorithmic aspects, as a discipline rested
both on its international symposia and on its well-respected journal. John had long
played an important role in SIAM, serving as an editor for SIAM Journal on Nu-
merical Analysis from 1975 to 1981, as co-chair of the second SIAM Conference on
Optimization in Houston in 1987, as a member of the SIAM Council from 1985 to
1990, as chair of the SIAM activity group on optimization from 1989 to 1992, and as
an advocate for optimization as a subject that has a natural home in SIAM. When
SIAM Journal on Optimization was established, he was a natural choice as Editor-in-
Chief, serving from 1990 to 1994, when he stepped down to become the Chair of the
Mathematical Programming Society. With the passage of time, it is clear that the
establishment of the journal brought optimization to full status as one of the leading
disciplinary areas within SIAM.

The two of us have known John since the late 1970s when we were graduate
students, one of us as his advisee. He was very supportive to us as young scientists
and by his support played a critical role throughout our careers, for which we are
enormously grateful. John is particularly proud of the success of his more than thirty
Ph.D. graduates at Cornell and Rice; seven of these former students are authors of
papers in this special issue. John has always made a special point of showing interest
in young scientists beginning their careers, whether or not they studied with him; in
our view, nothing a senior scientist can do is more important than that.

John began his career in Utah as a functional analyst and only later turned to

vii

viii DEDICATION

computational mathematics. He has authored or coauthored dozens of well known
papers in optimization and applied mathematics. To single out one contribution is
difficult, but he is particularly well known for his pioneering convergence analysis of
quasi-Newton methods (also known as secant or variable metric methods) with C. G.
Broyden and J. J. Moré, and his survey paper with Moré in SIAM Review (1977)
became required reading for a generation of graduate students. In more recent years
John’s special interest has been multidisciplinary optimization, emphasizing industrial
application of optimization, especially in the aeronautical and oil industries. Nothing
could be closer to the central mission of SIAM.

John has long been an advocate of electronic publication, and we find it especially
appropriate that, exploiting this medium, we are publishing this special issue of SIAM
Journal on Optimization actually on his 60th birthday. We are honored to be able to
dedicate this issue to John Dennis. Finally, we also salute his family: Ann, Jed and
Katie, of whom he is so proud. Happy Birthday, John, and many happy returns!

Michael L. Overton and Robert B. Schnabel

LINEAR PROGRAMMING IN O
(
n3

lnn
L
)

OPERATIONS∗

K. M. ANSTREICHER†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 803–812

To John Dennis on the occasion of his 60th birthday.

Abstract. We show that the complexity to solve linear programming problems, using standard
linear algebra, can be reduced to O([n3/ lnn]L) operations, where n is the number of variables in a
standard-form problem with integer data of bit size L. Our technique combines partial updating with
a preconditioned conjugate gradient method, in a scheme first suggested by Nesterov and Nemirovskii.

Key words. linear programming, interior point algorithm, partial updating, conjugate gradient
method

AMS subject classification. 90C25

PII. S1052623497323194

1. Introduction. Consider a standard-form linear program and its dual:

LP : min cTx LD : max bT y
s.t. Ax = b, s.t. AT y + s = c,

x ≥ 0 s ≥ 0,

where A is an m × n matrix. We assume without loss of generality that the rows
of A are linearly independent. For the purpose of stating complexity results we may
assume that the data of LP is integral and let L denote the bit size of the problem.

Karmarkar’s [5] celebrated projective algorithm solves LP in O(n4L) operations,
where here and throughout the paper we use “operations” to refer to arithmetic oper-
ations and comparisons in infinite precision. The overall complexity for Karmarkar’s
basic algorithm arises from O(nL) iterations, each requiring O(n3) operations. Using
a “partial updating” technique, Karmarkar also devised a modified algorithm that re-
duced the average work per iteration to O(n2.5) operations, while retaining the O(nL)
iteration complexity, for an overall complexity of O(n3.5L) operations. Subsequently
Renegar [11] devised a “path following” method that reduced the number of iterations
to O(

√
nL), while still requiring O(n3) operations per iteration. By adapting Kar-

markar’s partial updating strategy to Renegar’s path following algorithm, Gonzaga
[4] and Vaidya [15] obtained the first algorithms for LP with an overall complexity of
O(n3L) operations. Many subsequent papers have obtained O(n3L) methods for LP,
by using partial updating in a variety of algorithmic frameworks.

A small number of papers have discussed the use of fast matrix multiplication
to improve the complexity of interior point methods for linear programming; see, for
example, [14]. “Fast matrix multiplication” refers to the fact that the multiplication of
two m×m matrices, and the inversion of an m×m matrix, can both be performed in
O(m2+α) operations for α < 1 [2]. Nesterov and Nemirovskii [10, Chapter 8] consider
a number of different strategies for reducing the complexity of interior point methods

∗Received by the editors June 20, 1997; accepted for publication (in revised form) February 2,
1999; published electronically September 24, 1999.

http://www.siam.org/journals/siopt/9-4/32319.html
†Department of Management Sciences, University of Iowa, Iowa City, IA 52242 (kurt-

anstreicher@uiowa.edu). This research was conducted while visiting the Center for Operations Re-
search and Econometrics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, with sup-
port from a CORE fellowship.

803

804 K. M. ANSTREICHER

for linear and quadratic programming, including combinations of partial updating,
fast matrix multiplication, and iterative methods for approximately solving positive
definite linear equations. For α = 1 the various “acceleration” methods considered in
[10] all produce O(n3L) methods for LP, but when α < 1 lower overall complexities are
obtained. For all 0 < α < 1 the best overall complexity is obtained by a method that
combines partial updating with a preconditioned conjugate gradient (PCG) method
to approximately solve the Newton equations produced on each iteration of a path fol-
lowing algorithm. The same method, with additional consideration of parallelization,
is also described in [9].

In this paper we reexamine Nesterov and Nemirovskii’s PCG algorithm, using
standard linear algebra (α = 1). We find, somewhat surprisingly, that the algorithm
can be specified so as to have an overall complexity slightly below O(n3L), specifically
O([n3/ lnn]L) operations. To our knowledge, this is the first complexity result for LP
below O(n3L) using standard linear algebra. The algorithm we analyze is actually
simpler than Nesterov and Nemirovskii’s PCG method, because some rather complex
details required to get the best possible results with α < 1 are eliminated. We present
our complexity analysis in the simplest possible algorithmic setting, that of a short-
step path following algorithm for LD, so as to concentrate as much as possible on
the complexity improvement from the PCG strategy. However, it is important to note
that the same complexity improvement could be obtained by applying the strategy
described here to virtually any O(n3L) partial updating algorithm for linear pro-
gramming or linearly constrained quadratic programming, including barrier function
methods, potential reduction methods, and primal-dual algorithms.

Notation. We use standard notation. For s ∈ <n, S = Diag(s) denotes the
n × n diagonal matrix with Sii = si, i = 1, . . . , n. We use e to denote a vector of
arbitrary dimension with each component equal to 1. For symmetric matrices B and
D, B � D denotes that D−B is positive semidefinite. For B positive definite, we use
‖y‖B =

√
yTBy.

2. A short-step path following algorithm. The algorithm we consider is a
modified version of a short-step path following method due to Roos and Vial [12]. For
(y, s) feasible in LD, and a scalar µ > 0, consider the measure

δ(s, µ) = min
x |Ax=b

∥∥∥∥Xsµ − e
∥∥∥∥.(2.1)

Define

py(s, µ) = −(AS−2AT)−1(AS−1e− b/µ),

ps(s, µ) = −AT py(s, µ),

x(s, µ) = µ(S−1e− S−2ps(s, µ)).

Then py = py(s, µ) is the Newton direction for the logarithmic barrier function

f(y, µ) =
−bT y
µ
−

n∑
i=1

ln(si(y)),

where s(y) = c − AT y, and ps = ps(s, µ) is the corresponding direction in the slack
variables s. Moreover, it is straightforward to show that x(s, µ) is the solution of the
minimization problem that defines δ(s, µ), from which it follows that

δ(s, µ) = ‖S−1ps‖ = ‖py‖H = ‖g‖H−1 ,(2.2)

COMPLEXITY OF LINEAR PROGRAMMING 805

where H = H(y) = AS−2AT , g = g(y) = (AS−1e− b/µ). Note that (2.2) implies that
δ(s(y), µ) = 0 if and only if y is the minimizer of f(·, µ). The set of such minimizers
for µ ∈ (0,∞) is called the central trajectory for LD. The quantity δ(s(y), µ) can be
considered to be a measure of the proximity of y to the central trajectory.

In what follows, we will assume that p̃y = p̃y(s, µ) is an approximate solution of
the Newton equations Hp = −g. Letting p̃s = p̃s(s, µ) = −AT p̃y, we will assume that
(p̃y, p̃s) satisfies

‖S−1(p̃s − ps)‖ = ‖p̃y − py‖H ≤ γ1‖py‖H ,(2.3)

where 0 ≤ γ1 < 1. For such an approximate solution (p̃y, p̃s) we consider a step of the
form

y′ = y + p̃y, s′ = s+ p̃s.(2.4)

The next lemma extends the well-known convergence result of Roos and Vial [12] for
Newton steps (γ1 = 0) to the case of the approximate Newton steps (γ1 > 0) used in
our algorithm.

Lemma 2.1. Let (y′, s′) be as in (2.4), where (p̃y, p̃s) satisfy (2.3), and (1 +
γ1)δ(s, µ) < 1. Then s′ > 0, and δ(s′, µ) ≤ γ1δ(s, µ) + (1 + γ1)δ(s, µ)2.

Proof. We have S−1p̃s = S−1ps +S−1(p̃s− ps), so (2.2) and (2.3) together imply
that

‖S−1p̃s‖ = ‖p̃y‖H ≤ (1 + γ1)δ(s, µ) < 1,(2.5)

the last by assumption. Then s′ > 0 follows from (2.4). Next, by definition, we have

δ(s′, µ) = min
x |Ax=b

∥∥∥∥Xs′µ − e
∥∥∥∥

≤
∥∥∥∥S′x(s, µ)

µ
− e
∥∥∥∥

= ‖(S + P̃s)(S
−1e− S−2ps)− e‖

≤ ‖S−1(p̃s − ps)‖+ ‖S−2P̃sps‖.(2.6)

Moreover,

‖S−2P̃sps‖ ≤ ‖S−1p̃s‖ ‖S−1ps‖ ≤ (1 + γ1)‖S−1ps‖2,(2.7)

where the last inequality uses (2.5) and (2.2). The proof is completed by combining
(2.3), (2.6), and (2.7).

We will use Lemma 2.1, with appropriate γ1, to control the proximity measure
δ(·, ·) following reductions in the parameter µ. The effect of such reductions on δ(s, ·) is
given in the following very well known lemma [12]. We give the proof for completeness.

Lemma 2.2. Let 0 < µ′ ≤ µ. Then

δ(s, µ′) ≤
(
µ

µ′

)
δ(s, µ) +

(
µ

µ′
− 1

)√
n.

Proof. Using (2.2) and the definition of ps(·, ·), we have

δ(s, µ′) = ‖S−1ps(s, µ
′)‖

=

∥∥∥∥(µµ′
)
S−1ps(s, µ) +

(
1− µ

µ′

)
S−1AT (AS−2AT)−1AS−1e

∥∥∥∥
≤
(
µ

µ′

)
‖S−1ps(s, µ)‖+

(
µ

µ′
− 1

)√
n,

806 K. M. ANSTREICHER

where the last inequality uses ‖e‖ =
√
n.

The algorithm that we will employ to solve LP/LD is as follows.
Algorithm (modified short-step path following).

Given ε > 0, γ1 > 0, γ2 > 0, y0, s0, µ0, k := 0.
Do Until µk ≤ ε/(2n)

µk+1 := (1− γ2/
√
n)µk

Compute p̃y = p̃y(sk, µk+1) satisfying (2.3)
yk+1 := yk + p̃y, s

k+1 := sk + p̃s
Perform updates
k := k + 1

End

For each k, the computation of p̃y = p̃y(sk, µk+1) will be accomplished using a
PCG method, described in the next section. The PCG method requires that a certain
approximation of H−1 be maintained via rank-1 updates; the “Perform updates” step
of the algorithm refers to these rank-1 changes. The updating procedure is described
in detail in section 4.

The original algorithm of Roos and Vial [12] is simply the above method with
γ1 = 0, so p̃y and p̃s are replaced by py and ps, respectively. In this case the PCG
method and updating steps are not used; instead, the true Newton direction py is
obtained by direct factorization of H = AS−2AT .

Below we give a complexity result for the number of iterations required by the
modified short-step path following algorithm to approximately solve a linear program-
ming problem, under standard assumptions regarding initialization. See, for example,
Monteiro and Adler [7] for details on satisfying these initialization assumptions for an
arbitrary linear program.

Theorem 2.3. Let γ1 = .20, γ2 = .10, n ≥ 4. Suppose that the above algorithm is
initialized with y0, s0 > 0, µ0 such that δ(s0, µ0) ≤ .20. Then sk > 0, and δ(sk, µk) ≤
.20 for all k. Moreover, if nµ0 = 2O(L) and ε = 2−2L, the algorithm terminates with
sk, and xk = x(sk, µk) > 0 having (xk)T sk ≤ ε, in k = O(

√
nL) iterations.

Proof. Assume that δ(sk, µk) ≤ .20. From Lemma 2.2 we have

δ(sk, µk+1) ≤ 1

1− γ2/
√
n
δ(sk, µk) +

√
n

γ2/
√
n

1− γ2/
√
n

≤ 1

1− .10/2
(.20 + .10)

< .32,(2.8)

where the second inequality uses n ≥ 4. From Lemma 2.1 we then obtain sk+1 > 0,
and

δ(sk+1, µk+1) ≤ .2(.32) + (1.2)(.32)2 < .19,

so by induction, sk > 0 and δ(sk, µk) ≤ .20 for all k. That the algorithm terminates
in O(

√
nL) iterations follows easily from the assumption on µ0, and the fact that

µk = (1 − γ2/
√
n)kµ0. That xk = x(sk, µk) > 0 is immediate from sk > 0, and

δ(sk, µk) = ‖Xksk/µ− e‖ < 1. Finally, for each k we have

‖Xksk − µke‖ = µkδ(sk, µk) ≤ .2µk.
It follows that (xk)T sk = eTXksk ≤ nµk+.2

√
nµk < 2nµk, and therefore µk ≤ ε/(2n)

implies that (xk)T sk ≤ ε.

COMPLEXITY OF LINEAR PROGRAMMING 807

Theorem 2.3 gives a complexity result in terms of the parameter L, which is com-
monly taken to be the bit size of an instance of LP with integer data. The complexity
of the algorithm can alternatively be given directly in terms of the termination tol-
erance ε. In particular, it is easy to show that under the conditions of Theorem 2.3,
but with the condition on µ0 changed to nµ0 = O(1/ε), the number of steps of the
algorithm required to obtain (xk)T sk ≤ ε is O(

√
n | ln ε|).

3. The PCG method. On each iteration of the algorithm in the previous sec-
tion we must approximately solve a system of the form

Hp = −g,(3.1)

where H = AS−2AT . We accomplish this using a PCG method. Before describing
our exact methodology we review some basic properties of the ordinary conjugate
gradient (CG) method; see, for example, [3] or [6] for more details. The CG method
is an iterative algorithm for solving a system of the form

Qv = q,(3.2)

where Q is an m × m positive definite matrix. The algorithm produces a sequence
vi, i ≥ 0, where v0 is given. The computation of vi+1 from vi requires O(1) inner
products of vectors in <m, and matrix-vector products using the matrix Q. There is
a variety of results concerning the convergence of the algorithm. For example [6], it
is very well known that if Q has k distinct eigenvalues, then vk solves (3.2). Here we
will use the fact [6, p. 258] that if λmin and λmax are the minimum and maximum
eigenvalues of Q, then

‖vi − v∗‖Q ≤ 2

(
1−√λmin/λmax

1 +
√
λmin/λmax

)i
‖v0 − v∗‖Q,(3.3)

where v∗ = Q−1q is the solution of (3.2). Letting v0 = 0, (3.3) implies that in order
to obtain ‖vi − v∗‖Q ≤ γ1‖v∗‖Q, it suffices to have

i ln

(
1− 2

√
λmin/λmax

1 +
√
λmin/λmax

)
≤ ln

(γ1

2

)
.(3.4)

Since λmin/λmax ≤ 1, and ln(1− t) ≤ −t for 0 ≤ t < 1, (3.4) certainly holds for

i ≥ ln

(
2

γ1

)√
λmax

λmin
.(3.5)

The PCG method for solving a system of the form (3.1) is based on applying
a symmetric transformation to H before applying the CG method. In particular,
consider a positive definite matrix W, and let

Q = W−1/2HW−1/2, q = −W−1/2g, v = W 1/2p.

The systems (3.1) and (3.2) are then clearly equivalent. Moreover, for v = W 1/2p we
have

‖v‖Q =
√
vTQv =

√
pTHp = ‖p‖H .(3.6)

808 K. M. ANSTREICHER

Let py = −H−1g = W−1/2v∗ be the solution of (3.1). It then follows from (3.6) that
if the CG method is applied to (3.2) starting at v0 = 0, and pi = W−1/2vi for i ≥ 0,
the number of steps required to obtain

‖pi − py‖H ≤ γ1‖py‖H
is bounded exactly as in (3.5), where λmin and λmax are the minimum and maximum
eigenvalues of Q = W−1/2HW−1/2. Finally, it is well known [3, p. 151] that the PCG
method can be implemented so as to require only the matrix W−1 (or alternatively,
a suitable factorization of W), and not W−1/2. Each step of the method, which
obtains pi+1 from pi, requires O(1) inner products of vectors in <m, and matrix-
vector products involving the matrices H and W−1.

Recall that in our case, H = AS−2AT . It is important to note that H is never
explicitly formed. Since the PCG method is used to solve (3.1), we only require matrix-
vector products using H, which can be obtained from A and s. Our preconditioning
matrix W will be of the form W = AS̃−2AT , where

1

ρ
≤
(
s̃i
si

)2

≤ ρ, i = 1, . . . , n,(3.7)

and ρ > 1. The parameter ρ is not assumed to be O(1), as in the usual construction
of partial updating interior point algorithms (see, for example, [1], [4], [5], [15]). From
(3.7) it follows that

1

ρ
W � H � ρW,

and therefore

1

ρ
I �W−1/2HW−1/2 � ρI.

Letting λmin and λmax denote the minimum and maximum eigenvalues of Q =
W−1/2HW−1/2, as above, we then have√

λmax/λmin ≤ ρ.(3.8)

Theorem 3.1. Suppose that the PCG method is applied to (3.1), using W =
AS̃−2AT , where s̃ satisfies (3.7). Then for p0 = 0, in i = dρ ln(2/γ1)e steps, each
requiring O(mn) operations, the algorithm obtains p̃y = pi such that ‖p̃y − py‖H ≤
γ1‖py‖H .

Proof. The number of steps required follows immediately from (3.5) and (3.8).
That each step requires O(mn) operations follows from the fact that a matrix-vector
product involving H = AS−2AT can be obtained in O(mn) operations given the
matrix A and vector s.

Note that while Theorem 3.1 bounds the number of steps of the PCG method
required to obtain ‖p̃y − py‖H ≤ γ1‖py‖H , it is never necessary to evaluate the quan-
tities involved in this condition. In particular, py is never known; if it was, the path
following algorithm could simply use py in place of the approximation p̃y.

4. Partial updating analysis. In this section we consider the “partial updat-
ing” procedure that is used to maintain the matrices (W k)−1 required in the PCG
method of the previous section. Recall that W k = A(S̃k)−2AT , where for each k ≥ 0,

COMPLEXITY OF LINEAR PROGRAMMING 809

s = sk, s̃ = s̃k satisfy (3.7). The analysis required here is quite standard and has
been employed in many papers on partial updating interior point methods. Our exact
proofs are based on the analysis of a projective partial updating method in [1, section
3], which itself is based on the original partial updating analysis of Karmarkar [5]. To
begin, we give a precise statement of the update procedure that is mentioned in the
algorithm in section 2. We assume that s̃0 = s0.

Update Procedure.
For i = 1 : n

If (1/ρ) ≤ (s̃ki /s
k+1
i)2 ≤ ρ

Then s̃k+1
i := s̃ki

Else s̃k+1
i := sk+1

i

Next i
We assume that the matrices (W k)−1 are explicitly available. As a result, each

“update” s̃k+1
i 6= s̃ki requires a rank-1 change in (W k)−1, which can be performed in

O(m2) operations. Alternatively, a suitable factorization of W k can be maintained;
see, for example, Shanno [13] for details on maintaining a Cholesky factorization. For
each k ≥ 0 and i = 1, . . . , n, define the “discrepancies”

δki = ln(s̃ki /s
k
i), δ̃ki = ln(s̃ki /s

k+1
i).

Then |δki | ≤ .5 ln(ρ) for each i and k, by construction, and

δk+1
i =

{
δ̃ki if |δ̃ki | ≤ .5 ln(ρ),
0 otherwise,

the second case corresponding to an update of index i at the end of iteration k. Finally,
note that

δ̃ki − δki = ln(sk+1
i /ski).(4.1)

Lemma 4.1 (see Karmarkar [5]). If index i is updated at the end of iteration k1,

and is next updated at the end of iteration k2 > k1, then
∑k2

k=k1+1 | ln(sk+1
i /ski)| ≥

.5 ln ρ.
Proof. The proof is identical to that of [1, Lemma 3.1], using (4.1) in place of [1,

(3.2)].
Proposition 4.2 (see [1, Lemma 3.3]). If 0 < γ < 1, u ≥ γ, then | lnu| ≤

|1− u| | ln γ|/(1− γ).
Theorem 4.3. Assume that the modified short-step path following algorithm is

initiated with s̃0 = s0 and that ‖(Sk)−1p̃ks‖ ≤ γ̄ < 1 for all k. Then, if the algorithm is
run for M iterations, and N is the total number of updates required on these iterations,

N ≤ 2M
√
n | ln(1− γ̄)|

ln ρ
.

Proof. Let ni denote the number of updates of index i on iterations 0, . . . ,M − 1.
Repeatedly applying Lemma 4.1, starting with k1 = −1, obtains

ni(.5 ln ρ) ≤
M−1∑
k=0

| ln(sk+1
i /ski)|, i = 1, . . . , n.(4.2)

Summing (4.2) over i = 1, . . . , n then results in

N ln ρ ≤ 2

n∑
i=1

M−1∑
k=0

| ln(sk+1
i /ski)| = 2

M−1∑
k=0

n∑
i=1

| ln(1 + (p̃ks)i/s
k
i)|.(4.3)

810 K. M. ANSTREICHER

But ‖(Sk)−1p̃ks‖ ≤ γ̄ < 1 implies that (p̃ks)i/s
k
i ≥ −γ̄ for each i, so 1+(p̃ks)i/s

k
i ≥ 1− γ̄

for all i and k. Applying Proposition 4.2 with γ = 1− γ̄, (4.3) implies that

N ln ρ ≤ 2| ln(1− γ̄)|
γ̄

M−1∑
k=0

n∑
i=1

|(p̃ks)i/s
k
i | ≤ 2M

√
n | ln(1− γ̄)|,

where the final inequality uses ‖(Sk)−1p̃ks‖1 ≤
√
n‖(Sk)−1p̃ks‖ ≤ γ̄

√
n.

Corollary 4.4. Under the assumptions of Theorem 2.3, if the algorithm of
section 2 is applied to LD, and N is the total number of updates performed on all
iterations, then N = O(nL/ ln ρ).

Proof. For each k ≥ 0 we have

‖(Sk)−1p̃ks‖ = ‖(Sk)−1p̃s(s
k, µk+1)‖ ≤ (1 + γ1)δ(sk, µk+1) < 1.2(.32) < .40,

where the first inequality uses (2.5) and the second uses (2.8). The assumptions of
Theorem 4.3 are then satisfied with γ̄ = .40. In addition, from Theorem 2.3, the
number of iterations required by the algorithm is M = O(

√
nL). The result then

follows immediately from Theorem 4.3.

5. Overall complexity. From Theorems 2.3 and 3.1, and Corollary 4.4, we can
easily obtain the following result for the overall complexity of the algorithm of section
2.

Theorem 5.1. Suppose that the algorithm of section 2 is applied to LD, under the
assumptions of Theorem 2.3. Then the total number of arithmetic operations required
by the algorithm is O(nm2 + (n1.5mρ+ nm2/ ln ρ)L).

Proof. By Theorem 2.3 the algorithm requires O(
√
nL) iterations. On each itera-

tion the PCG method requires O(nmρ) operations, by Theorem 3.1, and the remain-
ing work per iteration, exclusive of performing updates, is O(nm). Thus the total
nonupdating work is O(n1.5mρL). In addition, the algorithm requires O(nm2) oper-
ations to form (A(S0)−2AT)−1, and a total of O(nm2L/ ln ρ) operations to perform
all subsequent updates, by Corollary 4.4.

Note that if ρ = Θ(1), then the overall complexity given by Theorem 5.1 is
O((n1.5m+ nm2)L) ≤ O(n1.5m1.5L) ≤ O(n3L) operations, which is identical to that
obtained for O(

√
nL)-iteration methods using partial updating; see, for example, [4]

and [15]. However, we now show that ρ can be chosen so that the PCG algorithm has
an overall complexity below O(n3L) operations.

Corollary 5.2. Suppose that the algorithm of section 2 is applied to LD, under
the assumptions of Theorem 2.3, with ρ = β1m

β2 , where β1 and β2 are absolute
constants with β1 > 0, 0 < β2 < 1/2. Then for L = Ω(lnm), the total number of
arithmetic operations required by the algorithm is

O

(
n1.5m1.5

lnm
L

)
≤ O

(
n3

lnn
L

)
.

Proof. Using the given form of ρ, we obtain

n1.5mρ+
nm2

ln ρ
= β1n

1.5m1+β2 +
nm2

ln(β1) + β2 ln(m)

= O

(
n1.5m1+β2 +

nm2

lnm

)
= O

(
n1.5m1.5

lnm

)
,

COMPLEXITY OF LINEAR PROGRAMMING 811

where the final inequality uses β2 < 1/2 and m ≤ n. The corollary then follows from
Theorem 5.1 and the assumption that L = Ω(lnm).

Note that the total complexity given in Corollary 5.2 can also be considered to
include the O(n2m) operations necessary to obtain an exact optimal solution to LP
or LD or both from the approximately optimal solutions output by the algorithm,
using a standard “rounding” procedure.

As described following Theorem 2.3, complexity results like those given here in
terms of L can alternatively be given in terms of the termination tolerance ε. For
example, it is easy to show that under the assumptions of Corollary 5.2, but where
the assumption on µ0 in Theorem 2.3 is replaced by nµ0 = O(1/ε), the total number
of operations required by the algorithm to obtain (xk)T sk ≤ ε is

O

(
n1.5m1.5

[
1 +
| ln ε|
lnm

])
.

In addition to Corollary 5.2, which holds for any m and n, it is interesting to
consider how ρ may be chosen so as to obtain the lowest possible complexity bound
for a given m and n. Differentiating the bound of Theorem 5.1, this “optimal” ρ
satisfies

ρ(ln ρ)2 =
m√
n
.(5.1)

We do not have an analytic solution of (5.1), but we consider a few representative
cases:

1. If m = Θ(n), then the optimal ρ is slightly less than Θ(
√
n). For example,

using ρ = Θ(
√
n/ lnn) gives an overall complexity bound of O([n3/ lnn]L) operations

for the PCG algorithm, as in Corollary 5.2.
2. If m = Θ(

√
n), then the optimal ρ is Θ(1), and using this ρ in the PCG

algorithm obtains an overall complexity of O(n2L) operations.
3. If m = o(

√
n), then the optimal ρ is of the form 1 + Θ(m1/2/n1/4), and

the overall complexity of the PCG algorithm using this ρ is O(n1.5mL) = o(n2L)
operations.

As described in the introduction, the PCG algorithm was originally devised by
Nesterov and Nemirovskii [9], [10] so as to obtain a complexity below O(n3L) opera-
tions using fast matrix multiplication. It is worthwhile to note that in the algorithm
described here, as in Karmarkar’s original partial updating method, there are no ma-
trix operations, other than matrix-vector products, following the initial factorization
or inversion of A(S0)−2AT . Thus, to obtain a complexity improvement using fast ma-
trix multiplication, it is necessary to replace some of the algorithm’s rank-1 updating
with higher rank matrix operations. There are basically two ways to accomplish this:

1. Replace a sequence of rank-1 updates on a single iteration with a single block
update of (W k)−1, using the Sherman–Morrison–Woodbury formula.

2. Periodically perform additional “refresh” steps, where some or all of the s̃ki
are reset to the correct values ski , and use block updating, or full recomputation of
(W k)−1, to perform these refreshes.

See Nesterov and Nemirovskii [9], [10] for details. Finally, it is worthwhile to note
that results similar to those obtained here could be proved using iterative techniques
other than the PCG method to approximately solve the Newton equations (3.1) that
arise on each iteration. For example, Nesterov and Nemirovskii [10] consider the use
of the steepest descent method, and also the “optimal” method for smooth convex

812 K. M. ANSTREICHER

programming. (See Nesterov [8] for more details on the optimal method.) Either of
these methods, combined with the preconditioning strategy described in section 3,
could be used to obtain algorithms for LP with overall complexities of O([n3/ lnn]L)
operations.

Acknowledgment. I would like to thank Yuri Nesterov for several conversations
on the topic of this paper.

REFERENCES

[1] K. M. Anstreicher, A standard form variant, and safeguarded linesearch, for the modified
Karmarkar algorithm, Math. Programming, 47 (1990), pp. 337–351.

[2] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, in
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1986, pp. 1–6.

[3] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New
York, 1981.

[4] C. C. Gonzaga, An algorithm for solving linear programming problems in O(n3L) operations,
in Progress in Mathematical Programming, N. Megiddo, ed., Springer-Verlag, New York,
1987.

[5] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4
(1984), pp. 373–395.

[6] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-Wesley, New York,
1984.

[7] R. D. C. Monteiro and I. Adler, Interior path following primal-dual algorithms. Part I:
Linear programming, Math. Programming, 44 (1989), pp. 27–41.

[8] Y. Nesterov, Introductory Lectures on Convex Programming, Vol. I: Basic Course, Center
for Operations Research and Econometrics, Université Catholique de Louvain, Louvain-la-
Neuve, Belgium, 1996.

[9] Y. Nesterov and A. Nemirovskii, Acceleration and parallelization of the path-following in-
terior point method for a linearly constrained quadratic programming problem, SIAM J.
Optim., 1 (1991), pp. 548–564.

[10] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming, SIAM, Philadelphia, 1994.

[11] J. Renegar, A polynomial-time algorithm, based on Newton’s method, for linear programming,
Math. Programming, 40 (1988), pp. 59–93.

[12] C. Roos and J.-Ph. Vial, A polynomial method of approximate centers for linear program-
ming, Math. Programming, 54 (1992), pp. 295–305.

[13] D. F. Shanno, Computing Karmarkar projections quickly, Math. Programming, 41 (1988),
pp. 61–71.

[14] P. M. Vaidya, Speeding-up linear programming using fast matrix multiplication, in Proceedings
of the 30th Annual IEEE Symposium on Foundations of Computer Science, 1989, pp. 338–
343.

[15] P. M. Vaidya, An algorithm for linear programming which requires O(((m + n)n2 + (m +
n)1.5n)L) arithmetic operations, Math. Programming, 47 (1990), pp. 175–201.

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING:
THE MULTILOAD CASE WITH CONTACT CONDITIONS∗

A. BEN-TAL† , M. KOČVARA‡ , A. NEMIROVSKI† , AND J. ZOWE‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 813–832

To John Dennis on the occasion of his 60th birthday.

Abstract. Free material design deals with the question of finding the stiffest structure with
respect to one or more given loads which can be made when both the distribution of material and
the material itself can freely vary. The case of one single load has been discussed in several recent
papers, and an efficient numerical approach was presented in [M. Kocvara, M. Zibulevsky, and J.
Zow, RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 255–281]. We attack here the multiload
situation (understood in the worst-case sense), which is of much more interest for applications but
also significantly more challenging from both the theoretical and the numerical points of view. After
a series of transformation steps we reach a problem formulation for which we can prove existence of
a solution; a suitable discretization leads to a semidefinite programming problem for which modern
polynomial time algorithms of interior point type are available. A number of numerical examples
demonstrates the efficiency of our approach.

Key words. structural optimization, material optimization, topology optimization, semidefinite
programming

AMS subject classifications. 73K40, 90C90, 90C25

PII. S1052623497327994

1. Introduction. One of the basic problems of structural engineering is to de-
sign the stiffest structure of a given volume, occupying some fixed domain Ω ⊂ Rdim
(dim = 2,3) with boundary Γ, which is capable of carrying a given set of external
loads. The desired optimal structure is considered to be a continuum elastic body,
and the design variables are the material properties which may vary from point to
point. Thus the aim is to optimize not only the distribution of material but also the
material properties themselves, and we are looking for the ultimately best structure
among all possible elastic continua, in a framework of what is now usually referred to
as “free material design.”

Optimization of structures is traditionally performed through the variation of siz-
ing variables (e.g., thicknesses of bars in a truss) and shape variables (e.g., splines
defining the boundary of a body). With the appearance of composites and other
advanced man-made materials it has been natural to extend this variation to the ma-
terial choice itself. The basic problem setting of “free material design” that we will
deal with goes back to the work of Bendsøe et al. [5] and Ringertz [14], where repre-
senting material properties as elements of the unrestricted set of positive semidefinite
constitutive tensors with the trace of the stiffness tensor as a measure of resource
(“cost”) was suggested. In mathematical language this leads to an optimization prob-

∗Received by the editors September 29, 1997; accepted for publication (in revised form) August
17, 1998; published electronically September 24, 1999. This work was supported by GIF contract
I0455-214.06/95. The research of the second and fourth authors was supported by BMBF project
03ZO7BAY. The research of the fourth author was supported by grant A1075707 from the Czech
Academy of Sciences.

http://www.siam.org/journals/siopt/9-4/32799.html
†Faculty of Industrial Engineering and Management, Technion–Israel Institute of Technology,

32000 Haifa, Israel (morbt@ie.technion.ac.il, nemirovs@ie.technion.ac.il).
‡Institute of Applied Mathematics, University of Erlangen, Martensstr. 3, D-91058 Erlangen,

Germany (kocvara@am.uni-erlangen.de, zowe@am.uni-erlangen.de). M. Kočvara is on leave from the
Czech Academy of Sciences.

813

814 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

lem with an objective function (stiffness) which is the result of an inner optimization.
More precisely, one minimizes (with respect to material properties) the compliance (a
certain global measure of the stiffness of the structure), where the compliance itself
is the outcome of a lower optimization level (minimization of potential energy). The
resulting minimax problem looks rather complicated: in two (three) space dimensions,
the design variables are the 6 (21) defining elements of the symmetric elasticity tensor
and these variables are allowed to vary pointwise throughout the structure. The case
of single-load design (SLD) was treated in [5] and, emphasizing the numerical aspect,
in [16]. There it is shown that one can analytically reduce the problem to one with
only a single design variable at each point (in addition to the displacement vector),
namely, the trace of the elasticity tensor. The elements of the optimal tensor itself
are then fully recoverable from the optimal trace and the related displacements. A
finite element discretization of the above reduced problem leads to a mathematical
programming formulation, which is identical in form to maximal stiffness optimization
problems for trusses, and the very efficient interior point–based software developed for
truss problems (see, e.g., [1, 9, 10]) can be used almost immediately in this framework
of material optimization. In [16] this computational approach to SLD is discussed in
detail, and a number of examples demonstrate its efficiency.

For most applications, however, the assumption of a single acting load is too
restrictive and may lead to a structure which is highly unstable with respect to small
load perturbations. Hence one is interested in a structure which is stable with respect
to a whole scenario of independent loads and which is the stiffest one in the worst-
case sense. This multiload feature complicates the situation substantially since it
leads to a blow-up in the dimension, and further, the above-mentioned reduction
process leads to an integral over an eigenvalue problem which is hard to eliminate
when discretizing for a numerical approach. All this excludes a direct transfer of the
tools, which are successful in the SLD case, to the multiload situation. Multiload
design (MLD) requires essentially new tools. Only some first steps in the direction
of a theoretical treatment of the MLD can be found in the literature [2]; we are not
aware of reports on numerical approaches. Our paper tries to fill this gap.

2. Problem formulation and existence theorem. We study the optimiza-
tion of the design of a continuum structure that is loaded by multiple independent
forces. In order to deal with the problem in a very general form, we consider the
distribution of the material in space as well as the material properties at each point as
design variables. The idea of treating the material itself as a function of the space vari-
able goes back to [5, 14] and also has been studied in other contexts in [3, 4, 6]. This
present text develops in this framework a theory for the MLD case with additional
contact conditions. We start from the infinite-dimensional problem setting, prove ex-
istence of a solution after a reformulation of the problem, and, after discretization,
reach a finite-dimensional formulation expressed as a semidefinite program and, as
such, accessible to modern numerical interior point methods.

For an easier understanding of the physical background we begin with a sketch
of the single-load model. Let Ω ⊂ Rdim, dim = 2, 3, be a bounded domain (the elas-
tic body) with a Lipschitz boundary Γ. We use the standard notation [H1(Ω)]dim and
[H1

0 (Ω)]dim for Sobolev spaces of functions v : Ω→ Rdim. By u(x) = (u1(x), . . . , udim(x))
with u ∈ [H1(Ω)]dim (in short, u ∈ H1(Ω)) we denote the displacement vector at point
x of the body under load. Further

eij(u(x)) =
1

2

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)
for i, j = 1, . . . ,dim

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING 815

denotes the (small-)strain tensor , and σij(x), i, j = 1, . . . ,dim, the stress tensor.
We assume that our system is governed by linear Hooke’s law; i.e., the stress is a

linear function of the strain

σij(x) = Eijkl(x)ekl(u(x)) (in tensor notation),(2.1)

where E(x) is the so-called (plain-stress) elasticity tensor of order 4; this tensor
characterizes the behavior of material at point x. To unburden the notation we will
often skip the variable x in u, e, E, etc. The strain and stress tensors are symmetric
(e.g., eij = eji) and E also is symmetric in the following sense:

Eijkl = Ejikl = Eijlk = Eklij for i, j, k, l = 1, . . . ,dim.

These symmetries allow us to avoid the tensor notation, which is not commonly used
in the optimization community, and interpret the 2-tensors e and σ as vectors

e = (e11, e22,
√

2e12)T ∈ R3, σ = (σ11, σ22,
√

2σ12)T ∈ R3

for dim = 2 and analogously as vectors in R6 for dim = 3. Correspondingly, the 4-
tensor E can be written as a symmetric 3× 3 matrix,

E =

 E1111 E1122

√
2E1112

E2222

√
2E2212

sym. 2E1212

 ,(2.2)

for dim = 2 and as a symmetric 6 × 6 matrix for dim = 3. In this notation, (2.1)
reads as

σ(x) = E(x)e(u(x)).

Since E will be understood as a matrix in our paper, we will use double indices for
the elements of E; the correspondence between Eij and the tensor components Eijkl
is clear from (2.2). To allow switches from material to no-material, it is natural to
work with (d = 3 or 6)

E ∈ [L∞(Ω)]d×d (in short, E ∈ L∞(Ω)).

For a consistent notation, we will always use d = 3 in connection with dim = 2 and
d = 6 when dim = 3.

We consider a partitioning of the boundary Γ into two parts: Γ = Γu ∪ Γf , where
Γu and Γf are open in Γ, and Γu ∩ Γf = ∅. Further, we put

H = {u ∈ [H1(Ω)]dim | G(s)u(s) = 0 for s ∈ Γu},
G(s) being a measurable matrix-valued function defining the boundary conditions, so
that [H1

0 (Ω)]dim ⊂ H ⊂ [H1(Ω)]dim; we assume that the admissible displacement
fields belong to H.

The boundary conditions on Γf are specified by the surface traction (“external
load”)

f ∈ [L2(Γf)]dim (in short, f ∈ L2(Γf)).

To allow for more general situations, we require that u stays within a (nonempty)
closed convex set U ⊂ H. This U can be given, e.g., by unilateral contact condition
(for details, see [10, 13]).

816 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

For given elasticity matrix E and acting load f , the potential energy as a function
of the displacement u ∈ U is given by

−1

2

∫
Ω

〈Ee(u), e(u)〉 dx+ F (u),(2.3)

where we have put

F (u) :=

∫
Γf

f · u dx.(2.4)

We recall once more that E, u, and f in (2.3), (2.4) are functions of x, which is omitted
only to economize the notation. The system is in equilibrium (outer and inner forces
balance each other) for u, which maximizes the concave term (2.3), i.e., u which solves

sup
u∈U

{
−1

2

∫
Ω

〈Ee(u), e(u)〉 dx+ F (u)

}
.(2.5)

Nature always tries to reach the equilibrium (2.5). The supremum in (2.5) is equal
to what engineers often call compliance of the system. It is a measure of the stiffness
of the structure: the less the compliance, the more rigid the structure with respect
to f . It is now the interest of the designer to choose under physical and economical
constraints the material function E ∈ ÃL∞(Ω) such that the “sup” in (2.5) becomes as
small as possible. Physics tells us that E(x) has to to be a symmetric and positive
semidefinite matrix almost everywhere (a.e.) on Ω, which we write as

E = ET � 0 a.e. in Ω.(2.6)

The diagonal elements of E(x) measure the stiffness of the material at x in the coor-
dinate directions. Hence it makes sense to use as resource (cost) constraint the trace
of E (with d = 3 or 6 according to dim = 2 or 3),

tr(E(x)) :=

d∑
i=1

Eii(x),(2.7)

and to require, with some given positive α,∫
Ω

tr(E(x)) dx ≤ α.(2.8)

The trace is invariant under orthogonal transformations; hence our constraint does
not depend on the coordinate system.

Further, to exclude singularities (e.g., on the boundary Γf) we demand that, with
some fixed r+, r− ∈ L∞(Ω), 0 ≤ r− < r+,

r− ≤ tr(E) ≤ r+ a.e. in Ω.(2.9)

It is convenient to summarize the feasible design functions in a set

E :=

{
E ∈ L∞(Ω) | E is of form (2.2) and

satisfies (2.6), (2.8), and (2.9)

}
.(2.10)

With this definition, the SLD problem becomes

inf
E∈E

sup
u∈U

{
−1

2

∫
Ω

〈Ee(u), e(u)〉 dx+ F (u)

}
.(2.11)

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING 817

Obviously, a minimizing E in (2.11) will be optimal only for the one considered load
f and might be extremely unstable (may even collapse) under loads other than f
(even of small magnitude). Hence a more realistic approach requires us to look for a
structure which can withstand a whole collection of independent loads f1, . . . , fL from
L2(Γf), acting at different times; further, the design should be the “best possible” one.
In an engineering context, the worst-case aspect makes most sense. This leads to the
following MLD problem, in which we seek the design function E which yields the
smallest possible worst-case compliance:

inf
E∈E

sup
`=1,...,L

sup
u`∈U`

{
−1

2

∫
Ω

〈Ee(u`), e(u`)〉 dx+ F `(u`)

}
;(2.12)

here we have put, in accordance with (2.4),

F `(u) :=

∫
Γf

f ` · u dx for ` = 1, . . . , L.(2.13)

Further, the sets U ` in (2.12) allow individual contact conditions for the loads f `;
hence we can work in (2.12) with different rigid obstacles and indeed we solve a coupled
multiple-load and multiple-obstacle problem. One could even go one step further and
consider different partitioning of Γ for each load-case. However, in technical practice
the (noncontact) boundary conditions are usually the same for all load-cases and thus
we assume f ` ∈ Γf for all ` = 1, . . . , L.

To be more precise for the numerical part later we assume that the sets U ` in
(2.12) can be written in the form

U ` :=
{
u ∈ H1(Ω) | g`(u) ≤ δ`}(2.14)

with linear functions g` and suitable right-hand sides δ` for ` = 1, . . . , L. Further, to
exclude trivial situations, let

U ` 6= ∅ for ` = 1, . . . , L.

All our forthcoming efforts aim at finding an efficient analytical and computational
way to solve the MLD (2.12). We start with two steps which convert (2.12) to an
“equivalent” but more easily accessible problem. First let us eliminate the discrete
inner “sup`=1,...,L” in (2.12). With a weight vector λ for the loads, which runs over
the unit simplex

Λ :=

{
λ ∈ RL |

L∑
`=1

λ` = 1, λ` ≥ 0 for ` = 1, . . . , L

}
,(2.15)

we get from a standard linear programming argument the following equivalent repre-
sentation of (2.12):

inf
E∈E

sup
λ∈Λ

(u1,...,uL)∈U1×···×U`

L∑
`=1

{
−1

2

∫
Ω

λ`〈Ee(u`), e(u`)〉 dx+ λ`F
`(u`)

}
.(2.16)

The objective function in (2.16) is linear (and thus convex) in the inf-variable E;
it is, however, not concave in the sup-argument (u1, . . . , u`;λ). This is in contrast

818 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

to the SLD case, where λ reduces to 1 and (2.16) specializes to (2.11), which is
convex-concave in (E, u). This convex-concave feature of SLD allows one to use
convex analysis and to prove an existence result for (2.11). Further, after applying
a minimax switch and after discretizing, one reaches a mathematical programming
formulation for SLD which is of extremely simple structure (linear objective and
quadratic constraints) and which is open to powerful modern interior point methods;
see [16]. The loss of the convex-concave character in the MLD (2.16) excludes a direct
transfer of this approach to the MLD case. Here we use a trick and show that after a
simple change of variables we reach a convex-concave formulation for this case also.

We begin by noting that the inf-sup value in (2.16) remains the same when re-
stricting λ to the half-open set

Λ0 := {λ ∈ Λ | λ` > 0 for ` = 1, . . . , L}(2.17)

and passing from the variable (u1, . . . , uL;λ) to

(v1 := λ1u
1, . . . , vL := λLu

L;λ).

This step converts (2.12)–(2.16) to

inf
E∈E

sup
(v,λ)∈V

L∑
`=1

{
−1

2

∫
Ω

λ−1
` 〈Ee(v`), e(v`)〉 dx+ F `(v`)

}
,(2.18)

where we have put v := (v1, . . . , vL) and

V :=
{

(v;λ) | λ ∈ Λ0, g
`(v`)− λ`δ` ≤ 0 for ` = 1, . . . , L

}
with g` and δ` from (2.13). V is again a convex set. Further—and this is the purpose
of this substitution—the objective function in (2.18),

F(E; (v;λ)) :=
L∑
`=1

{
−1

2

∫
Ω

λ−1
` 〈Ee(v`), e(v`)〉 dx+ F `(v`)

}
,(2.19)

is now concave in (v, λ) = (v1, . . . , vL;λ) ∈ V; this follows easily from the concavity
of −x2/y in (x, y) ∈ R × R+ \ {0}. Since, as before, F is linear (and thus convex)
in E, our convex-concave inf-sup problem (2.18) is open to the machinery of convex
analysis. From a theorem due to Moreau [11] we get the following existence result.

Theorem 2.1 (existence of an optimal design tensor for MLD). There exists
E∗ ∈ E such that

sup
(v;λ)∈V

F(E∗; (v;λ)) = min
E∈E

sup
(v;λ)∈V

F(E; (v;λ)).

Further,

inf
E∈E

sup
(v;λ)∈V

F(E; (v;λ)) = sup
(v;λ)∈V

inf
E∈E
F(E; (v;λ)).

Proof. The claim follows from [11] if we can guarantee that
(i) V is a convex set;
(ii) F(E; ·) is concave for fixed E ∈ E ;
(iii) E ⊂ L∞(Ω) is convex and weak*-compact;

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING 819

(iv) F(·; (v;λ)) is convex and lower semicontinuous on E (equipped with the
weak*-topology of L∞(Ω)) for fixed (v;λ) ∈ V.
Conditions (i) and (ii) were already discussed above, and the convexity in (iii) and
(iv) is obvious. The limit E of a sequence of elements En ∈ E again satisfies (2.6),
(2.8), and (2.9); hence E is closed in L∞(Ω). From (2.6) and (2.9) one easily de-
duces that E lies in a norm ball of L∞(Ω). Thus the weak*-compactness of E fol-
lows from the Alaoglu’s theorem (see, e.g., [15, Theorem III.10.2]. The function
F(·; (v;λ)) is linear in E (for fixed (v;λ)) and obviously continuous on E (as a subset of
L∞(Ω)). The continuity in the weak*-topology follows from the very definition of this
topology.

Note that (2.12), (2.16), and (2.18) yield the same objective values but that in
(2.18) we work with a restricted domain of definition (Λ replaced by Λ0). Obviously,
we can extend Λ0 in (2.18) to Λ for the price of working with an extended-valued
variant of F . We avoid these technicalities here since it is the design function E we
are really interested in, and for such E we use an existence result with Theorem 2.1.

3. Discretization and semidefinite reformulation. Given the existence of
an optimal elasticity matrix E∗ for (2.18), we ask how to “compute” this E∗. The
results of this section supply the key to this question; it is shown that after a finite
element discretization of (2.18), the problem can be reduced to a semidefinite program,
for which efficient computational tools are available.

3.1. The discretized problem. To simplify the notation, we use the same
symbols for the discrete objects (vectors) as for the “continuum” ones (functions).
Assume that Ω is partitioned into M quadrilateral elements Ωm of volumes ωm. Let
N be the number of nodes (vertices of the elements). Assume that E is approximated
by a function that is constant on each element Ωm; i.e., it is fully characterized by a
collection E = (E1, . . . , EM) of d× d matrices Em—the values of E on the elements.
The feasible set E is replaced by its discrete counterpart

E :=

E ∈ Rd×dM
∣∣∣∣∣∣
Em = ETm � 0 and r−m ≤ tr(Em) ≤ r+

m for m = 1, . . . ,M,
M∑
m=1

tr(Em)ωm ≤ α

 .

Further, assume that the displacement vector u` corresponding to the load-case ` is
approximated by a continuous function that is tri/bilinear (linear in each coordinate)
on every element. Such a function can be written as

u`(x) =
N∑
n=1

u`nϑn(x),

where u`n is the value of u` at the nth node and ϑn is the basis function associated
with nth node. (For details, see [7].) Recall that, at each node, the displacement
has dim components, hence u ∈ RD, D ≤ dim · N . (D could be less than dim · N
because of boundary conditions which enforce the displacements of certain nodes to
lie in given subspaces of Rdim.)

Further, we define the discrete version of the set U ` of admissible displacements.
We assume that the set is given by unilateral contact conditions. The introduction
of these conditions is quite technical, and the details can be found in [10]. Here we
introduce only vectors δ` ∈ Rr (representing the gaps between the contact surfaces
and the rigid obstacles) and r ×M matrices C` (defining the nodes of the contact

820 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

surface and the direction to the obstacle). The set of admissible displacements for the
discretized problem takes the form

U ` := {u` ∈ RD | C`u` ≤ δ`}.(3.1)

For basis functions ϑn, n = 1, . . . , N , we define the matrix (which are again func-
tions of x)

Bn =

∂ϑn
∂x1

0

0 ∂ϑn
∂x2

1
2
∂ϑn
∂x2

1
2
∂ϑn
∂x1

for dim = 2 and an analogous matrix for dim = 3. Now, for an element Ωm, let Dm be
an index set of nodes belonging to this element. The value of the approximate strain
tensor e on element Ωm is then (adding the variable x as a subscript)

ex(u`) =
∑
n∈Dm

Bn(x)u`n on Ωm;

recall that u`n has dim components.
Finally, the discrete version of the linear functional F `(u`) is (f `)Tu` with f ` ∈

RD, the load discretized in a standard way by means the basis functions ϑn.
Analogously to E , define

Eh :=

{
E = {Em}Mm=1 | Em ∈ Σd+, m = 1, . . . ,M ;

[0 ≤] r−m ≤ tr(Em) ≤ r+
m [<∞], m = 1, . . . ,M ;

M∑
m=1

ωmtr(Em) ≤ α
}
,

(3.2)

where Σp denotes the space of symmetric p×p matrices and Σp+ is the cone of positive
semidefinite matrices from Σp. As a discretized version of the original problem we
thus obtain

min
E={Em}Mm=1∈Eh

φ(E),

φ(E) := sup
`=1,...,L

sup
u∈U`

[
−

M∑
m=1

tr

(
Em

∫
Ωm

ex(u)eTx (u)dx

)
+ 2(f `)Tu

]
.

(3.3)

Now, for each element Ωm there exists a finite set of points xms and positive
weights χ2

ms, s = 1, . . . , S, such that∫
Ωm

ex(u)eTx (u)dx =
S∑
s=1

χ2
msexms(u)eTxms(u)

for all u ∈ RD; e.g., one can take S = 4 for dim = 2, linear Bn(·), and rectangular
Ωm.

Let us define linear matrix-valued functions

ζm(u) = ω−1/2
m [χm1exm1

(u);χm2exm2
(u); . . . ;χmSexmS (u)], m = 1, . . . ,M,

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING 821

taking values in the space of d× S matrices; then the objective function in (3.3) can
be rewritten equivalently as

φ(E) = sup
`=1,...,L

sup
u∈U`

[
−

M∑
m=1

ωmtr(Emζm(u)ζTm(u)) + 2(f `)Tu

]
.

From now on we make the following assumptions:
(A) The linear inequalities defining the polyhedral sets U `, ` = 1, . . . , L, satisfy

the Slater condition: for every `, there exists u`0 such that C`u`0 < δ`.
(B) The mapping u 7→ {ζm(u)}Mm=1 has trivial kernel on RD. (This is actually

the assumption which excludes rigid body motion of the construction.)

(C) r−m < r+
m, m = 1, . . . ,M , and

∑M
m=1 r

−
mωm < α.

3.2. The main results. We formulate two main results related to the dis-
cretized problem (3.3). (For proofs, see section 6.)

Theorem 3.1. Under assumptions A, B, and C, the semidefinite program

maximize

ψ(v, ν, ρ+, ρ−) = −αν + 2
L∑
`=1

(f `)T v` +
M∑
m=1

(s−mρ
−
m − s+

mρ
+
m),

subject to

Am(v, ν, ρ+, ρ−) :=

(ν + ρ+

m − ρ−m)Id ζm(v1) ζm(v2) · · · ζm(vL)
ζTm(v1) λ1IS
ζTm(v2) λ2IS

...
. . .

ζTm(vL) λLIS

� 0, m = 1, . . . ,M,

Diag(λ`δ
` − C`v`) � 0, ` = 1, . . . , k,

Diag(ρ+) � 0,
Diag(ρ−) � 0,

ν ≥ 0,∑L
`=1 λ` = 1.

(3.4)

(C`, δ` are given by (3.1)) with the design variables

(v;λ) = (v1, . . . , vL;λ) ∈ (RD)L × RL, ρ± ∈ RM , ν ∈ R
and constants

s±m = ωmr
±
m

is dual to the problem of interest (3.3) in the sense that the optimal value φ∗ of (3.3)
is equal to the optimal value ψ∗ of (3.4).

Theorem 3.1 deals with optimal values of (3.3), (3.4) but does not answer the
crucial question of how to recover a (nearly) optimal solution to the original (primal)
problem from a (nearly) optimal solution to its dual problem. In order to derive
such a recovering routine, recall the notion of a central approximate solution to a
semidefinite program. Problem (3.4) is of the generic form

(SDP) max{cTx | Ax � 0, eTx = 1},

822 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

where the design vector x varies in Rn and x 7→ Ax is an affine mapping of Rn
into space Σ of symmetric matrices of a given block-diagonal structure. Assuming
the problem (SDP) to be strictly feasible (there exists x with eTx = 1 and positive
definite Ax), one can equip the relative interior X ′ of a feasible set X of the problem
with the standard barrier

B(x) = − ln Det(Ax).

Now let t > 0. A point x(t) ∈ X ′ is called central approximate solution to (SDP)
associated with the value t of the penalty parameter if x(t) minimizes the aggregate

−tcTx+B(x)(3.5)

over X ′.
We are about to establish the following theorem.
Theorem 3.2. Under assumptions A, B, and C we have the following:
(i) Central approximate solutions to (3.4) exist for every value t > 0 of the

penalty parameter
(ii) A central approximate solution

x(t) = ((v1(t), . . . , vL(t);λ(t)), ν(t), ρ+(t), ρ−(t))

to (3.4) associated with a large value of the penalty parameter can be explicitly
converted to a good approximate solution to (3.3) as follows. Let

Wm := t−1A−1
m (x(t)) =

(
Ξm QTm
Qm Rm

)
, m = 1, . . . ,M,

Ξm being d× d block, and let

E+
m = ω−1

m Ξm, m = 1, . . . ,M.

Then E+ = {E+
m}Mm=1 is a feasible solution to (3.3), and the value of the

objective of the latter problem at E+ is larger than the optimal value φ∗ of
(3.3) by at most ∆(t), where

∆(t) = t−1

[
N(kS +D + 2) +

L∑
`=1

dim(δ`) + 1

]
.

4. Computational issues. The semidefinite problem (3.4) can be efficiently
solved by modern interior point polynomial time methods; the most attractive seem
to be the path-following algorithms, since they automatically generate (nearly) central
approximate solutions with the value of the penalty parameter growing linearly at the
rate (1 +O(ϑ−2)), where

ϑ = M(kS + d) + 2M +

L∑
`=1

dim(δ`) + 1

is the total row size of matrices from Σ. The computational effort per iteration (i.e.,
per increasing the penalty parameter in the aforementioned ratio) is dominated by
the necessity of assembling and solving (with respect to d) the Newton system

[∇2B(x)]d = b,

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING 823

Fig. 5.1. Example 1.

x ∈ V ′ and b being given. It is easily seen that for (3.4) the latter task requires
O(L3D3) arithmetic operations. The theoretical upper bound on the number of itera-
tions required to recover, via the scheme of Theorem 3.2, an ε-optimal solution to the
original problem (3.3) (i.e., a feasible solution to (3.3) with the value of the objective
greater than the optimal one by at most ε) is

√
ϑ ln(ϑε−1V),

where the scale factor V depends on the numerical values of the data. The practical
behavior of a good interior point method as applied to (3.4) is even better than the one
predicted by the theoretical complexity bound, and the typical number of iterations
required to solve (3.3) to a reasonably high accuracy is 20–40.

The illustrated numerical results reported in the next section were obtained with
the aid of the projective method [8] implemented in the LMI Toolbox for use with
MATLAB—the only interior point solver for semidefinite programs that we had at
our disposal. Unfortunately, this method is not a path-following method; this is why
we were enforced to combine it with an additional (and computationally relatively
cheap) interior point routine, based on Theorem 3.2, which, given a good feasible
solution to (3.4), updates it into a central solution of the same quality and uses this
“refined” solution to recover a nearly optimal solution to the problem of interest.

5. Examples. Results of three numerical examples are presented in this section.
The values of the “density” function ρ are depicted by gradations of gray: full black
corresponds to high density, white to zero density (no material), etc.

Example 1. We consider a typical example of structural design: The two forces
(or force and fixed boundary) are opposite to each other and there is a hole in be-
tween because of technological reasons. The geometry of domain Ω and the forces are
depicted in Figure 5.1. The forces are considered as a single load. Because of sym-
metry, we could compute only one half of the original domain. The resulting values
of the “density” function ρ for 29× 29 mesh are presented in Figure 5.2; the figure is
composed from two computational domains to obtain the original body.

Example 2. Let us now generalize Example 1 to a symmetric two-sided body
shown in Figure 5.3. The body can be loaded by the forces on either the left- or
the right-hand side. Therefore this example has to be considered as MLD (two-load
case). Again, symmetry allows us to compute only one half of the original domain.
The resulting values of the “density” function ρ for 37 × 25 mesh are also presented
in Figure 5.3. Again, the figure is composed from two computational domains to get
the full body.

Example 3. In this example we try to model a spanner. The geometry of domain
Ω is depicted in Figure 5.4. The nut (depicted in full black in Figure 5.4) is considered
to present a rigid obstacle for the spanner. Hence the spanner is in unilateral contact
with the nut and there are no other boundary conditions. The loads are also shown

824 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

in Figure 5.4. Note that the problem is nonlinear because of the unilateral contact
conditions and that for positive vertical force we get a different design than for a
negative one; hence we have to consider these two forces as two independent loads.
The resulting values of the “density” function ρ for 37× 22 discretization are shown
in Figure 5.5. We also performed a more detailed analysis of the most interesting part
around the nut: Figure 5.6 shows the values of ρ for 31×31 discretization of this part.

Fig. 5.2. Example 1.

21

21

Fig. 5.3. Example 2.

Ω
rigid obstacle

1st load-case

2nd load case

Fig. 5.4. Example 3.

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING 825

Fig. 5.5. Example 3.

Fig. 5.6. Example 3.

6. Proofs of Theorems 3.1 and 3.2.

6.1. From the primal (3.3) to the dual (3.4). Recall the definitions of Λ
(2.15), Λ0 (2.17), and v = (v1, . . . , vL). Similarly to section 2, let

V ′ = {(v;λ) ∈ (Rd)L × RL | C`v` < λ`δ
`, λ ∈ Λ0},

V = clV ′ = {(v;λ) ∈ (Rd)L × RL | C`v` ≤ λ`δ`, λ ∈ Λ}.
As in section 2, we can rewrite the function φ(·) as

φ(E) = sup
(u1,λ1;...;uL,λL):

λ∈Λ0,u
`∈U`

L∑
`=1

[
2λ`(f

`)Tu` − λ`
M∑
m=1

ωmtr(Emζm(u`)ζTm(u`))

]

= sup
(v;λ)∈V′

[
2

L∑
`=1

(f
`
)
T
v
` −

M∑
m=1

L∑
`=1

ωmλ
−1
` tr(Emζm(v

`
)ζ
T
m(v

`
))

]
so that (3.3) is only the problem

min
E∈Eh

sup
(v;λ)∈V′

T̂ (E; (v;λ)),

with

T̂ (E, (v;λ)) = 2

L∑
`=1

(f `)T v` −
L∑
`=1

M∑
m=1

ωmλ
−1
` tr(Emζm(v`)ζTm(v`)),

826 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

where Eh is defined in (3.2). By penalizing the linear inequalities in Eh and taking the
supremum with respect to the penalty coefficients, we can rewrite the latter problem
equivalently as

min
E∈P

sup
(v;λ)∈V′,

ν≥0,σ+,σ−∈RM+

T (E; (v;λ), ν, σ+, σ−),(6.1)

with

T (E; (v;λ), ν, σ+, σ−) = 2
L∑
`=1

(f `)T v` −
L∑
`=1

M∑
m=1

ωmλ
−1
` tr(Emζm(v`)ζTm(v`))

−ν
[
α−

M∑
m=1

ωmtr(Em)

]

−
M∑
m=1

[σ−(tr(Em)− r−m) + σ+(r+
m − tr(Em))],

P = {{Em}Mm=1 | Em ∈ Σd+,m = 1, . . . ,M}.

The optimal value in (6.1), due to the origin of the problem, is exactly the optimal
value φ∗ of (3.3). Now let us pass from (3.3) to the problem with swapped infimum
and supremum,

sup
(v;λ)∈V′,

ν≥0,σ+,σ−∈RM+

inf
E∈P

T (E; (v;λ), ν, σ+, σ−),(6.2)

and let φ∗∗ be the optimal value in the latter problem. Note that by weak duality
inequality

φ∗ ≥ φ∗∗.(6.3)

By passing from E = {Em}Mm=1 to new variable F = {Fm}Mm=1, Fm = ωmEm,
and setting

ρ± :=
1

ωm
σm, s±m = ωmr

±
m, m = 1, . . . ,M,

we can rewrite the objective

ψ((v;λ), ν, ρ+, ρ−) := inf
E∈P

T (E; (v;λ), ν, σ+, σ−)

of problem (6.2) as

ψ((v;λ), ν, ρ+, ρ−) = inf
F∈P

{
−αν + 2

L∑
`=1

(f `)T v` +
M∑
m=1

(s−mρ
−
m − s+

mρ
+
m)

−
M∑
m=1

[
L∑
`=1

λ−1
` tr(Fmζm(v`)ζTm(v`))

+ (ρ−m − ρ+
m − ν)tr(Fm)

]}
.

(6.4)

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING 827

Now, denoting by µmax(A) the largest eigenvalue of a symmetric matrix A and taking
into account the evident relation

max
B∈Σd

+
,tr(B)=r≥0

tr(BC) = rµmax(C)

which is valid for an arbitrary symmetric d× d matrix C, we can easily continue the
above computation:

ψ((v;λ), ν, ρ+, ρ−) = −αν + 2

L∑
`=1

(f `)T v` +

M∑
m=1

(s−mρ
−
m − s+

mρ
+
m),

if µmax

(
L∑
`=1

λ−1
` ζm(v`)ζTm(v`)

)
≤ ν + ρ+

m − ρ−m,
m = 1, . . . ,M, and ν ≥ 0,

ψ((v;λ), ν, ρ+, ρ−) = −∞,
otherwise.

Thus the problem (6.2) becomes the optimization problem

maximize

ψ((v;λ), ν, ρ+, ρ−) = −αν + 2
L∑
`=1

(f `)T v` +
M∑
m=1

(s−mρ
−
m − s+

mρ
+
m)

s.t.

µmax

(
L∑
`=1

λ−1
` ζm(v`)ζTm(v`)

)
≤ ν + ρ+

m − ρ−m, m = 1, . . . ,M,

(v;λ) ∈ V ′,
ρ± ∈ RM+ ,

ν ≥ 0.

(6.5)

Let Ip denote the unit p × p matrix, and let us write A � B whenever A,B are
symmetric matrices of the same size and A−B � 0. For positive λ` and rectangular
q × p matrices Z`, ` = 1, . . . , L, one clearly has

L∑
`=1

λ−1
` Z`Z

T
` = [Z1;Z2; . . . ;ZL][Diag(λ1Ip, λ2Ip, . . . , λLIp)]

−1[Z1;Z2; . . . ;ZL]T

and therefore

a ≥ µmax

(
L∑
`=1

λ−1
` Z`Z

T
`

)
,

m
aIq � [Z1;Z2; . . . ;ZL][Diag(λ1Ip, λ2Ip, . . . , λLIp)]

−1[Z1;Z2; . . . ;ZL]T

m(
aIq [Z1;Z2; . . . ;ZL]

[Z1;Z2; . . . ;ZL]T Diag(λ1Ip, λ2Ip, . . . , λLIp)

)
� 0,

the concluding equivalence being given by the standard result on Schur’s complement.

828 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

We conclude that (6.5) is equivalent to the problem

maximize

ψ((v;λ), ν, ρ+, ρ−) = −αν + 2
L∑
`=1

(f `)T v` +
M∑
m=1

(s−mρ
−
m − s+

mρ
+
m)

s.t.

Am(v, ν, ρ+, ρ−) :=

(ν + ρ+

m − ρ−m)Id ζm(v1) ζm(v2) · · · ζm(vL)
ζTm(v1) λ1IS
ζTm(v2) λ2IS

...
. . .

ζTm(vL) λLIS

 � 0,

v ∈ V ′,
ρ± ∈ RM+ ,
ν ≥ 0.

(6.6)
Problem (6.6) is “almost” the problem (3.4); the only difference is that the “unclosed”
inequalities (v;λ) ∈ V ′, i.e.,

C`v` < λ`δ
`, λ` > 0,

∑
`

λ` = 1,

of (6.6) in (3.4) are replaced with their closed versions (v;λ) ∈ V, i.e.,

C`v` ≤ λ`δ`, λ` ≥ 0,
∑
`

λ` = 1.

It is immediately seen that this modification does not vary the optimal value. Indeed,
(6.6) is clearly feasible. (In fact, it is even strictly feasible: there exists a feasible
solution to the problem that makes all its inequalities strict. To get such a solution,
it suffices to choose arbitrary v ∈ V ′ and positive vectors ρ± and then to extend
this collection by large enough positive ν.) Due to feasibility of the problem, the
standard approximation arguments demonstrate that its optimal value clearly remains
unchanged when we pass from “unclosed” constraint v ∈ V ′ to its “closed” form v ∈ V,
thus arriving at the program (3.4). Consequently (see (6.3)),

φ∗ ≥ ψ∗,(6.7)

ψ∗ being the optimal value in (3.4).

6.2. Proof of Theorem 3.2(i). Problem (3.4) is of the form (SDP); from the
general theory of interior point methods (see [12]) it is known that existence of central
approximate solutions to (SDP) is guaranteed by strict feasibility of the program
(which indeed is the case for (3.4)) along with boundedness of the level sets of the
objective

X(a) = {x | Ax � 0, eTx = 1, cTx ≥ a}
for every real a. Thus, all we need in order to prove (i) is to verify the boundedness
of the level sets X(a).

Consider a sequence

{yj = ((v1,j , . . . , vL,j ;λ1,j , . . . , λL,j), νj , ρ
+,j , ρ−,j)}∞j=1

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING 829

of points from X(a), and let us prove that the sequence is bounded. Let πj =
maxm=1,...,M [νj + ρ+,j

m]. Since the matrices Am(yj) are positive semidefinite and
0 ≤ λ`,j ,

∑
` λ`,j = 1, we have ‖ζm(vi,j)‖ ≤ C√πj for some constant C and all m, i, j.

By assumption B, this observation yields that

‖vi,j‖ ≤ C ′√πj(6.8)

for all i, j. It follows that the objective of (3.4) at yj is at most

θj = −ανj +O(
√
πj) +

M∑
m=1

(s−mρ
−,j
m − s+

mρ
+,j
m)

= O(
√
πj)−

{
M∑
m=1

s−m(νj + ρ+,j
m − ρ−,jm)

}
1

−
{(

α−
M∑
m=1

s−m

)
νj

}
2

−
{

M∑
m=1

(s+
m − s−m)ρ+,j

m

}
3

.

Now, the quantities νj + ρ+,j
m − ρ−,jm are nonnegative (they are diagonal entries of

positive semidefinite matrices Am(yj)), so that {·}1 ≥ 0 and

0 ≤ ρ−,jm ≤ πj .(6.9)

By assumption C, we have {·}2 + {·}3 ≥ κπj with some positive κ, so that θj ≤
O(
√
πj)− κπj . On the other hand, θj is an upper bound on ψ(yj), and therefore the

sequence {θj} is bounded below; thus, the sequence πj is bounded, which, in view of
(6.9) and (6.8), implies boundedness of {yj}.

6.3. Proof of Theorem 3.2(ii) and Theorem 3.1. Recall the following.
For every feasible solution E to the problem of interest (3.3), the
value of the objective at the solution is equal to

sup
(v;λ)∈V′,ν≥0,ρ±∈RM

+

T (E; (v;λ), ν, ρ+, ρ−),(6.10)

with T given in (6.1).
Now let x(t) = ((v1(t), . . . , vL(t);λ(t)), ν(t), ρ+(t), ρ−(t)) be a central approximate
solution to (3.4), and let W = t−1[Ax(t)]−1, where (A, e) are the data from the
representation of (3.4) in the generic form (SDP). Note that W is a block-diagonal
positive definite matrix, and that its first N diagonal blocks are the matrices

Wm =

(
Ξm QTm
Qm Rm

)
,m = 1, . . . ,M,

mentioned in (ii). Due to the structure of constraints in (3.4), the remaining diagonal
blocks in W are k diagonal matrices WM+i of the row sizes dim(δ`) associated with the
constraints Diag(λ`δ

` − C`v`) � 0, ` = 1, . . . , L, two more diagonal N ×N matrices
WM+k+1, WM+k+2 associated with the constraints Diag(ρ+) � 0, Diag(ρ−) � 0,
respectively, and 1× 1 matrix WM+k+3 associated with the constraint ν ≥ 0.

The fact that x(t) minimizes the aggregate (3.5) over X ′ means that the vector

A∗W + c

830 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

is proportional to the vector e defining, via the equality constraint eTx = 1, the affine
span of X ; here A∗ is the operator conjugate to A, i.e., tr(y[Ax]) = (A∗y)Tx for all
x ∈ RN , y ∈ Σ. Now the only nonzero component of vector e for the problem (3.4) is
the λ-component, and this latter component is composed of ones. Substituting in the
relation

A∗W + c = θe(6.11)

the particular data of (3.4), we end up with the following system of relations (where
diag(Q) denotes the diagonal of a square matrix and diagi(Q) is the ith diagonal entry
of the matrix):

(a.1)

M∑
m=1

tr(Ξm) +WM+k+3 = α;

(a.2) tr(Ξm) + diagm(WM+k+1) = s+
m, m = 1, . . . ,M ;

(a.3) tr(Ξm)− diagm(WM+k+2) = s−m, m = 1, . . . ,M ;

(b) 2

M∑
m=1

tr(ZTm(w)Qm)

−
L∑
`=1

tr(WM+iDiag(C`w`)) = −2

L∑
`=1

(f `)Tw` for all w = (w1, . . . , wL),

ZTm(w) = [ζm(w1); . . . ; ζm(wL)];

(c)

M∑
m=1

tr(Rmπ(λ))

+
L∑
`=1

tr(WM+iDiag(δ`λ`)) = θ

L∑
`=1

λ` for all λ ∈ RL,

(6.12)

where π(λ), λ ∈ RL, is the kS×kS diagonal matrix where the first S diagonal entries
are equal to λ1, the next S entries are equal to λ2, and so on.

Note that (6.12(a)) along with evident positive definiteness of all Wm (and, con-
sequently, of all E+

m) demonstrate that E+ is a feasible solution to (3.3).
We have

−ψ∗ ≤ −cTx(t)

= (A∗W − θe)Tx(t)

(see (6.11))

= tr(W [Ax])− θ
(since eTx(t) = 1)

= t−1[N(kS +D + 2) +
L∑
`=1

dim(δ`) + 1]− θ

(since W = t−1[Ax(t)]−1)

= ∆(t)− θ.

(6.13)

According to (6.13), we have

θ ≤ ψ∗ + ∆(t).(6.14)

FREE MATERIAL DESIGN VIA SEMIDEFINITE PROGRAMMING 831

Now let (v;λ) ∈ V ′, ν ≥ 0, ρ± ∈ RM+ . Let us derive an upper bound for the quantity
T (E+; (v;λ), ν, ρ+, ρ−). The matrices

Am =

(∑L
`=1 λ

−1
` ζm(v`)ζTm(v`) ZTm(v1, . . . , v`)

Zm(v1, . . . , v`) π(λ)

)
, m = 1, . . . ,M,

AM+i = Diag(λ`δ
` − C`v`), i, ` = 1, . . . , k,

AM+k+1 = Diag({ω−1
m ρ+

m}Mm=1),

AM+k+2 = Diag({ω−1
m ρ−l}Mm=1),

AM+k+3 = ν

clearly are positive semidefinite, so that

0 ≤
M+k+3∑
m=1

tr(WmAm)

=
M∑
m=1

tr

(
Ξm

L∑
`=1

λ−1
` ζm(v`)ζTm(v`)

)

+2
M∑
m=1

tr(ZTm(v1 . . . , vL)Qm) +
M∑
m=1

tr(Rmπ(λ))

+
L∑
`=1

tr(Diag(λ`δ
` − C`v`)WM+i)

+
M∑
m=1

ω−1
m [ρ+

mdiagm(WM+k+1) + ρ−mdiagm(WM+k+2)]

+νWM+k+3

=
M∑
m=1

tr

(
Ξm

L∑
`=1

λ−1
` ζm(v`)ζTm(v`)

)
− 2

L∑
`=1

(f `)T v`

+θ
L∑
`=1

λ`

+
M∑
m=1

ω−1
m [ρ+

m(s+
m − tr(Ξm)) + ρ−m(tr(Ξm)− s−m)]

+νWM+k+3

(we have used (6.12(a.2, a.3,b, c)))

=
M∑
m=1

tr

(
Ξ+
m

L∑
`=1

λ−1
` ζm(v`)ζTm(v`)

)
− 2

L∑
`=1

(f `)T v`

+
M∑
m=1

ω−1
m [ρ+

m(s+
m − tr(Ξm)) + ρ−m(tr(Ξm)− s−m)]

+ν

(
α−

M∑
m=1

tr(Ξm)

)
+ θ

(we have used (6.12(a.1)))

= −T (E+; (v;λ), ν, ρ+, ρ−) + θ

(see (6.1)),

832 A. BEN-TAL, M. KOČVARA, A. NEMIROVSKI, AND J. ZOWE

which means

T (E+; (v;λ), ν, ρ+, ρ−) ≤ θ ≤ ψ∗ + ∆(t),

the concluding inequality being given by (6.14). Applying (6.10), we conclude that
the value of the objective of (3.3) at E+ is greater than ψ∗ by at most ∆(t). Since
the optimal value in (3.3) is φ∗ ≥ ψ∗ (see (6.7)), this observation completes the proof.

REFERENCES

[1] A. Ben-Tal and M. Zibulevsky, Penalty/barrier multiplier methods for convex programming
problems, SIAM J. Optim., 7 (1997), pp. 347–366.

[2] M. Bendsøe, Optimization of Structural Topology, Shape and Material, Springer-Verlag, Hei-
delberg, 1995.

[3] M. P. Bendsøe and A. Dı́az, Optimization of material properties for Mindlin plate design,
Structural Optim., 6 (1993), pp. 268–270.

[4] M. P. Bendsøe, A. D́ıaz, R. Lipton, and J. E. Taylor, Optimal design of material properties
and material distribution for multiple loading conditions, Internat. J. Numer. Methods
Engrg., 38 (1995), pp. 1149–1170.

[5] M. P. Bendsøe, J. M. Guades, R. Haber, P. Pedersen, and J. E. Taylor, An analytical
model to predict optimal material properties in the context of optimal structural design, J.
Appl. Mech., 61 (1994), pp. 930–937.

[6] M. P. Bendsøe, J. M. Guades, S. Plaxton, and J. E. Taylor, Optimization of structure and
material properties for solids composed of softening material, Internat. J. Solids Structures,
33 (1995), pp. 1179–1813.

[7] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
New York, Oxford, 1978.

[8] P. Gahinet and A. Nemirovski, The projective method for solving linear matrix inequalities,
Math. Programming Ser. B, 77 (1997), pp. 163–190.

[9] F. Jarre, M. Kočvara, and J. Zowe, Optimal truss design by interior-point methods, SIAM
J. Optim., 8 (1998), pp. 1084–1107.

[10] M. Kočvara, M. Zibulevsky, and J. Zowe, Mechanical design problems with unilateral con-
tact, RAIRO Modél. Math. Anal. Numér., 32 (1998), pp. 255–281.

[11] J.-J. Moreau, Théorèmes “inf-sup,” C. R. Acad. Sci. Paris, 258 (1964), pp. 2720–2722.
[12] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-

ming, SIAM Stud. Appl. Math. 13, SIAM, Philadelphia, 1994.
[13] J. Petersson, On stiffness maximization of variable thickness sheet with unilateral contact,

Quart. Appl. Math., 54 (1996), pp. 541–550.
[14] U. Ringertz, On finding the optimal distribution of material properties, Structural Optim., 5

(1993), pp. 265–267.
[15] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Krieger, Malabar, FL,

1980.
[16] J. Zowe, M. Kočvara, and M. Bendsøe, Free material optimization via mathematical pro-

gramming, Math. Programming Ser. B, 79 (1997), pp. 445–468.

A GLOBAL CONVERGENCE ANALYSIS OF AN ALGORITHM FOR
LARGE-SCALE NONLINEAR OPTIMIZATION PROBLEMS∗

PAUL T. BOGGS† , ANTHONY J. KEARSLEY‡ , AND JON W. TOLLE§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 833–862

This work is dedicated, with respect and admiration, to John Dennis
on the occasion of his 60th birthday

Abstract. In this paper we give a global convergence analysis of a basic version of an SQP
algorithm described in [P. T. Boggs, A. J. Kearsley, and J. W. Tolle, SIAM J. Optim., 9 (1999),
pp. 755–778] for the solution of large-scale nonlinear inequality-constrained optimization problems.
Several procedures and options have been added to the basic algorithm to improve the practical
performance; some of these are also analyzed. The important features of the algorithm include
the use of a constrained merit function to assess the progress of the iterates and a sequence of
approximate merit functions that are less expensive to evaluate. It also employs an interior point
quadratic programming solver that can be terminated early to produce a truncated step.

Key words. sequential quadratic programming, global convergence, merit function, large-scale
problems

AMS subject classifications. 49M37, 65K05, 90C30

PII. S1052623497316026

1. Introduction. In this report we consider an algorithm to solve the inequality-
constrained minimization problem

min
x

f(x)

subject to g(x) ≤ 0,
(1.1)

where x ∈ Rn, and f : Rn → R and g : Rn → Rm are smooth functions, in the case
when the dimensions of the problem, n and/or m, are large. The algorithm in question
has been reported in several papers and technical reports (see, for example, [2], [6],
and [13]); the purpose here is to provide a rigorous analysis of the global convergence
properties of a basic version of the algorithm. We also analyze certain procedures
that have been added to the algorithm to improve the practical performance. The
algorithm is an extension of the sequential quadratic programming (SQP) method
(see [5]). That is, at each iteration of the typical SQP algorithm a quadratic program
is solved to obtain the step direction. In particular, given current approximations, xk

and λk, to a solution and a corresponding multiplier of (1.1), the quadratic program

min
δ
∇f(xk)tδ + 1

2δ
tBkδ

subject to ∇g(xk)tδ + g(xk) ≤ 0
(1.2)

∗Received by the editors February 5, 1997; accepted for publication (in revised form) January 26,
1999; published electronically September 24, 1999. This work was performed by an employee of the
U.S. Government or under U.S. Government contract. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by
these rights.

http://www.siam.org/journals/siopt/9-4/31602.html
†Computational Science and Mathematics Research Department, Sandia National Laboratories,

Livermore, CA 94550 (ptboggs@ca.sandia.gov).
‡Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890

(anthonyk@andrew.cmu.edu).
§Departments of Mathematics and Operations Research, University of North Carolina, Chapel

Hill, NC 27599-3250 (tolle@or.unc.edu).

833

834 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

is formed and, if feasible, solved. The matrix Bk is generally taken to be an approxi-
mation of the Hessian with respect to x of the Lagrangian function of (1.1) at (xk,λk).
The solution, δk, is then used to generate the next approximation, xk+1, by

xk+1 = xk + αδk,

where α is a scalar steplength determined by a line search. A new multiplier approxi-
mation, λk+1, can also be obtained from the quadratic program, for example, by using
a multiplier, µk, associated with δk.

The most crucial factors in the application of the SQP method to problems of the
form (1.1) are the choice of the approximating matrices Bk to be used in the quadratic
programs, the accuracy to which these quadratic subproblems are solved, and the
choice of a merit function with which to measure progress toward a solution in the
line search step. The matrix Bk determines how well the quadratic program models
the true problem (1.1) as well as how easily the quadratic program can be solved; this
choice may be constrained by sparsity or other considerations. The accuracy of the
solution of (1.2) can have a profound effect on the overall efficiency of the algorithm;
i.e., approximately solving (1.2), especially in early iterations, often results in less
overall work. The merit function determines the choice of steplength α. A good merit
function will balance the sometimes conflicting goals of decreasing f and decreasing
infeasibility.

Much of the theory underlying the possible choices of the Bk and the ideal prop-
erties of a merit function can be found in [5]. In this work there can also be found
references to the extensive literature concerning how best to implement an SQP al-
gorithm. Most of this research is directed toward solving small- to medium-sized
problems, most often with only equality constraints. Although (1.1) contains only
inequality constraints, the algorithm described herein is designed to be applied to
large-scale problems with general equality and inequality constraints; the equality
constraints can be included without significantly changing the analysis.

Relatively few theoretical and computational algorithms for large-scale nonlin-
ear programming problems have been proposed in the literature. One of the earliest
methods is MINOS [15], a projected Lagrangian method originally developed for lin-
ear constraints. A more recent example is LANCELOT [9], which is an augmented
Lagrangian method employing an ∞-norm trust region, with numerous options help-
ful in solving various classes of problems. Examples of SQP approaches include [14]
and [12]. Some algorithms provide the option of using interior point methods to solve
for the descent direction (see, for example, [11]), while others involve various direct
extensions of the interior point ideas to the nonlinear setting, including [10]. Our
approach differs significantly from these other methods. In particular, we may ap-
proximately solve the quadratic subproblem using an interior point method with a
variation of a trust region, and we employ a different method of testing for acceptance
of a step, incorporating an inexpensively evaluated approximate merit function that
changes at each iteration. This paper is intended to provide a theoretical underpin-
ning for our algorithm; [2] and [13] provide details of specific implementations as well
as the results of numerical experiments on practical test problems. The performance
of these algorithms on this test set, in our view, amply justifies this effort.

In section 2 we describe the merit function and its relationship to the original
problem (1.1). Since our merit function depends on estimates of the nonnegative
slack variables, we need to specify our procedure to update these. The complete steps
are defined in section 3 along with the definition of the approximate merit functions

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 835

that we employ. The assumptions and their implications for our analysis are set forth
in section 4. In sections 5 and 6 we derive the fundamental descent properties for
steps generated by solving the QP subproblems completely, and present the basic
algorithm. Section 7 contains the main global convergence theorem for the algorithm.
In particular, we obtain actual convergence of the iterates to a critical point of (1.1)
as compared to the weaker result that limit points are critical points. In section 8
we analyze the descent properties of steps formed by approximately solving (1.2),
illustrating how convergence can be achieved. Finally, in section 9 we comment on
other aspects of the practical implementation of the algorithm.

2. The merit function and its properties. An important facet of our algo-
rithm is the merit function ψ, which is a scalar-valued function such that a reduction
in ψ implies progress toward a solution. Typically, ψ is chosen such that an uncon-
strained minimum of ψ corresponds to a solution of (1.1). However, to obtain our
merit function for the inequality-constrained problem we introduce nonnegative slack
variables z ∈ Rm so that the feasibility constraints for (1.1) become

g(x) + z = 0.

With the addition of these slack variables we can derive a merit function based on
a weighted `2 exact penalty function for the resulting equality-constrained program.
The merit function has the form

ψd(x, z) = f(x) + λ̄(x, z)
t
c̄(x, z) +

1

d
c̄(x, z)

t
[Ā(x, z)]−1c̄(x, z),(2.1)

where

c̄(x, z) = g(x) + z,

Ā(x, z) = ∇g(x)t∇g(x) + Z,

λ̄(x, z) = −[Ā(x, z)]−1∇g(x)t∇f(x),

d is a (small) positive parameter, e is the vector of ones, and

Z = diag {z1, . . . , zm} .

Here and throughout the paper the symbol ∇h(x) will denote the Jacobian (or, in the
case of a scalar function, the gradient) of the function h(x). If the Jacobian refers to
differentiation with respect to only a subset of the variables, this will be indicated by
a subscript, i.e., ∇xλ̄(x, z). The set {(x, z) : c̄(x, z) = 0 and z ≥ 0} can be thought of
as the feasible set for (1.1) and the function λ̄(x, z) can be interpreted as a weighted
least squares approximation to the Lagrange multiplier vector for (1.1). A motivation
for including the weighting factor Ā(x, z)−1 can be found in [8]. Further details and
references for this merit function, including its derivation, can be found in [6].

Before relating the minimization of ψd(x, z) to the solution of (1.1), we introduce
some notation to be used in the remainder of the paper. The Lagrangian function for
(1.1) will be denoted by

L(x, λ) = f(x) + g(x)tλ,

and the Hessian of this Lagrangian by HL(x, z). In particular, HxxL will denote the
Hessian with respect to the vector x. A first-order solution to (1.1) will be denoted

836 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

by (x∗,λ∗); that is, x∗ and λ∗ will satisfy

∇f(x∗) +∇g(x∗)λ∗ = 0,(2.2)

g(x∗) ≤ 0,(2.3)

λ∗ ≥ 0,(2.4)

g(x∗)tλ∗ = 0.(2.5)

If, in addition, x∗ and λ∗ satisfy strict complementary slackness, the Hessian matrix
HxxL(x∗, z∗) is positive definite on the tangent space to the active constraint set
at x∗, and the set {∇gi(x∗) : gi(x

∗) = 0} is linearly independent, then we will call
(x∗,λ∗) a strong solution to (1.1). We shall denote the set of first-order solutions (or
critical points) to (1.1) by S. That is,

S = {(x, z) : (x, λ) is a first-order solution of (1.1) for some λ and z = −g(x)} .

For positive ε we denote an ε-neighborhood of S by

Sε = {(x, z) : ‖(x, z)− (x∗, z∗)‖ < ε for some (x∗, z∗) ∈ S} .

As noted above, feasibility for (1.1) can be expressed in terms of the x and z
variables. Accordingly, we represent an η-neighborhood of the feasible set as

Cη = {(x, z) : r(x, z) ≤ η} ,(2.6)

where

r(x, z) = ‖c̄(x, z)‖2 .(2.7)

In this notation, C0 is the feasible set.
Since the z variables must be nonnegative, the minimizers of the merit function

ψd(x, z) defined above have to be considered constrained optimal points. That is, they
are solutions of

min
x,z

ψd(x, z)

subject to z ≥ 0.
(2.8)

We have that (x̂, ẑ, ω̂) is a first-order solution of (2.8) if

∇xψd(x̂, ẑ) = 0,(2.9)

∇zψd(x̂, ẑ)− ω̂ = 0,(2.10)

ẑ ≥ 0,(2.11)

ω̂ ≥ 0,(2.12)

ẑtω̂ = 0.(2.13)

Let

M(ẑ) = {s = (sx, sz) : (sz)j = 0 if ẑj = 0} .(2.14)

Then the second-order condition for (2.8) is that

stHψd(x̂, ẑ) s > 0

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 837

for all s ∈M(ẑ), s 6= 0. Since the active constraint gradients for (2.8) are always lin-
early independent, if this second-order condition and strict complementary slackness
(ẑj = 0 implies ω̂j > 0) hold, then a first-order solution is a strong solution to (2.8).

The following useful formulas for the derivatives of ψd(x, z) are easily derived:

∇xψd(x, z) = ∇xL(x, λ̄(x, z)) +∇xλ̄(x, z)c̄(x, z)

+
2

d
∇g(x)[Ā(x, z)]−1c̄(x, z) + V1(x, z)(2.15)

and

∇zψd(x, z) = λ̄(x, z) +∇zλ̄(x, z)c̄(x, z)

+
2

d
[Ā(x, z)]−1c̄(x, z) + V2(x, z),(2.16)

where V1 and V2 are O (r(x, z)). From the expression for λ̄(x, z) we also obtain the
expressions

∇xλ̄(x, z) =−W (x,∇xL(x, λ̄(x, z)))(2.17)

−HxxL(x, λ̄(x, z))∇g(x)[Ā(x, z)]−1

and

∇zλ̄(x, z) = −Λ̄(x, z) [Ā(x, z)]−1,(2.18)

where W (x, y) = O(y) uniformly in x and

Λ̄(x, z) = diag
{
λ̄1(x, z), . . . , λ̄m(x, z)

}
.

The following propositions establish the relationships between the solutions of
(1.1) and (2.8). We assume in every case that Ā(x∗, z∗) is nonsingular and hence
positive definite (see assumption A4 in section 4).

Proposition 2.1. If (x∗, λ∗) is a first-order solution for (1.1) and z∗ is set equal
to −g(x∗), then λ̄(x∗, z∗) = λ∗ and the triple (x∗,z∗,λ∗) is a first-order solution for
(2.8). In addition, if (x∗,λ∗) is a strong solution to (1.1) and d is sufficiently small,
then (x∗,z∗,λ∗) is a strong solution to (2.8).

Proof. If (x∗,λ∗) is a first-order solution to (1.1), then from (2.2),

[Ā(x∗, z∗)]−1∇g(x∗)t∇f(x∗) + [Ā(x∗, z∗)]−1∇g(x∗)t∇g(x∗)λ∗ = 0.

It follows from the definition of λ̄(x∗, z∗) and Ā(x∗, z∗) that

−λ̄(x∗, z∗) + λ∗ − [Ā(x∗, z∗)]−1Z∗λ∗ = 0.

But since the complementary slackness conditions (2.5) and the definition of z∗ imply

Z∗λ∗ = 0,(2.19)

it follows that

λ∗ = λ̄(x∗, z∗).(2.20)

Then, since c̄(x∗, z∗) = 0, (2.15) and (2.16) yield

∇xψd(x∗, z∗) = ∇f(x∗) +∇g(x∗)λ∗ = 0

838 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

and

∇zψd(x∗, z∗) = λ∗ ≥ 0.

These equations, together with (2.19), imply that (x∗,z∗,λ∗) is a first-order solu-
tion for (2.8). Now assume that (x∗, λ∗) is a strong solution to (1.1). Then strict
complementary slackness for (2.8) follows from the definition of z∗ and (2.19) since
strict complementary slackness holds for (1.1). We now assume that the second-order
condition holds for (1.1), i.e., that

vtHxxL(x∗, λ∗) v > 0

if v 6= 0 and ∇gi(x∗)tv = 0 for all i such that gi(x
∗) = 0. To construct the Hessian

of ψd(x, z), we use (2.15), (2.16), (2.17), and (2.18) together with c̄(x∗, z∗) = 0 and
∇xL(x∗, z∗) = 0 to obtain

Hxxψd(x
∗, z∗) = HxxL(x∗, z∗)−∇g(x∗)[Ā(x∗, z∗)]−1∇g(x∗)tHxxL(x∗, z∗)

−HxxL(x∗, z∗)∇g(x∗)[Ā(x∗, z∗)]−1∇g(x∗)t

+
2

d
∇g(x∗)[Ā(x∗, z∗)]−1∇g(x∗)t,

Hx,zψd(x
∗, z∗) = −HxxL(x∗, z∗)∇g(x∗)[Ā(x∗, z∗)]−1

−∇g(x∗)Λ̄(x∗, z∗)[Ā(x∗, z∗)]−1 +
2

d
∇g(x∗)[Ā(x∗, z∗)]−1,

Hzzψd(x
∗, z∗) = −2 Λ̄(x∗, z∗)[Ā(x∗, z∗)]−1 +

2

d
[Ā(x∗, z∗)]−1.

Let M(z∗) be the set defined in (2.14). Then, for s ∈M(z∗), (2.19) implies

Λ̄(x∗, z∗) sz = 0.

Thus

stHψd(x
∗, z∗) s = st

xHxxL(x∗, z∗) sx
−2 st

x∇g(x∗)[Ā(x∗, z∗)]−1∇g(x∗)tHxxL(x∗, z∗) sx
−2 st

xHxxL(x∗, z∗)∇g(x∗)[Ā(x∗, z∗)]−1sz

−2 st
x∇g(x∗)Λ̄(x∗, z∗)[Ā(x∗, z∗)]−1sz

+
2

d
(∇g(x∗)tsx + sz)

t[Ā(x∗, z∗)]−1(∇g(x∗)tsx + sz).

If

∇g(x∗)tsx + sz 6= 0,

then for d sufficiently small, this quadratic form is positive. If this vector is zero, then
the quadratic form reduces to

stHψd(x
∗, z∗) s = st

xHxxL(x∗, z∗) sx.

But ∇gi(x∗)tsx = −(sz)i = 0 for i such that gi(x
∗) = −z∗i = 0, and hence the

second-order condition for (1.1) implies that st
xHxxL(x∗, z∗) sx is positive. A standard

argument now shows that the matrix Hψd(x
∗, z∗) must be positive definite on the set

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 839

M(z∗). Since the active constraint gradients for (2.8) are always linearly independent,
we have shown that (x∗, z∗, λ∗) is a strong solution to (2.8).

The converse of the above proposition is not true in general since (2.8) may have
solutions (x̂, ẑ) for which ẑ 6= −g(x̂); but for d sufficiently small, these nonfeasible so-
lutions are far from the feasible set C0. The following proposition is a partial converse;
it guarantees that any solution to (2.8) that is in C0 is a solution to (1.1).

Proposition 2.2. If (x∗,z∗) is a first-order solution to (2.8) with multiplier
λ̄(x∗, z∗) and z∗ = −g(x∗), then (x∗, λ̄(x∗, z∗)) is a first-order solution to (1.1).
Moreover, if (x∗,z∗) is a strong solution to (2.8) and d is sufficiently small, then
(x∗, λ̄(x∗, z∗)) is a strong solution to (1.1).

The proof of this proposition is very similar to that of Proposition 2.1 and hence
is omitted.

3. The iteration steps and the approximate merit functions. In our algo-
rithm we generate a sequence of iterates, (xk, zk), where xk is a current approximation
to x∗ and zk is a corresponding approximation to the optimal slack vector −g(x∗).
At each iteration, we compute a step for updating the slack variables as follows: if δk

is the step computed at xk using the quadratic program (1.2), then the corresponding
step for zk is taken to be

qk = − [∇g(xk)tδk + g(xk) + zk
]

;(3.1)

i.e., zk + qk is the slack vector for (1.2). We then update the pair of iterates by

(xk+1, zk+1) = (xk, zk) + α (δk, qk)

for some steplength α determined by a line search using our merit function ψd. If δk is
feasible for (1.2) and α ∈ (0, 1], then zk+1 is nonnegative (provided zk is nonnegative).
Thus the nonnegativity of the slack variables can easily be maintained as long as the
linearized constraints are satisfied. In section 8 we consider a slightly different update
for z when this is not the case.

A comment on the notation is in order: We denote the iterate by (xk, zk) and the
step by (δk, qk), whereas conventional notation would be to use(

xk

zk

)
and

(
δk

qk

)
.

It should be clear from the context what is meant.
Because ψd(x, z) involves the gradients of the objective function and the con-

straints, carrying out line searches for this function can be quite expensive, an es-
pecially critical factor in solving large-scale problems. Consequently, at each iterate
generated by the algorithm, we identify a corresponding (local) approximate merit
function to act as a surrogate for ψd(x, z) in determining an appropriate α. These ap-
proximate merit functions, which are formed by keeping the gradient terms in ψd(x, z)
fixed, are more easily evaluated than ψd(x, z). At the kth iterate the approximate
merit function is defined as

ψkd(x, z) = f(x) + c̄(x, z)
t
λ̄k +

1

d
c̄(x, z)

t
Āk
−1
c̄(x, z),(3.2)

where

Āk = ∇g(xk)t∇g(xk) + Zk

840 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

and

λ̄k = −Āk−1∇g(xk)t∇f(xk).

The gradient formulas for ψkd are somewhat simpler than those for ψd given in (2.15)
and (2.16); namely,

∇xψkd(x, z) = ∇xL(x, λ̄k) +
2

d
∇g(x)[Āk]−1c̄(x, z)(3.3)

and

∇zψkd(x, z) = λ̄k +
2

d
[Āk]−1c̄(x, z).(3.4)

While simpler in form, the ψkd(x, z) cannot be used directly in a global convergence
theory since they change from iterate to iterate. Nevertheless, they play a prominent
role in our algorithm. A major part of this paper is devoted to demonstrating how
these approximate merit functions can be used in conjunction with ψd(x, z) to force
convergence.

4. Basic assumptions. In proving global convergence we need to make some
fundamental assumptions that will guarantee that our algorithm is well defined. Of
course, these assumptions can rarely be assured in practice; therefore, some safe-
guards must be incorporated into an implementation of the algorithm to ensure that
the algorithm will continue if a particular assumption fails to hold. In theory, the
inclusion of these and other modifications may not guarantee global convergence, but
the analysis here provides a firm foundation for our existing code as well as for future
developments and enhancements of the algorithm.

The basic assumptions we make are the following:
A1. All points, (xk, zk), generated by the algorithm lie in G, a compact set of

Rn ×Rm+ , where Rm+ is the set of nonnegative m-dimensional vectors.
A2. The matrices used in (1.2) are chosen from B, a compact set of positive

definite n× n matrices.
A3. There exists a constant K > 0 such that for each (xk, zk) ∈ G and Bk ∈ B

there is a solution, δk, to (1.2) and a corresponding multiplier vector, µk, that
satisfy ∥∥(δk, µk)

∥∥ ≤ K.
A4. For each (xk, zk) ∈ G the matrix Āk is positive definite.
A5. The set S is finite.
The implication of the first assumption is that all of our analysis will take place

in the compact set G. In particular, the sets C and S are considered to be subsets
of G. The first assumption is a strong condition; however, it is clear that virtually
any minimization algorithm can, for certain problems, generate iterates that wander
off to infinity following a path on which the function and infeasibility are decreasing.
The alternative to making this assumption is to restrict the class of problems being
considered (e.g., requiring (1.1) to be convex). As we offer our algorithm as an effective
solution technique for general nonlinear programs, we prefer to require A1.

Although there are alternative procedures for choosing the matrices Bk, the use
of positive definite matrices, while not ideal from a theoretical view (see the discus-
sion in [5]), is perhaps the most popular because it simplifies the problem of solving

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 841

the quadratic programming subproblem and is often necessary to obtain a descent
direction for the merit function. Assumption A2 requires that there exist positive
constants ρ1 and ρ2 such that for all B ∈ B

ρ1 ‖y‖2 ≤ ytB y ≤ ρ2 ‖y‖2(4.1)

for all y ∈ Rn. (Here and throughout the remainder of the paper, ‖·‖ refers to the `2
norm.) In our algorithm we have implemented provisions that allow the possibility
of maintaining a positive definite approximation to the Hessian of the Lagrangian so
that A2 is not a severe restriction. We have also successfully used the algorithm when
Bk is not positive definite, but this case has not been thoroughly analyzed.

Since assumption A3 requires that each quadratic program be feasible, it is a
fairly restrictive requirement. It is not uncommon for infeasible quadratic programs
to be encountered in practical applications, especially in the event that the number of
constraints greatly exceeds the number of variables, and so a useful implementation of
an SQP algorithm must have a procedure that addresses this possibility. A discussion
of our approach to this difficulty can be found in section 8. Given the feasibility
of the quadratic programs, assumption A2 guarantees that a unique solution to the
quadratic program must exist at each point of G. Assumptions A2 and A3, however,
do not guarantee a unique multiplier. In fact, unbounded multipliers may exist, but
A3 does force a bounded choice. For example, the minimum norm multiplier could
be used. The boundedness of the solution and a corresponding multiplier is used to
ensure that the solution is a continuous function of the point (xk,zk) and the matrix
Bk (Lemma 5.1). Note that the assumption is significantly weaker than the common
assumption that the active constraint gradients of (1.2) be linearly independent; it
also does not require strict complementary slackness for the multipliers.

To employ the merit function ψd(x, z) (as well as the approximate merit functions)
we must be sure that it is well defined, i.e., that the matrix Ā(x, z) is nonsingular.
A4 is less restrictive than it might appear at first. To see this, we observe that since
the nonnegativity of the slack variables will be maintained, the matrix Ā(x, z) will
always be positive semidefinite. If we partition the index set of the constraints into
two subsets a and u, we can write (without loss of generality)

g(x) =

(
ga(x)
gu(x)

)
and, in a corresponding manner,

z =

(
za
zu

)
.

Then Ā(x, z) is positive definite at (x, z) if ∇ga(x) has full column rank and zu > 0.
If, for instance, the index set a corresponds to a set of linearly independent active
constraint gradients for (1.2) we have only to require the slacks corresponding to the
inactive constraints to be positive. We can also ensure the nonsingularity of Ā(x, z)
by maintaining the positivity of the slack vector z, the easy implementation of which
is guaranteed by the updating rule for these variables. (See section 9 for more details.)

Finally, the last assumption assures that all of the first-order solutions to (1.1)
are isolated, which is the case of most interest.

5. Properties of the steps. In this section we prove some fundamental prop-
erties of the steps {(δk, qk)} with respect to the merit function, the approximate merit

842 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

functions, and feasibility. Recall that δk is obtained as a solution to (1.2) and qk is
given by (3.1). The first-order conditions for (1.2) are

Bkδk +∇g(xk)µk = −∇f(xk),(5.1)

∇g(xk)tδk + g(xk) ≤ 0,(5.2)

µk ≥ 0,(5.3) [∇g(xk)tδk + g(xk)
]t
µk = 0,(5.4)

where µk is an optimal multiplier vector. Using (5.1), (5.4), and the definitions of Āk
and qk, the following relation between µk and λ̄k, defined in (3.2), can be derived:

λ̄k − µk = [Āk]−1∇g(xk)tBkδk + [Āk]−1Uk q
k,(5.5)

where Uk = diag
{
µk1 , . . . , µ

k
m

}
. The step is also related to the feasibility function

c̄(xk, zk) as follows. Since at any iterate (xk,zk)

∇c̄(xk, zk) =

(∇g(xk)
I

)
,

we have from (3.1) that

c̄(xk, zk) = g(xk) + zk = − [∇g(xk)tδk + qk
]

and hence

∇c̄(xk, zk)
t
(δk, qk) = ∇g(xk)tδk + qk = −c̄(xk, zk).(5.6)

We begin by showing that the step (δk, qk) defined from (1.2) and (3.1) is a
continuous function of the data and that S is just the set of points for which this step
is zero.

Lemma 5.1. The pair (δk,qk) is a continuous function of (xk,zk,Bk) in G × B.
Proof. Let {(xk,zk)} be a sequence in G converging to (x̂, ẑ) and let {Bk} in

B converge to B̂. Then, by assumption A3, for each k there exists a multiplier µk

for (1.2) such that the sequence {(δk, µk)} is bounded. Let (δ̂, µ̂) be a limit point
of this sequence. Then there exist subsequences {(δkj , µkj)} satisfying (5.1)–(5.4) for

xkj and Bkj . Taking the limit it follows that (δ̂, µ̂) is an optimal solution pair at x̂
and B̂. The uniqueness of the solution of (1.2) establishes the continuity of δk, and
the continuity of qk follows immediately from (3.1).

Proposition 5.2. Let {(xk, zk)} be a sequence of points in G and let {Bk}
be a sequence of matrices from B. Suppose that {(xk, zk)} → (x̂, ẑ) and that the
corresponding sequence {(δk, qk)} obtained from solving (1.2) and choosing qk by (3.1)
has a subsequence converging to zero. Then (x̂, ẑ) ∈ S.

Proof. Without loss of generality, assume {(δk, qk)} → (δ̂, q̂) = (0, 0) and {Bk} →
B̂. Then, by the preceding lemma, δ̂ = 0 is the solution to (1.2) when x = x̂ and
B = B̂ (in fact, for any B ∈ B). Because q̂ = 0, it follows from (3.1) that ẑ = −g(x̂).
The multiplier vectors µk can be taken to be bounded by assumption A3 and hence
(without loss of generality) to converge to a nonnegative vector µ̂ that satisfies the

complementary slackness conditions for (1.2) at x̂. Because δ̂ = 0 these first-order
conditions (5.1)–(5.4) imply that (x̂, µ̂) satisfy the first-order conditions for (1.1) and
hence (x̂, ẑ) ∈ S.

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 843

If we assume that d is sufficiently small (section 9 contains a brief discussion of
this assumption), then by Propositions 2.1 and 2.2 it follows that to solve (1.1) it
is sufficient to find a solution to (2.8) that satisfies c̄(x, z) = 0. If we are to obtain
convergence to a solution of (2.8), then (δk,qk) should either decrease the function ψd
(and also ψkd) or decrease infeasibility or both. The next propositions give conditions
under which these objectives can be achieved.

The first of these propositions is a direct consequence of the definition of r(x, z)
and (5.6).

Proposition 5.3. Given (xk, zk) ∈ G, we have

∇r(xk, zk)t(δk, qk) = −2r(xk, zk).

Since r(xk, zk) is positive unless (xk, zk) ∈ C0 (i.e., unless the current iterate is
already feasible), the proposition guarantees that moving in the direction of the step
(δk, qk) will initially decrease infeasibility.

The next proposition shows that the step (δk, qk) is a descent direction for ψkd at
(xk, zk) as well. Prior to stating the result we prove a useful lemma.

Lemma 5.4. Let W be a compact subset of Rp. For d > 0 define the function
kd(w, y) for w ∈ W and y = (y1, y2) ∈ Rn ×Rm by

kd(w, y) = −ζ0 ‖y1‖2 + ζ1 ‖y‖ ‖E(w) y1 + y2‖ − ζ2
d
‖E(w) y1 + y2‖2 ,

where ζ0, ζ1, and ζ2 are positive constants and E(w) is a continuous matrix-valued
function. Then there exist positive constants d̄ and κ̄ such that for d ≤ d̄

kd(w, y) ≤ − κ̄ ‖y‖2

for all w ∈ W and y ∈ Rn ×Rm.
Proof. Because of the form of kd(w, y), we need only show that there exists a

κ̄ > 0 such that kd(w, y) ≤ κ̄ for all w ∈ W and y ∈ Rn × Rm with ‖y‖ = 1. We
define

M1 = {y : E(w) y1 + y2 = 0, ‖y‖ = 1}

and

M2 = {y : y1 = 0, ‖y2‖ = 1} .

For y ∈M1 we have that the right-hand side of kd(w, y) is equal to − ζ0 ‖y1‖2. Since
M1 and M2 are compact and disjoint, there is a positive ξ such that ‖y1‖ > ξ for all
y ∈M1. It follows that for some ν sufficiently small

kd(w, y) ≤ − ζ0 ξ
2

2
(5.7)

for y in the set

Mν = {y : ‖y‖ = 1 and ‖y − ŷ‖ ≤ ν for some ŷ ∈M1} .

Moreover,

ε = min {‖E(w) y1 + y2‖ : y /∈Mν , ‖y‖ = 1} > 0

844 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

so that for y /∈Mν and ‖y‖ = 1,

kd(w, y) ≤ − ζ0 ‖y1‖2 + ζ1 ‖E(w) y1 + y2‖ − ζ2
d
ε2.(5.8)

Now letting χ = max {‖E(w) y1 + y2‖ : ‖y‖ = 1} we see that for y /∈Mν and for

d ≤ ζ2 ε
2

2 ζ1 χ
,

the right-hand side of (5.8) is less than − ζ1 χ. The lemma follows from this inequality
and (5.7).

Proposition 5.5. There exist positive constants d̄ and κ such that for d ≤ d̄
and for all (xk, zk) ∈ G

∇ψkd(xk, zk)
t
(δk, qk) ≤ −κ ∥∥(δk, qk)

∥∥2
.

Proof. Using (3.3) and (3.4) we have

4 ≡ ∇ψkd(xk, zk)
t
(δk, qk) = ∇xL(xk, λ̄k)tδk + (λ̄k)tqk

+
2

d
c̄(xk, zk)

t
[Āk]−1(∇g(xk)tδk + qk).

Now

∇xL(xk, λ̄k) = ∇xL(xk, µk) +∇g(xk)(λ̄k − µk).

Hence, using (5.6) and (5.1), we can write

4 = −(δk)tBkδk + (λ̄k − µk)t(∇g(xk)tδk + qk)

+(µk)tqk − 2

d
(∇g(xk)tδk + qk)t[Āk]−1(∇g(xk)tδk + qk).

We have, from the definition of qk and (5.4), that

(µk)tqk = −(µk)t(∇g(xk)tδk + g(xk) + zk) = −(µk)tzk ≤ 0.

Thus, from (4.1), (5.5), and assumptions A1–A3, we obtain the inequality

4 ≤− ρ1

∥∥δk∥∥2

+ ξ
∥∥(δk, qk)

∥∥ ∥∥∇g(xk)tδk + qk
∥∥

− 2

d
(∇g(xk)tδk + qk)t[Āk]−1(∇g(xk)tδk + qk).

Now the preceding lemma can be applied to the term on the right with w = (x, z,B),
W = G × B, and y = (δ, q) to obtain the desired result.

The preceding result is quite strong and will play an important role in our conver-
gence theory. In addition to demonstrating that (δk,qk) is a descent direction of ψkd ,
it gives a useful bound on the rate of decrease in that direction. The step (δk,qk) does
not have this same global property with respect to the true merit function ψd(x, z).
However, near feasibility, a similar result can be obtained. The required proximity to
C0 depends on d (see (2.6)).

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 845

Proposition 5.6. For each sufficiently small positive d there exist positive con-
stants η(d) and κ̂ such that

∇ψd(xk, zk)
t
(δk, qk) ≤ − κ̂ ∥∥(δk, qk)

∥∥2

for each (xk, zk) ∈ Cη(d).

Proof. Observe that
∥∥c̄(xk, zk)

∥∥ ≤ K ∥∥(δk, qk)
∥∥ for some constant K. Thus it is

seen from (2.15)–(3.4) that for some constant K̂

4̂ ≡ ∇ψd(xk, zk)
t
(δk, qk)

= ∇ψkd(xk, zk)
t
(δk, qk) + c̄(xk, zk)

t∇λ̄(xk, zk)
t
(δk, qk)

+
1

d
K̂
∥∥(δk, qk)

∥∥2 ∥∥c̄(xk, zk)
∥∥ .

Using the inequalities from the preceding proposition and (5.6) as well as A3, we
obtain

4̂ ≤ −ρ1

∥∥δk∥∥2
+ ξ̂

∥∥(δk, qk)
∥∥ ∥∥∇g(xk)tδk + qk

∥∥
−2

d
(∇g(xk)tδk + qk)t[Āk]−1(∇g(xk)tδk + qk)

+
1

d
K̂
∥∥(δk, qk)

∥∥2 ∥∥c̄(xk, zk)
∥∥ .

The lemma can now be applied to the first three terms on the right-hand side as in
Proposition 5.5 to obtain

4̂ ≤ −κ ∥∥(δk, qk)
∥∥2

+
1

d
K̂
∥∥(δk, qk)

∥∥2√
η

for d sufficiently small. If for fixed d we choose η(d) so that

η(d) ≤
(
d κ

2 K̂

)2

,

we get the desired result with κ̂ = κ/2.
The above propositions show that near C0 the direction (δk, qk) is a descent di-

rection for both the approximate and the true merit function, and both functions
have the same rate of decrease. The next proposition shows that these directional
derivatives are indeed nearly identical provided that the iterate is close to feasibility
but away from the set of first-order solutions, S.

Proposition 5.7. For every β > 1 and every ε > 0, there exists a positive
constant η(β, ε) such that

β∇ψd(xk, zk)
t
(δk, qk) ≤ ∇ψkd(xk, zk)

t
(δk, qk)

≤ 1

β
∇ψd(xk, zk)

t
(δk, qk)

for (xk, zk) ∈ Cη(β,ε) − Sε and for any choice of Bk ∈ B.
Proof. For a given ε > 0 and η0 > 0, let

νε = min
{∥∥(δk, qk)

∥∥ : (xk, zk) ∈ Cη0 − Sε, Bk ∈ B
}

846 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

and note that νε is positive by virtue of Proposition 5.2. There exists a constant K
independent of (xk, zk) such that for (xk, zk) ∈ Cη0

−Sε and (x+, z+) a corresponding
closest point in C0,

[∇ψd(xk, zk)−∇ψd(x+, z+)]t(δk, qk) ≤ K ∥∥(xk, zk)− (x+, z+)
∥∥∥∥(δk, qk)

∥∥
and

[∇ψkd(xk, zk)−∇ψkd(x+, z+)]t(δk, qk) ≤ K ∥∥(xk, zk)− (x+, z+)
∥∥∥∥(δk, qk)

∥∥ .
From (2.15)–(2.16) it is seen that

∇ψkd(x+, z+) = ∇ψd(x+, z+).

Hence,

4 ≡ |∇ψd(xk, zk)
t
(δk, qk)−∇ψkd(xk, zk)

t
(δk, qk)|

≤ 2K
∥∥(xk, zk)− (x+, z+)

∥∥∥∥(δk, qk)
∥∥ .

Because of the compactness of C0 there exists a continuous function θ(η) such that
θ(0) = 0, and if (xk, zk) ∈ Cη, then

∥∥(xk, zk)− (x+, z+)
∥∥ ≤ θ(η). Now, if (xk, zk) ∈

Cη − Sε for η ≤ η0, we have from the definition of νε in Proposition 5.5 that

4 ≤ 2K

νε

∥∥(xk, zk)− (x+, z+)
∥∥∥∥(δk, qk)

∥∥2

≤ −2K

νε κ

∥∥(xk, zk)− (x+, z+)
∥∥∇ψkd(xk, zk)

t
(δk, qk)

≤ −2K θ(η)

νε κ
∇ψkd(xk, zk)

t
(δk, qk).

The proposition now follows for a given β by choosing η sufficiently small.
The preceding propositions ensure that at (xk, zk) the step generated by solving

the quadratic program and using (3.1) is a descent direction for r, ψkd , and, if (xk, zk)
is close enough to the feasible set, ψd. In our algorithm we take a step in the direction
of (δk, qk) and choose a steplength so that the new point is a satisfactory choice for
(xk+1, zk+1). That is, we will set

(xα, zα) = (xk, zk) + α(δk, qk)

for some appropriate choice of α. In unconstrained optimization a standard criterion
for ensuring that a sufficient relative decrease is obtained for an objective function
φ(w) in a descent direction v is that the steplength α satisfy

φ(w + α v)− φ(w) ≤ σ α∇φ(w)tv(5.9)

for some constant σ ∈ (0, 1/2). This is often called the Goldstein–Armijo condition
(see [17]). We use this test for both decreasing infeasibility (as measured by r) and
for moving toward optimality (as measured by ψkd and ψd).

The requirement that infeasibility be decreased will be imposed when (xk, zk) is
outside of Cη for the current value of η. At that point we will require that the step
from (xk, zk) to (xk+1, zk+1) should yield a sufficient relative decrease in r by choosing
α so that

r(xα, zα) ≤ r(xk, zk) + ασ∇r(xk, zk)
t
(δk, qk)

= (1− 2σ α)r(xk, zk),

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 847

where the equality follows from Proposition 5.3.
When the current iterate, (xk, zk), is far from feasibility our algorithm will apply

condition (5.9) to force a sufficient relative decrease in the approximate merit function.
That is, we require

ψkd(xα, zα)− ψkd(xk, zk) ≤ σ α∇ψkd(xk, zk)
t
(δk, qk),(5.10)

which can be satisfied because of Proposition 5.5. The step direction may not be a
descent direction for ψd in general, but it is close to feasibility (Proposition 5.6). The
next proposition shows that satisfying (5.10) at (xk,zk) guarantees that the same α
satisfies a similar condition for ψd provided (xk, zk) ∈ Cη − Sε for certain values of ε
and η.

Proposition 5.8. Choose σ ∈ (0, 1/2) and suppose that for (xk, zk) ∈ Cη, α is
chosen so that (xα, zα) ∈ Cη and (5.10) holds. Then, for each ε > 0 and γ ∈ (0, 1),
there exists an η(ε, γ) such that if η < η(ε, γ) and (xk, zk) ∈ Cη − Sε,

ψd(xα, zα)− ψd(xk, zk) ≤ γ σ α∇ψd(xk, zk)
t
(δk, qk).(5.11)

In addition, for each η sufficiently small but fixed and γ ∈ (0, 1), there exists an ε(η, γ)
such that if ε > ε(η, γ) and (xk, zk) ∈ Cη − Sε, then (5.11) also holds.

Proof. Suppose (xk, zk) ∈ Cη and α is chosen so that the hypotheses hold. Then,
since ψd(x

k, zk) = ψkd(xk, zk), we have

4 ≡ ψd(xα, zα)− ψd(xk, zk)

= ψkd(xα, zα)− ψkd(xk, zk) +
[
ψd(xα, zα)− ψkd(xα, zα)

]
≤ σ α∇ψkd(xk, zk)

t
(δk, qk)

+
[
ψd(xα, zα)− ψkd(xα, zα)

]
.

Now, from the definitions of ψd and ψkd , we have that

ψd(xα, zα)− ψkd(xα, zα) = c(xα, zα)
t
[λ̄(xα, zα)− λ̄k]

+
1

d
c(xα, zα)

t
[Ā(xα, zα)

−1 − Āk]c(xα, zα),

and hence for η sufficiently small, there is a constant K independent of (xk, zk) such
that

|ψd(xα, zα)− ψkd(xα, zα)| ≤ K α
√
η

(
1 +

√
η

d

)
.

Now suppose that ε > 0 and η0 are fixed. Then for d and β > 1 fixed and η small we
have, using Proposition 5.7 and the definition of νε in its proof and Proposition 5.5,

4 ≤ σ α

β
∇ψkd(xk, zk)

t
(δk, qk) + K̂ α

√
η

∥∥(δk, qk)
∥∥2

ν2
ε

≤ ασ

β

[
1− K̂

√
η

σ ν2
ε κ

]
∇ψd(xk, zk)t(δk, qk).

The proof now follows by choosing η sufficiently small or ε sufficiently large.
In summary, we have shown that:

848 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

• First-order points of (1.1) correspond to first-order points of (2.8) and, specif-
ically, strong solutions of (1.1) correspond to strong solutions of (2.8) for d
small enough. Thus, reducing ψd(x, z) while keeping z nonnegative implies
that progress toward the solution is being made.
• The steps (δ, q) are continuous functions of (x, z) and only vanish at first-

order points of (1.1). Thus an algorithm based on these steps with steplengths
bounded away from zero and bounded above cannot “stall” before reaching
first-order points.
• There is a tube Cη around the feasible region in which the step (δ, q) is a

descent direction for the true merit function ψd(x, z), the approximate merit
function ψkd(x, z), and the function r (r gives a measure of infeasibility).
Furthermore, a sufficient relative decrease in the approximate merit function
implies a sufficient relative decrease in the true merit function, except possibly
in a small ball around first-order points. This last point is essential in our
convergence analysis.
• Outside of the η-tube, the approximate merit function and the function r are

reduced by the step (δ, q), but this implies that the iterates can be forced into
Cη and suggests an adaptive procedure for determining an appropriate η.

These results form the basis for the algorithm described next.

6. The basic algorithm. In this section we give a description of our algorithm
and comment further on its motivation. The underlying idea of the algorithm is to
use the descent properties of the step (δ, q) with respect to ψd(x, z), ψ

k
d(x, z), and r

to determine dynamically an appropriate value of η and to ensure that the iterates
remain in the η-tube. Global convergence of this algorithm is shown in section 7.
What distinguishes this algorithm is the use of the approximate merit functions that,
far from feasibility, determine efficient steplengths that are likely to force the iterates
toward optimality as well as feasibility and, near feasibility, provide relatively simple
surrogates for the true merit function. A further distinguishing factor is that, unlike
some other algorithms, we do not require reduction of infeasibility at every step.

In the description of the algorithm, it is assumed that d > 0 is sufficiently small
and that constants ν > 0, but sufficiently small, and σ ∈ (0, 1/2) have been specified.
Recall that

(xα, zα) = (xk, zk) + α(δk, qk).

Algorithm.
1. Given x0, λ0, B0, and z0 ≥ 0, set k = 0 and η = r(xk, zk).
2. Compute (δk, qk).
3. If (xk, zk) /∈ Cη, then compute α by backtracking line search starting at 1

such that

ψkd(xα, zα) ≤ ψkd(xk, zk) + ασ∇ψkd(xk, zk)
t
(δk, qk)

and

r(xα, zα) ≤ r(xk, zk) + ασ∇r(xk, zk)
t
(δk, qk)

≤ (1− 2σ α) r(xk, zk);

go to step 6.

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 849

4. If (xk, zk) ∈ Cη, then compute α by backtracking line search starting at 1
such that

ψkd(xα, zα) ≤ ψkd(xk, zk) + ασ∇ψkd(xk, zk)
t
(δk, qk)

and

(xα, zα) ∈ Cη.
5. If

ψd(xα, zα) > ψd(x
k, zk) + 1

2ασ∇ψd(xk, zk)
t
(δk, qk)

or

∇ψd(xk, zk)
t
(δk, qk) > −ν ∥∥(δk, qk)

∥∥2
,

then set η = 1
2r(x

k, zk).
6. Set (xk+1, zk+1) = (xα, zα); update Bk; set k = k + 1; return to step 2.

The crucial parts of the algorithm are the procedures for picking the steplength
α and adjusting the parameters η and d. The results of the previous section suggest
our choices. Here, we make the assumption that the parameter d is initially small
enough that the basic propositions of the preceding section are satisfied. In the actual
implementation of our algorithm we do have a heuristic procedure for adjusting d (see
section 9), but for the theoretical convergence analysis given here we do not include
this modification.

Note that the steplength parameter α is always chosen from (0, 1] by a back-
tracking method; this assures that the step will not become too small and also that
the variable z will remain nonnegative. The specific criteria for choosing α depend on
where the iterate is relative to the current value of η. We always require that condition
(5.10) be satisfied. If (xk, zk) /∈ Cη, then we also require that the Goldstein–Armijo
condition be satisfied for the function r(x, z). By Propositions 5.3 and 5.5, this can
always be done.

If (xk, zk) ∈ Cη, then (in step 4) we also require that (xα, zα) ∈ Cη; i.e., we do
not allow the iterates to leave the η-tube once having entered it. Observe that this
does not require r to be reduced at each iteration, but rather allows the algorithm
the flexibility to increase and decrease r inside the η-tube. The computed step is
then tested to see if the true merit function ψd(x, z) satisfies the Goldstein–Armijo
condition for the constant σ/2 (step 5). If η is small enough, then Proposition 5.8
ensures that such a decrease will occur (if (xk, zk) is not too close to the solution set
S). If the condition for ψd(x, z) is not satisfied for the value of α, then we take this
as a signal that the current value of η is too large and we decrease η to one-half the
current value of r(xk, zk). Thus, when the value of η is decreased, it is decreased by
at least a factor of one-half, so that either the sequence of η values tends to zero or
else the Goldstein–Armijo condition for ψd(x, z) is eventually satisfied for all iterates.
Technically, the satisfaction of the first test in step 5 does not guarantee that η is small
enough for the conclusion of Proposition 5.6 to hold. The second test is included to
ensure that the step has the desired properties. (See section 9.4.)

7. A global convergence theorem. In this section we state and prove the
main result of this paper, namely, that under appropriate conditions the sequence
of iterates generated by the algorithm of the preceding section will converge to a
first-order solution of (1.1).

850 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

In proving the convergence, the following standard results (see, e.g., [16]) are
crucial. They establish the convergence properties of a descent algorithm under certain
conditions on the steps. For the statement of these lemmas, we assume that φ(w) is
a smooth function bounded below with bounded level sets. Given an initial w0, the
sequence of iterates {wk} is generated according to

wk+1 = wk + αkv
k,

where the vk satisfy

∇φ(wk)tvk < 0(7.1)

for each k.
Lemma 7.1. Let σ ∈ (0, 1/2), 1 ≥ α∗ > 0, and ξ > 1 be given. Suppose that the

αk are determined by a backtracking line search, i.e.,

αk = max
{
α ∈ A : φ(wk + α vk) ≤ φ(wk) + σ α∇φ(wk)tvk

}
,(7.2)

where

A = {α : α = ξ−l α∗, l = 0, 1, 2, . . .}.
If there are positive constants ρ and γ such that for each k the vk satisfy

∇φ(wk)tvk ≤ −ρ ∥∥∇φ(wk)
∥∥∥∥vk∥∥(7.3)

and ∥∥vk∥∥ ≥ γ ∥∥∇φ(wk)
∥∥ ,(7.4)

then

lim
k→∞

∥∥∇φ(wk)
∥∥ = 0.(7.5)

Lemma 7.2. Let σ ∈ (0, 1/2) and assume that the αk are chosen so that at each
iteration

φ(wk+1) ≤ φ(wk)(7.6)

and that there are an infinite subsequence {kj} and positive constants ρ and ν such
that for each kj

αkj ≥ ν,(7.7)

φ(wkj+1)− φ(wkj) ≤ σ α∇φ(wkj)tvkj ,(7.8)

and

∇φ(wkj)tvkj ≤ −ρ ∥∥vkj∥∥2
.(7.9)

Then

lim
j→∞

∥∥vkj∥∥ = 0.(7.10)

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 851

In the algorithm, the iterates must eventually enter the set Cη for the current
value of η. The following lemma states that this takes a finite number of steps.

Lemma 7.3. Given a fixed value of η, if the current iterate, (xk,zk), is not in Cη
then the iterates will reach Cη in a finite number of steps.

Proof. Assume that (xk, zk) /∈ Cη for all k. From Proposition 5.3 we see that

∇r(xk, zk)t(δk, qk) = −2 r(xk, zk) ≤ −2 η

for all k. Since
∥∥(δk, qk)

∥∥ and
∥∥∇r(xk, zk)

∥∥ are bounded away from zero for (xk, zk) /∈
Cη, this inequality implies that conditions (7.1), (7.3), and (7.4) are satisfied for the
function r(x, z). From the choice of α in step 3 of the algorithm, it follows that
the hypotheses of Lemma 7.1 are satisfied for r(x, z). Then ∇r(xk, zk) tends to
zero which, by the above equality, forces r(xk, zk) to zero, thus contradicting the
assumption.

We note that in step 4 of the algorithm, when (xk, zk) ∈ Cη, α is chosen by
a backtracking search so that (5.10) is satisfied and also so that the new iterate
will remain in Cη. Obviously, both of these conditions can be satisfied for α small
enough; however, it will be important for the convergence proof to have the steplengths
not get too small. The next two lemmas give lower bounds on the steplengths for
these two conditions. The first shows that a steplength of O(

√
η) will suffice to keep

(xα, zα) ∈ Cη, while the second shows that (5.10) can be satisfied by a steplength
bounded away from zero for all (xk, zk) ∈ Cη.

Lemma 7.4. Let η > 0 be given and for (xk, zk) ∈ Cη let

ζk = sup{ᾱ : (xα, zα) ∈ Cη for α ∈ (0, ᾱ]}.

Set

ζ∗ = inf{ζk : (xk, zk) ∈ Cη}.

Then ζ∗ > 0.
Proof. By the Taylor series expansion of r, the compactness of Cη, and Lemma

5.1, there exists a positive constant Γ depending only on η, such that for (xk, zk) ∈ Cη
r(xα, zα) ≤ r(xk, zk) + α∇r(xk, zk)t(δk, qk) + α2Γ.

But from Proposition 5.3 we have

r(xα, zα) ≤ (1− 2α) η + α2 Γ.

Thus for

α ≤ 2
√
η

Γ
,

we have (xα, zα) ∈ Cη.
Lemma 7.5. There exists a positive constant ζ such that if (xk, zk) ∈ Cη and α

is chosen by a backtracking line search so that (5.10) is satisfied, then

α ≥ ζ.

852 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

Proof. Suppose that αk is chosen by a backtracking line search starting at 1 (see
Lemma 7.1) so that

ψkd(xα, zα) ≤ ψkd(xk, zk) + αk σ∇ψkd(xk, zk)t(δk, qk).

It follows from the definition of the backtracking method that if αk 6= 1, then

ψkd((xk, zk) + ξ αk (δk, qk))− ψkd(xk, zk) ≥ ξ σαk∇ψkd(xk, zk)
t
(δk, qk).(7.11)

On the other hand, from the smoothness of ψkd(x, z) and the compactness of Cη we
have

−ψkd((xk, zk) + ξ αk (δk, qk)) + ψkd(xk, zk)

≥ − ξ αk∇ψkd(xk, zk)
t
(δk, qk)− ξ α2

k Γ
∥∥(δk, qk)

∥∥2(7.12)

for some constant Γ that is independent of k. Adding (7.11) and (7.12) and simplifying
give

αk ≥ −(1− σ)

Γ

∇ψkd(xk, zk)
t
(δk, qk)∥∥(δk, qk)
∥∥2 .(7.13)

Combining (7.13) with Proposition 5.5 yields

αk ≥ κ (1− σ)

Γ
,

which is the desired result.
We are now ready to prove the main theorem.
Theorem 7.6. Assume A1–A5 and that d and ν are sufficiently small. Then

the sequence of iterates {(xk, zk)} converges to a point (x∗, z∗) in S; i.e., x∗ is the
x-coordinate of a first-order solution of (1.1).

Proof. There are two cases to consider.
Case 1. There is a positive number η∗ that is the smallest value of η attained in

the algorithm. Then, from some fixed index on, all of the iterates lie in Cη∗ and the
conditions

ψd(x
k + α δk, zk + α qk) ≤ ψd(xk, zk)(7.14)

+ 1
2ασ∇ψd(xk, zk)

t
(δk, qk)

and

∇ψd(xk, zk)
t
(δk, qk) ≤ −ν ∥∥(δk, qk)

∥∥2
(7.15)

are satisfied. To apply Lemma 7.2 to the function ψkd , we see that, by virtue of the
way the αk are chosen, Lemma 7.5 implies that the αk are bounded away from zero
and so (7.7) holds. Moreover, (7.1), (7.6), (7.8), and (7.9) are direct consequences
of (7.14), (7.15), and Proposition 5.5. Thus, by Lemma 7.2, {(δk, qk)} → 0 and the
result follows from Proposition 5.2.

Case 2. At infinitely many of the iterates the value of η is changed. Since the
size of η is cut in half at each change, the values of η tend to zero and all of the
limit points of the sequence of iterates {(xk, zk)} lie in C0. Therefore, by Proposition
5.6, the second condition in step 4 of the algorithm is satisfied for all k sufficiently

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 853

large and the Goldstein–Armijo condition on ψ must fail infinitely often. Denote by
{kj} the sequence of indices for which (7.14) fails and by ηj the values of η at these
iterates. From Proposition 5.8 it follows that for each j there is an εj such that

(xkj , zkj) ∈ Sεj ∩ Cηj
and εj → 0 as j → ∞. It follows that at least one of the points in S is a limit point
of {xk, zk}. Let L denote the set of points in S that are limit points of the sequence
of iterates. Let ε > 0 be given. It follows from A5 that there is a constant K1 such
that for each (x̃, z̃) ∈ L and each (x, z), with ||(x, z)− (x̃, z̃)|| < ε,

|ψd(x, z)− ψd(x̃, z̃)| ≤ K1 ε.

Moreover, assumption A1, Proposition 5.6, and the fact that the steplength parameter
is bounded by 1 ensure that there is a constant K2 such that

|ψd(xk+1, zk+1)− ψd(xk, zk)| ≤ K2||(δk, qk)||2

for all iterates (xk, zk) ∈ Cη for η sufficiently small. Thus it follows from the above
inequalities and Lemma 5.1 that there is a constant K3 such that for j sufficiently
large, if

||(xkj , zkj)− (x̃, z̃)|| ≤ εj ,
then

|ψd(xkj+1, zkj+1)− ψd(x̃, z̃)| ≤ K3εj

for all (x̃, z̃) ∈ L. Since the iterations between kj and kj+1 must result in a decrease

in ψd, it must be that ψd has the same value, say ψ̃d, at all points of L and at all other
limit points of the sequence of iterates. Now suppose that (xl, zl) is any limit point of
the sequence not contained in L. Then for k large and (xk, zk) close to (xl, zl), (7.14)
and (7.15) imply that

ψd(x
k+1, zk+1)− ψd(xk, zk) ≤ 1

2ασ∇ψd(xk, zk)t(δk, qk) ≤ −1
2ασ κ̂||(δk, qk)||2.

But from the preceding, it follows that the left side of these inequalities is tending
to zero, while from Proposition 5.2 the right side is bounded away from zero. This
contradiction implies that there are no limit points of the sequence outside of L. But
now, since the steps near the points in L tend to zero and the points in L are a
positive distance apart, it follows that if there is more than one point in L then there
must be a subsequence of iterates that is bounded away from the set L. By A1 this
subsequence has a limit point that is not in L. Therefore, we can conclude that the
sequence of iterates has exactly one limit point, which is in S.

8. Approximate solution of the quadratic subproblem. The algorithm in
section 6 assumes that the quadratic subproblem can be solved exactly to generate
the step δk. In practice this may not be realistic for two reasons. First, the quadratic
subproblem may be infeasible—a far from uncommon occurrence in large-scale prob-
lems, especially if there is a very large number of nonlinear constraints. Second, even
if the quadratic subproblem is feasible, the cost of obtaining an accurate solution may
be prohibitive; moreover, at the beginning of the algorithm, where the quadratic prob-
lem is not necessarily a faithful representation of the nonlinear program, an accurate

854 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

solution may not lead to a more useful step than an approximate solution. In this
section we address these issues, suggesting how approximate solutions to a modified
quadratic program can be used to generate useful steps. While the theoretical de-
velopment is not as complete as we would like, our numerical experience using these
approaches has been quite successful (see [2] and [13]).

We begin by formulating a modified quadratic program that can be solved even
when (1.2) is infeasible. This problem is just the quadratic version of the phase 1 or
“big M” problem used in linear programming:

min
(s,θ)

∇f(xk)ts+ 1
2s

tBks+M θ(8.1)

subject to ∇g(xk)ts+ g(xk)− e θ ≤ 0,

θ ≥ 0,

where e is the vector of ones. For θ large enough this problem is always consistent;
in particular, (s0, θ0) with s0 = 0 and

θ0 = max{g1(xk), . . . , gm(xk), 0}
is a feasible point. Note that if xk is feasible for (1.1), then θ0 = 0. The constant M
is a positive scalar sufficiently large so that if (1.2) has an optimal solution δ∗, then
(s, θ) = (δ∗, 0) is the optimal solution of (8.1). Given the initial feasible point (s0, θ0)
as above we can generate a sequence of approximate solutions (sj , θj) to (8.1) by

sj+1 = sj + ρj Pj ξ
j ,(8.2)

θj+1 = θj + ρjγ
j ,(8.3)

where Pj is an n × p matrix of rank p (Pj depends on k), ρj ∈ (0, 1], and (ξj , γj) is
the solution of

min
(ξ,γ)

∇f(xk)t(sj + Pjξ) + 1
2 (sj + Pjξ)

tBk(sj + Pjξ) +M (θj + γ)(8.4)

subject to ∇g(xk)t(sj + Pjξ) + g(xk)− e (θj + γ) ≤ 0,

θj + γ ≥ 0.

Observe that (8.4) is (8.1) restricted to the affine space {sj + Pjξ : ξ ∈ Rp}.
This method of solving (8.1) allows a variety of implementations. For example, if

the matrices Pj are suitably chosen and ρj = 1, then it becomes an active set method.
In our implementation we use the O3D interior point algorithm (see [1]), where the
number of columns of Pj is three, so that the problem (8.4) is rather easily solved.
Note that if xk is feasible, then θ0 = 0 and the dependence on γ in (8.4) is removed
or, in general, if (1.2) has any feasible solution, the value of θj will be zero for j
sufficiently large.

We will use the approximate solution (sJ , θJ) for a given J ≥ 1 to generate a step
at iteration k of our algorithm by means of the formulas

δk = sJ ,(8.5)

q̄k = −(∇g(xk)tδk + g(xk) + zk − e θJ).(8.6)

Note that this definition of q̄k differs from that of (3.1). The purpose of the added
term involving θJ is to ensure that zk+1 remains nonnegative. From the constraints
in (8.4),

zk+1 = zk + α q̄k ≥ 0

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 855

for α ∈ [0, 1]. In order for this step to be useful it must have the same type of
properties that are proved for the step determined by the exact solution of (1.2) in
section 5. The following results provide the basic properties of this step with respect
to the change in feasibility and the decrease in the merit function.

For these results we need the first-order necessary and complementary slackness
conditions to (8.4) for a solution (ξj , γj). They are

(Pj)
t
[
BkPjξ

j +Bksj +∇f(xk) +∇g(xk)µj
]

= 0,(8.7)

M − etµj − νj = 0,(8.8)

(µj)t
[∇g(xk)tPjξ

j + g(xk) +∇g(xk)tsj − e(θj + γj)
]

= 0,(8.9)

νj
[
θj + γj

]
= 0(8.10)

for nonnegative multipliers µj ∈ Rm and νj ∈ R1.
Proposition 8.1. Let (δk, q̄k) be defined by (8.5) and (8.6) for a given J . Then

∇r(xk, zk)t(δk, q̄k) = −2r(xk, zk) + c̄(xk, zk)te θJ .

Proof. This differs from the proof of Proposition 5.6 only in the presence of the
term involving θJ in q̄k.

This shows that for θJ sufficiently small, (δk, q̄k) is a descent direction for r. We
next prove a similar result for the merit functions. We begin with a lemma that gives
the heart of the induction proof.

Lemma 8.2. Let (sj , θj) be defined by (8.2) and (8.3). Then for any j ≥ 0,

∇f(xk)tsj ≤ −1
2 (sj)t Bk s

j +M (θ0 − θj).
Proof. The proof is by induction. It certainly holds for j = 0. Assume that it is

true for j ≥ 0. Thus

4 ≡ ∇f(xk)tsj+1 = ∇f(xk)tsj + ρj ∇f(xk)tPjξ
j .

Since ρj ≤ 1 it follows from the induction assumption, the positive definiteness of Bk,
and (8.7) that

4 ≤ − 1
2 (sj)t Bk sj +M (θ0 − θj)
− 1

2ρ
2
j (ξ

j)t(Pj)
tBkPjξ

j − ρj(sj)tBkPjξ
j

−ρj(µj)t∇g(xk)tPjξ
j .

Then, from (8.9), the first constraint in (8.4), and the nonnegativity of µj ,

4 ≤ − 1
2 (sj+1)tBksj+1 +M (θ0 − θj)

+ρj(µ
j)t
[∇g(xk)tsj + g(xk)− e(θj + γj)

]
≤ − 1

2 (sj+1)tBksj+1 +M (θ0 − θj)− ρj(µj)te γj .

From (8.8) and (8.3)

4 ≤ − 1
2 (sj+1)tBksj+1 +M (θ0 − θj)− ρj (M − νj)γj

= −1
2 (sj+1)tBksj+1 +M (θ0 − θj+1) + ρjνjγj .

If θj+1 = γj + θj > 0, i.e., if sj+1 is not a feasible point for (1.2), then from (8.10) we
have that νj = 0 and the last term is equal to 0. Otherwise, γj = −θj ≤ 0, and since
νj ≥ 0, the last term is nonpositive. In either case, the result follows.

856 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

Proposition 8.3. There exist positive constants σj , j = 1, . . . , 5, such that for
(xk, zk) ∈ G and (δk, q̄k) given by (8.5) and (8.6) for some integer J we have

∇ψkd(xk, zk)t(δk, q̄k) ≤ −σ1

∥∥δk∥∥2
+ σ2

∥∥∇g(xk)tδk + q̄k
∥∥

−1

d

∥∥∇g(xk)tδk + q̄k
∥∥ [σ3

∥∥∇g(xk)tδk + q̄k
∥∥− σ4θ

J
]

+ σ5 θ
J .

Proof. From (3.3) and (3.4) we have

4 ≡ ∇ψkd(xk, zk)t(δk, q̄k)

= ∇f(xk)tδk + (λ̄k)t(∇g(xk)tδk + q̄k)

+
2

d
c̄(xk, zk)

t
Āk
−1

(∇g(xk)tδk + q̄k).

Using the previous lemma and the definition of q̄k we obtain

4 ≤ −1

2
(δk)tBkδk +M(θ0 − θJ) + (λ̄k)t(∇g(xk)tδk + q̄k)

−2

d
(∇g(xk)tδk + q̄k − eθJ)tĀk

−1
(∇g(xk)tδk + q̄k).

Noting that for some positive constant χ,

θ0 ≤ χ ∥∥g(xk) + zk
∥∥ ≤ χ∥∥∇g(xk)tδk + q̄k − eθJ∥∥ ,

and using the positive definiteness of Bk and Āk, we obtain the desired result.
We now consider the possibility of solving the quadratic subproblem by using

the iterative technique suggested above and discuss the implications for global con-
vergence. There are several possible scenarios. In the ideal situation, for each k the
subproblems are consistent and are solved completely. Then the theory of the preced-
ing three sections holds and the algorithm is globally convergent. The more realistic
cases allow for early termination of the algorithm and the possibility of inconsistency
of the quadratic programs.

If we assume that the subproblems are all consistent then, at each major iteration,
the iterations on the subproblem can be continued until feasibility is reached, i.e., until
the value of θ is zero. Thereafter, the iterations can be terminated at any iteration
J and the resulting step (δk, q̄k) computed via (8.5) and (8.6). Since θJ = 0, q̄k

becomes the standard step qk and Proposition 8.1 shows that the resulting step will
be a descent step for the measure of infeasibility r(x, z). Moreover, Proposition 8.3
shows that

∇ψkd(xk, zk)t(δk, q̄k) ≤ −σ1

∥∥δk∥∥2
+ σ2

∥∥∇g(xk)tδk + q̄k
∥∥

−σ3

d

∥∥∇g(xk)tδk + q̄k
∥∥2
.(8.11)

We would like to use this result to obtain a proposition of the form of Proposition
5.7 for this truncated step. However, because of the second term on the right-hand
side, the above inequality does not have the proper form to apply Lemma 5.4. A
weaker form of Proposition 5.7 can be proven, i.e., one in which the result holds
outside of a ball of radius ε around the solution.

Proposition 8.4. Let ε > 0 be given. Let (xk, zk) ∈ G − Sε and suppose that
(δk, q̄k) is given by (8.5)–(8.6) for some J with θJ = 0. Then there exist a d(ε) > 0
and a positive constant κ such that

∇ψkd(xk, zk)t(δk, q̄k) ≤ −κ ∥∥(δk, q̄k)
∥∥2

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 857

for all d ≤ d(ε).
Proof. Since θJ = 0 we have q̄k = qk. From the compactness of C0 − Sε and the

fact that δk = 0 and (xk, zk) ∈ C0 imply that (xk, zk) ∈ S, we have that

ωε = min
{∥∥δk∥∥ : (xk, zk) ∈ C0 − Sε, Bk ∈ B

}
is positive. Let ηε > 0 be such that (xk, zk) ∈ Cηε − Sε implies∥∥δk∥∥ ≥ ωε

2
(8.12)

and let

γε = min

{
ηε,

σ1 (ωε)
2

8σ2

}
.(8.13)

Then for (xk, zk) ∈ Cγε − Sε, (8.12) holds and

σ2

∥∥∇g(xk)tδk + qk
∥∥ ≤ σ1

2
(ωε/2)2 ≤ σ1

2

∥∥δk∥∥2
.

Thus, for these (xk, zk), from (8.11)

∇ψkd(xk, zk)t(δk, q̄k) ≤ −σ1

2

∥∥δk∥∥2 − σ3

d

∥∥∇g(xk)tδk + qk
∥∥2
.(8.14)

On the other hand, if (xk, zk) /∈ Cγε ∪ Sε, then for

d <
σ3γε
2σ2

we have, using (8.13),

∇ψkd(xk, zk)t(δk, q̄k) ≤ −σ1

2

∥∥δk∥∥2
+

1

d

[
d σ2

γε
− σ3

] ∥∥∇g(xk)tδk + qk
∥∥2

≤ −σ1

2

∥∥δk∥∥2 − σ3

2 d

∥∥∇g(xk)tδk + qk
∥∥2
.

The result follows from Lemma 5.4 using this inequality together with (8.14).
This result shows that the desired inequality is obtained for small d, except in

a neighborhood of the first-order solutions. That is, a uniform d cannot be used for
the entire algorithm. In practice this is not an added burden since the appropriate
value of d for the theoretical convergence of the preceding sections cannot be identified
a priori; in practice a heuristic must be used occasionally to adjust the value of the
parameter (see [2]). In any case, we see that the step obtained by an early termination
of this type of iterative algorithm for solving the quadratic subproblem is a satisfactory
one in many respects and can be incorporated into a globally convergent algorithm,
for example, by solving the quadratic program to greater accuracy as a solution is
approached. Since rapid local convergence almost always requires such a strategy,
this is, in fact, good computational practice.

The situation in which many of the subproblems are inconsistent is more difficult
to handle. If the inconsistencies are mild, e.g., if the iterate is close to feasibility,
then θJ can be made small for sufficiently large J and Propositions 8.1 and 8.3 can
be used in much the same way as the previous case. If the optimal value of θ is large,
the generated step may not be a descent step for either r(x, z) or for the approximate

858 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

merit function. In this case, the heuristic procedure used in our algorithm is to take
the step (δk, qk) with qk defined as in (3.1), i.e., not depending on θ. This step is a
descent direction for r(x, z); however, it is possible that the new z, zk+1 = zk + α qk

will become negative. Our strategy here is to reset the negative values of zk+1 to a
small positive value. Although there is little theoretical justification for this approach,
it seems to work well in practice. (See [13].)

9. Discussion. We have demonstrated global convergence for a basic version of
an SQP algorithm for solving large-scale problems, and we have extended our analysis
to the case of approximately solving the subproblems. An actual implementation of
this algorithm, however, involves further extensions and modifications that expand
the range of applicability of the algorithm. This is especially true in the large-scale
case where issues of efficiency are paramount. In this section we briefly consider a
few of these modifications and their implications on the theory. For a more complete
discussion of these issues, see [2] and [13].

9.1. q-superlinear convergence. An important consideration in the use of the
merit function approach to the implementation of an SQP algorithm is the issue of
the final rate of convergence. As is shown in [5] the rate of convergence is dependent
on the choice of the matrices Bk. A discussion of actual strategies for selecting Bk

is beyond the scope of this paper, but we show that if q-superlinear convergence is
possible, then the use of our merit functions will not interfere with the process; i.e., a
steplength of α = 1 will ultimately be acceptable to both merit functions. Recall that
obtaining a fast rate of convergence generally requires a strong solution and that the
quadratic subproblems can be solved exactly near that solution; thus we make these
assumptions here.

First, since the quadratic program will identify the correct active constraints near
the solution, the value of δ in that area will be given as the solution to

min
δ
∇f(x)tδ + 1

2δ
tBδ

subject to ∇ga(x)tδ + ga(x) = 0,
(9.1)

where (ga, gu) denotes the partition into active and inactive constraints at x∗. If we
denote by Pa the projection onto the space orthogonal to the gradients of the active
constraints at x∗, then the characterization of the q-superlinear convergence of the
sequence {xk} generated by the SQP algorithm is [7]

lim
k→∞

∥∥Pa(HxxL(xk, µk)−Bk)δk
∥∥

‖δk‖ = 0,(9.2)

where (δk, µk) is the optimal solution-multiplier pair for the quadratic program (9.1).
To prove the result we need a further, mild assumption, namely, “tangential

convergence” of the iterates xk. To explain, let Qa = I − Pa. Then {xk} is said to
converge tangentially if ∥∥Qaδk∥∥

‖δk‖ → 0.(9.3)

In [3] it is shown that tangential convergence implies q-superlinear convergence, and
in [4] we argue that the converse nearly always holds, especially in the nonconvex
case. Our computational experience and that of others support this conclusion.

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 859

Proposition 9.1. Let the hypotheses of Proposition 5.5 hold and assume that
the sequence {xk} generated by the algorithm converges to x∗ tangentially and q-
superlinearly. Let σ ∈ (0, 1

2). Then there exists a d̄ > 0 such that for each d ∈ (0, d̄)
there is a positive integer J(d) satisfying

ψkd(xk + δk, zk + qk)− ψkd(xk, zk) ≤ σ∇ψkd(xk, zk)t(δk, qk)

for k ≥ J(d).
Proof. Let

4 ≡ [ψkd(xk + δk, zk + qk)− ψkd(xk, zk)− σ∇ψkd(xk, zk)t(δk, qk)
]
.

Using Taylor series,

4 = (1− σ)∇ψkd(xk, zk)t(δk, qk) + 1
2 (δk, qk)

t
Hψkd(xk, zk)(δk, qk)

+O
(∥∥(δk, qk)

∥∥3
)
.

For positive constants ξ1 and ξ2 we have, using essentially the same steps given in the
proof of Proposition 5.5,

ψkd(xk, zk)t(δk, qk) ≤ −(δk)tBkδk + ξ1
∥∥(δk, qk)

∥∥ ∥∥∇g(xk)tδk + qk
∥∥

−2

d

[∇g(xk)tδk + qk
] (
Āk
)−1 [∇g(xk)tδk + qk

]
and, upon expanding Hψkd(xk, zk) by differentiating (3.3) and (3.4),

(δk, qk)
t
Hψkd(xk, zk)(δk, qk) ≤ (δk)tHxxL(xk, zk)δk

+
[∇g(xk)tδk + qk

]t (
Āk
)−1 [∇g(xk)tδk + qk

]
+
ξ2
2

∥∥(δk, qk)
∥∥2 ∥∥∇g(xk)tδk + qk

∥∥ .
The positive definiteness of Bk and the fact that Pa +Qa is the identity matrix yield

−δkt
Bkδk ≤ −

(
1

2
− σ

)
ρ1

∥∥(δk, qk)
∥∥2

+
(Pa +Qa)

2
(δk)tBkδk

and

HxxL(xk, zk) = (Pa +Qa)HxxL(xk, zk).

Thus

4 ≤ −
(

1

2
− σ

)
ρ1

∥∥δk∥∥2
+ (1− σ)ξ1

∥∥(δk, qk)
∥∥ ∥∥∇g(xk)tδk + qk

∥∥
− (1− 2σ)

d

[∇g(xk)tδk + qk
]t (

Āk
)−1 [∇g(xk)tδk + qk

]
+O

(∥∥(δk, qk)
∥∥3
)

+
1

2

∥∥δk∥∥ ∥∥Pa(HxxL(xk, zk)−Bk)δk
∥∥

+
1

2

∥∥Qaδk∥∥ ∥∥(HxxL(xk, zk)−Bk)δk
∥∥ .

Now using (9.2) and (9.3) and the type of argument used in the proof of Proposition
5.6 we see that 4 ≤ 0 for d sufficiently small and k large. Since

ψkd(xk + δk, zk + qk)− ψkd(xk, zk) = 4+ σ ψkd(xk, zk)t(δk, qk),

the result follows.
A similar result holds for ψd(x, z).

860 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

9.2. The dynamic adjustment of d. We have assumed in the above theory
that the parameter d has been chosen in advance to be small enough so that the
results of section 5 hold. Of course, this is unreasonable in practice, and thus we have
developed heuristic procedures to adjust d dynamically. It follows from Proposition
5.5 that if (xk, zk) is not feasible, then the penalty parameter d can be made small
enough to ensure that the step is a direction of descent for ψkd . In our implementation,
if, at some nonfeasible point, a good decrease in ψkd is not achieved, we decrease d by an
appropriate factor. This can be done without fundamentally altering the convergence
theory. However, using too small of a value of d often causes the algorithm to slow
dramatically, since it tends to force the iterates to stay close to the constraints. To
avoid this, it is desirable to incorporate a means for allowing an increase in d when
the steps are good descent steps for ψkd . Since increasing d can theoretically cause
the iterates to cycle, care has to be taken in implementing such a procedure. In [2]
and [13] we have used a heuristic strategy for increasing d that avoids cycling and
that has been effective in our numerical experiments. However, a theoretical proof of
global convergence when this process is implemented is lacking.

9.3. A trust region approach. In the implemented version of our algorithm
the O3D solver is employed in the following way. At iteration k in the main algorithm,
the quadratic program (1.2) is formed and the iteration procedure described above
is begun. The algorithm is stopped when a prescribed tolerance for an optimality
condition is satisfied or when a trust region constraint of the form∥∥sj∥∥ ≤ τk
is violated. If the final iterate is optimal (or very nearly optimal) for (1.2), then,
of course, the theory described in the preceding sections applies. The significance
of this trust region approach is in the case where the last iterate is not optimal.
The discussion in section 8 motivates the use of this step despite its nonoptimality.
The trust region constraint can be implemented in such a way that it will become
inactive near the solution, and the optimal solution of the quadratic program will
thus be computed. The trust region parameter, τk, is adjusted in a manner similar
in spirit to that used in most trust region methods; that is, the decision to increase
or decrease τk is based on a comparison of the predicted and actual reductions of
the merit function. In our implementation we use either ψd or ψkd depending on the
current status of the point (xk,zk). For details of this procedure, as well as results for
numerical experiments, see [2].

9.4. Final remarks. The two tests in step 5 of the algorithm require the evalu-
ation of ∇ψd(x, z), which is quite expensive. Propositions 5.6 and 5.8 assure us that
close enough to feasibility, the tests will be automatically satisfied. In our computa-
tional experience we have never encountered a situation where the second test was
necessary, and we therefore do not perform it at all. Moreover, we require only that
ψd be reduced, not that the Goldstein–Armijo condition be satisfied, thus avoiding
all calculations of ∇ψd(x, z).

As noted in section 4 we need to adopt a procedure that will keep Ā(x, z) non-
singular. We observed that there was an inexpensive procedure to keep zk > 0 for all
k. This can be done by choosing z0 > 0 and modifying the update so that

zk+1 = zk + αγqk,

where γ < 1. Such a modification will not be necessary in the neighborhood of a strong
solution and, far from the solution, this modification does not affect the theory. In

GLOBAL CONVERGENCE OF AN SQP ALGORITHM 861

practice we simply proceed until Ā becomes ill conditioned and then increase z as
appropriate.

The algorithm in this paper does not depend explicitly on the approximations λk

to the optimal multiplier λ∗. However, since Bk is an approximation to the Hessian
of the Lagrangian, λk enters into the calculation of Bk and, because Bk determines
the final rate of convergence, it is of interest to construct a sequence {λk} that is a
good approximation to λ∗. If we are solving the subproblems exactly, we generally
use

λk+1 = λk + α(µk − λk),

where µk is the multiplier for (1.2). If the µk are chosen by a consistent method,
e.g., as the minimum norm multiplier, then it follows that if xk → x∗ then λk →
λ∗. However, when the quadratic subproblems are solved only approximately, these
multiplier estimates are usually poor and we use the least squares multipliers, λ̄(x, z),
instead.

Other ways of handling infeasible quadratic subproblems have been developed
and tested by one of the authors [13]. The procedures there perturb the linearized
constraints to ensure feasibility of the subproblems. This has the effect of better
balancing the necessity for feasibility with the need to become optimal. Excellent
results have been obtained on problems with a large number of nonlinear constraints.

REFERENCES

[1] P. T. Boggs, P. D. Domich, and J. E. Rogers, An interior-point method for general large
scale quadratic programming problems, Ann. Oper. Res., 62 (1996), pp. 419–437.

[2] P. T. Boggs, A. J. Kearsley, and J. W. Tolle, A practical algorithm for general large scale
nonlinear optimization problems, SIAM J. Optim., 9 (1999), pp 755–778.

[3] P. T. Boggs and J. W. Tolle, A strategy for global convergence in a sequential quadratic
programming algorithm, SIAM J. Numer. Anal., 26 (1989), pp. 600–623.

[4] P. T. Boggs and J. W. Tolle, Convergence properties of a class of rank-two updates, SIAM
J. Optim., 4 (1994), pp. 262–287.

[5] P. T. Boggs and J. W. Tolle, Sequential quadratic programming, in Acta Numerica, 1995,
Cambridge University Press, Cambridge, 1995, pp. 1–51.

[6] P. T. Boggs, J. W. Tolle, and A. J. Kearsley, On the convergence of a trust region SQP
algorithm for nonlinearly constrained optimization problems, in Proceedings of the 17th
IFIP TC7 Conference on System Modeling and Optimization, J. Dolezal, ed., Chapman
and Hall, London, 1995, pp. 1–14.

[7] P. T. Boggs, J. W. Tolle, and P. Wang, On the local convergence of quasi-Newton methods
for constrained optimization, SIAM J. Control Optim., 20 (1982), pp. 161–171.

[8] R. H. Byrd, R. A. Tapia, and Y. Zhang, An SQP augmented Lagrangian BFGS algorithm
for constrained optimization, SIAM J. Optim., 2 (1992), pp. 210–241.

[9] A. R. Conn, N. I. M. Gould, and P. T. Toint, Lancelot: A Fortran Package for Large-Scale
Nonlinear Optimization, Springer Ser. Comput. Math. 17, Springer-Verlag, Heidelberg,
New York, 1992.

[10] A. El-Bakry, R. A. Tapia, T. Tsuchyia, and Y. Zhang, On the formulation and theory
of the primal-dual Newton interior-point method for nonlinear programming, J. Optim.
Theory Appl., 89 (1996), pp. 507–541.

[11] R. Franke and E. Arnold, Applying new numerical algorithms to the solution of discrete-time
optimal control problems, in Computer-Intensive Methods in Control and Signal Processing:
The Curse of Dimensionality, K. Warwick and M. Kárný, eds., Birkhäuser Verlag, Basel,
1997, pp. 105–118.

[12] P. Gill, W. Murray, and M. Saunders, SNOPT: An SQP Algorithm for Large Scale Con-
strained Optimization, Preprint NA97-2, University of California, San Diego, 1997.

[13] A. J. Kearsley, The Use of Optimization Techniques in the Solution of Partial Differential
Equations from Science and Engineering, Ph.D. thesis, Rice University, Houston, TX,
1996.

862 P. T. BOGGS, A. J. KEARSLEY, AND J. W. TOLLE

[14] W. Murray and F. J. Prieto, A sequential quadratic programming algorithm using an in-
complete solution of the subproblem, SIAM J. Optim., 5 (1995), pp. 590–640.

[15] B. A. Murtagh and M. A. Saunders, MINOS 5.4 User’s Guide, SOL, Department of Oper-
ations Research SOL 83-20R, Stanford University, Stanford, CA, revised 1995.

[16] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-Hill, New York, 1995.
[17] J. Nocedal, Theory of algorithms for unconstrained optimization, in Acta Numerica, 1992,

Cambridge University Press, Cambridge, 1992, pp. 199–242.

NONSYMMETRIC SEARCH DIRECTIONS FOR SEMIDEFINITE
PROGRAMMING∗

NATHAN BRIXIUS† , FLORIAN A. POTRA‡ , AND RONGQIN SHENG§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 863–876

To John Dennis on the occasion of his 60th birthday.

Abstract. Two nonsymmetric search directions for semidefinite programming, the XZ and
ZX search directions, are proposed. They are derived from a nonsymmetric formulation of the
semidefinite programming problem. The XZ direction corresponds to the direct linearization of the
central path equation XZ = νI, while the ZX direction corresponds to ZX = νI. The XZ and
ZX directions are well defined if both X and Z are positive definite matrices, where X may be
nonsymmetric. We present an algorithm using the XZ and ZX directions alternately following the
Mehrotra predictor-corrector framework. Numerical results show that the XZ/ZX algorithm, in many
cases, requires less CPU time than the XZ+ZX method of Alizadeh, Overton, and Haeberly [SIAM
J. Optim., 8 (1998), pp. 746–768] while achieving similar accuracy.

Key words. semidefinite programming, nonsymmetric, search direction, interior-point algo-
rithm, high accuracy

AMS subject classifications. 65K05, 90C25, 90C30

PII. S1052623498333883

1. Introduction. The semidefinite programming (SDP) problem has the stan-
dard form

(P) min{C •X : Ai •X = bi, i = 1, . . . ,m, X ∈ Sn+},(1.1)

and its associated dual problem is

(D) max

{
bT y :

m∑
i=1

yiAi + Z = C, (y, Z) ∈ IRm × Sn+
}
,(1.2)

where C ∈ Sn, Ai ∈ Sn, i = 1, . . . ,m, b = (b1, . . . , bm)T ∈ IRm are given data. Here Sn
denotes the set of all n×n symmetric matrices and Sn+ the set of all n×n symmetric
positive semidefinite matrices. G •H is the trace of GTH. For simplicity we assume
that Ai, i = 1, . . . ,m, are linearly independent.

Under the assumption that both (1.1) and (1.2) have finite solutions and their
optimal values are equal, X∗ and (y∗, Z∗) are solutions of (1.1) and (1.2) if and only
if they are solutions of the following nonlinear system:

Ai •X = bi, i = 1, . . . ,m,(1.3a)

∗Received by the editors February 9, 1998; accepted for publication (in revised form) February
15, 1999; published electronically September 24, 1999. This work was supported in part by the
Department of Energy under contract W-31-109-Eng-38 and by the National Science Foundation
under grant DMS-9706894. The U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow others to do so, for U.S.
Government purposes. Copyright is owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/siopt/9-4/33388.html
†Department of Computer Science, University of Iowa, Iowa City, IA 52242 (nathan-brixius@

uiowa.edu).
‡Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000

Hilltop Circle, Baltimore, MD 21250 (potra@math.umbc.edu).
§Lucent Technologies, 2443 Warrenville Road, Lisle, IL 60532 (rsheng@lucent.com).

863

864 N. BRIXIUS, F. A. POTRA, AND R. SHENG

m∑
i=1

yiAi + Z = C,(1.3b)

XZ = 0, X, Z ∈ Sn+.(1.3c)

Most primal-dual interior-point methods for semidefinite programming can be
interpreted as Newton-type algorithms for solving the nonlinear system (1.3). The
search directions used by those interior-point algorithms are associated with different
ways of linearizing the central path equation

XZ = νI,(1.4)

where ν ≥ 0 is the central path parameter.
To ensure that the iterates Xk and Zk are symmetric matrices, symmetric refor-

mulations of central path equation (1.4) have been developed. Alizadeh, Haeberly,
and Overton [2] considered instead of (1.4) the symmetric equation

XZ + ZX = 2νI.(1.5)

Zhang [12] proposed a generalized symmetrization of the form

1

2
[P−1XZP + (P−1XZP)T] = νI,(1.6)

where P can be any nonsingular matrix. Recently, Monteiro and Tsuchiya [6] consid-
ered the symmetric central path equations

Z1/2XZ1/2 = νI, X1/2ZX1/2 = νI.(1.7)

Linearization of the above symmetric central path equations leads to different search
directions. The most commonly used directions are the XZ+ZX or Alizadeh–Haeberly–
Overton (AHO) direction [2], the Helmberg–Kojima–Moteiro (HKM) direction [3, 4,
5], and the Nesterov–Todd (NT) direction [8], obtained from (1.6) by taking P equal
to I, Z1/2, and [Z1/2(Z1/2XZ1/2)−1/2Z1/2]1/2, respectively. Among these directions,
AHO has been observed to achieve the highest accuracy. We also mention that Mon-
teiro and Zanjácomo [7] and Toh [10] recently reported other search directions that
can attain high accuracy.

All the above-mentioned search directions involve the linearization of a specific
symmetric central path equation. In this paper, we show that the nonsymmetric
central path equation (1.4) can be directly used without any symmetrization and that
the resulting nonsymmetric search direction can be used in interior-point algorithms.
Our approach is based on the following nonsymmetric formulation of SDP whose
solution set contains that of (1.3):

Ai •X = bi, i = 1, . . . ,m,(1.8a)
m∑
i=1

yiAi + Z = C,(1.8b)

XZ = 0, 0 � X ∈ IRn×n, Z ∈ Sn+.(1.8c)

In (1.8) the notation 0 � X ∈ IRn×n means that X is positive semidefinite but not
necessarily symmetric. In section 2, we will prove that if (X∗, y∗, Z∗) is a solution

NONSYMMETRIC DIRECTIONS FOR SDP 865

of (1.8), then (sym(X∗), y∗, Z∗) is a solution of (1.3), where we define the operator
sym by

sym(G) =
1

2
(G+GT) for any real square matrix G.

The same result holds if (1.8c) is replaced by

ZX = 0, 0 � X ∈ IRn×n, Z ∈ Sn+.(1.9)

The XZ search direction (∆X,∆y,∆Z) is defined as the solution of the following
linear system:

Ai •∆X = bi −Ai •X, i = 1, . . . ,m,(1.10a)
m∑
i=1

∆yiAi + ∆Z = C −
m∑
i=1

yiAi − Z,(1.10b)

X∆Z + ∆XZ = σµI −XZ,(1.10c)

where µ = X • Z/n and σ ∈ [0, 1] is a centering parameter. Thus, the XZ direction
can be viewed as the result of the direct linearization of the central path equation
XZ = νI.

Correspondingly the ZX search direction is the solution of the linear system (1.10)
with (1.10c) replaced by

Z∆X + ∆ZX = σµI − ZX.
We will show that the XZ and ZX directions exist provided X and Z are positive

definite. Extensive numerical experiments show that interior-point methods based on
the XZ or ZX direction alone can obtain neither the high accuracy of the AHO method
nor the efficiency of the HKM method. On the other hand, if these directions are used
alternately, then both the accuracy and speed of convergence are improved. Such a
method is called an XZ/ZX method. Our numerical experiments show that the XZ/ZX
method integrated in the Mehrotra predictor-corrector framework is competitive with
the corresponding AHO method. The two methods have similar accuracy. Although
our method usually takes about three more iterations, the CPU time, as well as
the number of floating-point operations, is less in many cases. This is because our
algorithm avoids the Lyapunov equations that the AHO method has to solve at each
iteration.

The following notation and terminology are used throughout the paper:
IRp: the p-dimensional Euclidean space;
IRp+: the nonnegative orthant of IRp;
IRp++: the positive orthant of IRp;

IRp×q: the set of all p× q matrices with real entries;
Sp: the set of all p× p symmetric matrices;
Sp+: the set of all p× p symmetric positive semidefinite matrices;
Sp++: the set of all p× p symmetric positive matrices;
M � 0: M is positive semidefinite;
M � 0: M is positive definite;
λi(M), i = 1, . . . , n: the eigenvalues of M ∈ Sn;
λmax(M), λmin(M): the largest, smallest, eigenvalue of M ∈ Sn;
G •H ≡ Tr(GTH);

866 N. BRIXIUS, F. A. POTRA, AND R. SHENG

‖ · ‖: Euclidean norm of a vector and the corresponding norm of a matrix, i.e.,
‖y‖ ≡√∑p

i=1 y
2
i , ‖M‖ ≡ max{‖My‖ : ‖y‖ = 1} ;

‖M‖F ≡
√∑p

i=1

∑q
j=1[M]2ij , M ∈ IRp×q: Frobenius norm of a matrix;

sym(M) ≡ (M +MT)/2, M ∈ IRp×p.

2. On the nonsymmetric formulation of SDP. The following result is well
known.

Lemma 2.1. Let X,Z ∈ Sn+. Then X • Z = 0 if and only if XZ = ZX = 0.
The next lemma shows that (1.8c) can be replaced by (1.9).
Lemma 2.2. Let 0 � X ∈ IRn×n, Z ∈ Sn+. Then XZ = 0 if and only if ZX = 0.
Proof. (⇒). XZ = 0 implies (X + XT) • Z = 2XT • Z = 0. Then from

Lemma 2.1, we obtain (X + XT)Z = 0, which yields XTZ = −XZ = 0 and hence
ZX = (XTZ)T = 0.

(⇐). This is similar.
Theorem 2.3.
(a) Every solution of (1.3) is also a solution of (1.8).
(b) If (X∗, y∗, Z∗) is a solution of (1.8), then (sym(X∗), y∗, Z∗) is a solution of

(1.3).
Proof. Part (a) follows directly from the definition of (1.8). To prove (b), we need

to show only that (sym(X∗), y∗, Z∗) satisfies (1.3a) and (1.3c). Since Ai, i = 1, . . . ,m,
are symmetric, we have

Ai • sym(X∗) = Ai •X∗ = bi, i = 1, . . . ,m.

From X∗Z∗ = 0 and Lemma 2.2 we obtain Z∗X∗ = 0. Therefore,

sym(X∗)Z∗ =
1

2
[X∗Z∗ + (Z∗X∗)T] = 0.

3. The XZ and ZX search directions. The linear system (1.10) for the XZ
search direction can be written in the following matrix form: 0 AT I

A 0 0
Z ⊗ I 0 I ⊗X

vec(∆X)
∆y

vec(∆Z)

 =

vec(Rd)
r

vec(Rc)

 ,(3.1)

where

AT = [vec(A1),vec(A2), ...,vec(Am)],

ri = bi −Ai •X, i = 1, . . . ,m,(3.2a)

Rd = C −
m∑
i=1

yiAi − Z,(3.2b)

rT = [r1, r2, ..., rm],(3.2c)

Rc = σµI −XZ.(3.2d)

Here ⊗ denotes the Kronecker product. For any n×n matrix M, vec(M) denotes the
vector obtained by stacking the columns of M, that is,

vec(M) = (m11,m21, . . . ,m1n, . . . ,mnn)T .

NONSYMMETRIC DIRECTIONS FOR SDP 867

The linear system (1.10) can be solved by the following procedure:

• Compute ∆y by solving the linear system

M∆y = h,(3.3)

where

M = A(Z−1 ⊗X)AT

and

h = r +A[vec(XRdZ
−1)− vec(RcZ

−1)].

• Compute ∆Z, ∆X as follows:

∆Z = Rd −
m∑
i=1

∆yiAi,

∆X = RcZ
−1 −X∆ZZ−1.

Lemma 3.1. If X ∈ IRn×n and Z ∈ Sn are positive definite, then the linear system
(1.10) has a unique solution (∆X,∆y,∆Z) ∈ IRn×n × IRm × Sn.

Proof. If the solution (∆X,∆y,∆Z) of (1.10) exists, then the symmetry of ∆Z
is automatic from (1.10b). Therefore, it is sufficient to prove that the Schur matrix
A(Z−1 ⊗X)AT is nonsingular. From the symmetry of Z−1, we have

A(Z−1 ⊗X)AT + [A(Z−1 ⊗X)AT]T

= A[Z−1 ⊗ (X +XT)]AT .

The right-hand side of the above equation is positive definite because A has full rank
and both Z and X +XT are positive definite. Therefore, A(Z−1 ⊗X)AT is positive
definite and hence nonsingular.

Remark 3.2. In the Schur complement equation (3.3) the Schur matrix M and
the right side h can be computed by

mi,j = Ai • (XAjZ
−1)(3.4)

and

hi = ri +Ai • [(XRdZ
−1)−RcZ−1].

The methods for computing M for the HKM and XZ directions are quite similar.
However, for the XZ direction, since X is not necessarily symmetric, neither is M. The
formulas given in [10] for computing M when the matrix X is symmetric adapt easily
to the XZ direction.

Let us consider the complexity of the computation of the XZ direction. If the
matrices Ai are not sparse, then the major computational effort consists of forming
the Schur matrix M . If formula (3.4) is used, the XZ direction can be computed in
4mn3 + 2m2n2 +O(max{m,n}3) flops, since 2m matrix multiplications and m2 inner
products are involved. Therefore, the complexity of computing the XZ direction by
using formula (3.4) is

4mn3 + 2m2n2 +O(max{m,n}3).

868 N. BRIXIUS, F. A. POTRA, AND R. SHENG

Table 1
Computational results for varying classes of SDP. Ten random instances of each class were

tested. Note that the infeasibility of all problems is reduced to a level less than 10−12 except for the
last problem, where 10−11 is attained.

Average accuracy achieved Average CPU time (min.)
by |mean(log10(X • Z))| to attain the accuracy

AHO XZ/ZX HKM NT AHO XZ/ZX HKM NT

Random
n = 100 8.79 8.98 7.10 7.14 4.82 4.24 3.23 3.25
m = 50

Random
n = 50 9.55 9.18 7.74 7.65 3.81 4.18 2.55 2.32
m = 100

Random
n = 100 8.63 8.60 7.35 7.05 13.50 13.75 9.43 8.68
m = 100

Norm min.
n = 100 12.91 12.53 9.57 9.39 1.76 1.25 0.99 1.24
m = 30

Cheby. Poly.
n = 100 13.84 13.02 10.65 9.03 2.51 1.81 1.46 1.55
m = 31

Maxcut
n = 200 11.11 10.01 7.86 7.51 64.50 26.16 21.21 22.28
m = 200

ETP
n = 110 9.35 7.40 8.17 8.18 4.59 3.84 3.09 3.19
m = 55

Log. Cheby.
n = 300 10.12 5.71 9.28 9.31 18.29 11.44 9.70 9.64
n = 50

Remark 3.3. The complexity of computing most commonly used search directions
for SDP is of the form

αmn3 + βm2n2 +O(max{m,n}3),(3.5)

where α and β are two positive constants (see [7, 10]). We note that the third term
in (3.5) cannot be neglected because sometimes it may contribute significantly to the
complexity, especially when extra matrix factorizations are used. We also note that
the computation of the XZ direction needs the least number of matrix factorizations.
This feature is also shared by the HKM direction.

Remark 3.4. Theoretically, the complexity of computing the XZ direction can be
reduced to

3mn3 + 2m2n2 +O(max{m,n}3),

by using the Cholesky factorization Z = LLT and the following formula, which is
equivalent to (3.4):

mi,j = (L−1Ai) • (L−1AjX
T).(3.6)

Since L−1 is triangular, the computation of L−1Ai, i = 1, . . . ,m, takes mn3 +
O(max{m,n}3) flops. After L−1Ai, i = 1, . . . ,m, is obtained, the computation of
L−1AjX

T involves m matrix multiplications and thus needs 2mn3 +O(max{m,n}3)
flops. Finally, m2 inner products are needed, thus accounting for 2m2n2+O(max{m,n}3)

NONSYMMETRIC DIRECTIONS FOR SDP 869

Table 2
Average results for the number of iterations and the flops per iteration used to achieve the

accuracy listed in Table 1.

Average number of iterations Average Mflops
to achieve the accuracy per iteration

AHO XZ/ZX HKM NT AHO XZ/ZX HKM NT

Random
n = 100 13.1 16.0 15.7 15.5 618 299 275 300
m = 50

Random
n = 50 13.8 16.7 16.1 14.5 188 111 86 89
m = 100

Random
n = 100 13.0 16.4 16.5 15.2 1253 652 553 578
m = 100

Norm min.
n = 100 13.9 16.2 14.5 16.0 399 223 191 255
m = 30

Cheby. Poly.
n = 100 13.9 16.1 15.1 14.7 1848 947 902 988
m = 31

Maxcut
n = 200 15.6 16.2 15.4 15.4 12680 3419 3405 3616
m = 200

ETP
n = 110 22.6 35.0 31.6 30.5 86 43.4 45.3 66.9
m = 55

Log. Cheby.
n = 300 18.8 21.8 21.0 20.4 2.71 2.16 1.45 1.48
m = 50

flops. Therefore, the computation of the XZ direction with formula (3.6) takes 3mn3+
2m2n2 + O(max{m,n}3) flops. However, in our MATLAB implementation, we use
(3.4) instead of (3.6) because the CPU time often increases when (3.6) is applied.
This is due to the fact that MATLAB is an interpreted language; code that tries to
exploit the structure of L in computing L−1Ai, i = 1, . . . ,m, is slow in comparison
with the built-in functions provided by MATLAB. A similar observation was made
by Toh [10]. Nevertheless, (3.6) may be useful in other computational environments,
e.g., in an SDP code written in a compiled language.

Remark 3.5. Alternatively, the complexity of computing the XZ direction can be
reduced to

4mn3 +m2n2 +O(max{m,n}3)

by first symmetrizing XAjZ
−1:

mi,j = Ai • sym(XAjZ
−1).(3.7)

Again, we note that in a computational environment such as MATLAB, using (3.7)
is not likely to improve performance significantly.

Remark 3.6. The computation of the ZX direction is similar to that of the
XZ direction. Actually, (∆X,∆y,∆Z) is an XZ direction at (X, y, Z) if and only if
(∆XT ,∆y,∆Z) is a ZX direction at (XT , y, Z).

This fact can be easily observed by taking the transpose of both sides of (1.10c)
and by rewriting (1.10a) as Ai •∆XT = bi −Ai •XT .

870 N. BRIXIUS, F. A. POTRA, AND R. SHENG

Table 3
Computational results for the control LMI and truss topology design problems, γ = 0.98. The

starting point is (X0, y0, Z0) = ρ(I, 0, I). “Infeasibility” indicates the maximum of the relative
primal and dual infeasibilities.

| log10(X • Z)| CPU seconds Iterations Infeasibility

Problem ρ
AHO XZ/ZX AHO XZ/ZX AHO XZ/ZX AHO XZ/ZX

truss1 103 11.36 10.93 3.0 1.9 16 16 3.4e-13 6.0e-13
truss2 103 11.59 9.19 144.7 122.9 17 18 1.0e-13 5.8e-13
truss3 103 8.57 8.80 22.1 17.3 18 19 8.8e-13 5.1e-13
truss4 103 11.32 11.33 6.0 4.5 16 18 4.9e-13 8.1e-13
truss5 103 11.08 10.39 2619 2465 19 21 1.9e-11 2.3e-11
truss6 103 4.70 5.43 2442 5738 18 24 3.2e-08 5.1e-07
truss7 103 3.74 3.78 721 1384 18 24 2.5e-13 5.3e-13
truss8 103 11.81 9.95 30813 27613 21 24 8.0e-10 9.7e-11
hinf1 102 3.80 8.42 3.7 4.6 12 21 1.1e-08 1.4e-09
hinf2 102 9.93 6.34 5.2 4.1 16 18 3.8e-07 1.7e-09
hinf3 102 10.22 7.38 5.8 3.8 17 19 6.2e-06 6.4e-07
hinf4 103 2.03 6.40 4.1 4.5 13 20 1.6e-07 6.4e-09
hinf5 103 10.06 4.17 5.5 4.3 18 19 2.3e-04 1.8e-05
hinf6 103 1.24 5.53 4.8 7.9 15 35 2.6e-05 1.1e-04
hinf7 103 6.22 4.98 4.8 4.9 16 22 1.5e-06 6.0e-06
hinf8 104 7.12 4.56 5.4 5.2 18 23 8.5e-07 5.4e-08
hinf9 103 9.53 9.45 5.0 3.9 17 19 1.7e-08 4.6e-06
hinf10 103 2.60 2.78 13.8 11.1 22 24 3.2e-07 3.4e-08
hinf11 106 5.85 3.45 24.7 21.6 21 23 5.2e-09 1.9e-07
hinf12 103 4.75 1.85 111.3 68.8 49 38 4.3e-05 1.5e-06
hinf13 104 0.74 1.92 139.2 150.3 22 33 2.8e-05 4.9e-07
hinf14 106 3.61 1.92 138.4 116.7 21 24 1.0e-08 5.9e-07
hinf15 102 1.15 0.43 385.3 271.6 37 35 3.3e-04 6.0e-05
hinf37 103 9.53 9.45 5.0 4.0 17 19 1.7e-08 4.6e-06

4. The XZ/ZX method. We call the algorithm described below an XZ/ZX
method because it uses the XZ and ZX search directions alternately. It follows the
Mehrotra predictor-corrector algorithmic framework of Todd, Toh, and Tütüncü [9].

Algorithm 4.1.
Select a starting point (X0, y0, Z0) ∈ IRn×n × IRn × Sn such that X0

and Z0 are positive definite. Choose an exponent ω and a constant
γ ∈ (0, 1).

Repeat for k = 0, 1, 2, . . . :
[For simplicity, let (X, y, Z) = (Xk, yk, Zk) and (X+, y+, Z+) =
(Xk+1, yk+1, Zk+1).]

(Predictor step)
• Compute the predictor direction (δX, δy, δZ) by solving the lin-

ear system (1.10) with σ = 0.
• Determine the parameter σ:

σ :=

(
(X + ψδX) • (Z + φδZ)

X • Z
)ω

,(4.1)

where

NONSYMMETRIC DIRECTIONS FOR SDP 871

Table 4
Computational results for the control LMI and truss topology design problems, γ = 0.99. The

starting point is (X0, y0, Z0) = ρ(I, 0, I). “Infeasibility” indicates the maximum of the relative
primal and dual infeasibilities. A * indicates that log10(X • Z) > 0.

| log10(X • Z)| CPU seconds Iterations Infeasibility

Problem ρ
AHO XZ/ZX AHO XZ/ZX AHO XZ/ZX AHO XZ/ZX

truss1 103 12.19 10.83 3.1 1.7 15 14 1.236e-11 4.155e-11
truss2 103 11.57 8.83 151.7 104.4 17 16 1.832e-10 1.652e-10
truss3 103 8.82 8.81 19.4 15.3 16 18 5.661e-11 3.381e-11
truss4 103 12.22 10.40 5.8 3.5 15 14 2.892e-11 5.675e-11
truss5 103 8.46 8.12 2165.7 1857.7 19 20 5.001e-11 6.523e-11
truss6 103 4.01 3.82 2060.3 6880.3 16 30 2.202e-11 4.170e-6
truss7 103 5.01 3.73 690.7 976.6 17 17 1.821e-11 8.247e-6
truss8 103 11.21 10.17 22310.5 15752.7 21 23 1.9e-10 1.012e-10
hinf1 103 4.84 4.37 4.2 3.1 13 14 6.8e-08 4.5e-09
hinf2 103 9.72 5.33 5.1 4.4 16 19 1.2e-08 5.9e-10
hinf3 103 10.65 6.49 5.1 3.6 16 16 5.3e-06 5.4e-07
hinf4 103 10.62 6.55 5.7 4.4 18 19 5.2e-08 1.2e-08
hinf5 103 5.52 5.35 1.3 4.4 4 19 4.6e+02 3.6e-04
hinf6 103 7.35 4.68 9.1 7.0 28 31 2.6e-04 2.3e-04
hinf7 103 7.79 3.43 4.4 5.1 14 23 5.4e-06 8.8e-06
hinf8 103 8.71 5.21 6.1 4.8 19 21 7.2e-06 5.3e-07
hinf9 103 10.94 9.89 5.4 5.8 17 26 8.1e-09 5.9e-05
hinf10 103 2.44 2.22 14.7 14.0 23 31 1.1e-06 6.7e-08
hinf11 103 2.53 3.20 22.2 23.0 18 25 4.2e-07 8.1e-07
hinf12 103 4.77 * 95.6 81.7 44 50 4.8e-05 3.3e-02
hinf13 103 0.43 0.68 68.0 98.9 18 32 6.6e-04 1.0e-05
hinf14 103 3.08 2.06 118.2 198.6 19 42 4.8e-08 1.5e-07
hinf15 103 0.82 * 275.6 191.2 29 27 2.1e-04 8.5e-05
hinf37 103 10.94 9.89 5.4 5.9 17 26 8.1e-09 5.9e-05

ψ :=
−γ

min (−γ, λmin(sym(X)−1sym(δX))
,(4.2a)

φ :=
−γ

min (−γ, λmin(Z−1δZ))
.(4.2b)

(Corrector step)
• Compute the corrector direction (∆X,∆y,∆Z) by solving linear

system (1.10) with σ defined by (4.1) and the right side of (1.10c)
modified as

σµI −XZ − δXδZ.
• Compute ψ and φ from (4.2) with δX, δZ replaced by ∆X,∆Z.
• Update (X+, y+, Z+) = (XT , y, Z) + (ψ∆XT , φ∆y, φ∆Z).

In our numerical implementation, we choose γ = 0.99 and set ω equal to 2 for the
AHO method and 1 for others.

Remark 4.2. In Algorithm 4.1, through the updating

Xk+1 := [Xk + ψk∆Xk]T ,

872 N. BRIXIUS, F. A. POTRA, AND R. SHENG

2 4 6 8 10 12

10
−15

10
−10

10
−5

10
0

Iteration

X o Z
||XZ||
||ZX||

Fig. 1. Convergence of AHO direction on a matrix norm minimization problem.

we actually use the XZ and ZX directions alternately. In view of Remark 3.5, we
see that Algorithm 4.1 is equivalent to an algorithm using the XZ and ZX directions
alternately with the iteration sequence {(X̃k, yk, Zk)}, where X̃k = Xk for k = 2p−1
and X̃k = (Xk)T for k = 2p, p ≥ 1. This property can be verified by a simple linear
algebra manipulation.

5. Numerical results. We thank Toh, Todd, and Tütüncü for making their
MATLAB code SDPT3 [11] available to us. We used their code for running the
Mehrotra algorithm using the AHO, HKM, and NT search directions. We first tested
the following problems:

1. random SDP problem with n = 100, m = 50,
2. random SDP problem with n = 50, m = 100,
3. random SDP problem with n = 100, m = 100,
4. the matrix norm minimization problem with n = 100, m = 20,
5. the problem of computing the Chebyshev polynomial of a matrix with n =

100, m = 31,
6. the Max-Cut problem with n = 200, m = 200,
7. the Educational Testing Problem (ETP) with n = 110, m = 55, and
8. the logarithmic Chebyshev approximation problem with n = 300,m = 50.

All the problems are taken from [9] and [11]. The reader is referred to [9] and
[11] for details on the problems and the computation of the AHO, HKM, and NT
search directions. We performed our numerical experiment using MATLAB 5.0. The
computations were carried out on an IBM RS/6000 SP system at Argonne National
Laboratory.

We tested 10 random instances for each problem. We stopped the computation
when either no progress was made (due to numerical instability) or the number of
iterations reached 50. The average results are given in Tables 1 and 2.

From the results displayed in the two tables we observe the following:
• The XZ/ZX method and the AHO method achieve higher accuracy than the

NONSYMMETRIC DIRECTIONS FOR SDP 873

2 4 6 8 10 12

10
−15

10
−10

10
−5

10
0

Iteration

X o Z
||XZ||
||ZX||

Fig. 2. Convergence of HKM direction on a matrix norm minimization problem.

2 4 6 8 10 12

10
−15

10
−10

10
−5

10
0

Iteration

X o Z
||XZ||
||ZX||

Fig. 3. Convergence of NT direction on a matrix norm minimization problem.

other methods for most problems.
• The XZ/ZX method is not able to achieve high accuracy on the ETP or

logarithmic Chebyshev problems.
• In many cases the XZ/ZX method is faster than the AHO method.
• The XZ/ZX method takes about three more iterations than the AHO method

with the exception of the ETP problem, where the XZ/ZX method takes
significantly more iterations.
• With the exception of the ETP problem the XZ/ZX method requires signifi-

874 N. BRIXIUS, F. A. POTRA, AND R. SHENG

2 4 6 8 10 12 14

10
−15

10
−10

10
−5

10
0

Iteration

X o Z
||XZ||
||ZX||

Fig. 4. Convergence of XZ/ZX direction on a matrix norm minimization problem.

5 10 15 20

10
−15

10
−10

10
−5

10
0

Iteration

X o Z
||XZ||
||ZX||

Fig. 5. Convergence of XZ direction on a matrix norm minimization problem.

cantly fewer flops per iteration than the AHO method and only slightly more
flops than the HKM method, which requires the fewest flops per iteration of
the methods tested.

The problems tested in Tables 1 and 2 were randomly generated and we used
the starting points suggested in the MATLAB software SDPT3. For these problems,
we chose γ = 0.99. We also tested 8 problems from truss topology design and 16
control linear matrix inequality problems. These problems have been used for the
benchmarks of the MATLAB software SDPpack [1], which utilizes the AHO method,

NONSYMMETRIC DIRECTIONS FOR SDP 875

and are available online at http://cs.nyu.edu/cs/faculty/overton/sdppack/v0.9-beta/
testproblems/.

The computational results for these problems are given in Tables 3 and 4. In
Table 3, we chose γ = 0.98, and in Table 4 we were more aggressive and chose
γ = 0.99. Here we also measured the relative infeasibility of our solution, which is
given by

max{‖r‖/‖b‖, ‖Rd‖F /‖C‖F }.

For some of the test problems (e.g., hinf13 and hinf15), neither algorithm is capable
of finding a solution of sufficient accuracy when γ = 0.99. The starting point we used
is (X0, y0, Z0) = ρ(I, 0, I), where ρ > 0. Our results again show that the XZ/ZX
method is competitive with the AHO method.

In addition, we conducted experiments to determine why the XZ/ZX method is
so much more effective than the XZ method. To this end, we used SDPT3 to solve a
matrix norm minimization problem of size n = 100, m = 31 using the XZ, XZ/ZX,
AHO, NT, and HKM methods. Figures 1–5 represent the quantities X • Z, ‖XZ‖F ,
and ‖ZX‖F after each iteration of each algorithm. Of course, ‖XZ‖F = ‖ZX‖F for
the latter three directions since the iterates Xk and Zk are symmetric.

Based on the graphs, we divide the five search directions into two distinct classes.
The graphs of the HKM method, NT method, and XZ method appear quite similar.
For these directions, after an initial period of 5 to 10 iterations, the duality gap X •Z
decreases much faster than the quantities ‖XZ‖F and ‖ZX‖F . The XZ method
behaves much as we might expect; the quantity ‖XZ‖F is in all cases smaller than
‖ZX‖F , which seems reasonable since the XZ method makes no attempt to decrease
‖ZX‖F .

The second class consists of the AHO and XZ/ZX methods. Figures 1 and 4
show that all three measured quantities decrease at roughly the same rate throughout
both algorithms. However, the alternation between XZ and ZX directions in the
XZ/ZX method produces a zigzag pattern. Even-numbered iterations force ‖XZ‖F
to decrease sharply, while odd-numbered iterations force ‖ZX‖F to decrease sharply.

Acknowledgment. The authors thank Steve Wright for insightful discussions.

REFERENCES

[1] F. Alizadeh, J.-P. A. Haeberly, M. V. Nayakkankuppam, M. L. Overton, and S. Schmi-
eta, SDPpack User’s Guide, Technical report, New York University, June 1997; also
available online from http://www.cs.nyu.edu/faculty/overton/sdppack/sdppack.html.

[2] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods
for semidefinite programming: Convergence rates, stability and numerical results, SIAM
J. Optim., 8 (1998), pp. 746–768.

[3] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, An interior-point method
for semidefinite programming, SIAM J. Optim., 6 (1996), pp. 342–361.

[4] M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the monotone semidefinite
linear complementarity problem in symmetric matrices, SIAM J. Optim., 7 (1997), pp. 86–
125.

[5] R. D. C. Monteiro, Primal-dual path-following algorithms for semidefinite programming,
SIAM J. Optim., 7 (1997), pp. 663–678.

[6] R. D. C. Monteiro and T. Tsuchiya, Polynomiality of primal-dual algorithms for semidefinite
linear complementarity problems based on the Kojima-Shindoh-Hara family of directions,
Math. Program., 84 (1999), pp. 39–53.

[7] R. D. C. Monteiro and P. Zanjácomo, Implementation of primal-dual methods for semidef-
inite programming based on Monteiro and Tsuchiya Newton directions and their variants,

876 N. BRIXIUS, F. A. POTRA, AND R. SHENG

Working paper, School of Industrial and Systems Engineering, Georgia Institute of Tech-
nology, Atlanta, GA, 1997.

[8] Yu. E. Nesterov and M. J. Todd, Primal-dual interior-point methods for self-scaled cones,
SIAM J. Optim., 8 (1998), pp. 324–364.

[9] M. J. Todd, K. C. Toh, and R. H. Tütüncü, On the Nesterov-Todd direction in semidefinite
programming, SIAM J. Optim., 8 (1998), pp. 769–796.

[10] K. C. Toh, Search directions for primal-dual interior point methods in semidefinite program-
ming, SIAM J. Optim., submitted.

[11] K. C. Toh, M. J. Todd, and R. H. Tütüncü, SDPT3—a Matlab software package for semidef-
inite programming, Technical report 1177, School of Operations Research and Industrial
Engineering, Cornell University, Ithaca, NY, 1998.

[12] Y. Zhang, On extending some primal-dual interior-point algorithms from linear programming
to semidefinite programming, SIAM J. Optim., 8 (1998), pp. 365–386.

AN INTERIOR POINT ALGORITHM FOR LARGE-SCALE
NONLINEAR PROGRAMMING∗

RICHARD H. BYRD† , MARY E. HRIBAR‡ , AND JORGE NOCEDAL§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 877–900

Dedicated to John Dennis, who has made crucial contributions to optimization,
and has helped us greatly in our careers

Abstract. The design and implementation of a new algorithm for solving large nonlinear pro-
gramming problems is described. It follows a barrier approach that employs sequential quadratic
programming and trust regions to solve the subproblems occurring in the iteration. Both primal and
primal-dual versions of the algorithm are developed, and their performance is illustrated in a set of
numerical tests.

Key words. constrained optimization, interior point method, large-scale optimization, nonlin-
ear programming, primal method, primal-dual method, sequential quadratic programming, barrier
method, trust region method

AMS subject classifications. 65K10, 49N, 49M

PII. S1052623497325107

1. Introduction. In this paper we discuss the design, implementation, and
performance of an interior point method for solving the nonlinearly constrained opti-
mization problem

minf(x)

subject to h(x) = 0,

g(x) ≤ 0,(1.1)

where f : Rn → R, h : Rn → Rt, and g : Rn → Rm are smooth functions. We
are particularly interested in the case when (1.1) is not a convex program and when
the number of variables n is large. We assume in this paper that first and second
derivatives of the objective function and constraints are available, but our strategy
can be extended to make use of quasi-Newton approximations.

Interior point methods provide an alternative to active set methods for the treat-
ment of inequality constraints. Our algorithm, which is based on the framework
proposed by Byrd, Gilbert, and Nocedal [7], incorporates within the interior point
method two powerful tools for solving nonlinear problems: sequential quadratic pro-
gramming (SQP) and trust region techniques. SQP ideas are used to efficiently handle
nonlinearities in the constraints. Trust region strategies allow the algorithm to treat
convex and nonconvex problems uniformly, permit the direct use of second derivative
information, and provide a safeguard in the presence of nearly dependent constraint
gradients.

∗Received by the editors July 30, 1997; accepted for publication (in revised form) January 25,
1999; published electronically September 24, 1999.

http://www.siam.org/journals/siopt/9-4/32510.html
†Computer Science Department, University of Colorado, Boulder, CO 80309

(richard@cs.colorado.edu). This author was supported by ARO grant DAAH04-94-0228 and
AFOSR grant F49620-94-1-0101.
‡CAAM Department, Rice University, Houston, TX 77005 (marybeth@caam.rice.edu). This au-

thor was supported by Department of Energy grant DE-FG02-87ER25047-A004.
§ECE Department, Northwestern University, Evanston, IL 60208 (nocedal@ece.nwu.edu). This

author was supported by National Science Foundation grant CCR-9625613 and by Department of
Energy grant DE-FG02-87ER25047-A004.

877

878 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

Of crucial importance in the new algorithm are the formulation and solution of the
equality constrained barrier subproblems that determine the steps of the algorithm.
The formulation of the subproblems gives the iteration primal or primal-dual char-
acteristics and ensures that the slack variables remain safely positive. The technique
used to solve the subproblems has a great impact on the efficiency and robustness
of the algorithm; we use an adaptation of the trust region method of Byrd [6] and
Omojokun [32] which has proved to be effective for solving large equality constrained
problems [29].

Our numerical results suggest that the new algorithm holds much promise: it
appears to be robust and efficient (in terms of function evaluations), and it can make
effective use of second derivative information. The test results also indicate that
the primal-dual version of the algorithm is superior to the primal version. The new
algorithm has a solid theoretical foundation, since it follows the principles of the
globally convergent primal method developed in [7]. In particular, the approximate
solution strategies for the subproblems in the algorithm are chosen to satisfy the
explicit conditions for global convergence stated in that paper.

There has been much research in using interior point methods for nonlinear pro-
gramming; most of it concerns line search methods. The special case when the problem
is a convex program can be handled by line search methods that are direct extensions
of interior point methods for linear programming (see, e.g., [1]). In the convex case,
the step generated by the solution of the primal-dual equations can be shown to be
a descent direction for several merit functions, and this allows one to establish global
convergence results. Other research [18, 42] has focused on the local behavior of inte-
rior point line search methods for nonlinear programming. Conditions have been given
that guarantee superlinear and quadratic rates of convergence. These algorithms can
also be viewed as a direct extension of linear programming methods in that they do
not make provisions for the case when the problem is nonconvex.

Several line search algorithms designed for nonconvex problems have recently been
proposed [41, 20, 15, 21, 2, 33]. An important feature of many of these methods is a
strategy for modifying the KKT system used in the computation of the search direc-
tion. This modification, which is usually based on a matrix factorization algorithm,
ensures that the search direction is a descent direction for the merit function. These
approaches are interesting, but there is not yet enough experience to fully evaluate
their efficacy in general-purpose codes.

The use of trust region strategies in interior point methods for linear and nonlinear
problems is not new [5, 31]. Coleman and Li [13, 12] proposed a primal method for
bound constrained nonlinear optimization; see also [17]. Plantenga [34] developed
an algorithm for general nonlinear programming that has some features in common
with our algorithm; the main differences lie in his treatment of the trust region, in
the purely primal nature of his step, and in the fact that his algorithm reverts to an
active set method near the solution.

The algorithm proposed in this paper makes use of sequential quadratic program-
ming techniques [3, 19, 23, 22] and in this sense is related to the line search algorithm of
Yamashita [41]. But the way in which our algorithm combines trust region strategies,
interior point approaches, and sequential quadratic programming techniques leads to
an iteration that is different from those proposed in the literature.

2. The new algorithm. The algorithm is a barrier method in which the sub-
problems are solved approximately by an SQP iteration with trust regions. Each

AN INTERIOR POINT ALGORITHM 879

barrier subproblem is of the form

min
x,s

f(x)− µ
m∑
i=1

ln si

subject to h(x) = 0,(2.1)

g(x) + s = 0,

where µ > 0 is the barrier parameter and where the slack variable s is assumed to
be positive. By letting µ converge to zero, the sequence of solutions to (2.1) should
normally converge to a stationary point of the original nonlinear program (1.1). As
in some interior point methods for linear programming [40], our algorithm does not
require feasibility of the iterates with respect to the inequality constraints in (1.1) but
only forces the slack variables in (2.1) to remain positive.

To characterize the solution of the barrier problem (2.1) we introduce its La-
grangian,

L(x, s, λh, λg) = f(x)− µ
m∑
i=1

ln si + λThh(x) + λTg (g(x) + s),(2.2)

where λh and λg are the Lagrange multipliers. Rather than solving each barrier
subproblem (2.1) accurately, we will be content with an approximate solution (x̂, ŝ)
satisfying E(x̂, ŝ;µ) ≤ εµ, where E measures the optimality conditions of the barrier
problem and is defined by

E(x, s;µ) = max (‖∇f(x) +Ah(x)λh +Ag(x)λg‖∞, ‖Sλg − µe‖∞, ‖h(x)‖∞,
‖g(x) + s‖∞) .(2.3)

Here e = [1, . . . , 1]T , S = diag(s1, . . . , sm), with superscripts indicating components
of a vector, and

Ah(x) = [∇h1(x), . . . ,∇ht(x)], Ag(x) = [∇g1(x), . . . ,∇gm(x)]

are the matrices of constraint gradients. Throughout the paper we will assume that Ah
has full column rank. In the definition of the optimality measure E, the vectors λh, λg
are least squares multiplier estimates (to be discussed later) and thus are functions of
x, s, and µ. We will show later (see (3.7)–(3.10)) that the terms in (2.3) correspond
to each of the equations of the so-called perturbed KKT system upon which our
primal-dual algorithm is based. The tolerance εµ, which determines the accuracy in
the solution of the barrier problems, is decreased from one barrier problem to the next
and must converge to zero. In this paper we will use the simple strategy of reducing
both εµ and µ by a constant factor θ ∈ (0, 1). We test for optimality for the nonlinear
program (1.1) by means of E(x, s; 0).

Algorithm I. Barrier algorithm for solving the nonlinear problem
(1.1).

Choose an initial value for the barrier parameter µ > 0, and select
the parameters εµ > 0, θ ∈ (0, 1), and the final stop tolerance εTOL .
Choose the starting point x and s > 0, and evaluate the objective
function, constraints, and their derivatives at x.
Repeat until E(x, s; 0) ≤ εTOL :

1. Apply an SQP method with trust regions, starting from (x, s),

880 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

to find an approximate solution (x+, s+) of the barrier
problem (2.1) satisfying E(x+, s+;µ) ≤ εµ.

2. Set µ← θµ, εµ ← θεµ, x← x+, s← s+.
end

To obtain a rapidly convergent algorithm, it is necessary to carefully control the
rate at which the barrier parameter µ and the convergence tolerance εµ are decreased
[18, 42]. This question has been studied, in the context of our algorithm, in [8].

Most of the work of Algorithm I lies clearly in step 1, in the approximate solution
of an equality constrained problem with an implicit lower bound on the slack vari-
ables. The challenge is to perform this step efficiently, even when µ is small, while
forcing the slack variables to remain positive. To do this we apply an adaptation of
the equality constrained SQP iteration with trust regions proposed by Byrd [6] and
Omojokun [32] and developed by Lalee, Nocedal, and Plantenga [29] for large-scale
equality constrained optimization. We follow an SQP approach because, in our view,
it is effective for solving equality constrained problems, even when the problem is
ill-conditioned and the constraints are highly nonlinear (see also [3, 22, 19, 23]), and
we choose to use trust region strategies to globalize the SQP iteration because they
facilitate the use of second derivative information when the problem is nonconvex.

However, our numerical experience shows that a straightforward application of
this SQP method to the barrier problem leads to inefficient steps that tend to violate
the positivity of the slack variables and that are thus frequently cut short by the
trust region constraint. The novelty of our approach lies in the formulation of the
quadratic model in the SQP iteration and in the definition of the (scaled) trust region.
These are designed to produce steps that have some of the properties of primal-dual
iterations and that avoid approaching the boundary of the feasible region too soon.

In order to describe our approach more precisely, it is instructive to briefly review
the basic principles of SQP for equality constrained optimization with trust regions
[3, 9, 10, 29, 38]. Every iteration of such an SQP method begins by constructing a
quadratic model of the Lagrangian function. A step d of the algorithm is computed
by minimizing the quadratic model, subject to satisfying a linear approximation to
the constraints and subject to a trust region bound on this step. If the step d gives
a sufficient reduction in the chosen merit function, then it is accepted; otherwise the
step is rejected, the trust region is reduced, and a new step is computed.

Let us apply these ideas to the barrier problem (2.1), in order to compute a step
d = (dx, ds) from the current iterate (xk, sk). To economize space we will often write
vectors with x- and s-components as(

dx
ds

)
= (dx, ds).

After computing Lagrange multiplier estimates (λh, λg), we formulate the subproblem

min
dx,ds

∇f(xk)T dx +
1

2
dTx∇2

xxL(xk, sk, λh, λg)dx − µeTS−1
k ds +

1

2
dTs Σkds(2.4)

subject to Ah(xk)T dx + h(xk) = rh,(2.5)

Ag(xk)T dx + ds + g(xk) + sk = rg,(2.6)

(dx, ds) ∈ Tk.(2.7)

Here Σk is an m × m positive definite diagonal matrix that represents either the
Hessian of the Lagrangian (2.2) with respect to s or an approximation to it. As

AN INTERIOR POINT ALGORITHM 881

we will see in the next section, the choice of Σk is of crucial importance because it
determines whether the iteration has primal or primal-dual characteristics. Ideally,
we would like our step to satisfy (2.5)–(2.6) with r = (rh, rg) = 0, i.e., to satisfy the
linearized constraints. However, this may be inconsistent with (2.7), so we choose the
residual vector r to be the smallest vector such that (2.5)–(2.7) are consistent (with
some margin). This computation is done by solving the preliminary subproblem in
which we compute the normal step, described in section 3.2. The closed and bounded
set Tk defines the region around xk where the quadratic model (2.4) and the linearized
constraints (2.5)–(2.6) can be trusted to be good approximations to the problem, and
it also ensures the feasibility of the slack variables. This trust region also guarantees
that (2.4)–(2.7) has a finite solution even when ∇2

xxL(xk, sk, λh, λg) is not positive
definite. The precise form of the trust region Tk requires careful consideration and
will be described in the next section.

We compute a step d = (dx, ds) by approximately minimizing the quadratic model
(2.4) subject to the constraints (2.5)–(2.7), as will be described in section 3.2. We
then determine if the step is acceptable according to the reduction obtained in the
following merit function:

φ(x, s; ν) = f(x)− µ
m∑
i=1

ln si + ν

∥∥∥∥[h(x)
g(x) + s

]∥∥∥∥
2

,(2.8)

where ν > 0 is a penalty parameter. This nondifferentiable merit function has been
successfully used in the SQP algorithm of Byrd [6] and Omojokun [32] and has been
analyzed in the context of interior point methods in [7]. We summarize this SQP
trust region approach as follows.

Algorithm II. SQP trust region algorithm for the barrier problem (2.1).
Input parameters µ > 0 and εµ > 0 and values k, xk, and sk > 0;
set trust region Tk; compute Lagrange multipliers λh and λg.
Repeat until E(xk, sk;µ) ≤ εµ

Compute d = (dx, ds) by approximately solving (2.4)–(2.7).
If the step d provides sufficient decrease in φ

then set xk+1 = xk + dx, sk+1 = sk + ds,
compute new Lagrange multiplier estimates λh and λg,
and possibly enlarge the trust region;

else set xk+1 = xk, sk+1 = sk, and shrink the trust region.
Set k := k + 1.

end
Algorithm II is called at each execution of step 1 of Algorithm I. The iterates

of Algorithm II are indexed by (xk, sk), where the index k runs continuously during
Algorithm I. In the next section we present a full description of Algorithm II, which
forms the core of the new interior point algorithm.

3. Algorithm for solving the barrier problem. Many details of the SQP
trust region method outlined in Algorithm II need to be developed. We first give a
precise description of the subproblem (2.4)–(2.7), including the choice of the diagonal
matrix Σk which gives rise to primal or primal-dual iterations. Furthermore, we
define the right-hand vectors (rh, rg), the form of the trust region constraint Tk,
and the choice of Lagrange multiplier estimates. Once a complete description of the
subproblem (2.4)–(2.7) has been given, we will present our procedure for finding an
approximate solution of it. We will conclude this section with a discussion of various
other details of implementation of the new algorithm.

882 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

3.1. Formulation of the subproblem. Let us begin by considering the qua-
dratic model (2.4). We have mentioned that SQP methods choose the Hessian of this
model to be the Hessian of the Lagrangian of the problem under consideration, or an
approximation to it. Since the problem being solved by Algorithm II is the barrier
problem (2.1), which has a separable objective function in the variables x and s, its
Hessian consists of two blocks. As indicated in (2.4), we choose the Hessian of the
quadratic model with respect to dx to be ∇2

xxL(xk, sk, λh, λg) (which we abbreviate
as ∇2

xxLk) but consider several choices for the Hessian Σk of the model with respect
to ds. The first choice is to define Σk = ∇2

ssLk, which gives

Σk = µS−2
k .(3.1)

The general algorithm studied in Byrd, Gilbert, and Nocedal [7] defines Σk in this
manner.

To study the effect of Σk in the step computation, let us analyze the simple
case when the matrix ∇2

xxLk is positive definite on the null space of the constraint
gradients, when the residual (rh, rg) is zero, and when the step generated by (2.4)–
(2.7) lies strictly inside the trust region. In this case the subproblem (2.4)–(2.6) has
a unique solution d = (dx, ds) which satisfies the linear system

∇2
xxLk 0 Ah(xk) Ag(xk)
0 Σk 0 I

ATh (xk) 0 0 0
ATg (xk) I 0 0

dx
ds
λ+
h

λ+
g

 =

−∇f(xk)
µS−1

k e
−h(xk)

−g(xk)− sk

 .(3.2)

If Σk is defined by (3.1), we call this approach a primal method. In this case, it is
easy to verify (see, e.g., [18, 40, 7]) that the system (3.2) is equivalent to a Newton
iteration on the KKT conditions of the barrier problem (2.1), which are given by

∇f(x) +Ah(x)λh +Ag(x)λg = 0,(3.3)

−µS−1e+ λg = 0,(3.4)

h(x) = 0,(3.5)

g(x) + s = 0.(3.6)

Several authors, including Jarre and S. Wright [28], M. Wright [39], and Conn, Gould,
and Toint [16] have given arguments suggesting that the primal search direction will
often cause the slack variables to become negative, and that it can be inefficient.
Although those papers consider a different formulation of the problem, it is easy to
see [27] that the arguments apply in our case.

Research in linear programming [40] has shown that a more effective interior point
method is obtained by considering the perturbed KKT system

∇f(x) +Ah(x)λh +Ag(x)λg = 0,(3.7)

Sλg − µe = 0,(3.8)

h(x) = 0,(3.9)

g(x) + s = 0,(3.10)

which is obtained by multiplying (3.4) by S. Although (3.4)–(3.6) and (3.8)–(3.10)
have the same solutions, applying Newton’s method to them will produce different

AN INTERIOR POINT ALGORITHM 883

iterates. It is well known, and also easy to verify, that a Newton step on (3.8)–(3.10)
is given by the solution to (3.2), with

Σk = S−1
k Λg.(3.11)

Here Λg =diag(λ1
g, . . . , λ

m
g) contains the Lagrange multiplier estimates corresponding

to the inequality constraints. The system (3.2) with Σk defined by (3.11) is called the
primal-dual system. This choice of Σk may be viewed as an approximation to ∇2

ssLk
since, by (3.4), at the solution (x, s, λ) of the barrier problem the equation µS−1 = Λg
is satisfied. Substituting this equation in (3.1) gives (3.11).

The system (3.7)–(3.10) has the advantage that the derivatives of (3.8) are bounded
as any slack variables approach zero, which is not the case with (3.4). In fact, analysis
of the primal-dual step, as well as computational experience with linear programs, has
shown that it overcomes the drawbacks of the primal step: it does not tend to vio-
late the constraints on the slacks, and it usually makes excellent progress toward the
solution (see, e.g., [28, 39, 40, 37]). These observations suggest that the primal-dual
model in which Σk is given by (3.11) is likely to perform better than the primal choice
(3.1). Of course, these arguments do not apply directly to our algorithm which solves
the SQP subproblem inexactly and whose trust region constraint may be active. Nev-
ertheless, as the iterates approach a solution point, the algorithm will resemble more
and more an interior point method in which a Newton step on some form of the KKT
conditions of the barrier problem is taken at each step.

Lagrange multiplier estimates are needed both in the primal-dual choice (3.11)
of Σk and in the Hessian ∇2Lxx(xk, sk, λh, λg). To complete our description of the
quadratic model (2.4) we must discuss how these multipliers are computed.

Lagrange multipliers. Since the method we will use for finding an approximate
solution to the subproblem (2.4)–(2.7) does not always provide Lagrange multiplier
estimates as a side computation, we will obtain them using a least squares approach.
As is done in some SQP methods [19, 3], which compute least squares estimates
based on the stationarity conditions at the current iterate, we will choose the vector
λ = (λh, λg) that minimizes the Euclidean norm of (3.7)–(3.8). This gives the formula

λk =

[
λh
λg

]
= λLS(xk, sk, µ) =

(
ÂTk Âk

)−1

ÂTk

[−∇f(xk)
µe

]
,(3.12)

where

Âk =

[
Ah(xk) Ag(xk)

0 Sk

]
.(3.13)

The computation of (3.12) will be performed by solving an augmented system, instead
of factoring ÂTk Âk, as will be discussed in section 3.4.

We should note that the multiplier estimates λg obtained in this manner may not
always be positive, and it may be questionable to use them in this case in the primal-
dual choice of Σk given by (3.11). In particular, since the Hessian of the barrier term
−µ∑ ln si is known to be positive definite, it seems undesirable to create an indefinite
approximation Σk to it. On the other hand, one could argue that trust region methods
can handle indefinite approximations and therefore that the multipliers need not be
modified. We cannot see a compelling argument in favor of either strategy. In primal-
dual interior point methods for linear programming, the initial Lagrange multiplier
estimate is chosen to be positive, and in subsequent iterations a backtracking line

884 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

search ensures that all new multiplier estimates remain safely positive (see, e.g., [40]).
Here we follow a different approach, not enforcing the positivity of the multipliers λg
but ensuring that the quadratic model remains convex in the slack variables. To do
so, in the primal-dual version of the algorithm we define the ith diagonal element of
Σk as

σik =

{
λig/s

i if λig > 0,
µ/(si)2 otherwise.

(3.14)

This means, in particular, that when a multiplier λig given by (3.12) is negative, the
corresponding entry in the primal-dual matrix Σk coincides with the corresponding
entry in the primal Hessian.

To avoid an abrupt change in Σk when µ is decreased, we modify the definition of
λk slightly in the primal-dual version of the algorithm. If (xk, sk) is the starting point
for a new barrier subproblem (i.e., the input in Algorithm II), then in the formula
(3.14) λg is the multiplier from the last iterate of the previous barrier problem.

Thus the definition of the multipliers is

λk =

{
λLS(xk, sk, µ) in primal version,
λLS(xk, sk, µ̄) in primal-dual version,

(3.15)

where µ̄ is the value of the barrier parameter used in the computation of (xk, sk). As
mentioned earlier, other strategies for computing multiplier estimates can be used,
and we do not yet know which choice might be preferable in practice.

This approach could just barely be considered a primal-dual method, as other
primal-dual methods treat the multipliers λh, λg as independent variables. In that
respect our approach is much closer to those SQP methods where the multipliers have
a subordinate role, being estimated as a function of the primal variables, and not
appearing explicitly in the merit function.

The trust region. Algorithm II stipulates that the step (dx, ds) must be re-
stricted to a set Tk, called the trust region. We will define Tk to accomplish two goals.
First, it should restrict the step to a region where the quadratic model (2.4) is a good
approximation of the Lagrangian (2.2) and where the linear equations (2.5)–(2.6) are
good approximations to the constraints. This is the basic philosophy of trust regions
and is normally achieved by imposing a bound of the form ‖(dx, ds)‖ ≤ ∆k, where
the trust region radius ∆k is updated at every iteration according to how successful
the step has been.

We will impose such a bound on the step, but the shape of the trust region must
also take into account other requirements of Algorithm II. Since the slack variables
should not approach zero prematurely, we introduce the scaling S−1

k that penalizes
steps ds near the boundary of the feasible region. This scaled trust region will be
defined as

‖(dx, S−1
k ds)‖2 ≤ ∆k(3.16)

and we will allow ∆k to be greater than 1. The second objective of our trust region
is to ensure that the slack variables remain positive. For this purpose we impose the
well-known [40, 37] fraction to the boundary rule

sk + ds ≥ (1− τ)sk,(3.17)

AN INTERIOR POINT ALGORITHM 885

where τ ∈ (0, 1); in our tests we use τ = 0.995. Combining this inequality, which can
be rephrased as ds ≥ −τsk, with (3.16) we obtain the final form of the trust region,

‖(dx, S−1
k ds)‖2 ≤ ∆k and ds ≥ −τsk.(3.18)

We have experimented with other forms of the trust region, in particular with
box-shaped trust regions defined by an `∞ norm, but so far (3.18) appears to be the
most appropriate for our algorithm.

Now that the quadratic model (2.4) and the trust region (2.7) have been defined,
it remains only to specify the choice of the residual vector r = (rh, rg) in (2.5)–
(2.6). This vector will be determined during the course of solving the subproblem, as
discussed next.

3.2. Solution of the quadratic subproblem. We will use the decomposition
proposed by Byrd [6] and Omojokun [32] to find an approximate solution of the
subproblem (2.4)–(2.7). In this approach the step d is a combination of a normal
step that attempts to satisfy the linear constraints (2.5)–(2.6) as well as possible and
a tangential step that lies on the tangent space of the constraints and that tries to
achieve optimality. The efficiency of the new algorithm depends, to a great extent,
on how these two components of the step are computed.

Throughout this section we omit the iteration subscript and write sk as s, Ah(xk)
as Ah, etc.

Normal step. It is clear [38] that restricting the size of the step d by means of the
trust region bounds (3.18) may preclude d from satisfying the linearized constraints
(2.5)–(2.6) with r = 0. To find a value of r that makes the quadratic subproblem
feasible, we first compute the normal step v that lies well within the trust region and
that approximately satisfies (2.5)–(2.6), in the least squares sense. To do this, we
choose a parameter ζ ∈ (0, 1) (in our code we use the value ζ = 0.8) and formulate
the following subproblem in the variable v = (vx, vs)

min
v
‖ATh vx + h‖22 + ‖ATg vx + vs + g + s‖22

subject to ‖(vx, S−1vs)‖2 ≤ ζ∆,(3.19)

vs ≥ −τs/2.
To simplify the constraints we define

ṽ = (vx, ṽs) = (vx, S
−1vs).

Performing this transformation, recalling the definition (3.13) of Â, squaring and
expanding the quadratic objective, and ignoring constant terms, we obtain

min
ṽ

m(ṽ) ≡ 2
[
hT (g + s)T

]
ÂT
[
vx
ṽs

]
+
[
vTx ṽTs

]
ÂÂT

[
vx
ṽs

]
(3.20)

subject to ‖ṽ‖2 ≤ ζ∆,(3.21)

ṽs ≥− τ/2.(3.22)

We compute an approximate solution of this problem by means of an adaptation of
the dogleg method [35], which provides a relatively inexpensive solution that is good
enough to allow our algorithm to be robust and rapidly convergent. Like the dogleg
method, it provides at least as much decrease on (3.19) as a truncated steepest descent

886 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

step, and it equals the unconstrained minimizer of (3.19) if that vector satisfies the
constraints of the subproblem. This first property, together with the fact that it lies
in the range space of Â, implies that the normal step satisfies the conditions for global
convergence given in [7].

We first calculate the Cauchy point ṽCP for problem (3.20)–(3.21), which is
obtained by minimizing the quadratic (3.20) along the steepest descent direction,
starting from ṽ = 0. A simple computation shows that

ṽCP =

[
vCP
x

ṽCP
s

]
= −αÂ

[
h

g + s

]
,(3.23)

where α is given by

α =

∥∥∥∥Â [h
g + s

]∥∥∥∥2

2[
hT gT + sT

]
(ÂT Â)2

[
h

g + s

] .
Note that this computation is inexpensive, requiring only matrix-vector multiplica-
tions and no matrix factorizations.

We then compute the Newton step ṽN, which in our case is defined as the minimum
norm minimizer of (3.20). It is given by

ṽN =

[
vN
x

ṽN
s

]
= −Â(ÂT Â)−1

[
h

g + s

]
.(3.24)

The computation of ṽN will be done by solving an augmented system, instead of
factoring ÂT Â, as will be discussed in section 3.4.

The Cauchy and Newton steps define the dogleg path, which consists of the two
line segments from ṽ = 0 to ṽ = ṽCP and from ṽ = ṽCP to ṽ = ṽN. We compute
the normal step by minimizing m(ṽ) subject to (3.21) and (3.22) along this path and
along the Newton direction, as described below.

Dogleg procedure.
Compute ṽCP and ṽN .
θ1 = max{θ ∈ (0, 1]|θṽN is feasible}
If θ1 = 1 then

ṽ = ṽN

Else
θ2 = max{θ ∈ (0, 1]|(1− θ)ṽCP + θṽN is feasible for (3.21) and (3.22)}
If no such value θ2 exists then

θ3 = max{θ ∈ (0, 1]|θṽCP is feasible}
ṽDL = θ3ṽ

CP

Else
ṽDL = (1− θ2)ṽCP + θ2ṽ

N

Endif
If m(ṽDL) < m(θ1ṽ

N) then
ṽ = ṽDL

Else
ṽ = θ1ṽ

N

Endif
Endif
v = (vx, Sṽs)

AN INTERIOR POINT ALGORITHM 887

Since the model function m is convex, it decreases along the dogleg path, and
thus the dogleg point ṽDL minimizes m along that path, subject to (3.21) and (3.22).
Note that even if ṽCP and ṽN are infeasible, the line from ṽCP to ṽN may still contain a
feasible segment. Also, to try to achieve a greater reduction in the model function, we
compare the dogleg step with the Newton step truncated to the feasible region and
choose whichever of these two points gives a lower value of m. Finally, we obtain the
normal step by transforming ṽ into the original space of variables.

For future reference we note that the step ṽ lies in the range space of Â; see (3.23)
and (3.24).

An alternative to the dogleg method is to compute the normal step by means of
Steihaug’s implementation of the conjugate gradient method [36]. This is described
in detail in [27] (see also [29]), and it is certainly a viable option. We prefer the dogleg
method in this study because it allows us to compute the normal step using a direct
linear algebra solver, thereby avoiding the difficulties that can arise when applying
the conjugate gradient method to ill-conditioned systems. In addition, the matrix
factorization performed during the computation of the Lagrange multipliers can be
saved and used to compute the normal step, giving significant savings in computation.
We will return to this in section 3.4.

Tangential problem. Once the normal step v is computed, we define the vectors
rh and rg in (2.5)–(2.6) as the residuals in the normal step computation, i.e.,

rh = ATh vx + h, rg = ATg vx + vs + g + s.

The subproblem (2.4)–(2.7) therefore takes the form

min∇fT dx − µeTS−1ds +
1

2
(dTx∇2

xxLdx + dTs Σds)(3.25)

subject to ATh dx = ATh vx,(3.26)

ATg dx + ds = ATg vx + vs,(3.27)

‖(dx, S−1ds)‖2 ≤ ∆,(3.28)

ds ≥ −τs.(3.29)

We will devote much attention to this subproblem, whose solution represents the most
complex and time-consuming part of the new algorithm.

Let us motivate our choice of the residual vectors rh and rg. First, the constraints
(3.26)–(3.29) are now feasible since d = v clearly satisfies them (recall that ζ < 1 in
(3.19)). Second, we are demanding that the total step d makes as much progress
toward satisfying the constraints (3.26)–(3.27) as the normal step v.

To find an approximate solution of (3.25)–(3.29), we write d = v + w, where
v is the normal step and w, which is to be determined, is tangent to the (scaled)
constraint gradients. Introducing the same change of variables as in the normal step
computation, we define

d̃ =

(
d̃x
d̃s

)
=

(
dx

S−1ds

)
=

(
vx
ṽs

)
+

(
wx
w̃s

)
= ṽ + w̃.(3.30)

Using this and defining

G =

[∇2
xxL 0
0 SΣS

]
,(3.31)

888 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

the objective of (3.25) can be expressed as

q(ṽ + w̃) ≡ (∇fT , −µeT)(ṽ + w̃) +
1

2
(ṽ + w̃)TG(ṽ + w̃).(3.32)

The constraint (3.28) can be rewritten as

‖d̃‖22 = ‖ṽ + w̃‖22 ≤ ∆2.(3.33)

We have noted in section 3.2 that the (scaled) normal step ṽ lies in the range space
of Â, and we will require that w satisfies ÂT w̃ = 0. Thus w̃T ṽ = 0, and (3.28) can be
expressed as

‖w̃‖22 ≤ ∆2 − ‖ṽ‖22.

Using this, (3.32), and the definitions (3.30), we can rewrite (3.25)–(3.29) as

min
w̃

q(ṽ + w̃) ≡ q(ṽ) +∇fTwx − µeT w̃s + (Gṽ)T w̃ +
1

2
(w̃TGw̃)(3.34)

subject to AThwx = 0,(3.35)

ATg wx + Sw̃s = 0,(3.36)

‖w̃‖22 ≤ ∆2 − ‖ṽ‖22,(3.37)

w̃s ≥ −τe− ṽs.(3.38)

We call this the tangential subproblem. Clearly this subproblem can be very expensive
to solve. However, the shape of the feasible region for this problem resembles a trust
region in that the boundaries of the feasible region are never close to the origin
(w̃ = 0) in the scaled coordinates. So it is reasonable to expect that an adaptation of
a method for computing an approximate solution of a trust region problem, such as
the conjugate gradient (CG) iteration proposed by Steihaug, will be efficient in this
context. We will follow this approach and apply the CG method to the quadratic
objective (3.34) while forcing the CG iterates to satisfy the constraints (3.35)–(3.36).
To take into account the trust region and the possibility of indefiniteness in the model,
we will terminate the CG iteration using the stopping tests of Steihaug [36]. We will
also precondition the CG iteration.

Rather than simply presenting this CG iteration, we will now describe in detail
the steps that lead to it, and we will motivate our preconditioning strategy.

Since w̃ is assumed to lie in the null space of ÂT , it can be expressed as

w̃ = Z̃u ≡
(
Zx
Z̃s

)
u(3.39)

for some vector u ∈ Rn−t, where Z̃ is a basis for the null space of ÂT . The constraints
(3.35)–(3.36) can be written as ÂT w̃ = 0 and are therefore satisfied by any w̃ of the
form (3.39). Therefore the tangential problem (3.34)–(3.38) can be stated as

min
u

q(ṽ + Z̃u)(3.40)

subject to ‖Z̃u‖22 ≤ ∆2 − ‖ṽ‖22,
Z̃su ≥ −τe− ṽs.(3.41)

AN INTERIOR POINT ALGORITHM 889

We will precondition the CG iteration because, if we were to apply unprecondi-
tioned CG for minimizing (3.40), a poor choice of Z could cause the CG iteration to
be very slow. To see this, note that the Hessian of (3.40) is

Z̃
T
GZ̃,

and a poor choice of Z could make this matrix unnecessarily ill-conditioned. Such
a poor choice of null space basis could occur, for example, when using the easily
computable basis

Z̃ =

[
Â−1

1 Â2

−I
]

based on the basic–nonbasic partition ÂT = [Â1 Â2]. This problem can be avoided
by preconditioning the CG iteration for minimizing (3.40) by the matrix

Z̃T Z̃,(3.42)

in which case the rate of convergence is governed by the spectrum of

(Z̃T Z̃)−
1
2 Z̃

T
GZ̃(Z̃T Z̃)−

1
2 .(3.43)

Since the matrix Z̃(Z̃T Z̃)−
1
2 has orthonormal columns, the behavior of the CG it-

eration will now be identical to that obtained when Z̃ is a basis with orthonormal
columns. Note also from (3.4) that µS−1 ≈ Λg near the solution of the barrier prob-
lem, and thus by (3.11) SΣS is close to µI. From (3.31) we see that (3.43) does become
increasingly ill-conditioned as µ → 0, but this ill-conditioning does not greatly de-
grade the performance of the CG method since it results in one tight cluster of small
eigenvalues. The numerical tests described in section 4 confirm that the solution by
the CG method does not become significantly more difficult as µ tends to zero.

The CG iteration computes estimates of the minimizer of (3.40) by the recursion
(see, e.g., [19])

u+ = u+ αδ,(3.44)

where the parameter α is chosen to minimize the quadratic objective q along the
direction δ. Since the gradient of q with respect to u is Z̃T∇q(ṽ+ Z̃u), and since our
preconditioner is given by (3.42), the conjugate directions δ are recurred by

δ+ = −(Z̃T Z̃)−1Z̃T∇q(ṽ + Z̃u) + βδ,(3.45)

where the parameter β is initially zero and is chosen at subsequent steps to maintain
conjugacy.

However, because of the computational cost of manipulations with the precon-
ditioner (3.42), it is preferable to perform the CG iteration in the full space rather
than the reduced space. More specifically, by applying the transformation (3.39) to
(3.44)–(3.45), we obtain the following iteration in the variable w̃ of problem (3.34):

w̃+ = w̃ + αp (p ≡ Z̃δ),(3.46)

p+ = −Z̃(Z̃T Z̃)−1Z̃T∇q(ṽ + w̃) + βp.(3.47)

890 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

We have therefore obtained a CG iteration to minimize the objective (3.34) of the
tangential subproblem that, by construction, satisfies the constraints (3.35)–(3.36).
Note that the matrix Z̃(Z̃T Z̃)−1Z̃T is actually the orthogonal projection onto the
null space of ÂT and thus can be expressed as

P = Z̃(Z̃T Z̃)−1Z̃T = I − Â(ÂT Â)−1ÂT .(3.48)

We compute projections of the form Pr by solving an augmented system whose co-
efficient matrix coincides with that used in the normal step and Lagrange multiplier
computations, as will be discussed in section 3.4. The resulting iteration is equivalent
to the preconditioned CG iteration in the null space, described above, but allows us
to totally bypass the computation of the null space matrix Z. The computation of
the projected residual Pr corresponds to the preconditioning step in the null space
iteration.

Because of the trust region constraint (3.37), and due to the possibility of in-
definiteness in the quadratic model, we use Steihaug’s stopping tests in the iteration
(3.46)–(3.47): we terminate if the projected gradient of q is smaller than a prescribed
tolerance, if the direction p+ is one of negative curvature, or if the iterates violate
the trust region norm constraint (3.37). We include an additional step truncation to
satisfy the bound constraint (3.38).

PCG procedure. Projected CG method for the tangential sub-
problem (3.34)–(3.38).

Set w̃ = 0, r = (rx, rs) = (∇f,−µe) + Gṽ, g = Pr, p = −g, tol =
0.01

√
gT r.

Repeat at most 2(n− t) times, or until a stopping test is satisfied.
If pTGp ≤ 0

then w̃+ = w̃ + θp, where θ > 0 is such that ‖w̃+‖2 = ∆; STOP
α = rT g/pTGp
w̃+ = w̃ + αp
If ‖w̃+‖2 > ∆

then w̃+ = w̃ + θp, where θ > 0 is such that ‖w̃+‖2 = ∆; STOP
r+ = r + αGp
g+ = Pr+

If (g+)T r+ < tol, STOP
β = (r+)T g+/rT g
p+ = −g+ + βp
w̃ ← w̃+, r ← r+, p← p+

End repeat
If w̃+ does not satisfy the slack variable bound (3.38), restore the
last feasible iterate w̃ and the direction p computed at that point.
Set w̃+ = w̃+ θp, where θ > 0 is is the largest value such that w̃+ θp
is feasible. Set w = (wx, ws) = (w̃+

x , Sw̃
+
s).

Note that during the Repeat loop we test only whether the trust region norm
constraint (3.37) is satisfied and ignore the slack variable bound (3.38). The reason
for this is that it can be shown [36] that the norm of the iterates ‖w̃‖2 increases during
the conjugate gradient iteration, so that once an iterate violates (3.37), all subsequent
iterates will also violate this constraint. It is therefore sensible to stop iterating when
(3.37) is violated. However, the slack bounds (3.38) could be crossed several times,
so we do not check feasibility with respect to the bound until we have gone as far
as possible subject to the norm constraint. Thus, at the end of the Repeat loop

AN INTERIOR POINT ALGORITHM 891

the point w̃+ may not satisfy the slack variable bounds (3.38). In this case we select
the last intersection point of the path generated by the iterates w̃ with the bounds
(3.38). This strategy has the potential of being wasteful, because we could generate
a series of iterates that violate the slack variable bounds and never return to the
feasible region. To control this cost we include a limit of 2(n − t) CG iterations in
the tangential step computation. In the tests described in section 4, the infeasible
CG steps accounted for about 2% of the total, and our strategy appears to pay off
because, in our experience, when the iterates did return to the feasible region they
usually generated a much better step than the one obtained when the bounds were
first encountered.

In section 3.4 we will show how the projection Pr+ can be computed by solving an
augmented system whose coefficient matrix is the same as that needed in the normal
step and Lagrange multiplier computations.

3.3. Merit function, trust region, and second-order correction. The
merit function φ(x, s; ν), defined by (2.8), is used to determine whether the total
step d = v + w is acceptable and also provides information on how to update the
trust region radius ∆. The penalty parameter ν (not to be confused with the barrier
parameter µ) balances the relative contribution of the objective function and con-
straints, and needs to be selected at every iteration so that the step d and the merit
function φ are compatible. By this we mean that if the trust region is sufficiently
small, then the step d must give a reduction in φ.

We approximate the change in the merit function due to the step d by the predicted
reduction defined as

pred(d) = −q(ṽ + w̃) + νvpred,(3.49)

where q is the objective in the tangential subproblem (3.34) and vpred is the reduction
provided by the normal step,

vpred =

∥∥∥∥[h
g + s

]∥∥∥∥− ∥∥∥∥[h
g + s

]
+ ÂT ṽ

∥∥∥∥ .(3.50)

The definition (3.49) is motivated and analyzed in [7] and is similar to the measures
used in other trust region algorithms for constrained optimization. We demand that
ν be large enough that pred(d) be positive and proportional to vpred, i.e.,

pred(d) ≥ ρνvpred,(3.51)

where 0 < ρ < 1 (in our code we use the value ρ = 0.3).
We see from (3.49) that we can enforce inequality (3.51) by choosing the penalty

parameter ν so that

ν ≥ q(ṽ + w̃)

(1− ρ)vpred
.(3.52)

As has been argued in [7], if m(ṽ) = 0, then ṽ = 0, which implies q(ṽ + w̃) ≤ 0, and
so (3.51) is satisfied for any value of ν. In this case ν can be defined as its value in
the previous iteration of Algorithm II, ν−. Thus we update ν as follows.

Penalty parameter procedure.
If m(ṽ) = 0 then

ν = ν−

892 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

Else

ν = max
{
ν−, q(ṽ+w̃)

(1−ρ)vpred

}
.

End
This procedure is applied while the barrier parameter µ is fixed. Thus, for a fixed

barrier problem the penalty parameter ν is monotonically increasing as the iterations
progress, which is an important property for the global convergence analysis of the
algorithm [7]. If the value of the barrier parameter was just changed at the beginning
of the current iteration, the value of ν− to be used in the penalty parameter procedure
is reset to a default initial value.

Now that the merit function has been completely specified, let us consider how
to use it to determine if a step d is to be accepted by Algorithm II. As is common in
trust region methods, we compute the actual reduction in the merit function,

ared(d) = φ(x, s; ν)− φ(x+ dx, s+ ds; ν),(3.53)

and accept d only if it gives a sufficient reduction in φ, in the sense that

γ ≡ ared(d)

pred(d)
≥ η,(3.54)

where 0 < η < 1 (in our code we use η = 10−8). Using essentially the same argument
as in [7] it can be shown that (3.54) will be satisfied if the trust region radius ∆ is
sufficiently small.

If a step is accepted, then the trust region is increased as follows:

∆+ =

 max{7‖d‖,∆} if γ ≥ 0.9,
max{2‖d‖,∆} if 0.3 ≤ γ < 0.9,
∆ if η ≤ γ < 0.3.

(3.55)

When a step is rejected, the new trust region radius is at most one-half, but not
less than one-tenth, of the length of the step. To determine the exact fraction of
contraction in ∆ we use linear or quadratic interpolation; the details are given in
[34]. We also adjust ∆ when the barrier parameter µ is reduced using the rule ∆ ←
max(5∆, 1).

In order to achieve fast convergence, it is important that near the solution the
trust region be inactive so that the algorithm can take full Newton steps. However,
because of the nondifferentiability of the merit function, it can occur that a step
that approaches the solution point does not satisfy (3.54) and is rejected. (This is
sometimes referred to as the Maratos effect; see, e.g., [30, 11].) Since this problem
is caused by an increase in the norm of the constraints due to their nonlinearity, one
way to rectify the situation is to add a second order correction step y when (3.54)
fails. (See section 14.4 in [19].) This is a Newton-like step on the constraints and
amounts to computing (3.24) at the point x + d. In our implementation the second
order correction is applied only when the normal component is small relative to the
tangential component of the step.

Procedure SOC. Second order correction.
If ‖ṽ‖ ≤ 0.1‖w̃‖ then

y = Â
(
ÂT Â

)−1
[

h(x+ dx)
g(x+ dx) + s+ ds

]
Else

y = 0
End

AN INTERIOR POINT ALGORITHM 893

The total step of Algorithm II, when a second order correction is needed, is given
by d+ y.

3.4. Solution of linear systems. The algorithm requires the solution of three
linear systems per iteration. They occur in the computation of the Lagrange multiplier
estimates (3.12), in the Newton component (3.24) of the normal step, and in the
projection Pr+ required by the PCG procedure, where P is defined by (3.48). We
now show that these three systems can be solved using only one matrix factorization.

Note that the normal step (3.24) requires the solution of a system of the form

ÂT Âx = b,

where Â is defined by (3.13). We compute the solution by solving the augmented
system [

I Â

ÂT 0

] [
z
x

]
=

[
0
−b

]
.(3.56)

Similarly, the computation g = Pr, where P is expressed in terms of Â (3.48), can be
performed by solving [

I Â

ÂT 0

] [
g
l

]
=

[
r
0

]
.(3.57)

Moreover, if we solve the system (3.57) with r replaced by (−∇f, µe)T , then, by
(3.12), the vector l contains the least squares multiplier estimates.

We use routine MA27 [25] to factor the coefficient matrix in (3.56) and (3.57).
We prefer working with this augmented system, rather than factoring the normal
equations matrix ÂT Â, because our numerical experience and the analysis given by
Gould, Hribar, and Nocedal [24] indicates that it is usually more accurate. Our
code includes an option for detecting errors in the solution of the linear systems and
applying iterative refinement, when necessary. A detailed description of this procedure
is given in [24].

3.5. Full description of the new interior point method. Having gone over
all the details of our approach we can now present a complete description of the new
algorithm for solving the nonlinear programming problem (1.1). We will refer to this
algorithm as NITRO (Nonlinear Interior point Trust Region Optimizer). There are
primal and primal-dual versions of the algorithm, depending on how Σk, (3.1) and
(3.11), and the Lagrange multipliers λk (3.15) are defined.

The stopping conditions for each barrier subproblem, and for the entire algorithm,
are based on the function E(x, s;µ), which is defined by (2.3), where (λh, λg) =
λLS(x, s, µ) is defined by (3.12).

Algorithm III. Complete NITRO algorithm.
Choose a value for the parameters η > 0, τ ∈ (0, 1), θ ∈ (0, 1), and
ζ ∈ (0, 1), and select the stopping tolerances εµ and εTOL . Choose
an initial value for µ, x0, s0 > 0 and ∆0. Set k = 0.
Repeat until E(xk, sk; 0) ≤ εTOL :

Repeat until E(xk, sk;µ) ≤ εµ:
Compute the normal step vk = (vx, vs) by the dogleg procedure,
described in section 3.2.

894 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

Compute Lagrange multipliers from (3.15).
Compute ∇2

xxL(xk, sk, λh, λg) and Σk, using (3.1) or (3.14).
Compute the tangential step wk by the PCG procedure.
Compute the total step dk = vk + wk.
Update νk by penalty parameter procedure in section 3.3.
Compute predk(dk) by (3.49) and aredk(dk) by (3.53).
If aredk(dk) ≥ ηpredk(dk)

Then set xk+1 = xk + dx, sk+1 = sk + ds, and update ∆k+1

by (3.55).
Else perform Procedure SOC to obtain yk = (yx, ys).

If yk 6= 0, if aredk(dk + yk) ≥ ηpredk(dk),
and if sk + ds + ys ≥ (1− τ)sk

then set xk+1 = xk + dx + yx, sk+1 = sk + ds + ys,
and ∆k+1 = ∆k.

else set xk+1 = xk, sk+1 = sk, ∆k+1 ∈ [0.1∆k, 0.5∆k].
Endif

Endif
Set k ← k + 1.

End
µ← θµ , εµ ← θεµ.
Reset νk−1 and ∆k.

End

In our code we assign the following values to the parameters in the algorithm:
η = 10−8, τ = 0.995, θ = 0.2, ζ = 0.8, and εTOL = 10−7. We use the following initial
values: εµ = 0.1, µ = 0.1, ν0 = 1, and ∆0 = 1.

Byrd, Gilbert, and Nocedal [7] present a global convergence analysis for an algo-
rithm that is very similar to the one just given. Perhaps the only significant difference
is that [7] studies only the primal method, where Σk is given by (3.1); here we are
interested also in the primal-dual formulation. We expect, however, that the results
of [7] can be extended without great difficulty to the primal-dual case.

4. Numerical tests. We have tested our algorithm on a set of problems from
the CUTE collection [4], whose characteristics are described in Table 1. For each
problem, we give the number of variables and the total number of constraints, in-
cluding equalities and general inequalities (but not bounds on the variables). We
also state what kinds of conditions are imposed on the variables (fixed, free, bounds).
For example, in problem CORKSCRW some variables are fixed, some are free, and
some contain bounds. We also specify what kind of general constraints occur in the
problem (equalities, inequalities, linear, nonlinear) and the characteristics of the ob-
jective function. The problem set has been chosen for its variety: it contains problems
with negative curvature (e.g., OPTMASS), problems with ill-conditioned matri-
ces of constraint gradients (e.g., HAGER4), problems containing only simple bounds
(OBSTCLAE, TORSION1), problems with highly nonlinear equality constraints, and
problems with a large number of variables and constraints. On the other hand, our
test set is small enough to allow us to know each problem well and analyze each run
in detail.

In Table 2 we present the results for the primal-dual version of our new algorithm,
NITRO. For comparison we also solved the problems with LANCELOT [14] using
second derivatives and all its default settings. The runs of NITRO were terminated
when E(xk, sk; 0) ≤ 10−7, and LANCELOT was stopped when the projected gradient

AN INTERIOR POINT ALGORITHM 895

Table 1
The main test problem set.

of # of
Problem var constr Variable types Constraint types Objective
CORKSCRW 456 350 free, bounded, fixed linear eq, nonlin ineq nonlinear
COSHFUN 61 20 free nonlin ineq linear
DIXCHLNV 100 50 bounded nonlin eq nonlinear
GAUSSELM 14 11 free, bounded, fixed linear ineq, nonlin eq linear
HAGER4 2001 1000 free, bounded, fixed linear eq nonlinear
HIMMELBK 24 14 bounded linear eq, nonlin eq linear
NGONE 100 1273 bounded, fixed linear ineq, nonlin ineq nonlinear
OBSTCLAE 1024 0 bounded, fixed nonlinear
OPTCNTRL 32 20 free, bounded, fixed linear eq, nonlin eq nonlinear
OPTMASS 1210 1005 free, fixed linear eq, nonlin ineq nonlinear
ORTHREGF 1205 400 free, bounded nonlin eq nonlinear
READING1 202 100 bounded, fixed nonlin eq nonlinear
SVANBERG 500 500 bounded nonlin ineq nonlinear
TORSION1 484 0 bounded, fixed nonlinear

Table 2
Number of function evaluations, number of CG iterations, and CPU time for the new primal-

dual interior point method (NITRO) and LANCELOT (LAN). An asterisk (*) indicates that the
method did not meet the stopping test in 10,000 iterations.

of # of f evals CG iters Time
Problem var constr NITRO LAN NITRO LAN NITRO LAN
CORKSCRW 456 350 61 171 430 114780 53.78 657.94
COSHFUN 61 20 40 149 1316 3421 4.22 5.83
DIXCHLNV 100 50 19 1445 83 1431 14.46 153.97
GAUSSELM 14 11 52 28 115 112 0.79 0.25
HAGER4 2001 1000 18 14 281 2291 37.34 99.65
HIMMELBK 24 14 33 154 89 1533 4.15 8.18
NGONE 100 1273 256 3997 1821 129963 1027.51 1446.09
OBSTCLAE 1024 0 26 5 6184 366 566.39 12.98
OPTCNTRL 32 20 47 25 165 65 1.44 0.3
OPTMASS 1210 1005 39 * 151 * 24.79 *
ORTHREGF 1205 400 30 192 78 315 57.09 48.18
READING1 202 100 40 720 130 13981 130.89 74.13
SVANBERG 500 500 35 82 5067 3908 2720.19 120.96
TORSION1 484 0 19 8 2174 66 58.39 1.11

and constraint violations were less than 10−7; the termination criteria for these two
methods are therefore very similar. In all these problems the two codes approached
the same solution point. Since both algorithms use the conjugate gradient method to
compute the step, we also report in Table 2 the total number of CG iterations needed
for convergence. All runs were performed on a SPARCstation 20 with 32 MB of main
memory, using a Fortran-77 compiler and double precision; the CPU time reported
is in seconds. An asterisk indicates that the stopping test was not satisfied after
10,000 iterations. The results of NITRO reported in Table 2 are highly encouraging,
particularly the number of function evaluations.

In Table 3 we compare the primal version of NITRO using (3.1) and the primal-
dual version using (3.11). The column under the header “%full steps” denotes the
percentage of steps that did not encounter the trust region (3.18). We see that the
primal-dual version (pd) outperforms the primal version (p), and its step tends to be
constrained by the trust region less often.

To observe whether the tangential subproblem becomes very difficult to solve

896 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

Table 3
Primal dual vs. primal options of the new interior point method. The number of function

evaluations and percentage of full steps are given. An asterisk (*) indicates that the stopping test
was not satisfied in 10,000 iterations.

of # of NITRO (pd) NITRO (p)
Problem var constr f evals %full steps f evals %full steps
CORKSCRW 456 350 61 40 78 58
COSHFUN 61 20 40 83 472 6
DIXCHLNV 100 50 19 79 18 78
GAUSSELM 14 11 52 27 62 27
HAGER4 2001 1000 18 78 21 62
HIMMELBK 24 14 33 79 62 36
NGONE 100 1273 256 6 200 18
OBSTCLAE 1024 0 26 77 60 82
OPTCNTRL 32 20 47 92 51 73
OPTMASS 1210 1005 39 59 67 60
ORTHREGF 1205 400 30 30 31 30
READING1 202 100 40 78 33 33
SVANBERG 500 500 35 71 61 72
TORSION1 484 0 19 79 41 78

Table 4
Analysis of the last step computed by NITRO. Total number of CG iterations divided by the

dimension of the linear system, n− t, and the type of step taken.

of # of NITRO (pd)
Problem var constr CG iter Step type
CORKSCRW 456 350 0.03 full
COSHFUN 61 20 2.0 CG limit
DIXCHLNV 100 50 0.1 full
GAUSSELM 14 11 0.4 full
HAGER4 2001 1000 0.1 full
HIMMELBK 24 14 0.3 full
NGONE 100 1273 0.08 hit tr
OBSTCLAE 1024 0 2.0 CG limit
OPTCNTRL 32 20 0.3 full
OPTMASS 1210 1005 0.0 full
ORTHREGF 1205 400 0.006 full
READING1 202 100 0.03 full
SVANBERG 500 500 1.5 full
TORSION1 484 0 1.8 full

as the barrier parameter approaches zero, we report in Table 4 the number of CG
iterations required in the step computation during the last iteration of the interior
point algorithm. At this stage the barrier parameter µ is of order 10−7. Table 4 gives
the number of CG iterations relative to the dimension n− t of the linear system to be
solved. (Recall that the code imposes a limit of 2 on this ratio.) We also report if the
step was inside the trust region (full), if it encountered the trust region (hit tr), or if
the number of CG iterations reached the permissible limit of 2(n− t). These results,
as well as an examination of the complete runs, indicate that the subproblems do not
become particularly hard to solve as the problem approaches the solution. This is due
to the preconditioning described before the statement of PCG procedure.

To test the robustness of the new interior point method, we chose some of the
commonly used problems from the Hock and Schittkowski collection [26], as pro-
grammed in CUTE. The results are given in Table 5 and include all the problems
that we tested. Since these problems contain a very small number of variables, we do

AN INTERIOR POINT ALGORITHM 897

Table 5
The number of function evaluations for NITRO and LANCELOT to solve a subset of the Hock

and Schittkowski test collection. An asterisk (*) indicates a failure to obtain a solution within
10,000 iterations. A double asterisk indicates that LANCELOT computed a point that was not a
local minimum.

Problem NITRO LAN
HS2 18 7
HS3 12 5
HS4 11 2
HS7 8 18
HS10 17 19
HS11 14 19
HS13 40 81
HS14 14 13
HS16 15 16
HS17 27 20
HS19 47 36
HS20 18 23
HS22 15 11
HS24 19 8
HS26 16 39
HS28 3 4
HS31 13 13
HS32 19 9
HS33 28 12
HS39 19 21
HS46 16 29
HS51 3 3
HS52 3 8
HS53 8 8
HS63 13 14
HS64 43 53
HS65 20 28
HS70 35 29
HS71 16 16
HS72 44 94
HS73 29 18
HS74 15 28

Problem NITRO LAN
HS75 107 141**
HS77 17 22
HS78 5 12
HS79 6 10
HS80 13 15
HS81 13 17
HS83 36 26
HS84 20 60
HS85 1658 17
HS86 16 18
HS93 14 6
HS95 156 8
HS96 196 8
HS97 45 19
HS98 53 18
HS99 * 70
HS100 20 46
HS104 34 62
HS105 34 15
HS106 221 *
HS107 15 40
HS108 49 24
HS109 * *
HS111 15 47
HS112 14 44
HS113 17 81
HS114 33 763
HS116 71 *
HS117 40 50
HS118 28 17
HS119 31 29

not report CPU time. NITRO failed for problems HS99 and HS109. In problem HS99,
the code terminated very close to a solution because the trust region was too small.
In problem HS109, the routine MA27 failed to factor the augmented systems in (3.56)
and (3.57) because they were determined to be very close to singular. LANCELOT
failed for four problems. In HS75, the code completed without reporting any errors.
However, the point that was returned failed to satisfy the stopping test. In problems
HS106, HS109, and HS116, LANCELOT was unable to compute a solution in 10,000
iterations.

It is reassuring to observe that NITRO failed on very few problems. Nevertheless,
its performance is not as good as that of LANCELOT on these small problems, and it
appears that our strategy for decreasing the barrier parameter is overly conservative.
We suspect that by decreasing it more rapidly, and in a carefully controlled manner
[8], the number of function evaluations will be reduced significantly. We should also
mention that we do not yet have a complete understanding of the behavior of NITRO
on some of the problems on which it took a large number of iterations.

5. Final remarks. We have presented an interior point method for solving large
nonlinear programming problems. Rather than trying to mimic primal-dual interior

898 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

point methods for linear programming, we have taken the approach of developing a
fairly standard SQP trust region method and introduced in it some of the key fea-
tures of primal-dual iterations. No attempt was made to obtain a rapidly convergent
method: the barrier parameter was decreased at a linear rate, forcing the iterates
of the algorithm to converge linearly. We have, however, given careful attention to
the treatment of nonconvexity and to the exploitation of sparsity through the use of
the conjugate gradient method and the sparse Cholesky code MA28, and we have
designed many features to make the algorithm robust on general problems. This ap-
proach appears to have paid off in that the algorithm has proved to be capable of
solving a wide range of problems, even when ill-conditioning and nonconvexity are
present. Our tests seem to indicate that our code is competitive on large problems
with a production code such as LANCELOT. We have also shown that the precon-
ditioning of the tangential subproblem has, to a large extent, removed the effects of
the ill-conditioning inherent in interior point methods and that the CG iteration does
not have particular difficulties in computing the tangential component of the step as
the iterates approach the solution.

The algorithm presented here is not as rapidly convergent as it can be. We are
currently developing [8] various mechanisms to accelerate the iteration; these include
the use of higher order corrections and rules for decreasing the barrier parameter at
a superlinear rate. We should also note that the technique for refining the solution
of linear systems referred to at the end of section 3.4 is very conservative (in that it
demands very tight accuracy) and leads to high execution times on some problems.
More efficient techniques for refining the solution of linear systems are the subject of
current investigation [24].

Acknowledgment. We would like to thank Guanghui Liu for help in the prepa-
ration of this article.

REFERENCES

[1] K. M. Anstreicher and J.-P. Vial, On the convergence of an infeasible primal-dual interior-
point method for convex programming, Optim. Methods Softw., 3 (1994), pp. 273–283.

[2] M. Argaez, Exact and Inexact Newton Linesearch Interior-Point Algorithms for Nonlinear
Programming Problems, Technical Report TR97-13, Department of Computational and
Applied Mathematics, Rice University, Houston, TX, 1997.

[3] P. T. Boggs and J. W. Tolle, Sequential quadratic programming, Acta Numer., 4 (1996),
pp. 1–51.

[4] I. Bongartz, N. I. M. Gould, A. R. Conn, and Ph. L. Toint, CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[5] J. F. Bonnans and C. Pola, A trust region interior point algorithm for linearly constrained
optimization, SIAM J. Optim., 7 (1997), pp. 717–731.

[6] R. H. Byrd, Robust trust region methods for constrained optimization, talk presented at the
Third SIAM Conference on Optimization, Houston, TX, 1987.

[7] R. H. Byrd, J. C. Gilbert, and J. Nocedal, A Trust Region Method Based on Interior
Point Techniques for Nonlinear Programming, Technical Report OTC 96/02, Optimization
Technology Center, Northwestern University, Evanston, IL, 1996.

[8] R. H. Byrd, G. Liu, and J. Nocedal, On the local behavior of an interior-point algorithm
for nonlinear programming, in Numerical Analysis 1997, D.F. Griffiths and D.J. Higham,
eds., Addison–Wesley Longman, Reading, MA, 1997.

[9] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, A trust region algorithm for nonlinearly
constrained optimization, SIAM J. Numer. Anal., 24 (1987), pp. 1152–1170.

[10] M. R. Celis, J. E. Dennis, and R. A. Tapia, A trust region strategy for nonlinear equality
constrained optimization, in Numerical Optimization 1984, Proceedings SIAM Conference
on Numerical Optimization, Boulder, CO, June 12–14, 1984, P. T. Boggs, R. H. Byrd, and
R. B. Schnabel, eds., SIAM, Philadelphia, PA, 1985, pp. 71–82.

AN INTERIOR POINT ALGORITHM 899

[11] R. Chamberlain, C. Lemarechal, H. C. Pedersen, and M. J. D. Powell, The watch-
dog technique for forcing convergence in algorithms for constrained optimization, Math.
Programming, 16 (1982), pp. 1–17.

[12] T. F. Coleman and Y. Li, On the convergence of reflective Newton methods for large-scale
nonlinear minimization subject to bounds, Math. Programming, 67 (1994), pp. 189–224.

[13] T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization
subject to bounds, SIAM J. Optim., 6 (1996), pp. 418–445.

[14] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT: A FORTRAN Package
for Large-Scale Nonlinear Optimization (Release A), Springer Ser. Comput. Math. 17,
Springer, New York, 1992.

[15] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A Primal-Dual Algorithm for Minimizing a
Non-Convex Function Subject to Bound and Linear Equality Constraints, Technical Report
RC 20639, IBM T.J. Watson Research Center, Yorktown Heights, NY, 1997.

[16] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A note on using alternative second-order
models for the subproblems arising in barrier function methods for minimization, Numer.
Math., 68 (1994), pp. 17–33.

[17] J. E. Dennis, M. Heinkenschloss, and L. N. Vicente, Trust-region interior-point SQP algo-
rithms for a class of nonlinear programming problems, SIAM J. Control Optim., 36 (1998),
pp. 1750–1794.

[18] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang, On the formulation and theory
of the Newton interior-point method for nonlinear programming, J. Optim. Theory Appl.,
89 (1996), pp. 507–545.

[19] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley, New York, 1990.
[20] A. Forsgren and P. E. Gill, Primal-dual interior methods for nonconvex nonlinear program-

ming, SIAM J. Optim., 8 (1998), pp. 1132–1152.
[21] D. M. Gay, M. L. Overton, and M. H. Wright, A primal-dual interior method for nonconvex

nonlinear programming, in Advances in Nonlinear Programming, Y. Yuan, ed., Kluwer
Academic Publishers, Dordrecht, Netherlands, 1998, pp. 31–56.

[22] P. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New
York, 1981.

[23] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP Algorithm for Large-
Scale Constrained Optimization, Technical Report NA 97-2, Department of Mathematics,
University of California, San Diego, 1997; SIAM J. Optim., submitted.

[24] N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the Solution of Equality Constrained
Quadratic Programming Problems Arising in Optimization, Technical Report OTC 98/06,
Optimization Technology Center, Northwestern University, Evanston, IL, 1998; SIAM J.
Sci. Comput., submitted.

[25] Harwell Subroutine Library, A Catalogue of Subroutines (Release 12), AEA Technology,
Harwell, Oxfordshire, England, 1995.

[26] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Econom. and Math. Systems 187, Springer, New York, 1981.

[27] M. E. Hribar, Large-Scale Constrained Optimization, Ph.D. thesis, EECS Department, North-
western University, Evanston, IL, 1996.

[28] F. Jarre and S. J. Wright, On the Role of the Objective Function in Barrier Methods,
Technical Report MCS-P485-1294, MCS Division, Argonne National Laboratory, Argonne,
IL, 1994.

[29] M. Lalee, J. Nocedal, and T. Plantenga, On the implementation of an algorithm for
large-scale equality constrained optimization, SIAM J. Optim., 8 (1998), pp. 682–706.

[30] N. Maratos, Exact Penalty Function Algorithms for Finite Dimensional and Control Opti-
mization Problems, Ph.D. thesis, University of London, 1978.

[31] R. D. C. Monteiro and Y. Wang, Trust region affine scaling algorithms for linearly con-
strained convex and concave programs, Math. Programming, 80 (1998), pp. 283–313.

[32] E. Omojokun, Trust Region Algorithms for Optimization with Nonlinear Equality and In-
equality Constraints, Ph.D. thesis, University of Colorado, Boulder, CO, 1989.

[33] Z. Parada, A Modified Augmented Lagrangian Merit Function and q-Superlinear Characteri-
zation Results for Primal-Dual Quasi-Newton Interior-Point Methods for Nonlinear Pro-
gramming, Technical Report TR97-12, Department of Computational and Applied Math-
ematics, Rice University, Houston, TX, 1997.

[34] T. Plantenga, A trust region method for nonlinear programming based on primal interior-
point techniques, SIAM J. Sci. Comput., 20 (1998), pp. 282–305.

[35] M. J. D. Powell, A hybrid method for nonlinear equations, in Numerical Methods for Nonlin-
ear Algebraic Equations, P. Rabinowitz, ed., Gordon & Breach, London, 1970, pp. 87–114.

900 RICHARD H. BYRD, MARY E. HRIBAR, AND JORGE NOCEDAL

[36] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[37] R. J. Vanderbei, Linear Programming, Kluwer, Dordrecht, the Netherlands, 1996.
[38] A. Vardi, A trust region algorithm for equality constrained minimization: Convergence prop-

erties and implementation, Math. Programming, 22 (1985), pp. 575–591.
[39] M. H. Wright, Why a pure primal Newton barrier step may be infeasible, SIAM J. Optim., 5

(1995), pp. 1–12.
[40] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1997.
[41] H. Yamashita, A Globally Convergent Primal-Dual Interior-Point Method for Constrained

Optimization, Technical Report, Mathematical Systems Institute, Inc., Tokyo, Japan, 1994.
[42] H. Yamashita and H. Yabe, Superlinear and quadratic convergence of some primal-dual in-

terior point methods for constrained optimization, Math. Programming, 75 (1996), pp.
377–397.

NONLINEAR OPTIMIZATION, QUADRATURE,
AND INTERPOLATION∗

H. CHENG† , V. ROKHLIN† , AND N. YARVIN†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 901–923

To John Dennis on the occasion of his 60th birthday.

Abstract. We present a nonlinear optimization procedure for the design of generalized Gaussian
quadratures for a fairly broad class of functions. While some of the components of the algorithm
have been published previously, we introduce an improved procedure for the determination of an
acceptable initial point for the continuation scheme that stabilizes the Newton-type process used
to find the quadratures. The resulting procedure never failed when applied to Chebyshev systems
(for which the existence and uniqueness of generalized Gaussian quadratures are well known); it also
worked for many non-Chebyshev systems, for which the generalized Gaussian quadratures are not
guaranteed to exist. The performance of the algorithm is illustrated with several numerical examples;
some of the presented quadratures integrate efficiently large classes of singular functions.

Key words. nonlinear optimization, quadratures, singular integrands, interpolation

AMS subject classifications. 49N99, 65D30, 65D32, 65D05

PII. S1052623498349796

1. Introduction. Quadrature formulae constitute one of the most developed
areas of computational mathematics. They are used both as a stand-alone numerical
tool for the evaluation of integrals and as an analytical apparatus for the design of
interpolation schemes, finite element schemes, etc. Most of the quadrature formulae
(at least for functions on R1) currently in use can be separated into three groups:

1. Gaussian quadratures are the optimal tool for the evaluation of integrals of the
form ∫ b

a

ω(t) · P (t)dt,(1.1)

where P is a polynomial of t (or a function well approximated by a polynomial) and
ω is a (more or less) arbitrary nonnegative function [a, b]→ R. Gaussian quadratures
are extremely efficient, mathematically elegant, and easy to obtain (see, for example,
[3]); whenever applicable, they tend to be the numerical tool of choice.

2. Interpolatory quadrature formulae (Newton–Cotes, etc.) are based on approxi-
mating the integrand by some standard function (usually a polynomial) and integrat-
ing the latter. These schemes have the advantage that they (usually) do not prescribe
the locations of the nodes; they tend to become numerically unstable for high orders.

3. Miscellaneous special-purpose quadratures (“product integration rules,” non-
standard Richardson extrapolation, etc.) are normally used when the situation pre-
cludes the use of more straightforward techniques.

There appears to exist a class of situations where classical approaches fail to
produce rapidly convergent schemes. Specifically, suppose that we wish to integrate

∗Received by the editors December 18, 1998; accepted for publication (in revised form) Jan-
uary 27, 1999; published electronically September 24, 1999. This work was supported in part
by DARPA/AFOSR under contract F49620/97/1/0011, ONR under grant N00014-96-1-0188, and
AFOSR under contracts F49620-97-C-0052 and F49620-95-C-0075.

http://www.siam.org/journals/siopt/9-4/34979.html
†Department of Computer Science, Yale University, New Haven, CT 06520 (cheng-hongwei@

cs.yale.edu, rokhlin-vladimir@cs.yale.edu, yarvin-norman@cs.yale.edu).

901

902 H. CHENG, V. ROKHLIN, AND N. YARVIN

functions of the form

n∑
k=0

φk(x) · sk(x),(1.2)

where φk are smooth functions (or polynomials) mapping [0, 1]→ R, and the functions
sk : [0, 1]→ R are known a priori and have singularities at x = 0. In many situations
of interest, the functions sk have different singularities at x = 0, and the functions
φk are not known; it is known only that the integrand has the form (1.2) and its
values at points on the interval [0, 1] can be evaluated. While efficient quadratures for
functions of the form (1.2) would have obvious applications in the solution of integral
equations, in numerical complex analysis, and in several other areas, the authors have
failed to find such an apparatus in the literature.

It has been known for about 100 years that Gaussian quadratures admit a drastic
generalization, replacing polynomials with fairly general systems of functions (see
[11, 12, 2, 8, 6, 7]). The constructions found in [11, 12, 2, 8, 6, 7] do not easily
yield numerical algorithms for the design of such quadrature formulae; algorithms of
this type were designed (in some cases) in [10, 15], where the resulting quadrature
rules are referred to as generalized Gaussian quadratures. The approach is based on
the observations that the nodes and weights of Gaussian quadratures satisfy systems
of nonlinear equations, that these equations have unique solutions, and that when
polynomials are replaced with other systems of functions, similar systems of equations
are easily constructed. While for functions of the form (1.2) the resulting equations
are nonlinear, overdetermined, and nonunique, in the least squares sense they have
unique solutions under surprisingly general conditions (see [10, 15]); Newton-type
methods converge in this environment, provided a good initial approximation can be
found.

As often happens, in the absence of a good initial approximation the Newton
process fails to converge. To some extent, this problem is remedied by the use of
continuation techniques, which turn out to be almost always available when designing
quadratures for integrands (1.2). However, yet another problem is frequently encoun-
tered: although mathematically the solution of the nonlinear problem is unique for all
values of the continuation parameter, numerically it is not unique at all. Once the
(numerical) rank of the Jacobian of an intermediate problem is sufficiently low, the
continuation process breaks down; attempts to use globalized search techniques have
not been successful.

The final step in the design of a robust scheme for the construction of generalized
Gaussian quadratures is described in section 3.3. It finds an initial approximation
for which the Jacobian of the system being solved has an acceptably low condition
number. While the reasoning behind this step is partly heuristic, in our experience
it works remarkably well. It never failed for a Chebyshev system (see section 2.1);
furthermore, it worked for most of the non-Chebyshev systems we tried it on. For
a more detailed discussion of our numerical experience, see section 5, where we also
present quadratures for functions with almost general power singularities at one end
(or both ends) of the interval of integration and for functions with several other types
of singularities.

The paper is structured as follows. Section 2 contains mathematical and numerical
preliminaries. In section 3 we build the numerical apparatus to be used in section 4
to construct the procedure for the determination of nodes and weights of generalized
Gaussian quadratures. Section 5 contains several examples of quadratures we have

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 903

obtained. Finally, in section 6 we outline several possible extensions of this work.

2. Mathematical and numerical preliminaries.

2.1. Chebyshev systems.

Definition 2.1. A sequence of functions φ1, . . . , φn will be referred to as a
Chebyshev system on the interval [a, b] if each of them is continuous and the deter-
minant ∣∣∣∣∣∣∣

φ1(x1) · · · φ1(xn)
...

...
φn(x1) · · · φn(xn)

∣∣∣∣∣∣∣(2.1)

is nonzero for any sequence of points x1, . . . , xn such that a ≤ x1 < x2 < · · · < xn ≤ b.
An alternate definition of a Chebyshev system is that any linear combination of the
functions with nonzero coefficients must have no more than n zeros.

A related definition is that of an extended Chebyshev system.

Definition 2.2. Given a set of functions φ1, . . . , φn which are continuously
differentiable on an interval [a, b], and given a sequence of points x1, . . . , xn such that
a ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ b, let the sequence m1, . . . ,mn be defined by the formulae

m1 = 0,
mj = 0 if j > 1 and xj 6= xj−1,
mj = j − 1 if j > 1 and xj = xj−1 = · · · = x1,
mj = k if j > k + 1 and xj = xj−1 = · · · = xj−k 6= xj−k−1.

(2.2)

Let the matrix C(x1, . . . , xn) = [cij] be defined by the formula

cij =
dmjφi
dxmj

(xj),(2.3)

in which d0φi
dx0 (xj) is taken to be the function value φi(xj). Then φ1, . . . , φn will be re-

ferred to as an extended Chebyshev system on [a, b] if the determinant |C(x1, . . . , xn)|
is nonzero for all such sequences xi.

Remark 2.1. It is obvious from Definition 2.2 that an extended Chebyshev sys-
tem is a special case of the Chebyshev system. The additional constraint is that the
successive points xi at which the function is sampled to form the matrix may be iden-
tical; in that case, for each duplicated point, the first corresponding column contains
the function values, the second column contains the first derivatives of the functions,
the third column contains the second derivatives of the functions, and so forth; this
matrix also must be nonsingular.

Examples of Chebyshev and extended Chebyshev systems include the following
(additional examples can be found in [7]).

Example 2.1. The powers 1, x, x2, . . . , xn form an extended Chebyshev system
on the interval (−∞,∞).

Example 2.2. The exponentials e−λ1x, e−λ2x, . . . , e−λnx form an extended Cheby-
shev system for any distinct λ1, . . . , λn > 0 on the interval [0,∞).

Example 2.3. The functions 1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx form a
Chebyshev system on the interval [0, 2π).

904 H. CHENG, V. ROKHLIN, AND N. YARVIN

2.2. Generalized Gaussian quadratures. The quadrature rules considered
in this paper are expressions of the form

n∑
j=1

wj · φ(xj),(2.4)

where the points xj ∈ R and coefficients wj ∈ R are referred to as the nodes and
weights of the quadrature, respectively. They serve as approximations to integrals of
the form ∫ b

a

φ(x) · ω(x)dx,(2.5)

where ω has the form

ω(x) = ω̃(x) +

m∑
j=1

µj · δ(x− χj)(2.6)

with m a nonnegative integer, ω̃ : [a, b] → R an integrable nonnegative function,
χ1, χ2, . . . , χm points on the interval [a, b], µ1, µ2, . . . , µm positive real coefficients,
and δ the Dirac δ-function on R.

Remark 2.2. Obviously, (2.6) defines ω to be a linear combination of a nonnega-
tive function with a finite collection of δ-functions with positive coefficients. In a mild
abuse of terminology, throughout this paper we will be referring to ω as a nonnegative
function.

Quadratures are typically chosen so that the quadrature (2.4) is exact for some set
of functions, commonly polynomials of a fixed order. Of these, the classical Gaussian
quadrature rules consist of n nodes and integrate polynomials of order 2n−1 exactly.
In [10], the notion of a Gaussian quadrature was generalized as follows.

Definition 2.3. A quadrature formula will be referred to as Gaussian with respect
to a set of 2n functions φ1, . . . , φ2n : [a, b]→ R and a weight function ω : [a, b]→ R+

if it consists of n weights and nodes and integrates the functions φi exactly with
the weight function ω for all i = 1, . . . , 2n. The weights and nodes of a Gaussian
quadrature will be referred to as Gaussian weights and nodes, respectively.

The following theorem appears to be due to Markov [11, 12]; proofs of it can also
be found in [8] and [7] (in a somewhat different form).

Theorem 2.4. Suppose that the functions φ1, . . . , φ2n : [a, b]→ R form a Cheby-
shev system on [a, b]. Suppose in addition that ω : [a, b] → R is defined by (2.6) and
that either ∫ b

a

ω̃(x)dx > 0(2.7)

or m ≥ n (or both). Then there exists a unique Gaussian quadrature for φ1, . . . , φ2n

on [a, b] with respect to the weight function ω. The weights of this quadrature are
positive.

2.3. Quadrature and interpolation. As is well known, when Gaussian nodes
on the interval [−1, 1] are used for interpolation (for example, via the Lagrange for-
mula), the resulting procedure is numerically stable. Furthermore, the precision ob-
tained via Gaussian (Lagrange) interpolation is almost as high as that obtained via

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 905

Chebyshev interpolation (see, for example, [4]). Generally, given a weight function ω,
the nodes of Gaussian quadratures corresponding to ω lead to interpolation formulae
that are stable in an appropriately chosen norm. In this subsection, we formalize this
fact for both Gaussian and many generalized Gaussian quadratures. The analytical
tool of this subsection is the following obvious theorem.

Theorem 2.5. Suppose that the function ω : [a, b] → R is nonnegative and
the functions φ1, φ2, . . . , φn : [a, b] → R are orthonormal with respect to the weight
function ω, i.e., ∫ b

a

ω(x) · φj(x) · φi(x)dx = δij(2.8)

for all i, j = 1, 2, . . . , n. (δij denotes Kroneker’s δ-function.) Suppose further that
the n-point quadrature rule x1, x2, . . . , xn, w1, w2, . . . , wn is such that wi > 0 for all
1 ≤ i ≤ n. Finally, suppose that

n∑
k=1

wk · φi(xk) · φj(xk) = δij(2.9)

for all i, j = 1, 2, . . . , n. Then the n× n-matrix A defined by the formula

Aij =
√
wj · φi(xj)(2.10)

is orthogonal.
Suppose now that we would like to construct an interpolation formula on the

interval [a, b] for functions of the form

f(x) =

n∑
i=1

αi · φi(x)(2.11)

with α1, α2, . . . , αn arbitrary real coefficients. In other words, suppose that we are
given the values f1, f2, . . . , fn of a function f at a collection of points x1, x2, . . . , xn
and that it is known that f is defined by the formula (2.11), but the coefficients
α1, α2, . . . , αn are not known; we would like to be able to evaluate f at arbitrary
points on [a, b]. The obvious way to do so is to observe that the values f1, f2, . . . , fn
are linear functions of the coefficients α1, α2, . . . , αn (due to (2.11)); evaluating (2.11)
at the points x1, x2, . . . , xn, we obtain the system of equations

fj =

n∑
i=1

αi · φi(xj),(2.12)

with j = 1, 2, . . . , n. Defining the n× n-matrix B by the formula

bj,i = φi(xj),(2.13)

we rewrite (2.12) in the form

F = Bα,(2.14)

with the vectors α, F ∈ Rn defined by the formulae

α = (α1, α2, . . . , αn),(2.15)

906 H. CHENG, V. ROKHLIN, AND N. YARVIN

F = (f1, f2, . . . , fn).(2.16)

Now, as long as the matrixB is nonsingular, we can evaluate the coefficients α1, α2, . . . , αn
via the formula

α = B−1F(2.17)

and use (2.11) to evaluate f at arbitrary points on [a, b]. Of course, in actual numerical
calculations, it is not sufficient for B to be invertible; its condition number must not
be too high. The following observation is the principal purpose of this subsection.

Observation 2.1. Under the conditions of Theorem 2.5,

A = D ◦B(2.18)

with D the diagonal matrix defined by the formula

Di,i =
√
wi(2.19)

and

α = A∗DF(2.20)

(due to the combination of (2.17) with (2.18)). In other words, given the table of
values f1, f2, . . . , fn of the function f at the nodes x1, x2, . . . , xn, one obtains the
coefficients of the expansion (2.11) by applying to the vector F the product of two
matrices; the first of these matrices is orthogonal and the second is diagonal; the
diagonal elements of the latter are square roots of (positive) weights of the n-point
quadrature formula exact for all pairwise products of the functions φ1, φ2, . . . , φn.

Remark 2.3. While at first glance the above observation appears to be very lim-
ited in its scope (since it relies on the quadrature formula being exact for all pairwise
products of the functions φ1, φ2, . . . , φn), in reality it means that whenever the nodes
of a generalized Gaussian quadrature formula are used as interpolation nodes, the
resulting interpolation formula tends to be stable. The reason for this happy coin-
cidence is the fact that the matrix A (see (2.10) above) need not be orthogonal for
the stability of the interpolation formula; it needs only to be well conditioned. Thus,
as long as the quadrature formula is reasonably accurate for all pairwise products of
the functions φ1, φ2, . . . , φn, the matrix A is close to being orthogonal; therefore, the
condition number of A is close to unity, and the interpolation based on the nodes
x1, x2, . . . , xn is stable.

2.4. Convergence of Newton’s method. In this section, we observe that the
nodes and the weights of a Gaussian quadrature satisfy a simple system of nonlinear
equations. We then prove that the Newton method for this system of equations is
always quadratically convergent, provided the functions to be integrated constitute
an extended Chebyshev system.

Given a set of functions φ1, . . . , φ2n and a weight function ω, the Gaussian quadra-
ture is defined by the system of equations

n∑
j=1

wj · φ1(xj) =

∫ b

a

φ1(x) · ω(x)dx,

n∑
j=1

wj · φ2(xj) =

∫ b

a

φ2(x) · ω(x)dx,

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 907

...
n∑
j=1

wj · φ2n(xj) =

∫ b

a

φ2n(x) · ω(x)dx,(2.21)

(see Definition 2.3). Let the left-hand sides of these equations be denoted by f1

through f2n. Then each fi is a function of the weights w1, . . . , wn and nodes x1, . . . , xn
of the quadrature. Its partial derivatives are given by the obvious formulae

∂fk
∂wi

= φk(xi),(2.22)

∂fk
∂xi

= wi · φ′k(xi).(2.23)

Thus, the Jacobian matrix of the system (2.21) is

J(x1, . . . , xn, w1, . . . , wn) =

 φ1(x1) · · · φ1(xn) w1φ
′
1(x1) · · · wnφ

′
1(xn)

...
...

...
...

φ2n(x1) · · · φ2n(xn) w1φ
′
2n(x1) · · · wnφ

′
2n(xn)

 .

(2.24)
Lemma 2.6. Suppose that the functions φ1, . . . , φ2n form an extended Chebyshev

system. Let the Gaussian quadrature for these functions be denoted by ŵi and x̂i.
Then the determinant of J is nonzero at the point which constitutes the Gaussian
quadrature; in other words, |J(x̂1, . . . , x̂n, ŵ1, . . . , ŵn)| 6= 0.

Proof. It is immediately obvious from (2.24) that

(2.25)

|J(x̂1, . . . , x̂n, ŵ1, . . . , ŵn)|

= ŵ1 · ŵ2 · · · · · ŵn−1 · ŵn ·

∣∣∣∣∣∣∣∣∣
φ1(x̂1) · · · φ1(x̂n) φ′1(x̂1) · · · φ′1(x̂n)

...
...

...
...

φ2n(x̂1) · · · φ2n(x̂n) φ′2n(x̂1) · · · φ′2n(x̂n)

∣∣∣∣∣∣∣∣∣ .
If φ1, . . . , φ2n form an extended Chebyshev system, then by Theorem 2.4 the weights
ŵ1, . . . , ŵn of the Gaussian quadrature are positive. In addition, by the definition of
an extended Chebyshev system, the determinant in the right-hand side of (2.25) is
nonzero. Thus

|J(x̂1, . . . , x̂n, ŵ1, . . . , ŵn)| 6= 0.(2.26)

Using the inverse function theorem, we immediately obtain the following corollary.
Corollary 2.7. Under the conditions of Lemma 2.6, the Gaussian weights and

nodes depend continuously on the weight function.

2.5. Singular value decomposition. The singular value decomposition (SVD)
is a ubiquitous tool in numerical analysis, given for the case of real matrices by the
following lemma (see, for instance, [13] for more details).

Lemma 2.8. For any n × m real matrix A, there exist, for some integer p,
an n × p real matrix U with orthonormal columns, an m × p real matrix V with

908 H. CHENG, V. ROKHLIN, AND N. YARVIN

orthonormal columns, and a p×p real diagonal matrix S = [sij] whose diagonal entries
are nonnegative, such that A = U · S · V ∗ and sii ≥ si+1,i+1 for all i = 1, . . . , p− 1.

The diagonal entries sii of S are called singular values; the columns of the matrix
V are called right singular vectors; the columns of the matrix U are called left singular
vectors.

2.6. SVD of a sequence of functions. A similar decomposition exists (see
[5, 16]) if the columns of the matrix A are replaced with functions, as follows.

Theorem 2.9. Suppose that the functions φ1, φ2, . . . , φn : [a, b] → R are square
integrable. Then there exist a finite orthonormal sequence of functions u1, u2, . . . , up :
[a, b] → R, an n × p matrix V = [vij] with orthonormal columns, and a sequence
s1 ≥ s2 ≥ · · · ≥ sp > 0 ∈ R, for some integer p, such that

φj(x) =

p∑
i=1

ui(x)sivij(2.27)

for all x ∈ [a, b] and all j = 1, . . . , n.
The sequence {si} is uniquely determined by K.
By analogy to the finite-dimensional case, we refer to this factorization as the

SVD. We refer to the functions {ui} as singular functions, to the columns of the
matrix V as singular vectors, and to the numbers {si} as singular values.

A popular application of the SVD is for the purpose of “compressing” data.
Specifically, it often happens that while the total number n of functions is large,
almost all of the coefficients sj in the decomposition (2.27) are negligibly small. In
such cases, (2.27) is truncated after a small number (say, p0) of terms, and the result-
ing expansion

φj(x) =

p0∑
i=1

ui(x) · si · vij(2.28)

is viewed as a compact representation of the original family of functions φ1, φ2, . . . , φn.
The following theorem states that given a sequence of functions on the interval

[a, b], their decomposition of the form (2.28), and a quadrature formula with posi-
tive weights on the interval [a, b], the accuracy of the quadrature for the functions
φ1, φ2, . . . , φn is determined by its accuracy for the singular functions uj , correspond-
ing to nontrivial singular values. Its proof is an exercise in elementary linear algebra
and is omitted.

Theorem 2.10. Suppose that under the conditions of Theorem 2.9, ε is a positive
real number, 1 < p0 < n is an integer, and

n∑
i=p0+1

s2
i <

ε2

4
.(2.29)

Suppose further that the m-point quadrature formula {xi, wi} integrates the functions
ui exactly, i.e.,

m∑
j=1

wj · ui(xj) =

∫ b

a

ui(x) dx(2.30)

for all i = 1, 2, . . . , p0, and that all the weights w1, . . . , wm are positive. Then for each
i = 1, 2, . . . , n,

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 909∣∣∣∣∣∣
m∑
j=1

wj · φi(xj)−
∫ b

a

φi(x) dx

∣∣∣∣∣∣ < ε · ||φi||L2 .(2.31)

3. Numerical apparatus.

3.1. Continuation method. For Newton’s method to converge, the starting
point provided to it must be close to the desired solution. One scheme for generating
such starting points is the continuation method, described below.

Suppose that in addition to the function F : Rn → Rn whose zero is to be found,
another function G : [0, 1] × Rn → Rn is available which possesses the following
properties:

• For any x ∈ Rn,

G(1, x) = F (x).(3.1)

• The solution of the equation

G(0, x) = 0(3.2)

is known.
• For all t ∈ [0, 1], the equation

G(t, x) = 0(3.3)

has a unique solution x at which the conditions for Newton’s method to
converge are satisfied.
• The solution x is a continuous function of t.

If these conditions are met, an algorithm for the solution of the equation

F (x) = 0(3.4)

is as follows. Let the points ti, for i = 1, . . . ,m, be defined by the formula ti = i/m.
Solve in succession the equations

G(t1, x) = 0,

G(t2, x) = 0,

...

G(tm, x) = 0(3.5)

using Newton’s method, with the starting point for Newton’s method for each equation
taken to be the solution of the preceding equation. Due to (3.1), the solution x of
the final equation G(tm, x) = 0 is identical to the solution of (3.4); obviously, for
sufficiently large m, Newton’s method is guaranteed to converge at each step.

Remark 3.1. In practice, it is desirable to choose the smallest m for which the
above algorithm will work, in order to reduce the computational cost of the scheme.
On the other hand, the largest step (ti − ti−1) for which the Newton method will
converge commonly varies as a function of t. Thus the algorithm described in this
paper uses an adaptive version of the scheme.

910 H. CHENG, V. ROKHLIN, AND N. YARVIN

3.2. Continuation scheme. The continuation scheme used is as follows. Let
the weight functions ω : [0, 1]× [a, b]→ R+ be defined by the formula

ω(α, x) = αω1(x) + (1− α)
n∑
j=1

δ(x− cj),(3.6)

where ω1 is the weight function for which a Gaussian quadrature is desired, δ denotes
the Dirac delta function, and the points cj ∈ [a, b] are arbitrary distinct points. These
weight functions have the following properties:

• With α = 1, the weight function is equal to the desired weight function ω1,
due to (3.6).
• With α = 0, the Gaussian weights and nodes are

wj = 1,(3.7)

xj = cj(3.8)

for j = 1, . . . , n, whatever the functions φi are (since ω(0, x) = 0, unless
x = cj for some j ∈ [1, n]).
• The quadrature weights and nodes depend continuously on α (by Corollary

2.7).
The intermediate problems that the continuation method solves are the Gaussian
quadratures relative to the weight functions ω(α, ∗). The scheme starts by setting
α = 0 then increases α in an adaptive manner until α = 1, as follows. A current
step size is maintained, by which α is incremented after each successful termination
of Newton’s method. After each unsuccessful termination of Newton’s method, the
step size is halved and the algorithm restarts from the point yielded by the last
successful termination. After a certain number of successful steps, the current step
size is doubled. (Experimentally, the current problem was found to be well suited to
an aggressive mode of adaption: in the authors’ implementation, the initial value of
the step size was chosen to be 0.5, and the step size was doubled after two successful
terminations of Newton’s method.)

3.3. Starting points. The choice of the points cj was left indefinite above. In
exact arithmetic, and applied to a Chebyshev system, the algorithm would converge
for any choice of distinct points (see Lemma 2.6). However, the number of steps of the
continuation method, and thus the speed of execution, is affected by the choice. More
important, the numerical stability of the scheme might be compromised due to poor
conditioning of the matrix J (see (2.24)). Indeed, while Lemma 2.6 guarantees that
the matrix J is nonsingular, it says nothing about its condition number. In addition,
we will be applying the algorithm to cases where the conditions of Lemma 2.6 are
not satisfied. For these reasons, the following method of choosing the starting points
was adopted. The method seeks to create a matrix J that is well conditioned. It is a
pivoted Gram–Schmidt orthogonalization, altered to operate on pairs of vectors:

1. Choose a set of points x1, x2, . . . , xm on the interval of integration [a, b], such
that each of the functions φ1, φ2, . . . , φn, and each of their derivatives, can be inter-
polated on [a, b] in a well-conditioned manner from values at these points.

2. Create a matrix J̃ , of the same form as (2.24), where the points {xj} which
determine the columns are the points chosen in step 1. (This matrix thus has 2m
columns.)

3. Perform the following sequence of operations n times:

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 911

(a) Choose the point xj for which the two columns corresponding to xj have the
largest size. (The issue of what “size” to use is discussed below.)

(b) Orthogonalize the remaining columns to both of those two columns.
The points xj chosen in step 3(a) are then the starting points cj used in the continu-
ation method.

The algorithm as specified above is for exact arithmetic. As with Gram–Schmidt,
the algorithm is numerically unstable but can be stabilized by an additional re-
orthogonalization: after step 3(a), reorthogonalize the two new pivot columns to all
of the previously chosen pivot columns.

Remark 3.2. The “size of two columns” that was used for step 3(a) was the sum
of the norms of the columns, after the second column had been orthogonalized to the
first. This poses the obvious danger that one of the two columns chosen might have
a small norm, which was covered up by a large norm of its companion. This would
render it unsuitable for pivoting; this danger was never realized in our numerical
experiments, but if it were, the obvious remedy would be to attempt to change the
definition of the size. The authors have not investigated this issue in detail.

3.4. Nested Legendre discretizations of finite sequences of functions.
In this paper, we will be confronted with finite sequences of functions φ1, φ2, . . . φn
on the interval [a, b] possessing the following properties:

• The total number n of functions φi is reasonably large (e.g., 10, 000).
• The rank of the set φ1, φ2, . . . φn, is low (e.g., 40) to high precision.
• Each of the functions φ1, φ2, . . . φn is analytic on the interval [a, b], except at

a finite (small) number of points; φi ∈ L1[a, b] for all i = 1, 2, . . . , n.
Now, if we wish to handle (interpolate, integrate, differentiate, etc.) numerically

functions of the form

ψ(x) =
n∑
i=1

αi · φi,(3.9)

often it is not convenient to represent them by collections of coefficients α1, α2, . . . αn.
Indeed, if the functions φ1, φ2, . . . φn are linearly dependent, the number of coefficients
αi necessary to represent them in the form (3.9) might be grossly excessive, compared
to the actual complexity of the function to be represented. Furthermore, the coeffi-
cients αi by themselves provide no mechanism for the integration, interpolation, etc.,
of functions of the form (3.9); each time such procedures have to be performed, one
has to recompute the original functions φ1, φ2, . . . φn. Since the latter is often expen-
sive or impossible, it is desirable to have a purely numerical procedure for representing
sums of the form (3.9). Preferably, the scheme should use no information about the
functions φi, except for their values at a finite (preferably not very large) collection
of points on [a, b].

When the functions φi are smooth, a widely used tool for representing them is
Chebyshev interpolation: a sufficiently large integer m is chosen, and the functions
φ1, φ2, . . . φn are tabulated at m Chebyshev nodes on [a, b] and obtained at all other
points on [a, b] via standard interpolation procedures. While Chebyshev nodes are an
extremely good choice, they are not the only one; for example, Gaussian (Legendre)
nodes are almost as efficient as the Chebyshev ones when the functions are to be
interpolated and are twice as efficient when the functions are to be integrated (see,
for example, [4]). When the behavior of the functions φi is very nonuniform over
the interval [a, b], Chebyshev (Gaussian, etc.) interpolation becomes inefficient; for

912 H. CHENG, V. ROKHLIN, AND N. YARVIN

singular functions it is liable to fail completely. In such cases, adaptive Chebyshev
interpolation is used, whereby the interval is subdivided into a collection of subinter-
vals so that on each subinterval, all of the functions φi are accurately approximated
by a Chebyshev expansion of low order; the subdivisions are performed automatically.
When some (or all) of the functions φi have singularities on the interval [a, b], schemes
of this type cluster the subintervals near each singularity until the subinterval nearest
to the singularity is so small as to be ignorable for the purposes of the calculations to
be performed.

In the first stage of the algorithm that we use, we build a nested Chebyshev
discretization of the interval [a, b] for each of the functions φi. In the second stage,
all such discretizations are merged to obtain a single discretization by which all of
the functions φi are adequately represented. In the third stage, n Legendre nodes are
constructed on each of the obtained intervals.

Stage 1.

1. Choose the precision ε and some reasonably large m. (In actual computations,
we use m = 16.)

2. Construct the m Chebyshev nodes x
[a,b]
1 , x

[a,b]
2 , . . ., x

[a,b]
m on the interval [a, b].

Evaluate φ at the nodes x
[a,b]
1 , x

[a,b]
2 , . . ., x

[a,b]
m , obtaining the values φ

[a,b]
1 , φ

[a,b]
2 , . . .,

φ
[a,b]
m .

3. Subdivide the interval [a, b] into the subintervals [a, (a + b)/2], [(a + b)/2, b].

Construct the Chebyshev nodes x
[a,(a+b)/2]
1 , x

[a,(a+b)/2]
2 , . . ., x

[a,(a+b)/2]
m on the interval

[a, (a+ b)/2] and the Chebyshev nodes x
[(a+b)/2,b]
1 , x

[(a+b)/2,b]
2 , . . ., x

[(a+b)/2,b]
m on the

interval [(a+b)/2, b]. Evaluate the function φ at the nodes x
[a,(a+b)/2]
1 , x

[a,(a+b)/2]
2 , . . .,

x
[a,(a+b)/2]
m , x

[(a+b)/2,b]
1 , x

[(a+b)/2,b]
2 , . . ., x

[(a+b)/2,b]
m , obtaining the values φ

[a,(a+b)/2]
1 ,

φ
[a,(a+b)/2]
2 , . . . , φ

[a,(a+b)/2]
m , φ

[(a+b)/2,b]
1 , φ

[(a+b)/2,b]
2 , . . . , φ

[(a+b)/2,b]
m , respectively.

4. Interpolate the values of the function φ from the nodes x
[a,b]
1 , x

[a,b]
2 , . . ., x

[a,b]
m

on the interval [a, b] to the nodes x
[a,(a+b)/2]
1 , x

[a,(a+b)/2]
2 , . . ., x

[a,(a+b)/2]
m , x

[(a+b)/2,b]
1 ,

x
[(a+b)/2,b]
2 , . . ., x

[(a+b)/2,b]
m on the intervals [a, (a + b)/2], [(a + b)/2, b]. If the inter-

polated values agree to the precision ε with the values φ
[a,(a+b)/2]
1 , φ

[a,(a+b)/2]
2 , . . . ,

φ
[a,(a+b)/2]
m , φ

[(a+b)/2,b]
1 , φ

[(a+b)/2,b]
2 , . . . , φ

[(a+b)/2,b]
m calculated directly in step 2 above,

the algorithm concludes that the function φ is adequately resolved by the m Cheby-
shev nodes on the interval [a, b]; otherwise, the procedure is repeated recursively for
each of the subintervals [a, (a+ b)/2], [(a+ b)/2, b].

Stage 2. Store the ends (left and right) of all subintervals in all subdivisions in
a single array a. Sort the elements of a; remove multiple elements in a. The resulting
array of points on the interval [a, b] (including the points a, b) is the array of ends of
subintervals of the final subdivision.

Stage 3. Construct an m-point Legendre discretization of each of the subintervals
obtained in Stage 2 above.

Remark 3.3. In the algorithm above, we use Chebyshev discretizations in Stage
1 to construct the subdivision of the interval [a, b]; in subsequent calculations we
use Legendre discretizations. The reason for this choice is that the interpolations in
Stage 1 are carried out more efficiently with Chebyshev discretizations, via the discrete
cosine transform and related tools; the Legendre discretizations used subsequently
lead to linear interpolation schemes that preserve inner products (see the following
subsection).

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 913

Remark 3.4. The scheme of this subsection is a fairly reliable apparatus for the
automatic discretization of sets of (more or less) arbitrary user-specified functions.
While it is very easy to construct counterexamples in which the algorithm will fail to
resolve some (or all) of the input functions, this problem has never been encountered
in our practice.

3.5. Approximation of SVD of a sequence of functions. This section de-
scribes a numerical procedure for computing an approximation to the SVD of a se-
quence of functions.

The algorithm uses quadratures possessing the following property.
Definition 3.1. We will say that the combination of a quadrature and an in-

terpolation scheme preserves inner products on an interval [a, b] if it possesses the
following properties:

• The nodes of the quadrature are identical to the nodes of the interpolation
scheme.
• The function that is output by the interpolation scheme depends in a linear

fashion on the values input to the interpolation scheme.
• The quadrature integrates exactly any product of two interpolated functions;

that is, for any two functions f, g : [a, b] → R produced by the interpolation
scheme, the integral ∫ b

a

f(x) · g(x)dx(3.10)

is computed exactly by the quadrature.
Quadratures and interpolation schemes possessing this property include the fol-

lowing.
Example 3.1. The combination of a (classical) Gaussian quadrature at Legendre

nodes and polynomial interpolation at the same nodes preserves inner products, since
polynomial interpolation on n nodes produces an interpolating polynomial of order
n − 1, the product of two such polynomials is a polynomial of order 2n − 2, and a
Gaussian quadrature integrates exactly all polynomials up to order 2n− 1.

Example 3.2. If an interval is broken into several subintervals, and a quadrature
and interpolation scheme preserving inner products is used on each subinterval, then
the arrangement as a whole preserves inner products on the original interval. (This
follows directly from the definition.)

Example 3.3. The combination of the trapezoidal rule on the interval [0, 2π] and
Fourier interpolation (using the interpolation functions 1, cosx, sinx, cos 2x, sin 2x, . . . ,
cosnx, sinnx) preserves inner products.

The algorithm described below takes as input a sequence of functions φ1, φ2, . . . , φn :
[a, b] → R. It uses as a tool a quadrature and a linear interpolation scheme on the
interval [a, b] preserving inner products; the weights and nodes of this quadrature will
be denoted by w1, . . . , wn ∈ R and x1, . . . , xn ∈ [a, b], respectively. As will be shown
below, the accuracy of the algorithm is then determined by the accuracy to which the
interpolation scheme approximates the functions φ1, φ2, . . . , φn.

The output of the algorithm is a sequence of functions u1, . . . , up : [a, b] → R, a
sequence of vectors v1, . . . , vp ∈ Rn, and a sequence of singular values s1, . . . , sp ∈ R,
forming an approximation to the singular value decomposition of φ1, φ2, . . . , φn.

Description of the algorithm.
1. Construct the n×m matrix A = [aij] defined by the formula

aij = φj(xi) · √wi.(3.11)

914 H. CHENG, V. ROKHLIN, AND N. YARVIN

2. Compute the SVD of A, to produce the factorization

A = U ◦ S ◦ V ∗,(3.12)

where U = [uij] is an n× p matrix with orthonormal columns, V = [vij] is an m× p
matrix with orthonormal columns, and S is a p×p diagonal matrix whose jth diagonal
entry is sj .

3. Construct the n× p values uk(xi) defined by the formula

uk(xi) = uik/
√
wi.(3.13)

4. For any desired point x ∈ [a, b], evaluate the functions uk : [a, b]→ R using the
interpolation scheme on [a, b].

The proof of the following theorem can be found (in a considerably more general
form) in [15].

Theorem 3.2. Suppose that the combination of the quadrature and interpola-
tion scheme with weights and nodes w1, . . . , wn ∈ R and x1, . . . , xn ∈ [a, b], respec-
tively, preserves inner products on [a, b]. For any sequence of functions φ1, φ2, . . . , φn :
[a, b] → R, let ui : [a, b] → R, vij ∈ R, and si ∈ R be defined in (3.11)–(3.13) for all
i = 1, . . . , p. Then

1. The functions ui are orthonormal, i.e.,∫ b

a

ui(x)uk(x)dx = δik(3.14)

for all i, k = 1, . . . , p, with δik the Kronecker symbol.
2. The columns of V are orthonormal, i.e.,

n∑
j=1

vijvkjdx = δik(3.15)

for all i, k = 1, . . . , p.
3. The sequence of functions φ̃1, φ̃2, . . . , φ̃n : [a, b]→ R defined by the formula

φ̃k(x) =

p∑
j=1

sjuj(x)vjk(3.16)

is identical to the sequence of functions produced by sampling the functions φ1, φ2, . . . , φn
at the points {xi} then interpolating with the interpolation scheme on [a, b].

4. Numerical algorithm. This section describes a numerical algorithm for the
evaluation of nodes and weights of generalized Gaussian quadratures. The algorithm’s
input is a sequence of functions φ1, . . . , φ2n : [a, b] → R and the precision ε to which
the quadratures are to be calculated; its output is the weights and nodes of the
quadrature. The functions φi are supplied by the user in the form of a subroutine,
with input parameters (x, i) and output parameter φi(x). The algorithm uses the
components described in the preceding section.

1. The interval [a, b] is discretized via the scheme described in subsection 3.4, so
that all functions φ1, φ2, . . . , φn are represented to the precision ε.

2. All of the functions φ1, φ2, . . . , φn are tabulated at the nodes of the discretiza-
tion obtained in step 1 above, and the SVD is obtained of the sequence of functions

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 915

Table 1
16-node quadrature for functions of the form (5.1) with α ∈ [−0.6, 1], N = 4, and precision 10−15.

xi wi
0.1646476245461994E-18 0.2477997131959177E-17
0.2004881755033198E-13 0.1863311166024058E-12
0.4902407997203263E-10 0.3215991324579055E-09
0.1396853977847601E-07 0.6788563189534853E-07
0.9715236454504147E-06 0.3586206403622012E-05
0.2502196135803993E-04 0.7130636866829449E-04
0.3120851149673110E-03 0.6951436010759356E-03
0.2264576163994000E-02 0.3979838127986921E-02
0.1086917746927712E-01 0.1515746778330600E-01
0.3777218640280392E-01 0.4182483334409624E-01
0.1013279037973986E+00 0.8854031057518543E-01
0.2196196157836697E+00 0.1490380907486389E+00
0.3972680999338400E+00 0.2028312538451011E+00
0.6135562966157080E+00 0.2216836945000430E+00
0.8216868417553706E+00 0.1844567448110479E+00
0.9636466562372551E+00 0.9171766188102896E-01

φ1, φ2, . . . , φn via the scheme described in subsection 3.5; we will be denoting the
obtained singular values by λ1, λ2,

3. Denoting by k the positive integer number such that λ2·k+1 ≤ ε ≤ λ2·k−1,
we observe that any quadrature formula with positive coefficients that integrates the
obtained singular functions u1, u2, . . . u2·k exactly will integrate all of the functions
φ1, φ2, . . . , φn with precision ε (see Theorem 2.10). The remainder of the algorithm is
devoted to constructing a k-point quadrature formula that will integrate the functions
u1, u2, . . . u2·k exactly.

4. The scheme of subsection 3.3 is used to find the starting nodes x0
1, x

0
2, . . . , x

0
k

for the continuation process of subsection 3.2.

5. An adaptive version of the continuation method of subsection 3.2 is used to
obtain the k-point quadrature for the functions u1, u2, . . . , u2·k; on each step, the
Newton algorithm described in subsection 2.4 is used to solve the system (2.21) defin-
ing the nodes and roots of the quadrature formula.

Remark 4.1. We would like to reiterate that the quadrature formulae produced by
the procedure of this section do not integrate the user-specified functions φ1, φ2, . . . ,
φn exactly; instead, they produce approximations to the integrals. Needless to say,
the two are indistinguishable as long as the chosen precision ε is less than the machine
precision.

5. Numerical examples. A variety of quadratures was generated via the algo-
rithm of this paper; several of these are presented below to illustrate its performance.
In Examples 5.1 and 5.2, the calculations were performed in extended precision (For-
tran REAL*16) arithmetic, to ensure full double precision in the obtained result. In
Example 5.3, the calculations were performed in double precision, since the accuracy
of the quadrature listed in Table 5 is only nine digits.

Example 5.1. An obvious problem of interest is the integration on an interval
of functions that have a singularity at one end of that interval (or at both ends);
of particular interest are power and logarithmic singularities. Many techniques have
been proposed for dealing with such problems (see, for example, [1]). While some
of these approaches are quite effective for some of the singularities, they have the
drawback that each deals only with one particular singularity. In this example, we

916 H. CHENG, V. ROKHLIN, AND N. YARVIN

Table 2
8-node quadrature for functions of the form (5.1) with α ∈ [−0.6, 1], N = 4, and precision 10−7.

xi wi
0.1312034302206730E-07 0.1393140646786704E-06
0.2793817088002595E-04 0.1549484313499085E-03
0.2038371172070937E-02 0.6673805929140874E-02
0.2702722219647910E-01 0.5430869272244519E-01
0.1343993651970034E+00 0.1694172186704161E+00
0.3682213359901025E+00 0.2898751155944595E+00
0.6792045461791814E+00 0.3076390470455203E+00
0.9309603731369270E+00 0.1719310626051804E+00

Table 3
19-node quadrature for functions of the form (5.1) with α ∈ [−0.6, 1], N = 9, and precision 10−15.

xi wi
0.1846942465536925E-18 0.2756403589261532E-17
0.1989380701597045E-13 0.1824804592695847E-12
0.4312593909743526E-10 0.2777592139982985E-09
0.1092964737770428E-07 0.5186860611615611E-07
0.6810397860708155E-06 0.2442433440466041E-05
0.1588655973896037E-04 0.4380009969129837E-04
0.1818339165855430E-03 0.3906506115636250E-03
0.1227551979000820E-02 0.2077051291912717E-02
0.5556316902145769E-02 0.7461053476901383E-02
0.1847419717287859E-01 0.1978838865640943E-01
0.4825255045366560E-01 0.4136988974623410E-01
0.1041307630444531E+00 0.7157248041035670E-01
0.1928680775398894E+00 0.1060884317057585E+00
0.3153775090195431E+00 0.1377804712043467E+00
0.4647713088385197E+00 0.1585409276263068E+00
0.6264814981191495E+00 0.1614751848557232E+00
0.7804757620006211E+00 0.1428196856993585E+00
0.9050563637732498E+00 0.1031243266706421E+00
0.9813553783808000E+00 0.4746516336480648E-01

present quadrature rules for the integration of functions of the form

n∑
k=0

γk · log(x) +

m∑
j=1

βk,j · xαj
 · Pk(x),(5.1)

where Pk denotes the (normalized) orthogonal polynomial of order k on the interval
[0, 1]; βk,j , γk are arbitrary real numbers; and αj are arbitrary real numbers on the
interval [−0.6, 1].

To design such quadratures, we choose a reasonably large natural m; construct m
Legendre nodes α1, α2, . . . , αm on the interval [−0.6, 1], and use all functions of the
forms

Pk(x) · xαj ,(5.2)

Pk(x) · log(x)(5.3)

as input functions φi for the algorithm of the preceding section. The result is a set of
quadratures for functions of the forms (5.2), (5.3). A somewhat involved analytical
calculation shows that for sufficiently large m, the obtained quadratures will work for

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 917

Table 4
26-node quadrature for functions of the form (5.1) with α ∈ [−0.6, 1], N = 19, and precision

10−15.

xi wi
0.2852686209735951E-20 0.4390385492743041E-19
0.4655349788609637E-15 0.4445881189691443E-14
0.1432147899313873E-11 0.9689649973398580E-11
0.4915792345704672E-09 0.2471786670704959E-08
0.3986884553883893E-07 0.1527652265503579E-06
0.1168849078081257E-05 0.3470933550491954E-05
0.1630549221175312E-04 0.3803166416108812E-04
0.1307331567674635E-03 0.2422240257088061E-03
0.6884061227847875E-03 0.1022568448159836E-02
0.2620448293548410E-02 0.3143745934305781E-02
0.7740029188833982E-02 0.7549238041954824E-02
0.1872452403074940E-01 0.1495112040361046E-01
0.3869460001276389E-01 0.2548756008178511E-01
0.7058074961479188E-01 0.3865021281644121E-01
0.1165353335503884E+00 0.5342389042306681E-01
0.1775282580420220E+00 0.6849323863305738E-01
0.2531447462199369E+00 0.8243302008328313E-01
0.3415558481256653E+00 0.9386320384208941E-01
0.4396281348394975E+00 0.1015733726852001E+00
0.5431447278197111E+00 0.1046214551363520E+00
0.6471126706707170E+00 0.1024074963963311E+00
0.7461308154896283E+00 0.9472049436813551E-01
0.8347900655356778E+00 0.8175595131244442E-01
0.9080759999882411E+00 0.6410309004863602E-01
0.9617441758037388E+00 0.4270384642243640E-01
0.9926478556999123E+00 0.1881261305258270E-01

all functions of the form (5.1), and our numerical experiments show that m = 100
ensures full double precision accuracy for all αj ∈ [−0.6, 1].

In Tables 1–5, we list quadrature nodes and weights for n = 4, 9, 19, 29. In Tables
1, 3, 4, and 5, the number of nodes is chosen to guarantee 15-digit accuracy. In Table
2, the number of nodes is chosen to guarantee 7 digits.

Example 5.2. The quadrature rules in this example are very similar to those in
Example 5.1 except here we construct quadrature rules for functions singular at both
ends of the interval where they are to be integrated. Specifically, integrands have the
form

(5.4)

n∑
k=0

 m∑
j=1

(ak,j · (1 + x)αj + bk,j · (1− x)αj) + ck · log(1 + x) + dk · log(1− x)

 · Pk(x),

where Pk denotes the (normalized) orthogonal polynomial of order k on the interval
[−1, 1]; ak,j , bk,j , ck, dk are arbitrary real numbers; and αj are arbitrary real numbers
on the interval [−0.1, 1]. Quadrature nodes and weights for n = 4, 9, 19, 39 are listed
in Tables 6, 7, 8, and 9, respectively; in all cases, the precision is 10−15.

Example 5.3. In this example, we construct a direct generalization of quadratures
constructed in Example 5.1, permitting the integrands to have power and logarithmic
singularities at arbitrary points on the closed half-line to the left of the interval of

918 H. CHENG, V. ROKHLIN, AND N. YARVIN

Table 5
36-node quadrature for functions of the form (5.1) with α ∈ [−0.6, 1], N = 39, and precision

10−15.

xi wi
0.1174238417413926E-19 0.1769042596381234E-18
0.1422439193737780E-14 0.1318732300270049E-13
0.3350676698582048E-11 0.2181187238172082E-10
0.8987762100979194E-09 0.4306047388907762E-08
0.5804062676082615E-07 0.2097251047066944E-06
0.1381879982602796E-05 0.3830347070073085E-05
0.1599014834456195E-04 0.3447814965093908E-04
0.1086072834052024E-03 0.1843012333973045E-03
0.4939690780979653E-03 0.6658876227138618E-03
0.1653457719227906E-02 0.1785581170381193E-02
0.4371083474213578E-02 0.3817614649487054E-02
0.9635942477742897E-02 0.6885390581283880E-02
0.1847241513238332E-01 0.1094085630140653E-01
0.3179190367214565E-01 0.1581728538518057E-01
0.5030636405050507E-01 0.2129142636454853E-01
0.7449442868952319E-01 0.2712481569656370E-01
0.1045979502135202E+00 0.3308456773919071E-01
0.1406326475828715E+00 0.3895216905306892E-01
0.1824044449022998E+00 0.4452688339606666E-01
0.2295280679235570E+00 0.4962723403902098E-01
0.2814468220422235E+00 0.5409202169130247E-01
0.3374533767644982E+00 0.5778135262022458E-01
0.3967116179369689E+00 0.6057773920656186E-01
0.4582796041927400E+00 0.6238718893653459E-01
0.5211335571597729E+00 0.6314016307782669E-01
0.5841926980689389E+00 0.6279229386348975E-01
0.6463446423449487E+00 0.6132477029316637E-01
0.7064709858680002E+00 0.5874432665998542E-01
0.7634726623238107E+00 0.5508279084756487E-01
0.8162946187294954E+00 0.5039617034177984E-01
0.8639493438008133E+00 0.4476327290202123E-01
0.9055387898384755E+00 0.3828387702474601E-01
0.9402742542357631E+00 0.3107648956468336E-01
0.9674938463383342E+00 0.2327578565976658E-01
0.9866773942995437E+00 0.1503024417658587E-01
0.9974613070359063E+00 0.6508977351752366E-02

integration. Specifically, integrands have the form

n∑
k=0

γk · log(x+ h) +
m∑
j=1

βk,j · (x+ h)αj

 · Pk(x),(5.5)

where Pk denotes the (normalized) orthogonal polynomial of order k on the interval
[0, 1]; βk,j , γk are arbitrary real numbers; αj are arbitrary real numbers on the interval
[−0.65, 1]; and h is an arbitrary positive real number. In this case, the calculations
were conducted in double precision; the 38-node quadrature formula for n = 19 is
given in Table 10; its precision is 10−9.

Several observations can be made from Tables 1–8 and from the more detailed
numerical experiments we have conducted:

• The algorithm of this paper is always effective for Chebyshev systems; it
almost always works for non-Chebyshev systems.
• The scheme does not lose very many digits compared with the machine preci-

sion; when the calculations are performed in double precision, the quadratures

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 919

Table 6
22-node quadrature for functions of the form (5.5) with α ∈ [−0.1, 1], N = 4, and precision 10−15.

±xi wi
0.1666008119316040E+00 0.3286464553329054E+00
0.4736467937561296E+00 0.2782402062916909E+00
0.7129463900017805E+00 0.1977249261400840E+00
0.8687173264995090E+00 0.1158087624474726E+00
0.9515411665787298E+00 0.5425992604604305E-01
0.9862971262509680E+00 0.1943874113675287E-01
0.9972429072629104E+00 0.4979788483749470E-02
0.9996464539418006E+00 0.8238003428108275E-03
0.9999757993153293E+00 0.7462712208720397E-04
0.9999993605804343E+00 0.2746237603563529E-05
0.9999999970230195E+00 0.2041880191195951E-07

Table 7
27-node quadrature for functions of the form (5.5) with α ∈ [−0.1, 1], N = 9, and precision 10−15.

±xi wi
0.0000000000000000E+00 0.1969765126094452E+00
0.1953889665467211E+00 0.1922287111905558E+00
0.3814298736462841E+00 0.1784269782500965E+00
0.5496484616443740E+00 0.1568677485350913E+00
0.6932613279607421E+00 0.1296176364576521E+00
0.8078808016610349E+00 0.9937321489137896E-01
0.8920478424190657E+00 0.6925317917837661E-01
0.9475053154471952E+00 0.4247396818782292E-01
0.9790448975739819E+00 0.2179872525134398E-01
0.9936444652327659E+00 0.8672220251831163E-02
0.9986936386311707E+00 0.2388475528070173E-02
0.9998477986092101E+00 0.3837648653769931E-03
0.9999927156219827E+00 0.2671422777541431E-04
0.9999999335937359E+00 0.4068798910349743E-06

can be obtained to 11 or 12 digits; the accuracy of quadratures in Tables 1–9
is full double precision; we used extended precision arithmetic in Fortran to
obtain them.
• The algorithm of this paper is not very efficient. For example, the quadrature

formula in Table 1 took about two minutes of CPU time on UltraSPARC 2;
the quadrature in Table 8 took about two hours of CPU time. Of course,
extended precision on the UltraSPARC is quite inefficient; in double precision,
Table 8 took about four minutes to construct. In any event, the quadratures
of the type presented in this paper need not be constructed “on the fly”;
the nodes and weights can be precomputed and stored. From this point of
view, the CPU time requirements of our algorithm are not excessive. Still,
its CPU time requirements grow as n3 for large n, making it unsuitable for
the construction of quadratures of very high order.

6. Generalizations and conclusions. We have constructed a scheme for the
design of generalized Gaussian quadratures for fairly broad classes of functions. The
results presented here should be viewed as somewhat experimental, since while the
algorithm appears to work under quite general conditions, we can prove only that it
has to work for Chebyshev systems.

Several possible extensions of the work suggest themselves:

1. Quadratures of the type designed in this paper can be used within compound

920 H. CHENG, V. ROKHLIN, AND N. YARVIN

Table 8
33-node quadrature for functions of the form (5.5) with α ∈ [−0.1, 1], N = 19, and precision

10−15.

±xi wi
0.0000000000000000E+00 0.1802406542699465E+00
0.1789856568226836E+00 0.1764865559769247E+00
0.3505713663705831E+00 0.1655482040246752E+00
0.5079970396268890E+00 0.1483733690643724E+00
0.6457344058749438E+00 0.1264620956535221E+00
0.7599840782344723E+00 0.1017484935648103E+00
0.8490304782768580E+00 0.7643386171408831E-01
0.9134021329241244E+00 0.5276203409291129E-01
0.9557717316319267E+00 0.3272086426808218E-01
0.9805181730564275E+00 0.1766845539228831E-01
0.9929045523533901E+00 0.7963812531655223E-02
0.9979798758935006E+00 0.2833884283485953E-02
0.9995837651123616E+00 0.7387521680930171E-03
0.9999445617386989E+00 0.1267394032662049E-03
0.9999960165362139E+00 0.1207609748958691E-04
0.9999998889650372E+00 0.4709227238502033E-06
0.9999999994557687E+00 0.3706639850258617E-08

Table 9
45-node quadrature for functions of the form (5.5) with α ∈ [−0.1, 1], N = 39, and precision

10−15.

±xi wi
0.0000000000000000E+00 0.1138212938786054E+00
0.1135283181390291E+00 0.1129431358863252E+00
0.2253080046824045E+00 0.1103317059272695E+00
0.3336364252858657E+00 0.1060558645237672E+00
0.4369024052356911E+00 0.1002294986469973E+00
0.5336306707891807E+00 0.9301028558331059E-01
0.6225248777667337E+00 0.8459812566475355E-01
0.7025089656717720E+00 0.7523338442881639E-01
0.7727667118189729E+00 0.6519506433099722E-01
0.8327794264993337E+00 0.5479889055074179E-01
0.8823615451977041E+00 0.4439489209928996E-01
0.9216930322777481E+00 0.3436308131973152E-01
0.9513451962287941E+00 0.2510376733595393E-01
0.9722913641056944E+00 0.1701539437521317E-01
0.9858845322639776E+00 0.1044852849794223E-01
0.9937724959340503E+00 0.5626146436355554E-02
0.9977200386244100E+00 0.2543352365327656E-02
0.9993454278943935E+00 0.9118380718941661E-03
0.9998636273258416E+00 0.2403706487446808E-03
0.9999815974719829E+00 0.4181929949775085E-04
0.9999986596740707E+00 0.4045883666118617E-05
0.9999999622133619E+00 0.1599158044436823E-06
0.9999999998137450E+00 0.1268296767711113E-08

quadrature rules, not unlike the classical Gaussian quadratures. In particular, they
can be substituted for Gaussian quadratures in the scheme described in subsection 3.4.
If the functions to be integrated have (for example) power singularities at the left end
of the interval of integration, the quadrature rules in Example 5.1 will eliminate
the bunching of nodes near the left end of the interval. In this respect, of particular
interest are quadratures of the type found in Example 5.3, since their use will eliminate
the bunching of quadrature nodes near the ends of the interval for integrands with

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 921

Table 10
38-node quadrature for functions of the form (5.5) with α ∈ [−0.65, 1], N = 19, and precision

10−9.

xi wi
0.7629165866352161E-18 0.4643955333268610E-17
0.3799719398931375E-16 0.1132690565299208E-15
0.5684549949701512E-15 0.1423549582265871E-14
0.6085909916179373E-14 0.1371876219104025E-13
0.5277191865393953E-13 0.1094397021531007E-12
0.3900442913791902E-12 0.7534990994077416E-12
0.2535538557277294E-11 0.4603432835276850E-11
0.1481755662897140E-10 0.2545533729683496E-10
0.7911595380511587E-10 0.1293022088581050E-09
0.3907746000477183E-09 0.6102781198001779E-09
0.1803070816493823E-08 0.2700678436986190E-08
0.7833265344260583E-08 0.1128792193586090E-07
0.3224897189563689E-07 0.4482855569803782E-07
0.1264894823726299E-06 0.1700035548631482E-06
0.4747932260937661E-06 0.6182057321480894E-06
0.1711978528765632E-05 0.2163108715557027E-05
0.5948052018171647E-05 0.7302447810573277E-05
0.1995877304286260E-04 0.2382492261847977E-04
0.6475274273537152E-04 0.7511062044871306E-04
0.2029004100170709E-03 0.2279609908900293E-03
0.6109309950274235E-03 0.6592765068003472E-03
0.1747449285439932E-02 0.1781666222619331E-02
0.4661579935095226E-02 0.4378093849756735E-02
0.1135932523990354E-01 0.9537600800370288E-02
0.2491532030262493E-01 0.1820679046524441E-01
0.4902801284057732E-01 0.3060746663786768E-01
0.8713816071641225E-01 0.4600643316091537E-01
0.1415514175271372E+00 0.6292513465068938E-01
0.2128806314974303E+00 0.7951989233968431E-01
0.2998564528132552E+00 0.9391761648476182E-01
0.3994239415560721E+00 0.1044517799613406E+00
0.5070313867113639E+00 0.1098153664961849E+00
0.6170411438386144E+00 0.1091553255900476E+00
0.7232121752054713E+00 0.1021230666276667E+00
0.8192137516286219E+00 0.8888680524875885E-01
0.8991333728333283E+00 0.7010796674100402E-01
0.9579443204807173E+00 0.4688508195206744E-01
0.9919093183441774E+00 0.2069742637648333E-01

power singularities anywhere on R outside the interval of integration. Furthermore,
one does not have to replace classical Gaussian quadratures with ours on all of the
subintervals of a compound rule; it is sufficient to do so only on those subintervals near
the ends of the interval of integration. In other situations, different special-purpose
generalized Gaussian quadratures might be used. Such adaptive compound rules have
been constructed; a paper describing them is in preparation.

2. While our numerical experiments indicate that the scheme of this paper works
under very general conditions, we have been able to prove only that it has to work for
Chebyshev systems (see subsection 2.1). This discrepancy seems to indicate that it
might be profitable to investigate generalizations of Theorem 2.4 to sets of functions
other than Chebyshev systems.

3. By combining Observation 2.1 and Remark 2.3 with results in sections 3 and
4, it is fairly straightforward to construct algorithms for the efficient interpolation
of fairly large classes of singular functions. For example, the nodes x1, x2, . . . , x36 in

922 H. CHENG, V. ROKHLIN, AND N. YARVIN

Table 5 lead to a stable interpolation formula on the interval [0, 1] for all functions of
the form

n∑
k=0

Pk(x) ·
m∑
j=1

βk,j · xαj(6.1)

with −0.3 ≤ αj ≤ 1, 0 ≤ k ≤ 19, and the precision of interpolation 10−15. Inter-
polation schemes of this type are currently under vigorous investigation and will be
reported in the near future.

4. In many situations (especially in the numerical solution of partial differential
equations), it is desirable to have “quadrature” formulae that, in addition to eval-
uating integrals, would evaluate certain pseudodifferential operators, i.e., derivative,
Hilbert transform, derivative of the Hilbert transform, etc. Clearly, such quadratures
cannot have positive weights, except for the Hilbert transform. Several such quadra-
tures have been constructed numerically, and the appropriate theory appears to be
fairly straightforward; this work will be reported at a later date.

5. While the theory of Gaussian quadratures in one dimension is extremely simple
and is well understood, no similar theory exists in higher dimensions, except for
a few scattered results (see, for example, [9, 14]). The approach of this paper is
quite different from the classical Gaussian quadratures, and it appears possible to
generalize it (at least formally) to higher dimensions. While the advantages of such
a construction would be significant, our investigation of it is at a very early stage. If
successful, it will be reported at a later date.

REFERENCES

[1] R. Bulirsch and J. Stoer, Fehlerabschätzungen und Extrapolation mit Rationalen Funktionen
bei Verfahren vom Richardson-Typus, Numer. Math., 6 (1964), pp. 413–427.

[2] F. Gantmacher and M. Krein, Oscillation Matrices and Kernels and Small Oscillations
of Mechanical Systems, 2nd ed., Gosudarstv. Izdat. Tehn-Teor. Lit., Moscow, 1950 (in
Russian).

[3] W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. and Statist. Comput., 3
(1982), pp. 289–317.

[4] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Appli-
cations, CBMS-NSF Regional Conf. Ser. Appl. Math. 26, SIAM, Philadelphia, PA, 1977.

[5] T. Hrycak and V. Rokhlin, An improved fast multipole algorithm for potential fields, SIAM
J. Sci. Comput., 19 (1998), pp. 1804–1826.

[6] S. Karlin, The existence of eigenvalues for integral operators, Trans. Amer. Math. Soc., 113
(1964), pp. 1–17.

[7] S. Karlin and W. J. Studden, Tchebycheff Systems with Applications in Analysis and Statis-
tics, Wiley-Interscience, New York, 1966.

[8] M. G. Krein, The Ideas of P.L. Chebyshev and A.A. Markov in the Theory of Limiting Values
of Integrals, Amer. Math. Soc. Transl. Ser. 2, 12, AMS, Providence, RI, 1959, pp. 1–122.

[9] J. N. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules for the triangle,
J. Inst. Math. Appl., 15 (1975), pp. 19–32.

[10] J. Ma, V. Rokhlin, and S. Wandzura, Generalized Gaussian quadratures rules for systems
of arbitrary functions, SIAM J. Numer. Anal., 33 (1996), pp. 971–996.

[11] A. A. Markov, On the Limiting Values of Integrals in Connection with Interpolation, Zap.
Imp. Akad. Nauk. Fiz.-Mat. Otd. (8) 6 (1898) (in Russian).

[12] A. A. Markov, Selected Papers on Continued Fractions and the Theory of Functions Deviating
Least from Zero, OGIZ, Moscow, Leningrad, 1948 (in Russian).

[13] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd ed., Springer-Verlag,
Berlin, New York, 1993.

OPTIMIZATION, QUADRATURE, AND INTERPOLATION 923

[14] S. Wandzura and H. Xiao, Quadrature Rules on Triangles in R2, Technical report
YALEU/DCS/RR-1168, Yale University, New Haven, CT, 1998.

[15] N. Yarvin and V. Rokhlin, Generalized Gaussian quadratures and singular value decomposi-
tions of integral operators, SIAM J. Sci. Comput., 20 (1999), pp. 699–718.

[16] N. Yarvin and V. Rokhlin, An improved fast multipole algorithm for potential fields on the
line, SIAM J. Numer. Anal., 36 (1999), pp. 629–666.

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION
WITH STRUCTURED APPLICATIONS∗

ANDREW R. CONN† , LUÍS N. VICENTE‡ , AND CHANDU VISWESWARIAH§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 924–947

To John Dennis on the occasion of his 60th birthday.

Abstract. In this paper we propose extensions to trust-region algorithms in which the classical
step is augmented with a second step that we insist yields a decrease in the value of the objective
function. The classical convergence theory for trust-region algorithms is adapted to this class of
two-step algorithms.

The algorithms can be applied to any problem with variable(s) whose contribution to the objective
function is a known functional form. In the nonlinear programming package LANCELOT, they have
been applied to update slack variables and variables introduced to solve minimax problems, leading to
enhanced optimization efficiency. Extensive numerical results are presented to show the effectiveness
of these techniques.

Key words. trust regions, line searches, two-step algorithms, spacer steps, slack variables,
LANCELOT, minimax problems, expensive function evaluations, circuit optimization

AMS subject classifications. 49M37, 90C06, 90C30

PII. S1052623498334396

1. Introduction. In nonlinear optimization problems with expensive function
and gradient evaluations, it is desirable to extract as much improvement as possible
at each iteration of an algorithm. When the objective function contains a subset
of variables that occurs in a predictable functional form, a second, computationally
relatively inexpensive, update can be applied to these variables following a classical
optimization step. The additional step provides a further reduction in the objective
function and can lead to superior optimization efficiency. The two-step algorithms
have been successfully applied to the updating of slack variables and to a particular
formulation of minimax problems, as is indicated by numerical results on a variety of
problems. In these instances a subset of variables (slack variables and variables in-
troduced to solve minimax problems) appears in a fixed, known algebraic form in the
objective function. However, since it can be applied to any problem where a subset of
the variables can be optimized relatively cheaply compared with the cost of evaluating
the entire function (for example if some terms require simulation and other indepen-
dent terms are available analytically), their applicability is really rather broad. We
propose modifications to existing nonlinear optimization algorithms. An alternative
approach, when feasible, is to reformulate the original problem by eliminating a sub-
set of variables and then to apply the algorithms in the remaining variables (see, for
example, Golub and Pereyra [17]).

∗Received by the editors February 15, 1998; accepted for publication (in revised form) June 9,
1999; published electronically September 24, 1999.

http://www.siam.org/journals/siopt/9-4/33439.html
†Department of Mathematical Sciences, IBM T.J. Watson Research Center, Route 134 and

Taconic, Room 33-206, Yorktown Heights, NY 10598 (arconn@watson.ibm.com).
‡Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal (lvicente@

mat.uc.pt). This work was begun when this author was visiting the IBM T.J. Watson Research
Center at Yorktown Heights and was supported in part by Centro de Matemática da Universidade de
Coimbra, Instituto de Telecomunicações, FCT, Praxis XXI 2/2.1/MAT/346/94, and IBM Portugal.
§Computer Architecture and Design Automation, IBM T.J. Watson Research Center, Route 134

and Taconic, Room 33-156, Yorktown Heights, NY 10598.

924

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 925

This paper deals with two-step algorithms where the second step is required to
yield a decrease in the value of the objective function. The analysis given here covers
the global convergence of two-step trust-region algorithms and it is presented for the
unconstrained minimization problem

minimize f(y),(1.1)

where y ∈ Rp and f : Rp −→ R is a twice continuously differentiable function. For
both trust regions and line searches, one can consider two versions of the two-step
algorithms, one called greedy and the other called conservative. The greedy version
exploits as much as possible the decrease obtained by the second step, whereas the
conservative approach calculates the second step only after the first step has been
confirmed to satisfy the traditional criteria required for global convergence. We point
out that the conservative two-step line-search algorithm is not new and can be found
in the books by Bertsekas [1, section 1.3.1] and Luenberger [19, section 7.10], where
the second step is called a spacer step. A description of the greedy and conservative
two-step line-search algorithms can be found in [11].

In trust regions, if the second step is guaranteed to decrease the value of the
objective function, global convergence of the type lim infk−→+∞ ‖∇f(yk)‖ = 0 is
immediately attained. Further, in the cases where the first step would be rejected,
the sum of the first and second steps has a better chance of being accepted (see
Remark 3.1). To obtain limk−→+∞ ‖∇f(yk)‖ = 0, either the norm of the second step
has to be controlled by the trust region (see condition (3.9)) or the decrease on the
objective function attained by the second step has to be of the order of magnitude of
the norm of this step (see condition (3.8)).

The update of the slack variables referred to above motivated the study of the
local rate of convergence of a two-step Newton’s method. We show that a second
Newton step in some of the variables retains the q-quadratic rate of convergence of
the traditional Newton’s method.

This paper is structured as follows. In section 2 we introduce the two-step trust-
region algorithms, and in section 3 we analyze their global convergence properties.
The local rate of the two-step Newton’s method is studied in section 4. The applica-
tion of the two-step ideas to update slack variables and variables introduced for the
solution of minimax problems is described in section 5. Section 6 presents the nu-
merical results obtained with LANCELOT using these updates for analytic problems
and dynamic-simulation-based and analytic static-timing-based circuit optimization
problems. Finally, some conclusions are drawn in section 7.

2. Two-step trust-region algorithms. We first consider the trust-region frame-
work presented in the paper by Moré [20] for unconstrained minimization. The (clas-
sical) trust-region algorithm builds a quadratic model of the form

mk(yk + s) = f(yk) +∇f(yk)T s+
1

2
sTHks

at the current point yk, whereHk is an approximation to∇2f(yk) (note thatmk(yk) =
f(yk)). Then a step sk is computed by approximately solving the trust-region sub-
problem

minimize mk(yk + s)

subject to ‖s‖ ≤ ∆k,
(2.1)

926 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

where ∆k is called the trust-region radius and ‖·‖ is an arbitrary norm. The new point
yk+1 = yk + sk is tested for acceptance. If the actual reduction f(yk)− f(yk + sk) is
larger than a given fraction of the predicted reduction mk(yk)−mk(yk+sk), then the
step sk and the new point yk+1 are accepted. In this situation, the quadratic model
mk(yk + s) is considered to be a good approximation to the function f(y) in the
region ‖yk − y‖ ≤ ∆k. The trust radius may be increased. Otherwise, the quadratic
model mk(yk + s) is considered not to be a good approximation to the function f(y)
in the region ‖y − yk‖ ≤ ∆k. In this case, the new point yk+1 is rejected, and a new
trust-region subproblem of the form (2.1) is solved for a smaller value of the trust
radius. This simple trust-region algorithm is described below.

Algorithm 2.1 (trust-region algorithm).
1. Given y0, the value f(y0), the gradient ∇f(y0) and an approximation H0 to

the Hessian of f at y0, and the initial trust-region radius ∆0. Set k = 0.
Choose γ and α in (0, 1).

2. Compute a step sk based on the trust-region problem (2.1).
3. Compute

ρk =
f(yk)− f(yk + sk)

mk(yk)−mk(yk + sk)
.

4. In the case where

ρk > α,

set

yk+1 = yk + sk,

compute Hk+1, and select ∆k+1 satisfying ∆k+1 ≥ ∆k.
Otherwise, set

yk+1 = yk , Hk+1 = Hk, and ∆k+1 = γ∆k.

5. Increment k by one and go to step 2.
The mechanism used to update the trust radius that is described in Algorithm

2.1 is simple and suffices to prove convergence results. In practice, with the goal of
improving optimization efficiency, one uses updating schemes that are more complex,
involving several subcases according to the value of ρk.

We propose in this paper a modification of this trust-region algorithm. We are
motivated by a situation where it is desirable to update slack variables and variables
introduced to solve minimax problems, at every iteration of the trust-region algo-
rithm [7] implemented in LANCELOT [9]. See section 5 for more details on practical
applications.

The two-step trust-region algorithm is quite easy to describe. Suppose that after
computing a step s̄k based on the trust-region subproblem (2.1) we know some prop-
erties of the function f(y) that enable us to compute a new step ŝk for which we can
guarantee that f(yk + s̄k + ŝk) < f(yk + s̄k). In this situation we would certainly like
to have yk+1 = yk + s̄k + ŝk and to test whether this new point should be accepted.
This modification requires a careful redefinition of the actual and predicted reductions
given for Algorithm 2.1. The new actual and predicted reductions that we propose
are

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 927

ared(yk, s̄k, ŝk) = f(yk)− f(yk + s̄k + ŝk),(2.2)

pred(yk, s̄k, ŝk) = mk(yk)−mk(yk + s̄k) + f(yk + s̄k)− f(yk + s̄k + ŝk).(2.3)

The new predicted reduction is the predicted reduction obtained by the first step plus
the (actual) reduction obtained by the second step. The choice pred(yk, s̄k, ŝk) =
mk(yk)−mk(yk+ s̄k+ ŝk) is not appropriate since the second step ŝk is not computed
using the model mk(yk + s).

The two-step trust-region algorithm is given below.
Algorithm 2.2 (two-step trust-region algorithm, greedy).
1. Same as in Algorithm 2.1.
2. Compute a step s̄k based on the trust-region problem (2.1).
3. If possible, find another step ŝk such that

f(yk + s̄k + ŝk) < f(yk + s̄k).

Otherwise, set ŝk = 0.
4. Compute

ρ̂k =
ared(yk, s̄k, ŝk)

pred(yk, s̄k, ŝk)
.

5. In the case where

ρ̂k > α,

set

yk+1 = yk + s̄k + ŝk,

compute Hk+1, and select ∆k+1 satisfying ∆k+1 ≥ ∆k.
Otherwise, set

yk+1 = yk , Hk+1 = Hk, and ∆k+1 = γ∆k.

6. Increment k by one and go to step 2.
The two-step trust-region Algorithm 2.2 evaluates the new point yk + s̄k + ŝk

for acceptance after both steps s̄k and ŝk have been computed. We call this version
“greedy” because it tries to take as much advantage as possible of the decrease ob-
tained by the second step ŝk. Note that although the function f is evaluated twice
in Algorithm 2.2, the reevaluation is often computationally inexpensive. The context
in which we are particularly interested involves relatively expensive evaluations at
yk + s̄k and evaluations at yk + s̄k + ŝk involving only a subset of the variables that
are cheap to compute (see section 5).

We could also consider a two-step trust-region algorithm, where first an acceptable
step s̄k is determined and only afterward a second step ŝk is computed. This algorithm
is outlined below.

Algorithm 2.3 (two-step trust-region algorithm, conservative).
1. Same as in Algorithm 2.1.
2. Repeat

(a) Compute a step s̄k based on the trust-region problem (2.1).

928 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

(b) Compute

ρk =
f(yk)− f(yk + s̄k)

mk(yk)−mk(yk + s̄k)
.

(c) If ρk > α, then set

ȳk = yk + s̄k,

compute ∆k+1 satisfying ∆k+1 ≥ ∆k, and set accepted = true.
If ρk ≤ α, set ∆k = γ∆k and accepted = false.

Until accepted.
3. If possible, find another step ŝk such that

f(ȳk + ŝk) < f(ȳk).

Otherwise, set ŝk = 0.
4. Set yk+1 = ȳk + ŝk.
5. Update Hk. Increment k by one and go to step 2.

The same comments about the function evaluations apply to Algorithm 2.3 after
the computation of a successful step s̄k. However, in the case of Algorithm 2.3, the
function f has to be evaluated twice only in iterations corresponding to successful
first steps s̄k.

3. Global convergence of the two-step trust-region algorithms. We ana-
lyze first the two-step trust-region Algorithm 2.2, i.e., the greedy version. The analysis
for the conservative Algorithm 2.3 is similar.

In this section we make the assumption that {Hk} is a bounded sequence. So,
there exists a σ > 0 for which

‖Hk‖ ≤ σ for all k.(3.1)

We require the step s̄k to satisfy a fraction of Cauchy decrease on the trust-region
problem (2.1). In other words, we ask s̄k to satisfy

f(yk)−mk(yk + s̄k) ≥ β (mk(yk)−mk(yk + ck))(3.2)

for β ∈ (0, 1]. The step ck is called the Cauchy step, and it is defined as the solution
of the scalar problem in the unknown η

minimize mk(yk + s)

subject to ‖s‖ ≤ ∆k ,

s = η∇f(yk) , η ∈ R.

There is a variety of algorithms that compute steps satisfying this condition (see [3],
[22], [23], [25], and [26]).

Proposition 3.1. If s̄k satisfies a fraction of Cauchy decrease, then

f(yk)−mk(yk + s̄k) ≥ β

2
‖∇f(yk)‖ min

{
∆k,
‖∇f(yk)‖

σ

}
,(3.3)

where β and σ are as in (3.2) and (3.1), respectively.

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 929

Proof. For the proof see Powell [24, Theorem 4] or Moré [20, Lemma 4.8].
If we use this proposition and the fact that f(yk+ s̄k) > f(yk+ s̄k+ ŝk), we obtain

pred(yk, s̄k, ŝk) = f(yk)−mk(yk + s̄k) + f(yk + s̄k)− f(yk + s̄k + ŝk)

≥ β

2
‖∇f(yk)‖ min

{
∆k,
‖∇f(yk)‖

σ

}
+ f(yk + s̄k)− f(yk + s̄k + ŝk)

≥ β

2
‖∇f(yk)‖ min

{
∆k,
‖∇f(yk)‖

σ

}
.(3.4)

This inequality is crucial to prove global convergence of the two-step algorithm. In
particular, if the iteration k is successful, then

ared(yk, s̄k, ŝk) = f(yk)− f(yk + s̄k + ŝk)

≥ αβ
2 ‖∇f(yk)‖ min

{
∆k,

‖∇f(yk)‖
σ

}
.

(3.5)

We are ready to prove the first convergence result.
Theorem 3.1. Consider a sequence {yk} generated by Algorithm 2.2 where s̄k

satisfies (3.2). If f is continuously differentiable and bounded below on

L(y0) = {y : f(y) ≤ f(y0)} ,
and {Hk} is a bounded sequence, then

lim inf
k−→+∞

‖∇f(yk)‖ = 0.(3.6)

So, if the sequence {yk} is bounded, there exists at least one limit point y∗ for which
∇f(y∗) = 0.

Proof. The proof is similar to the proof given in [20, Theorem 4.10].
Assume by contradiction that {‖∇f(yk)‖} is bounded away from zero, i.e., that

there exists an ε > 0 such that ‖∇f(yk)‖ ≥ ε for all k. As in [20, Theorem 4.10], we
make direct use of (3.5) and of the rules that update the trust radius, to obtain

+∞∑
k=0

∆k < +∞,

and so limk−→+∞∆k = 0.
The next step is to show that limk−→+∞ |ρ̂k − 1| = 0. Note that from the defini-

tions (2.2) and (2.3), we have

ared(yk, s̄k, ŝk) − pred(yk, s̄k, ŝk)

= f(yk)− f(yk + s̄k) +∇f(yk)T s̄k + 1
2 s̄
T
kHks̄k,

(3.7)

which in turn, by using a Taylor series expansion and ‖s̄k‖ ≤ ∆k, implies

|ared(yk, s̄k, ŝk)− pred(yk, s̄k, ŝk)| ≤ o(∆k).

This inequality and (3.4) show that |ρ̂k − 1| converges to zero. The rest of the proof
follows a classical argument in trust regions: if ρ̂k converges to one, the rules that
update the trust radius show that ∆k cannot converge to zero. So, a contradiction is
attained and the proof is completed.

930 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

The result of Theorem 3.1 does not require the step ŝk to be O(∆k), which may
seem surprising. This result shows the appropriateness of the definitions given in (2.2)
and (2.3) for the actual and predicted reductions. These definitions allow us to obtain
the conditions (3.5) and (3.7) that are crucial to establish (3.6).

Remark 3.1. It is also important to note that the definitions (2.2) and (2.3) can
improve the acceptability of a step. In fact, we have

ρ̂k =
tk + ρk
tk + 1

≡ ρ̂k(tk),

where tk = f(yk+s̄k)−f(yk+s̄k+ŝk)
mk(yk)−mk(yk+s̄k) and ρk = f(yk)−f(yk+s̄k)

mk(yk)−mk(yk+s̄k) , as before. We now note

that ρ̂k(0) = ρk and the function ρ̂k(tk) is strictly increasing if ρk < 1. In other words,
in cases where a standard trust-region algorithm rejects a step the modified criterion
is always better than the usual one. Further, it can be noted that ρ̂k−1 = ρk−1

tk+1 , which
indicates that all successful iterations of the standard algorithm will also be successful
in the modified two-step algorithm. In particular, ρ̂k > 1 whenever ρk > 1.

The next step in the analysis is to prove that, with additional conditions on the
second step, limk−→+∞ ‖∇f(yk)‖ = 0.

Theorem 3.2. Consider a sequence {yk} generated by Algorithm 2.2 where s̄k
satisfies (3.2). Assume that f is continuously differentiable and bounded below on
L(y0) and that {Hk} is a bounded sequence. If ∇f is uniformly continuous on L(y0)
and if either

f(yk + s̄k)− f(yk + s̄k + ŝk) ≥ c1‖ŝk‖(3.8)

or

‖ŝk‖ ≤ c2∆k,(3.9)

where c1 and c2 are positive constants independent of k, then

lim
k−→+∞

‖∇f(yk)‖ = 0.(3.10)

So, if the sequence {yk} is bounded, every limit point y∗ satisfies ∇f(y∗) = 0.
Proof. The proof is similar to the proof given in [20, Theorem 4.14]. See also

Thomas [27].
We show the result by contradiction. Assume, therefore, that there exists an

ε1 ∈ (0, 1) and a subsequence indexed by {mi} of successful iterates such that, for all
mi in this subsequence, ‖∇f(ymi)‖ ≥ ε1. Theorem 3.1 guarantees the existence of
another subsequence indexed by {li} such that ‖∇f(yk)‖ ≥ ε2, for mi ≤ k < li and
‖∇f(yli)‖ < ε2 (where {mi} is, without loss of generality, the subsequence previously
mentioned). Here ε2 is any real number chosen to be in (0, ε1). Since {f(yk)−f(yk+1)}
converges to zero, for k sufficiently large corresponding to successful iterations mi ≤
k < li

f(yk)− f(yk+1) ≥ κ1 ∆k + c1‖ŝk‖(3.11)

holds if (3.8) is satisfied, and

f(yk)− f(yk+1) ≥ κ1 ∆k(3.12)

holds otherwise with κ1 = αβε2
2 .

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 931

We consider the cases (3.8) and (3.9) separately. In both cases we make use of

‖ymi − yli‖ ≤
li−1∑
k=mi

‖yk − yk+1‖,

f(ymi)− f(yli) =

li−1∑
k=mi

[f(yk)− f(yk+1)].

In the sums
∑li−1
k=mi

we consider only indices corresponding to successful iterations.
If (3.8) holds, then we use (3.11) to obtain∑li−1

k=mi
[f(yk)− f(yk+1)] ≥ ∑li−1

k=mi
[κ1∆k + c1‖ŝk‖]

≥ min{κ1, c1}
∑li−1
k=mi

[‖s̄k‖+ ‖ŝk‖]

≥ min{κ1, c1}
∑li−1
k=mi

‖yk − yk+1‖.
If (3.9) holds, then we appeal to (3.12) and write∑li−1

k=mi
[f(yk)− f(yk+1)] ≥ ∑li−1

k=mi
κ1∆k

≥ κ1

2 min{1, 1
c2
}∑li−1

k=mi
[‖s̄k‖+ ‖ŝk‖]

≥ κ1

2 min{1, 1
c2
}∑li−1

k=mi
‖yk − yk+1‖.

In either case we obtain

‖ymi − yli‖ ≤ κ2 (f(ymi)− f(yli)) ,

and since the right-hand side of this inequality goes to zero, so does the left-hand side
‖ymi − yli‖. Since the gradient of f is uniformly continuous, we have for i sufficiently
large that

ε1 ≤ ‖∇f(ymi)‖ ≤ ‖∇f(ymi)−∇f(yli)‖+ ‖∇f(yli)‖ ≤ 2ε2.

Since ε2 can be any number in (0, ε1) this inequality contradicts the supposi-
tion.

In the theorem above we required the norm of the step ŝk to be either O(∆k)
or O (f(yk + s̄k) − f(yk + s̄k + ŝk)). The former condition can be enforced in step 2
of Algorithm 2.2, although this might not be beneficial and could lead to an inferior
decrease.

We can obtain global convergence to a point that also satisfies the necessary
second-order conditions for optimality. For this purpose, we require the step s̄k to
satisfy a fraction of optimal decrease for the trust-region problem (2.1). In other
words, we ask s̄k to satisfy

f(yk)−mk(yk + s̄k) ≥ β (f(yk)−mk(yk + s∗k)) ,(3.13)

where β ∈ (0, 1], and s∗k is an optimal solution of (2.1). (This condition can be
weakened in several ways [20].) A step s̄k satisfying a fraction of optimal decrease
can be computed by using the algorithms proposed in [22] and [25] in the case where
the trust-region norm is Euclidean. The global convergence result is the following.

932 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

Theorem 3.3. Consider a sequence {yk} generated by Algorithm 2.2, where
Hk = ∇2f(yk) and s̄k satisfies (3.13). If L(y0) is compact and f is twice continuously
differentiable on L(y0), then there exists at least one limit point y∗ for which ∇f(y∗) =
0 and ∇2f(y∗) is positive semidefinite.

Proof. The proof is basically the same as the proof of Theorem 4.7 in [22].
To obtain stronger global convergence results to second-order points, for instance,

the results in Theorems 4.11 and 4.13 in [22] (see also [21, Theorem 4.17, c and d]),
other conditions are required, such as ‖ŝk‖ being of O(∆k).

The next results show that the second step can preserve the nice local properties
of the behavior of the trust radius that are typical in trust-region algorithms.

Theorem 3.4. Let {yk} be a sequence generated by Algorithm 2.2 where s̄k
satisfies (3.2) and Hk = ∇2f(yk). In addition, assume that the step ŝk satisfies
either condition (3.8) or condition (3.9). If f is twice continuously differentiable and
bounded below on L(y0) and {yk} has a limit point y∗ such that H∗ = ∇2f(y∗) is
positive definite, then {yk} converges to y∗, all iterations are eventually successful,
and {∆k} is bounded away from zero.

Proof. From Theorem 3.2 we can guarantee that limk−→+∞ ‖∇f(yk)‖ = 0. There-
fore, the proof is basically the same as the proof of Theorem 4.19 in [20].

An alternative to this result, where we do not impose conditions (3.8) or (3.9) on
the second step, is given below. However, we need to assume that {yk} converges to
y∗.

Theorem 3.5. Let {yk} be a sequence generated by Algorithm 2.2, where s̄k
satisfies (3.2) and Hk = ∇2f(yk). If f is twice continuously differentiable on L(y0)
and {yk} converges to a point y∗ such that H∗ = ∇2f(y∗) is positive definite, then all
iterations are eventually successful and {∆k} is bounded away from zero.

Proof. The first step s̄k yields a decrease in the quadratic model:

mk(yk)−mk(yk + s̄k) = −∇f(yk)T s̄k − 1

2
s̄TkHks̄k ≥ 0.

Thus, the assumptions made on Hk and H∗ guarantee

‖s̄k‖ ≤ c3‖∇f(yk)‖(3.14)

for sufficiently large k, which in turn, by using (3.4), implies

pred(yk, s̄k, ŝk) ≥ c4‖s̄k‖2.(3.15)

(The constants c3 and c4 are independent of k.)
A Taylor series expansion for the expression (3.7) gives

|ared(yk, s̄k, ŝk)− pred(yk, s̄k, ŝk)| ≤ o(‖s̄k‖2) .(3.16)

The fact that {yk} converges and the result lim infk−→+∞ ‖∇f(yk)‖ = 0 of
Theorem 3.1 together imply limk−→+∞ ‖∇f(yk)‖ = 0. Thus, from (3.14) we get
limk−→+∞ ‖s̄k‖ = 0.

The proof is terminated with a typical argument in trust regions. From (3.15),
(3.16), and limk−→+∞ ‖s̄k‖ = 0, we obtain the limit

lim
k−→+∞

∣∣∣∣ared(yk, s̄k, ŝk)

pred(yk, s̄k, ŝk)
− 1

∣∣∣∣ = 0,

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 933

which shows, by appealing to the rules that update the trust radius, that all itera-
tions are eventually successful and the trust radius is uniformly bounded away from
zero.

The global convergence analysis for Algorithm 2.3 is identical to the analysis given
above for Algorithm 2.2. We point out that Algorithm 2.3 is well defined since at a
nonstationary point it is always possible to find an acceptable first step. Also, for
every k,

f(yk)− f(yk+1) = f(yk)− f(yk + s̄k) + f(yk + s̄k)− f(yk+1)

≥ αβ

2
‖∇f(yk)‖ min

{
∆k,
‖∇f(yk)‖

σ

}
+ f(yk + s̄k)− f(yk+1)

≥ αβ

2
‖∇f(yk)‖ min

{
∆k,
‖∇f(yk)‖

σ

}
.

Thus, the results given in Theorems 3.1–3.5 hold for Algorithm 2.3. The lim inf–type
result (3.6) is obtained under the classical assumptions for trust-region algorithms
for unconstrained optimization. To obtain the lim-type result (3.10) one of the two
conditions (3.8) and (3.9) is required.

In the case of the applications considered in section 5, the decrease obtained by
the second step ŝk is always guaranteed to satisfy

f(yk + s̄k)− f(yk + s̄k + ŝk) ≥ c5‖ŝk‖2.(3.17)

Moreover, the objective function strictly decreases along the segment between the
points yk+ s̄k and yk+ s̄k+ ŝk. In this case we can modify step 3 of Algorithms 2.2 and
2.3 in such a way that we meet the requirements of Theorem 3.2. This modification
is given below. It is easy to verify that ŝk 6= 0 satisfies f(yk + s̄k + ŝk) < f(yk + s̄k)
and either (3.8) or (3.9).

Algorithm 3.1 (step 3 for Algorithms 2.2 and 2.3, quadratic decrease case).
3. Compute a step ŝk such that

f(yk + s̄k)− f(yk + s̄k + ŝk) ≥ c5‖ŝk‖2 .
If ‖ŝk‖ < ν, then scale ŝk by min{1, c2∆k

ν } so that ‖ŝk‖ ≤ c2∆k and ŝk is not
enlarged.
(Otherwise (3.8) holds with c1 = νc5.)

The positive parameters ν and c2 should be set a priori in step 1 of Algorithms
2.2 and 2.3.

Of course, we would like to prove the result of Theorem 3.2 for the case where the
condition (3.8) is replaced by the condition (3.17). However, such a result is unlikely
to be true.

4. Local rate of convergence of a two-step Newton’s method. In the next
section we are interested in two-step algorithms where the second step is calculated
as a Newton-type step in some of the variables. In this section we investigate the
local rate of convergence for an algorithm where each step is composed of two Newton
steps, the second being computed only for a subset of the variables. For this purpose
let

y =

(
x
u

)
.

934 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

Suppose the first step s̄k is a full Newton step, i.e., s̄k = −∇2f(yk)−1∇f(yk). Also,
let

ȳk =

(
x̄k
ūk

)
= yk + s̄k.

At the intermediate point ȳk, a Newton step is applied in the variables u with x = x̄k
fixed. This two-step Newton’s method is described below.

Algorithm 4.1 (two-step Newton’s method).
1. Choose y0.
2. For k = 1, 2, . . . do

2.1 Compute s̄k = −∇2f(yk)−1∇f(yk) and set ȳk = yk + s̄k.

2.2 Compute ŝk = (
0

−∇2
uuf(ȳk)−1∇uf(ȳk)

) and set sk = s̄k + ŝk.

2.3 Set yk+1 = yk + sk.
The proof of the local convergence rate of the two-step Newton’s method requires

a few modifications from the standard proof of Newton’s method [12, Theorem 5.2.1].
Recall that that proof of Newton’s method is by induction.

Corollary 4.1. Let f be twice continuously differentiable in an open set D
where the second partial derivatives are Lipschitz continuous. If {yk} is a sequence
generated by Algorithm 4.1 converging to a point y∗ ∈ D for which ∇f(y∗) = 0 and
∇2f(y∗) is positive definite, then {yk} converges with a q-quadratic rate.

Proof. If yk is sufficiently close to y∗, the perturbation result [12, Theorem 3.1.4]
can be used to prove the nonsingularity of the Hessian matrix ∇2f(yk). Furthermore,

‖ȳk − y∗‖ ≤ c6‖yk − y∗‖2.(4.1)

Now we show that ∇2
uuf(ȳk) is also nonsingular. First we point out that ∇2

uuf(y)
is Lipschitz continuous on D and ∇2

uuf(y∗) is positive definite. Thus, inequality
(4.1) and the perturbation lemma cited above together imply the nonsingularity of
∇2
uuf(ȳk). Hence the method is locally well defined, and the second step yields

‖yk+1 − ȳk‖ = ‖ŝk‖ = ‖∇2
uuf(ȳk)−1 (∇uf(ȳk)−∇uf(y∗)) ‖ ≤ c7‖ȳk − y∗‖,(4.2)

since ∇uf(y) is Lipschitz continuous near y∗. Now we use inequalities (4.1) and (4.2)
and write

‖yk+1 − y∗‖ ≤ ‖yk+1 − ȳk‖+ ‖ȳk − y∗‖
≤ (c7 + 1)‖ȳk − y∗‖
≤ c6(c7 + 1)‖yk − y∗‖2.

This last inequality establishes the q-quadratic rate of convergence.

5. Applications. We begin by considering updating the slack variables in
LANCELOT. Suppose the problem we are trying to solve has the form

minimize f(x)

subject to ci(x) ≥ 0 , i = 1, . . . ,m,
(5.1)

where x ∈ Rn and n and m are positive integers. The technique implemented in the
LANCELOT package [9] is the augmented Lagrangian algorithm proposed by Conn,

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 935

Gould, and Toint in [8]. For the application of the augmented Lagrangian algorithm
this problem is reformulated as

minimize f(x)

subject to ci(x)− ui = 0 , i = 1, . . . ,m,

ui ≥ 0 , i = 1, . . . ,m,

by adding the slack variables ui, i = 1, . . . ,m. This algorithm considers the following
augmented Lagrangian merit function:

Φ(x, u, λ, S, µ) = f(x) +

m∑
i=1

λi(ci(x)− ui) +
1

2µ

m∑
i=1

sii(ci(x)− ui)2,

where λi is an estimate for the Lagrange multiplier associated with the ith constraint,
µ is a (positive) penalty parameter, sii is a (positive) scaling factor that is associated
with the ith constraint, and S = [sij] with sij = 0 for i 6= j.

LANCELOT [7], [9] solves a sequence of minimization problems with simple
bounds of the form

minimize Φ(x, u, λ, S, µ)

subject to ui ≥ 0 , i = 1, . . . ,m,
(5.2)

for fixed values of µ, sii, and λi, i = 1, . . . ,m. The two-step trust-region framework
and analysis described in this paper for unconstrained minimization problems can
be extended in an entirely straightforward way to a number of algorithms for min-
imization problems with simple bounds, in particular to the algorithms [7] used by
LANCELOT to solve problem (5.2).

If x is fixed, the function Φ(x, u, λ, S, µ) is quadratic in the slack variables u. Let
us denote this quadratic by q(u; x):

q(u; x) = Φ(x, u, λ, S, µ) = d(x) + e(x)Tu+
1

2
uTFu,

where d(x) and e(x) depend on x but F is constant. (The dependency on λi, sii, and
µ is not important since these are constants fixed before the minimization process is
started.)

The key idea is to update these slack variables at every iteration k of the trust-
region algorithm [7] that is used in LANCELOT to solve problem (5.2). The trust-
region algorithm computes, at the current point yk, a first step s̄k. Now, at the new
point yk + s̄k we compute the step ŝk by updating the slack variables u. So, we have

yk =

(
xk
uk

)
, s̄k =

(
(s̄k)x
(s̄k)u

)
, ŝk =

(
0

∆uk

)
,

f(yk + s̄k) = q(ūk; x̄k) , f(yk + s̄k + ŝk) = q(ūk + ∆uk; x̄k) ,

where

x̄k = xk + (s̄k)x , ūk = uk + (s̄k)u .

936 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

(Here f represents the objective function of sections 1–4.) Note that the second
step ŝk is exclusively in the components associated with slack variables. This step is
computed as uk+1 − ūk, where uk+1 is the optimal solution of

minimize q(u; x̄k)

subject to ui ≥ 0 , i = 1, . . . ,m.
(5.3)

Due to the simple form of this quadratic, the solution is explicit:

(uk+1)i = max

{
0,
µλi
sii

+ ci(x̄k)

}
, i = 1, . . . ,m.(5.4)

It is important to remark that these updates require no further function or gradient
evaluations. They have also been considered in the codes NPSOL [16] and SNOPT
[15] to update slack variables after the application of a line search to the augmented
Lagrangian merit function and prior to the solution of the next quadratic program-
ming problem. Other ways of dealing with slack variables have been studied in the
literature (see Gould [18] and the references therein).

For the study of the impact of the slack variable update on the global convergence
of the trust-region algorithm, the step in these variables is required only to decrease
the quadratic q(u; x̄k) from ūk to ūk + ∆uk. In such a case, we can always guarantee
that the decrease in the objective function is larger than ‖ŝk‖2, that is, that (3.17)
holds. This result is shown in the following proposition. We drop x̄k from q(· ; x̄k)
to simplify the notation.

Proposition 5.1. There exists a positive constant c5 such that, whenever q(ūk+
∆uk) < q(ūk), we have

q(ūk)− q(ūk + ∆uk) ≥ c5‖∆uk‖2.
Proof. First we note a few properties of the quadratic q(u). Simple algebraic

manipulations lead to

q(ūk)− q(ūk + ∆uk) = − (F (ūk + ∆uk) + e(x̄k))
T

∆uk +
1

2
∆uk

TF∆uk.(5.5)

Also, since q(u) is convex,

q(ūk)− q(ūk + ∆uk) ≥ ∣∣∇q(ūk + ∆uk)T∆uk
∣∣ .(5.6)

Let c be a positive constant such that c < λmin(F)
2 , where λmin(F) is the smallest

eigenvalue of F . Now we consider two cases:

1.
∣∣∣∇q (ūk + ∆uk)

T
∆uk

∣∣∣ ≥ c‖∆uk‖2. In this case we use (5.6) to obtain

q(ūk)− q(ūk + ∆uk) ≥ c‖∆uk‖2.
2.
∣∣∣∇q (ūk + ∆uk)

T
∆uk

∣∣∣ < c‖∆uk‖2. In this case we appeal to (5.5) and

∇q (ūk + ∆uk) = F (ūk + ∆uk) + e(x̄k)

to get

q(ūk)− q(ūk + ∆uk) = − (F (ūk + ∆uk) + e(x̄k))
T

∆uk +
1

2
∆uk

TF∆uk

≥
(
λmin(F)

2
− c
)
‖∆uk‖2.

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 937

The proof is completed by setting c5 = min{c, λmin(F)
2 − c}.

Another example of the application of two-step algorithms arises in one approach
to the solution of minimax problems. Consider the following minimax problem:

min
x

max
i=1,...,m

fi(x),(5.7)

where each fi is a real-valued function defined in Rn. One way of solving this mini-
max problem is to reformulate it as a nonlinear programming problem by adding an
artificial variable z. See [18] for more details. This leads to

minimize z

subject to z − fi(x)− ui = 0, i = 1, . . . ,m,(5.8)

ui ≥ 0, i = 1, . . . ,m,

where the slack variables have also been introduced. If LANCELOT is used to solve
this nonlinear programming problem, then the augmented Lagrangian algorithm re-
quires the solution of a sequence of problems with simple bounds of the type

minimize Φ(x, z, u, λ, S, µ)

subject to ui ≥ 0, i = 1, . . . ,m,
(5.9)

where

Φ(x, z, u, λ, S, µ) = z +

m∑
i=1

λi(z − fi(x)− ui) +
1

2µ

m∑
i=1

sii(z − fi(x)− ui)2.

In this situation the function Φ(x, z, u, λ, S, µ) is quadratic in the variables u and z
for fixed values of x. (Again, λ, S, and µ are constants and not variables for problem
(5.9).) The application of the two-step trust-region algorithm follows in a similar way.
The Hessian of the quadratic is positive semidefinite with the following form:

F =
1

µ

s11 0 · · · 0 −s11

0 · ·
· · ·
· · ·
· · ·
0 snn −snn
−s11 · · · · −snn

∑m
i=1 sii

,

where the last row and the last column correspond to the variable z. The solution of
the quadratic program

minimize q(z, u; x̄k)

subject to ui ≥ 0 , i = 1, . . . ,m,
(5.10)

is given by

(uk+1)i = max

{
0,
µλi
sii
− fi(x̄k) + zk+1

}
, i = 1, . . . ,m,(5.11)

938 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

where zk+1 is the solution of the equation

− 1

µ

m∑
i=1

sii max

{
0,
µλi
sii
− fi(x̄k) + z

}
+

1

µ

(
m∑
i=1

sii

)
z = b(5.12)

with right-hand side

b = −1−
m∑
i=1

(
λi − sii

µ
fi(x̄k)

)
.(5.13)

Equation (5.12) is solved easily with O(m) floating point operations and comparisons,
showing that the solution of the quadratic program (5.10) is a relatively inexpensive
calculation.

There are several nonlinear optimization problems in which some subset of the
problem variables occur linearly, for example, arrival times in static-timing-based
circuit optimization problems [6]. Such problems can also benefit from two-step
updating.

6. Numerical tests.

6.1. Analytic problems. We modified LANCELOT (release A) [9] to include
the slack variable update (5.4) and the slack and minimax variable updates (5.11)–
(5.13). These updates were incorporated in LANCELOT using a greedy two-step
modification of the trust-region algorithm [7] for minimization problems with simple
bounds that is implemented in the subroutine SBMIN. (The greedy two-step trust-
region algorithm for unconstrained minimization problems is Algorithm 2.2.) We
tested the following versions of LANCELOT:

1. LANCELOT (release A) with the default parameter configuration SPEC.SPC

file, except that we increased the maximum number of iterations to 4000.
2. Version 1 with the slack and minimax variable updates (5.4) and (5.11)–(5.13)

incorporated in SBMIN using a greedy two-step trust-region algorithm.
3. The same as version 2 but with no update of the variable z for minimax

problems, i.e., z fixed in (5.11)–(5.13).
We compared the numerical performance of these three versions on a set of prob-

lems1 from the CUTE collection [2]. This set of problems is listed in Table 6.1 and, in
the case of minimax formulations, in Table 6.2, where we mention the number of vari-
ables (including slacks and, where applicable, the minimax variable z), the number
of slack variables, and the number of equality and inequality constraints (excluding
simple bounds on the variables). Note that the minimax problems were reformulated
as nonlinear programming problems by the introduction of an additional minimax
variable z as shown above (5.8).

The computational results are presented in Tables 6.3, 6.4, and 6.5. All tests
were conducted on an IBM Risc/System 6000 model 390 workstation. In Table 6.3 we
compare the results of versions 1 and 2 for problems that are not minimax problems.
In Table 6.4 we present the results of versions 1 and 2 for minimax problems. In Table

1Although CUTE contains more than 56 problems with general constraints the majority of these
are equality constrained problems. We excluded all problems that took more than 4000 iterations
with both versions 1 and 2. We included the rest, with the exception of some problems that are
too easy, making a total of 56 problems of which 30 are minimax problems and 26 are nonminimax
problems.

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 939

Table 6.1
Nonminimax problems from the CUTE collection used in testing.

Problem name Variables Slacks Constraints
CAR2 209 30 146
CORE1 83 18 59
CORE2 157 26 134
CORKSCRW 106 70 10
CSFI1 7 2 4
CSFI2 7 2 4
HADAMARD 769 512 648
HS32 4 1 1
HS67 17 14 14
HS85 26 21 21
HS109 13 8 4
NET1 67 19 57
NET2 181 37 160
ORBIT2 298 30 207
PRODPL0 69 9 29
PRODPL1 69 9 29
SSEBNLN 218 24 96
SWOPF 97 14 92
TFI1F 3 101 101
TFI2F 3 101 101
TFI3F 3 101 101
VANDERM1 10 9 19
VANDERM2 10 9 19
VANDERM3 10 9 19
VANDERM4 5 4 9
ZIGZAG 74 10 50

6.5 we include the results of versions 1 and 3 for minimax problems. In Tables 6.4
and 6.5 we include the majority of the minimax problems but not all. (See section 6.3
for numerical results on the remaining problems.) In these tables we report the value
of the flag INFORM, the number of iterations, the total CPU time, and the determined
values (a single value if they are both the same) of the objective function. The values
of INFORM have the following meanings:

INFORM = 0 for normal return, meaning that the norm of the projected gradient
of the augmented Lagrangian function has become smaller than 10−5.

INFORM = 1 for cases where the maximum number of iterations (4000) has been
reached.

INFORM = 3 for cases where the norm of the step has become too small.
Our conclusion based on these sets of problems is that the version with the slack

and minimax variable updates exhibits superior numerical behavior. In fact, this
version required an average of 15% fewer iterations than the version without these
updates. (The problems HS109, HAIFAM, and POLAK6 were excluded from this
calculation, mainly because the comparison was extraordinarily favorable in the first
two cases and worse in the last.) Comparing Tables 6.4 and 6.5, updating the minimax
variable z in addition to two-step updates on just the slacks is seen to yield a significant
benefit. However, there are some minimax problems where the two-step algorithm
performs poorly and this situation is analyzed in detail in section 6.3.

6.2. Circuit optimization problems. We have built extensive experience with
circuit optimization problems, where—due to expensive function evaluations, modest
numerical noise levels, and practical stopping criteria—the implementation is designed
to terminate before many “asymptotic” iterations are taken. The algorithms described

940 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

Table 6.2
Minimax problems from the CUTE collection used in testing.

Problem name Variables Slacks Constraints
CB2 6 3 3
CB3 6 3 3
CHACONN1 6 3 3
CHACONN2 6 3 3
CONGIGMZ 8 5 5
COSHFUN 81 20 20
DEMYMALO 6 3 3
GIGOMEZ1 6 3 3
GOFFIN 101 50 50
HAIFAL 9301 8958 8958
HAIFAM 249 150 150
HALDMADS 48 42 42
KIWCRESC 5 2 2
MADSEN 9 6 6
MAKELA1 5 2 2
MAKELA2 6 3 3
MAKELA3 41 20 20
MAKELA4 61 40 40
MIFFLIN1 5 2 2
MIFFLIN2 5 2 2
MINMAXBD 25 20 20
POLAK1 5 2 2
POLAK2 13 2 2
POLAK3 22 10 10
POLAK4 6 3 3
POLAK5 5 2 2
POLAK6 9 4 4
SPIRAL 5 2 2
SPRALX 5 2 2
WOMFLET 6 3 3

in this paper have been used in a dynamic-simulation-based circuit optimization tool
called JiffyTune (see [4], [5], and [10]). JiffyTune optimizes transistor and wire sizes
of digital integrated circuits to meet delay, power, and area goals. It is based on
fast circuit simulation and time-domain sensitivity computation in SPECS (see [13]
and [28]). To optimize multiple path delays through a high-performance circuit, the
tuning is often formulated as a minimax problem or a minimization problem with
nonlinear inequality constraints.

We remark that many of the analytic problems (especially the minimax problems)
are rather small and involve inexpensive function evaluations. Moreover, it is clear
that two-step updating is unlikely to be helpful asymptotically in these situations.
Consequently we also report numerical results with circuit optimization problems
which are indicative of problems with expensive function evaluations, where termina-
tion (because of inherent noise and practical considerations) is encouraged to occur
before any significant asymptotic behavior. The numerical results are presented in
Table 6.6. As in version 1, the second step consisted of the slack and minimax variable
updates (5.4) and (5.11)–(5.13). However, the gradient and constraint tolerances used
were 10−3 and 10−5, respectively, with some safeguards related to an expected level
of numerical noise. We can clearly observe from Table 6.6 that the two-step algorithm
leads to better final objective function values. In practical applications where a sim-
ple function evaluation takes more than 10 minutes of CPU time, the effectiveness of
such a simple addition is indeed significant. (There are situations where the greedy

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 941

Table 6.3
Comparison between versions 1 and 2 for nonminimax problems (LANCELOT without and

with two-step updating).

Problem name Inform Iterations Total CPU Obj. function
CAR2 0/0 80/67 15.2/12.3 2.67
CORE1 0/0 953/983 7.41/17 91.1
CORE2 0/0 1048/1086 25.6/25.7 72.9
CORKSCRW 0/0 41/42 0.55/0.54 1.16
CSFI1 0/0 112/127 0.11/0.11 -49.1
CSFI2 0/0 78/83 0.07/0.07 55
HADAMARD 0/0 1709/548 2290/276 1.14/1
HS32 0/0 5/5 0.01/0.01 1
HS67 0/0 33/21 0.08/0.07 -1.16e+03
HS85 1/0 4000/3734 27.1/23.6 -1.85/-2.22
HS109 3/3 1578/753 7.58/3.11 5.36e+03
NET1 3/0 69/60 0.57/0.54 9.41e+05
NET2 3/0 95/69 3.53/2.92 1.19e+06
ORBIT2 0/3 615/612 3020/2750 312
PRODPL0 3/0 36/26 0.29/0.23 58.8
PRODPL1 0/0 56/32 0.55/0.51 35.7
SSEBNLN 0/0 51/51 1.46/1.47 1e+12
SWOPF 0/0 204/136 7.68/5.51 0.0679
TFI1 0/0 26/24 0.4/0.25 5.33
TFI2 0/0 25/45 0.33/0.41 0.649
TFI3 0/0 23/34 0.38/0.38 4.3
VANDERM1 0/0 13/13 0.05/0.08 0
VANDERM2 0/0 13/13 0.08/0.07 0
VANDERM3 0/0 14/16 0.07/0.08 0
VANDERM4 0/0 81/82 0.1/0.1 0
ZIGZAG 0/0 35/31 0.54/0.43 1.8

Table 6.4
Comparison between versions 1 and 2 for minimax problems (LANCELOT without and with

two-step updating).

Problem name Inform Iterations Total CPU Obj. function
CB2 0/0 17/11 0.03/0.01 1.95
CB3 0/0 14/10 0.05/0.02 2
CHACONN1 0/0 12/8 0.02/0.04 1.95
CHACONN2 0/0 13/10 0.01/0.02 2
CONGIGMZ 0/0 32/19 0.04/0.05 28
COSHFUN 0/0 127/69 1.31/1.06 -0.773
DEMYMALO 0/0 24/17 0.03/0.03 -3
GIGOMEZ1 0/0 27/19 0.04/0.02 -3
GOFFIN 0/0 14/4 1.03/0.67 0
HAIFAM 1/0 4000/136 1140/85.1 -45
HALDMADS 0/0 48/73 0.49/0.72 0.0001
KIWCRESC 0/0 19/14 0.02/0.02 0
MADSEN 0/0 29/18 0.05/0.04 0.616
MAKELA1 0/0 17/18 0.04/0.02 -1.41
MAKELA2 0/0 21/9 0.05/0 7.2
MAKELA4 0/0 6/4 0.09/0.08 0
MIFFLIN1 0/0 11/7 0.03/0.01 -1
MIFFLIN2 0/0 37/32 0.04/0.05 -1
POLAK1 0/0 35/19 0.04/0.02 2.72
POLAK2 0/0 40/24 0.09/0.07 54.6
POLAK5 0/0 28/20 0.07/0.04 50
POLAK6 0/0 124/149 0.24/0.23 -44
SPIRAL 0/0 85/93 0.1/0.07 0
SPRALX 0/0 87/93 0.13/0.08 0

942 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

Table 6.5
Comparison of versions 1 and 3 for minimax problems (LANCELOT without and with two-step

updating only on slacks).

Problem name Inform Iterations Total CPU Obj. function
CB2 0/0 17/17 0.03/0.03 1.95
CB3 0/0 14/16 0.05/0.03 2
CHACONN1 0/0 12/10 0.02/0.03 1.95
CHACONN2 0/0 13/13 0.01/0.04 2
CONGIGMZ 0/0 32/25 0.04/0.1 28
COSHFUN 0/0 127/92 1.31/1.08 -0.773
DEMYMALO 0/0 24/18 0.03/0.03 -3
GIGOMEZ1 0/0 27/20 0.04/0.02 -3
GOFFIN 0/0 14/8 1.03/0.66 0
HAIFAM 1/3 4000/609 1140/76.7 -45
HALDMADS 0/0 48/46 0.49/0.54 0.0001
KIWCRESC 0/0 19/18 0.02/0.03 0
MADSEN 0/0 29/23 0.05/0.05 0.616
MAKELA1 0/0 17/19 0.04/0.02 -1.41
MAKELA2 0/0 21/24 0.05/0.03 7.2
MAKELA4 0/0 6/6 0.09/0.11 0
MIFFLIN1 0/0 11/11 0.03/0.03 -1
MIFFLIN2 0/0 37/37 0.04/0.03 -1
POLAK1 0/0 35/32 0.04/0.06 2.72
POLAK2 0/0 40/15 0.09/0.04 54.6
POLAK5 0/0 28/28 0.07/0.01 50
POLAK6 0/0 124/332 0.24/0.48 -44
SPIRAL 0/0 85/85 0.1/0.07 0
SPRALX 0/0 87/87 0.13/0.09 0

two-step trust-region algorithm is able to take advantage of the decrease given by the
slack and minimax variable updates and, by doing so, this algorithm can accept steps
that otherwise would have been rejected; see Remark 3.1.)

We also applied the algorithms of this paper to analytic static-timing-based circuit
optimization problems (see Table 6.7), where the advantage of the two-step approach
is increasingly apparent for larger problems.

6.3. Further experiments with minimax problems. In this section we con-
sider those minimax problems in our test set for which the two-step algorithm not
only does not improve numerically the results obtained in the one-step case, but also
makes them considerably worse (see the first part of Table 6.8). We analyze the rea-
sons for the failure of the two-step updating on some minimax problems and discuss
a few ways to enforce better numerical behavior.

We consider the general minimax problem (5.7). Our aim is to show that for some
types of minimax problems the second step has a tendency to make the Hessian of Φ
ill-conditioned. Let us assume that λi = 0 and sii = 1 for all i = 1, . . . ,m (as happens
by default for the first LANCELOT major iteration). Under these circumstances, we
have

Φ(x, z, u, µ) = z +
1

2µ

m∑
i=1

(z − fi(x)− ui)2.

By using the notation gi(x, z, u) = z − fi(x) − ui, we have the following expressions
for the elements of the gradient of Φ:

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 943

Table 6.6
LANCELOT without and with two-step updating for dynamic-simulation-based circuit opti-

mization problems. Ineq. is the number of inequality constraints.

Problem name Variables Ineq. Iterations Total CPU Obj. function
Nonminimax:

IOmuxpower 102 42 21/29 7230/9220 -15100/-16000
durham2 13 2 17/17 93.5/93.5 472
chen2 2 1 14/14 91/91.2 4290
IOmux 101 41 60/61 18000/17700 -16200/-15900
Nov01power 5 1 37/54 24.5/35.6 273/268
lau2 5 1 33/32 47.9/46.3 158
Nov01 8 4 29/33 22.1/27.3 193/181
coulman cold 33 17 22/22 69.5/68.3 271/262
clkgen 22 5 25/5 35/10.8 1.98/1.82
coulman hot 33 17 16/32 46.2/100 283/253
davies3 16 1 30/30 368/368 254
coulman delay 33 17 26/24 72.6/73.5 116/111

Minimax:
bultmann latch 39 13 17/18 41.8/46.8 95.9/84.6
stall1 30 5 23/19 3350/3050 156/86.8
coulman cold minmax 34 17 61/80 184/229 69.4/66.9
coulman hot minmax 34 17 66/44 197/134 74.4/75.1
fleischer 110 5 53/61 267/330 -458/-505
mod5 51 10 17/51 11200/33100 98.9/19
northrop xor 18 8 67/64 78.3/77.7 -34.1/-30.2
coulman delay minmax 34 17 100/100 290/306 67.4/70.5

Table 6.7
LANCELOT without and with two-step updating for analytic (minimax) static-timing-based

circuit optimization problems. Ineq. is the number of inequality constraints.

Problem name Variables Ineq. Iterations Total CPU Obj. function
Symmetric 3 37 24 − 1 39/40 0.12/0.15 7.7
Symmetric 4 77 25 − 1 69/60 0.63/0.6 10.2
Symmetric 5 157 26 − 1 97/81 2.09/1.64 12.7
Symmetric 6 317 27 − 1 140/118 9.38/7.14 15.2
Symmetric 7 637 28 − 1 270/183 44.3/35.3 17.6
Symmetric 8 1277 29 − 1 385/340 247/221 19.9
Symmetric 9 2557 210 − 1 901/639 1920/1300 22.1

Nonsymmetric 3 37 24 − 1 44/27 0.18/0.16 12.4
Nonsymmetric 4 77 25 − 1 58/37 0.57/0.31 16
Nonsymmetric 5 157 26 − 1 78/45 1.84/0.91 19.7
Nonsymmetric 6 317 27 − 1 75/54 5.89/3.3 23.6
Nonsymmetric 7 637 28 − 1 96/50 30.9/9.02 27.7
Nonsymmetric 8 1277 29 − 1 92/53 63.6/31.6 31.7
Nonsymmetric 9 2557 210 − 1 130/63 300/95 35.7

∇xjΦ = − 1

µ

m∑
i=1

∇xjfi(x)gi(x, z, u), j = 1, . . . , n,

∇zΦ = 1 +
1

µ

m∑
i=1

gi(x, z, u),

∇uiΦ = − 1

µ
gi(x, z, u), i = 1, . . . ,m.

944 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

Table 6.8
First part: comparison of versions 1 and 2 for minimax problems (LANCELOT without and

with two-step updating). Second part: comparison of versions 4 and 5 for minimax problems
(LANCELOT without and with two-step updating).

Problem name Inform Iterations Total CPU Obj. function
HAIFAL 0/1 679/4000 872346.06/366146.81 -12.8/-12.7828
MAKELA3 0/0 66/2816 0.26/5.84 0
MINMAXBD 0/0 267/952 1.34/3.59 116
POLAK3 0/0 71/125 0.4/0.8 5.93
POLAK4 3/1 14/4000 0.04/3.23 0
WOMFLET 0/0 63/150 0.07/0.13 0

HAIFAL 0/0 287/41 61603.1/8480.99 -12.8
MAKELA3 0/0 20/48 0.09/0.22 0
MINMAXBD 0/0 47/43 0.25/0.22 116
POLAK3 0/0 44/14 0.22/0.18 5.93
POLAK4 3/3 31/15 0.04/0.04 0
WOMFLET 0/0 26/32 0.03/0.04 6.05/0

Similarly the elements of the Hessian matrix of Φ are given by

∇2
xjxk

Φ = − 1
µ

∑m
i=1[∇2

xjxk
fi(x)gi(x, z, u)−∇xjfi(x)∇xkfi(x)], ∇2

zzΦ = m
µ ,

∇2
uiul

Φ = δil
µ , ∇2

zuiΦ = − 1
µ ,

∇2
xjzΦ = − 1

µ

∑m
i=1∇xjfi(x), ∇2

uixjΦ = 1
µ∇xjfi(x),

for i, l = 1, . . . ,m and j, k = 1, . . . , n. If the magnitudes of the products∇2
xjxk

fi(x)gi(x, z, u)
are small compared to those of the products ∇xjfi(x)∇xkfi(x), then the Hessian of
Φ is given approximately by

1

µ

∑
i ai1ai1 . . .

∑
i ai1ain −∑i ai1 a11 . . . am1

...
. . .

...
...

...
. . .

...∑
i ainai1 . . .

∑
i ainain −∑i ain a1n . . . amn

−∑i ai1 . . . −∑i ain m −1 . . . −1
a11 . . . a1n −1 1
...

. . .
...

...
. . .

am1 . . . amn −1 1

,

where aij denotes ∇xjfi(x) and the indices i in the sums go from 1 to m. This matrix
is clearly singular. In fact, the (n+ 1)st row is the negative sum of the last m rows.
Moreover, any of the first n rows is a linear combination of the last m rows. As a result
of these observations, the Hessian (and the projected Hessian) of Φ is ill-conditioned
if ∣∣∣∣∣ 1µ

m∑
i=1

∇xjfi(x)∇xkfi(x)

∣∣∣∣∣ �
∣∣∣∣∣ 1µ

m∑
i=1

∇2
xjxk

fi(x)gi(x, z, u)

∣∣∣∣∣(6.1)

happens for “many” indices j and k. This is the key point in this analysis: the second
step has a tendency to produce iterates that worsen property (6.1) because it produces
a decrease on the values of gi(x, z, u) for some indices i. The Hessian of Φ might very
well be ill-conditioned if no second steps are applied, but there is no doubt (and the
numerical results are evidence of this claim) that the second step for some problems
worsens the situation by making the Hessian of Φ more ill-conditioned.

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 945

In the presence of nonzero Lagrange multipliers λi, i = 1, . . . ,m, the formulae
for the gradient and the Hessian of Φ are the same with gi(x, z, u) substituted by
gi(x, z, u) + µλi, and similar conclusions could be drawn.

The second step may produce very bad results on some minimax problems be-
cause it points toward the set {(x, z, u) : gi(x, z, u) = 0 for some i} (where the Hessian
of the augmented Lagrangian is ill-conditioned), and this effect influences negatively
the calculation of the first step at the next iteration. Given this undesirable feature of
the Hessian of Φ at points close to this set, one possible improvement to the two-step
algorithm is to make sure that the calculation of the first step is accurate (in the
LANCELOT context this could be achieved by choosing a smaller tolerance for the
stopping criterion of the conjugate-gradient technique). Another possible improve-
ment is to reduce the ill-conditioning of the Hessian of Φ (for instance by increasing
the value of the penalty parameter µ as can be seen in examples with a few variables).
Indeed, these modifications improve the bad numerical results presented before: in
the second part of Table 6.8 we compare the results obtained by the following modi-
fications of versions 1 and 2:

4. Version 1 with an initial value for the penalty parameter µ of 100 (the default
value is 0.1).

5. Version 2 with an initial value for the penalty parameter µ of 100 and a
tolerance of 10−12 in the stopping criterion for conjugate gradients.

The study of strategies that can make two-step updating more effective for minimax
problems in general is the subject for future research.

7. Concluding remarks. In this paper we presented and analyzed a framework
under which classical algorithms for nonlinear optimization can be modified to allow
second computationally efficient steps that are not generated in the conventional way
but that are guaranteed to yield decrease in the objective function. We gave as
examples of the two-step algorithms the update of slack variables in LANCELOT
and the update of variables introduced to solve minimax problems. However, we
emphasize that the two-step algorithms can be very generally applied, for example,
whenever the functions defining the problem are in a known functional form in some
of the variables.

We considered trust-region algorithms for which we proposed a greedy and a
conservative two-step algorithm. We analyzed the convergence properties of the trust-
region two-step algorithms (see [11] for line-search two-step algorithms), deriving the
conditions under which they attain global convergence. We also showed that a two-
step Newton’s method (for which the second step is computed only for a subset of the
variables) has a q-quadratic rate of convergence.

The greedy two-step algorithms are designed to exploit as much as possible the
decrease attained by the second step. The trust-region framework allowed us to design
a greedy two-step trust-region algorithm that is particularly well tailored to achieve
this purpose.

Finally, we included numerical evidence that this technique is effective, partic-
ularly for problems with expensive function evaluations. The two-step algorithms
have already found practical applications in optimization of high-performance custom
microprocessor integrated circuits.

Acknowledgments. We are grateful to N. I. M. Gould (Rutherford Appleton
Laboratory) for his comments and suggestions on an earlier version of this paper,
which led to many improvements. We are also grateful to K. Scheinberg (IBM T.J.

946 A. R. CONN, L. N. VICENTE, AND C. VISWESWARIAH

Watson Research Center) for help with the numerical results and explanation in sec-
tion 6.3. We would like to thank I. M. Elfadel (IBM T.J. Watson Research Center)
for providing the analytic static-timing-based optimization circuit problems. Finally,
we are grateful to the referees for their useful comments and suggestions.

REFERENCES

[1] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Computer Sci-
ence and Applied Mathematics, Academic Press, New York, 1982.

[2] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint, CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[3] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Approximate solution of the trust-region
problem by minimization over two-dimensional subspaces, Math. Programming, 40 (1988),
pp. 247–263.

[4] A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, and C. Visweswariah, Opti-
mization of custom MOS circuits by transistor sizing, in Proceedings, IEEE International
Conference on Computer-Aided Design, San Jose, CA, 1996, pp. 174–180.

[5] A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, C. Visweswariah, and C. W.
Wu, JiffyTune: Circuit optimization using time-domain sensitivities, IEEE Trans. CAD
of ICs and Systems, 17 (1998), pp. 1292–1309.

[6] A. R. Conn, I. M. Elfadel, W. W. Molzen, Jr., P. R. O’Brien, P. N. Strenski, C.
Visweswariah, and C. B. Whan, Gradient-based optimization of custom circuits using
a static-timing formulation, in Proceedings, 1999 Design Automation Conference, New
Orleans, LA, 1999, pp. 452–459.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Global convergence of a class of trust
region algorithms for optimization with simple bounds, SIAM J. Numer. Anal., 25 (1988),
pp. 433–460.

[8] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds, SIAM J. Numer.
Anal., 28 (1991), pp. 545–572.

[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT: A Fortran Package for Large-
Scale Nonlinear Optimization (Release A), Springer-Verlag, Berlin, Heidelberg, New York,
Tokyo, 1992.

[10] A. R. Conn, R. A. Haring, C. Visweswariah, and C. W. Wu, Circuit optimization via
adjoint Lagrangians, in Proceedings, IEEE International Conference on Computer-Aided
Design, 1997, San Jose, CA, pp. 281–288.

[11] A. R. Conn, L. N. Vicente, and C. Visweswariah, Two-Step Algorithms for Nonlinear Op-
timization with Structured Applications, Research Report RC 21198(94689), IBM Research
Division, T. J. Watson Research Center, Yorktown Heights, NY, 1998.

[12] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice–Hall, Englewood Cliffs, NJ, 1983.

[13] P. Feldmann, T. V. Nguyen, S. W. Director, and R. A. Rohrer, Sensitivity computation
in piecewise approximate circuit simulation, IEEE Trans. CAD of ICs and Systems, 10
(1991), pp. 171–183.

[14] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley, Chichester, 1987.
[15] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP Algorithm for Large-Scale

Constrained Optimization, Report NA 97-2, Department of Mathematics, University of
California, San Diego, 1997; SIAM J. Optim., submitted.

[16] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User’s Guide for NPSOL
5.0: A Fortran Package for Nonlinear Programming, Technical Report SOL 86-1, System
Optimization Laboratory, Stanford University, Stanford, CA, 1998.

[17] G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least
squares problems whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413–432.

[18] N. I. M. Gould, On solving three classes of nonlinear programming problems via simple dif-
ferentiable penalty functions, J. Optim. Theory Appl., 56 (1988), pp. 89–126.

[19] D. G. Luenberger, Linear and Nonlinear Programming, Addison–Wesley, Reading, MA, 1989.
[20] J. J. Moré, Recent developments in algorithms and software for trust region methods, in

Mathematical Programming: The State of the Art, A. Bachem, M. Grotschel, and B. Korte,
eds., Springer-Verlag, New York, 1983, pp. 258–287.

[21] J. J. Moré, Generalizations of the trust-region problem, Optim. Methods Softw., 2 (1993),

TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 947

pp. 189–209.
[22] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,

4 (1983), pp. 553–572.
[23] M. J. D. Powell, A new algorithm for unconstrained optimization, in Nonlinear Programming,

J. B. Rosen, O. L. Mangasarian, and K. Ritter, eds., Academic Press, New York, 1970,
pp. 31–66.

[24] M. J. D. Powell, Convergence properties of a class of minimization algorithms, in Nonlinear
Programming 2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic
Press, New York, 1975, pp. 1–27.

[25] D. C. Sorensen, Minimization of a large-scale quadratic function subject to a spherical con-
straint, SIAM J. Optim., 7 (1997) 141–161.

[26] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[27] S. W. Thomas, Sequential Estimation Techniques for Quasi-Newton Algorithms, Ph.D. thesis,
Cornell University, Ithaca, NY, 1975.

[28] C. Visweswariah and R. A. Rohrer, Piecewise approximate circuit simulation, IEEE Trans.
CAD of ICs and Systems, 10 (1991), pp. 861–870.

WHERE BEST TO HOLD A DRUM FAST∗

STEVEN J. COX† AND PAUL X. UHLIG‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 948–964

To John Dennis, progenitor, advocate, and friend, on his 60th birthday

Abstract. If we are allowed to fasten, say, one half of a drum’s boundary, which half produces
the lowest or highest bass note? The answer is a natural limit of solutions to a family of extremal
Robin problems for the least eigenvalue of the Laplacian. We produce explicit extremizers when the
drum is a disk while for general shapes we establish existence and necessary conditions, and we build
and test a pair of numerical methods.

Key words. membrane, eigenvalue, Robin, mixed, optimal design

AMS subject classifications. 35P15, 65K05, 73D30

PII. S1052623497326083

1. Introduction. We consider the fundamental mode of vibration of a drum-
head that is fastened along part of its boundary and free on the remainder. More
precisely, we study the least eigenvalue of

−∆u = ξu in Ω,

u = 0 on Γ,

∂u

∂n
= 0 on ∂Ω \ Γ,

where Ω is a smooth, open, bounded, connected planar set and Γ is a measurable
subset of its boundary. We denote this least eigenvalue by ξ1(Γ) and seek its extremes
as Γ varies over subsets of ∂Ω of prescribed measure. Closely related questions for one-
dimensional continua have been raised in the engineering literature; see, e.g., Mroz
and Rozvany [14] and Chuang and Hou [5].

We begin the analysis of our model problem by expressing the two boundary
conditions in the single equation

(1.1) 1Γu+ (1− 1Γ)∂u/∂n = 0 on ∂Ω,

where 1Γ denotes the characteristic function of Γ. With an eye toward a convenient
variational characterization of ξ1(Γ) we note that (1.1) is not a boundary condition of
the third (or Robin) type. To achieve this the coefficient of ∂u/∂n must be constant.
Before blindly dividing through by 1 − 1Γ we introduce a simple regularization. In
particular, we arrive at (1.1) in the limit as ε→ 0 in

1Γu+ (1 + ε− 1Γ)∂u/∂n = 0 on ∂Ω

or, equivalently,

(1.2) ε−11Γu+ ∂u/∂n = 0 on ∂Ω.

∗Received by the editors August 19, 1997; accepted for publication (in revised form) December
2, 1997; published electronically September 24, 1999. This work was supported by NSF grant DMS
9258312 and a fellowship from the Humboldt Foundation.

http://www.siam.org/journals/siopt/9-4/32608.html
†Department of Computational and Applied Mathematics, Rice University, 6100 Main St., Hous-

ton, TX 77005 (cox@rice.edu).
‡Mathematics Department, St. Mary’s University, San Antonio, TX 78228 (mathpaul

@vax.stmarytx.edu).

948

WHERE BEST TO HOLD A DRUM FAST 949

Physically, the drumhead remains free on ∂Ω \Γ while on Γ it is elastically supported
by a fastener of stiffness 1/ε. We denote by ξε1(Γ) the least eigenvalue of −∆ subject
to (1.2). This boundary condition is indeed of the third type and so we may record
the weak formulation

(1.3)

∫
Ω

∇u · ∇v dx+ ε−1

∫
∂Ω

1Γuv ds = ξ

∫
Ω

uv dx ∀ v ∈ H1(Ω)

and the associated variational characterization

(1.4) ξε1(Γ) = inf
u∈H1

1 (Ω)

∫
Ω

|∇u|2 dx+ ε−1

∫
∂Ω

1Γu
2 ds,

where H1
1 (Ω) is the class of H1(Ω) functions with L2(Ω) norm one. The advantage of

the chosen regularization lies in the fact that in both (1.3) and (1.4), the underlying
function space does not vary with Γ.

We now fix a number γ ∈ (0, 1) (the Dirichlet fraction) and formulate the optimal
design problems whose solutions will determine the range of ξε1(Γ) as Γ varies over
those subsets of ∂Ω of size γ|∂Ω|. In particular, we study

inf
1Γ∈adγ(∂Ω)

ξε1(Γ) and sup
1Γ∈adγ(∂Ω)

ξε1(Γ),

where

adγ(∂Ω) ≡ {1Γ : Γ ⊂ ∂Ω, |Γ| = γ|∂Ω|}
and |Γ| denotes the one-dimensional Hausdorff measure of Γ. Generally speaking,
we shall see that minimal designs favor a connected Γ while maximal designs tend
to fragment Γ. Accordingly, in section 2, we establish existence of minimizers and
(relaxed) maximizers by showing that ξε1 is weak* continuous on the weak* closure of
adγ(∂Ω). In section 3 we characterize minimizers via first order necessary conditions
and provide an explicit minimal design for the disk. In section 4 analogous first order
conditions lead to the uniqueness of the maximizer and its characterization in terms of
the normal derivative of the first eigenfunction of the pure Dirichlet problem. In section
5 we construct distinct approaches to the numerical minimization and maximization
of ξε1. We test these methods on elliptical and L-shaped drums in section 6.

Although stated in the context of the planar Laplacian, our arguments apply,
without change, to second order self-adjoint elliptic equations on smooth bounded
domains in an arbitrary number of dimensions. Although isoperimetric inequalities
for mixed and Robin problems have received considerable attention (see, e.g., Bandle
[1]) the paper of Buttazzo [4] appears to be the first and only to consider an extremal
Robin problem on a fixed domain.

On completion of this work we learned that Denzler [10] had been simultaneously
pursuing the same set of questions. Via methods quite distinct from those invoked
here he showed that ξ1 attains its minimum on adγ(∂Ω) and that the supremum of
ξ1 is λ1(Ω), the least Dirichlet eigenvalue.

2. Existence. We shall denote by L(∂Ω, [0, 1]) those measurable functions on
∂Ω that take values in the interval [0, 1]. With respect to the weak* topology on
L∞(∂Ω) Friedland [12] has shown the following.

Proposition 2.1. The weak* closure of adγ(∂Ω) is

ad∗γ(∂Ω) ≡
{
θ ∈ L(∂Ω, [0, 1]) :

∫
∂Ω

θ(x) ds = γ|∂Ω|
}
.

950 STEVEN J. COX AND PAUL X. UHLIG

In addition, adγ(∂Ω) is the set of extreme points of ad∗γ(∂Ω).
For θ ∈ ad∗γ(∂Ω) we denote by ξε1(θ) the first eigenvalue of −∆ subject to

(2.1) ε−1θu+ ∂u/∂n = 0 on ∂Ω.

The analogous variational characterization

(2.2) ξε1(θ) = inf
u∈H1

1 (Ω)
Rε(u, θ), where Rε(u, θ) ≡

∫
Ω

|∇u|2 dx+ε−1

∫
∂Ω

θu2 ds,

leads immediately to

(2.3) 0 < ξε1(θ) ≤ λ1(Ω) ∀ θ ∈ ad∗γ(∂Ω) and ∀ ε > 0,

where λ1(Ω) is the first eigenvalue of −∆ subject to Dirichlet conditions over the
entire boundary. As Rε(u, θ) = Rε(|u|, θ) it follows from (2.2) that ξε1(θ) is simple
and may be associated with a nonnegative eigenfunction.

Proposition 2.2. The mapping θ 7→ ξε1(θ) is continuous with respect to the
weak* topology on L(∂Ω, [0, 1]).

Proof. Suppose θn
∗
⇀ θ and that un is the positive first eigenfunction, associated

with θn, normalized such that

(2.4)

∫
Ω

u2
n dx = 1 and

∫
Ω

|∇un|2 dx+ ε−1

∫
∂Ω

θnu
2
n ds = ξε1(θn).

From (2.3) and (2.4) it follows that {un}n is bounded in H1(Ω) and hence that un ⇀ u
in H1(Ω) and un → u in L2(Ω) and the traces un|∂Ω → u|∂Ω in L2(∂Ω). In addition
ξε1(θn)→ ξ. These observations permit us to pass to the limit in the weak form∫

Ω

∇un · ∇v dx+ ε−1

∫
∂Ω

θnunv ds = ξε1(θn)

∫
Ω

unv dx

and so conclude that ξ and u constitute an eigenpair for θ. As u is positive it follows
that ξ = ξε1(θ).

As ad∗γ(∂Ω) is weak* compact Corollary 2.3 now follows.
Corollary 2.3.

inf
1Γ∈adγ(∂Ω)

ξε1(Γ) = min
θ∈ad∗γ(∂Ω)

ξε1(θ)

and

sup
1Γ∈adγ(∂Ω)

ξε1(Γ) = max
θ∈ad∗γ(∂Ω)

ξε1(θ).

Our interest is in characterizing those θ at which ξε1 attains its extremes. A number
of previous studies have produced lower and upper bounds for ξε1(θ).

Regarding the latter, such bounds are typically achieved by replacing θ with a
constant and Ω with a disk. Pólya and Szegő accomplish this for starlike Ω via the
method of similar level lines; see Bandle [1, Thm. III.3.21]. Hersch uses conformal
transplantation and so requires that Ω merely be simply connected. More precisely,
he demonstrates (see [1, Thm. III.3.17]) that

(2.5) ξε1(θ,Ω) ≤ ξε1(γ|∂Ω|/|∂DΩ|, DΩ) ∀ θ ∈ ad∗γ(∂Ω),

WHERE BEST TO HOLD A DRUM FAST 951

where DΩ is the disk with radius equal to the conformal radius of Ω. Of course, when
Ω is itself a disk this result states that θ ≡ γ is maximal.

The construction of useful lower bounds is considerably more difficult. All at-
tempts to bound ξε1(θ) from below apply only to the case of constant θ. We cite
Philippin [15], Bossel [3], and Sperb [17].

3. Minimizing ξε1. We show that θ 7→ ξε1(θ) possesses a classical, i.e., adγ(∂Ω),
minimizer. We compute it in the case of the disk while in the general case we produce
pointwise optimality conditions.

Returning to (2.2) we recognize that θ 7→ ξε1(θ) is an infimum of affine functions
of θ. The following proposition results.

Proposition 3.1. θ 7→ ξε1(θ) is concave on ad∗γ(∂Ω).
If we now recall (see, e.g., Bauer [2]) that a bounded concave function on a com-

pact convex set attains its minimum at an extreme point, we arrive at the following.
Corollary 3.2. θ 7→ ξε1(θ) attains its minimum on adγ(∂Ω).
We now produce an explicit minimizer in the case that Ω is a disk, D. This is

accomplished through circular symmetrization, defined as follows.
Given v ∈ H1(D) we take u(r, t) = v(x), where x = r(cos t, sin t) and −π < t ≤ π.

Now, at each r we replace t 7→ u(r, t) with its symmetrically increasing rearrangement

u∨(r, t) = inf {c : t ∈ {s : u(r, s) ≤ c}∗},

where A∗ is simply the interval (−|A|/2, |A|/2). We then take v∨(x) ≡ u∨(r, t) to
be the circular (increasing about t = 0) rearrangement of v. The corresponding
symmetrically decreasing rearrangement is

u∧(r, t) = u∨(r, π − |t|).

As a simple example we note that if 1Γ ∈ adγ(∂D), then

1∧Γ(t) = 1Γ∗ =
{

1 if |t| ≤ γπ,
0 otherwise.

We now recall (see, e.g., Cox and Kawohl [9]) that circular rearrangement cannot
increase the Dirichlet integral and that u∨ and 1∧Γ are oppositely ordered. As a result,

Rε(v, 1Γ) ≥ Rε(v∨, 1Γ∗) ∀ (v, 1Γ) ∈ H1
1 (D)× adγ(∂D)

and so we arrive at the following proposition.
Proposition 3.3. 1Γ 7→ ξε1(1Γ) attains its minimum at 1Γ∗ .
As 1Γ∗ is clearly independent of ε we proceed to let ε approach 0. Our preliminary

result does not require the domain to be a disk.
Lemma 3.4. If Γ ⊂ ∂Ω, then ξε1(1Γ)→ ξ1(1Γ) as ε→ 0.
Proof. Let uε ∈ H1

1 (Ω) denote the eigenfunction associated with ξε1(1Γ). Now,
recalling (2.3), we find

(3.1)

∫
Ω

|∇uε|2 dx+ ε−1

∫
Γ

u2
ε dx = ξε1(1Γ) ≤ λ1(Ω).

As a result, {uε}ε>0 is clearly bounded in H1(Ω) and, moreover,∫
Γ

u2
ε dx = O(ε).

952 STEVEN J. COX AND PAUL X. UHLIG

Fig. 1. Minimal fastening of the disk.

Hence (a subsequence of) uε converges weakly in H1(Ω) to some u0 ∈ H1
1 (Ω,Γ),

those functions in H1
1 (Ω) with vanishing trace on Γ. We now show that u0 is the

eigenfunction associated with ξ1(1Γ). Taking the limit inferior throughout (3.1) gives∫
Ω

|∇u0|2 dx ≤ lim inf
ε→0

ξε1(Γ).

Now if there exists a u ∈ H1
1 (Ω,Γ) and a δ > 0 for which∫
Ω

|∇u|2 dx ≤
∫

Ω

|∇u0|2 dx− δ,

then (3.1) implies Rε(u, 1Γ) < ξε1(Γ) for some ε, contrary to Rayleigh’s principle.
Hence,

ξ1(Γ) =

∫
Ω

|∇u0|2 dx ≤ lim inf
ε→0

ξε1(Γ).

The simple observation ξε1(Γ) ≤ ξ1(Γ) completes the argument.
Corollary 3.5. 1Γ 7→ ξ1(1Γ) attains its minimum at 1Γ∗ .
In Figure 1 we have plotted 1Γ∗ for γ = 1/2 on the disk of unit diameter along with

the contours of the associated first eigenfunction, computed by the pdeeig routine
in MATLAB [13] via a piecewise linear approximation on 259328 triangles. The
computed value of ξ1(1Γ∗) is 4.86.

As the eigenvalue problem for such a design does not yield to separation of vari-
ables we return to the question posed at the close of the last section, namely, can
one bound ξ1(1Γ∗) from below? Even in this simplest of all possible geometries our
best analytical bound requires the majority of the boundary to be Dirichlet. More
precisely, if Ω is the disk of radius R and γ > 1/2, then

ξ1(1Γ∗) ≥ 2γ − 1

2R2
j2
0 ,

WHERE BEST TO HOLD A DRUM FAST 953

where j0 is the first zero of the Bessel function J0. This follows from Bandle’s gener-
alization of a result of Nehari; see [1, Thm. III.3.9].

We now return to a general domain and denote by θ̌ε the minimizer of ξε1 over
ad∗γ(∂Ω). We take ǔε ∈ H1

1 (Ω) to be the positive eigenfunction associated with θ̌ε and
record

ξε1(θ̌ε) = Rε(ǔε, θ̌ε) = min
θ∈ad∗γ(∂Ω)

min
u∈H1

1 (Ω)
Rε(u, θ) = min

u∈H1
1 (Ω)

min
θ∈ad∗γ(∂Ω)

Rε(u, θ).

In other words,

Rε(ǔε, θ̌ε) = min
u∈H1

1 (Ω)
Rε(u, θ̌ε) and Rε(ǔε, θ̌ε) = min

θ∈ad∗γ(∂Ω)
Rε(ǔε, θ).

The former simply states that ǔε is an eigenfunction corresponding to θ̌ε. The latter,
however, informs us that

(3.2)

∫
∂Ω

θ̌ε|ǔε|2 ds = min
θ∈ad∗γ(∂Ω)

∫
∂Ω

θ|ǔε|2 ds.

We remove the integral constraint on θ̌ε at the cost of a Lagrange multiplier. More
precisely, from the Lagrange multiplier rule, [6, Thm. 6.1.1], we deduce that (3.2)
implies the existence of ν1 ≥ 0 and |ν1|+ |ν2| > 0 such that

(3.3)

∫
∂Ω

θ̌ε(ν1|ǔε|2 + ν2) ds = min
θ∈L(∂Ω,[0,1])

∫
∂Ω

θ(ν1|ǔε|2 + ν2) ds.

From ν1|ǔε|2 ≥ 0 we deduce from (3.3) that ν2 ≤ 0.
If ν2 = 0, then (3.3) implies that θ̌εǔε must vanish on the full boundary. Now,

the boundary condition (2.1) implies that ǔε is a Neumann eigenfunction. As ǔε does
not change sign it can only be the constant eigenfunction. Now θ̌εǔε = 0 implies that
θ̌ε is identically zero, contrary to its integral constraint. Therefore, ν2 < 0.

Now, if ν1 = 0, then as ν2 < 0, (3.3) implies that θ̌ε is identically one, contrary
to its integral constraint. Therefore, ν1 > 0.

With ν2 ≡ −ν2/ν1 we deduce from (3.3) the following pointwise necessary condi-
tions:

θ̌ε(x) = 0⇒ ǔε(x) ≥ ν,(3.4)

0 < θ̌ε(x) < 1⇒ ǔε(x) = ν,(3.5)

θ̌ε(x) = 1⇒ ǔε(x) ≤ ν.(3.6)

Recalling that θ̌ε may be assumed a member of adγ(∂Ω), it follows that θ̌ε jumps
across a level set of the trace of its corresponding eigenfunction, ǔε.

4. Maximizing ξε1. Recalling (2.5) we begin with a simple proof of the fact that
constant θ is maximal for the disk. Noting only that uγ , the eigenfunction correspond-
ing to θ ≡ γ on the disk, is radial we find

(4.1) ξε1(θ) ≤ Rε(uγ , θ) = Rε(uγ , γ) = ξε1(γ) ∀ θ ∈ ad∗γ(∂D).

With regard to general Ω we shall see that where the maximizing θ is neither zero nor
one the trace of its corresponding eigenfunction is, like uγ , constant. In addition, we
establish uniqueness of the maximizer and show that when it lies everywhere between

954 STEVEN J. COX AND PAUL X. UHLIG

zero and one it is (to lowest order in ε) proportional to the normal derivative of the
first Dirichlet eigenfunction on Ω.

The first step is the derivation of pointwise conditions analogous to (3.4)–(3.6).
These shall stem from knowledge of the gradient of θ 7→ ξε1(θ).

Proposition 4.1. θ 7→ ξε1(θ) is smooth and

〈∂ξε1(θ), ψ〉 = ε−1

∫
∂Ω

ψu2 ds,

where u ∈ H1
1 (Ω) is the nonnegative eigenfunction associated with θ.

Proof. The gradient of a simple eigenvalue of a self-adjoint operator is the gradient
of the Rayleigh quotient evaluated at the corresponding eigenfunction. See Cox [8] for
details.

If θ̂ε maximizes ξε1 over ad∗γ(∂Ω), then ∂ξε1(θ̂ε) ∈ Nad∗γ(∂Ω)(θ̂
ε), the cone of normals

to ad∗γ(∂Ω) at θ̂ε. As ad∗γ(∂Ω) is convex this means that

〈∂ξε1(θ̂ε), θ̂ε〉 = max
θ∈ad∗γ(∂Ω)

〈∂ξε1(θ̂ε), θ〉,

that is,

(4.2)

∫
∂Ω

θ̂ε|ûε|2 ds = max
θ∈ad∗γ(∂Ω)

∫
∂Ω

θ|ûε|2 ds,

where ûε is the positive eigenfunction corresponding to θ̂ε. As above, to shed the
integral constraint we invoke the Lagrange multiplier rule of Clarke. This gives a
ν1 ≤ 0 and ν2 for which |ν1|+ |ν2| > 0 and

(4.3)

∫
∂Ω

θ̂ε(ν1|ûε|2 + ν2) ds = max
θ∈L(∂Ω,[0,1])

∫
∂Ω

θ(ν1|ûε|2 + ν2) ds.

From ν1|ûε|2 ≤ 0 we deduce from (4.3) that ν2 > 0. Similarly, ν1 < 0. With ν2 ≡
−ν2/ν1 we arrive at the pointwise necessary conditions

θ̂ε(x) = 0⇒ ûε(x) ≤ ν,(4.4)

0 < θ̂ε(x) < 1⇒ ûε(x) = ν,(4.5)

θ̂ε(x) = 1⇒ ûε(x) ≥ ν.(4.6)

From Proposition 3.1 we note that these conditions are also sufficient.
A further consequence of (4.2) is that (ûε, θ̂ε) is a saddle point of Rε, i.e.,

Rε(ûε, θ) ≤ Rε(ûε, θ̂ε) ≤ Rε(u, θ̂ε) ∀ (u, θ) ∈ H1
1 (Ω)× ad∗γ(∂Ω).

From this observation comes the following proposition.
Proposition 4.2. θ̂ε is unique.
Proof. Suppose that θ1 and θ2 are both maximizers of θ 7→ ξε1(θ) and that u1 and

u2 are the respective first eigenfunctions. We find

Rε(u1, θ2) ≤ Rε(u1, θ1) ≤ Rε(u2, θ1),

Rε(u2, θ1) ≤ Rε(u2, θ2) ≤ Rε(u1, θ2).

WHERE BEST TO HOLD A DRUM FAST 955

However, as Rε(u1, θ1) = Rε(u2, θ2) we find that u1 and u2 are both eigenfunctions
for θ1 and hence u1 = u2. Recalling the respective weak forms we find∫

∂Ω

(θ1 − θ2)u1v ds = 0 ∀ v ∈ H1(Ω),

and hence θ1 = θ2 on the support of u1|∂Ω, the trace of u1. Off of the support of u1|∂Ω

it follows from (4.4) that θ1 = θ2 = 0.
From uniqueness we are able to ascertain symmetry. In particular, if Ω is symmet-

ric with respect to a line ` we may reflect θ̂ε across ` to θ̂ε` . By simply reflecting the

associated ûε it follows that ξε1(θ̂ε) = ξε1(θ̂ε`) and hence, by uniqueness, that θ̂ε = θ̂ε` .
We have proven the following.

Proposition 4.3. θ̂ε is symmetric about every line of symmetry of Ω.
This leads to a third proof of (4.1).

Proposition 4.4. If Ω is a disk, then θ̂ε ≡ γ. Disks are the only (smooth) sets
with a constant maximizer.

Proof. Full symmetry implies that θ̂ε must be constant. The only admissible
constant is γ. Given a constant maximizer, it follows from (4.5) that ǔε is identically
ν on ∂Ω. From the boundary condition (2.1) we then find that ∂ǔε/∂n = −νγ/ε on
∂Ω. Serrin [16, Thm. 2] has shown that a disk is the only C2 domain on which one
may solve (∆ + ξ)u = 0 subject to constant Dirichlet and Neumann data.

If Ω = Da is a disk of radius a, then u(r) = J0(
√
ξr) is a radial solution of

−∆u = ξu. The best eigenvalue, ξε1(γ), is therefore the least positive ξ for which

γu(a) + εu′(a) = 0.

It follows immediately then that ξε1(γ)→ λ1(Da) as ε→ 0, where λ1(Da) is the least
positive root of λ 7→ J0(

√
λa), i.e., the first Dirichlet eigenvalue of Da. This approach

to the Dirichlet eigenvalue holds, in fact, for every domain Ω.
Proposition 4.5. If θ̂ε maximizes θ 7→ ξε1(θ) over adγ(∂Ω), then ξε1(θ̂ε)→ λ1(Ω)

as ε→ 0.
Proof. As ξε1(γ) ≤ ξε1(θ̂ε) ≤ λ1(Ω) it suffices to show that

(4.7) λ1(Ω) ≤ lim inf
ε→0

ξε1(γ).

Let us denote by uε1 ∈ H1
1 (Ω) the positive eigenfunction corresponding to ξε1(γ). As

‖uε1‖2 = 1 and ‖∇uε1‖22 ≤ λ1(Ω) it follows that there exists a u1 ∈ H1
1 (Ω) for which

uε1 ⇀ u1 in H1(Ω) as ε→ 0. Given the normalization of uε1 we find that

γ

∫
∂Ω

|uε1|2 ds = ε

∫
Ω

|∇uε1|2 dx+ εξε1(γ)→ 0

as ε → 0, i.e., uε1|∂Ω → 0 in L2(∂Ω). As uε1|∂Ω → u1|∂Ω in L2(∂Ω) it follows that
u1 ∈ H1

0 (Ω). Now, given the weak lower semicontinuity of u 7→ ‖∇u‖22 and the
nonnegativity of the boundary term, we find∫

Ω

|∇u1|2 dx ≤ lim inf
ε→0

∫
Ω

|∇uε1|2 dx+
γ

ε

∫
∂Ω

|uε1|2 ds = lim inf
ε→0

ξε1(γ).

As u1 ∈ H1
0 (Ω) and ‖uε1‖2 = 1 it follows from Rayleigh’s principle that the left-hand

side is larger than λ1(Ω). This establishes (4.7).

956 STEVEN J. COX AND PAUL X. UHLIG

This proposition addresses the limiting behavior of the eigenvalue but says nothing
about the limiting optimal design. We shall now show that if the limiting design takes
values strictly between 0 and 1, then it is proportional to the normal derivative of the
first Dirichlet eigenfunction.

We begin at the necessary condition (4.5) and note that for constant ν and ξ <
λ1(Ω) one may solve

−∆u = ξu in Ω, u = ν on ∂Ω

in terms of the Dirichlet eigenfunctions, {φj}, and Dirichlet eigenvalues, {λj}, of Ω.
In particular,

u = ν + νξ
∞∑
j=1

〈φj , 1〉
λj − ξ φj .

The Robin condition (2.1) now suggests

(4.8) θ = − ε
ν

∂u

∂n
= −εξ

∞∑
j=1

〈φj , 1〉
λj − ξ

∂φj
∂n

.

Integrating this expression over ∂Ω we find

(4.9) γ|∂Ω| =
∫
∂Ω

θ ds = −εξ
∞∑
j=1

〈φj , 1〉
λj − ξ

∫
∂Ω

∂φj
∂n

ds = εξ
∞∑
j=1

〈φj , 1〉2
λj − ξ λj .

We view this as an equation for ξ. As the right side is continuous and strictly increasing
from 0 (at ξ = 0) to ∞ (at ξ = λ1(Ω)) there exists a unique solution, ξε1, depending
smoothly on ε. Expressing ξε1 as a power series, identification of like powers in (4.9)
brings

(4.10) ξε1 = λ1(Ω)− λ2
1(Ω)〈φ1, 1〉2
γ|∂Ω| ε+O(ε2).

Substituting this into (4.8) we arrive at

(4.11) θε = γ
∂φ1

∂n

/
∂φ1

∂n
+O(ε) where

∂φ1

∂n
=

1

|∂Ω|
∫
∂Ω

∂φ1

∂n
ds.

Hence, if θ̂ε takes values strictly between 0 and 1 it must necessarily be of this form.
Moreover, as the necessary conditions are also sufficient, whenever the above deriva-
tion produces an admissible design this design is maximal. Regarding the admissibility
of θε we note that, by construction, it is nonnegative and has the correct average. It
remains only to check whether it is bounded above by 1. One scenario in which this
bound is ensured is when Ω is smooth (in which case φ1 ∈ C1(Ω)) and ε and γ are
sufficiently small. Finally, we remark that (4.10) provides a nice refinement of Propo-
sition 4.5 in that it expresses, in terms of the Dirichlet fraction, γ, the rate at which
ξε1(θ̂ε) approaches λ1(Ω).

5. Algorithms. We confine the design, θ, and the eigenfunction, u, to finite-
dimensional spaces and so arrive at optimization problems amenable to a computer.

WHERE BEST TO HOLD A DRUM FAST 957

We write ∂Ω as the closure of the disjoint union of m open edges, {Γj}mj=1, and then
restrict θ to

θ(s) =
m∑
j=1

Θj1Γj (s),

where Θ ∈ Rm satisfies the box constraints

(5.1) 0 ≤ Θj ≤ 1, j = 1, . . . ,m,

and the integral constraint

(5.2)

m∑
j=1

Θj |Γj | = γ|∂Ω|.

To compute ξε1 at such a θ we restrict our search to eigenvectors of the form

u(x) =

p∑
i=1

UiTi(x),

where p < ∞ and the Ti comprise a so-called Galerkin basis for a p-dimensional
subspace of H1(Ω). On substituting this expansion into the weak form (1.3) with v
running through the Ti we arrive at the p× p eigensystem

(5.3) (K + ε−1Q(Θ))U = ΞMU,

where K and M are independent of Θ while

(5.4) Qij(Θ) =

∫
∂Ω

θTiTj ds =
m∑
k=1

Θk

∫
Γk

TiTj ds.

Let us denote the least eigenvalue of (5.3) by Ξε1(Θ). As this approximation procedure
respects the symmetry of the original problem we retain a variational characterization,

(5.5) Ξε1(Θ) = min
〈MU,U〉=1

Rε(U,Θ), Rε(U,Θ) ≡ 〈(K + ε−1Q(Θ))U,U〉.

As Θ 7→ Q(Θ) is linear it follows from (5.5) that Θ 7→ Ξε1(Θ) is concave. Now, denoting
by AD∗γ those Θ ∈ Rm satisfying (5.1) and (5.2), we may pose the finite-dimensional
optimization problems

min
Θ∈AD∗γ

Ξε1(Θ) and max
Θ∈AD∗γ

Ξε1(Θ).

As AD∗γ is compact and convex and Ξε1 is bounded and concave it follows that Θ 7→
Ξε1(Θ) attains its minimum at an extreme point of AD∗γ , i.e., on ADγ , those Θ ∈ AD∗γ
each component of which is either zero or one.

Let us now turn to the gradient of Θ 7→ Ξε1(Θ). For well-chosen basis functions,
e.g., piecewise linear hats, it can be shown that Ξε1(Θ)→ ξε1(θ) as m and p approach
∞. In particular, Ξε1(Θ) is simple for sufficiently large m and p. As a result we may
apply the finite-dimensional analogue of Proposition 4.1,

(5.6)
∂Ξε1(Θ)

∂Θk
=

1

ε

〈
∂Q(Θ)

∂Θk
Uε1 , U

ε
1

〉
,

958 STEVEN J. COX AND PAUL X. UHLIG

where the associated eigenvector, Uε1 , is normalized according to 〈MUε1 , U
ε
1 〉 = 1.

The implementation of (5.6), in particular the application of ∂Q(Θ)/∂Θk, requires a
careful accounting of the assembly of Q. Recalling (5.4) we find

∂Qij(Θ)

∂Θk
=

∫
Γk

TiTj ds.

To begin, let us evaluate these integrals under the assumption that Γk is the interval
[a, b] and that this interval is partitioned by the first components of the grid points
xi = (si, 0), i.e.,

a = s1 < s2 < · · · < sn−1 < sn = b.

We also suppose that Ti(xj) = δij and that Ti is piecewise linear. As a result

∫
Γk

TiTj ds =
1

3

|s1 − s2| if i = j = 1,
|si−1 − si|+ |si − si+1| if 1 < i = j < n,
|sn−1 − sn| if i = j = n,
|si − sj |/2 if |i− j| = 1,
0 otherwise.

Substituting the above into (5.6) we find

∂Ξε1(Θ)

∂Θk
=

1

3ε

n−1∑
i=1

{
(Uε1)2

i + (Uε1)i(U
ε
1)i+1 + (Uε1)2

i+1

} |si+1 − si|.

In the general case, i.e., where the Ti remain piecewise linear although Γk may be a
planar segment whose edges and grid points are ordered by a black-box grid generator
(as in MATLAB’s PDE toolbox), the gradient takes the form

(5.7)
∂Ξε1(Θ)

∂Θk
=

1

3ε

∑
i∈Ik
〈Uε1 〉i|ωi|, 〈Uε1 〉i ≡ (Uε1)2

ω+
i

+ (Uε1)ω+
i

(Uε1)ω−
i

+ (Uε1)2
ω−
i

,

where Ik is the set of indices of mesh edges ωi contained in Γk and ω±i are the indices
of the grid points constituting the endpoints of ωi. From here it is a simple matter
to derive the finite-dimensional analogues of our pointwise optimality conditions. In
particular, if each Γk corresponds to a single mesh edge and Θ̌ε ∈ ADγ is a classical
minimizer of Ξε1 and Ǔε1 its associated eigenvector, then there exists a ν such that

(5.8)
Θ̌ε
k = 0⇒ 〈Ǔε1 〉k > ν,

Θ̌ε
k = 1⇒ 〈Ǔε1 〉k < ν.

These conditions are reminiscent of those that arise in Krein’s problem of the optimal
distribution of mass; see, e.g., Cox [7]. As such we apply the simple alternating search
strategy of [7] to our minimum problem. More precisely, given Θ(j) ∈ ADγ ,

(I) compute U (j), the minimizer of U 7→ Rε(U,Θ(j)) subject to 〈MU,U〉 = 1.
(II) compute Θ(j+1), the minimizer of Θ 7→ Rε(U (j),Θ) subject to Θ ∈ ADγ .
(III) if Θ(j+1) 6= Θ(j), then set j = j + 1 and go to (I).
The implementation of (I) simply requires the solution of (5.3) with Θ = Θ(j).

The optimality conditions (5.8) animate the implementation of (II). More precisely,
we compute J ≡ {k : 〈U (j)〉k < ν}, where ν is chosen in such a way that∑

k∈J
|Γk| = γ|∂Ω|,

WHERE BEST TO HOLD A DRUM FAST 959

Fig. 2. The limiting maximal fastener, Φ.

and then define

Θ
(j+1)
k =

{
1 if k ∈ J ,
0 otherwise.

This completes our description of the minimization algorithm.
With respect to the maximization problem, recalling that we have a smooth,

concave function subject only to box and linear constraints, we may invoke any of a
number of standard optimization packages.

6. Numerical results. For the maximization of Ξε1 we used the constr function
found in MATLAB’s optimization toolbox. The assembly of (5.3) and the computation
of Ξε1 and Uε1 were carried out by the pdeeig function found in MATLAB’s PDE
toolbox. Given Uε1 we coded the gradient computation (5.7) ourselves. We present
here the results of our computations for two representative domains.

In the first case we consider the drumhead whose boundary is the ellipse

x2

25
+
y2

9
=

1

16
.

Recalling the discussion at the close of section 4 we expect the maximizer, Θ̂ε, as
ε→ 0, to coincide with

Φ ≡ γ ∂φ1

∂n

/
∂φ1

∂n
,

the product of γ and the normalized normal derivative of the first Dirichlet eigen-
function of the ellipse. For the purpose of illustration, in Figure 2 we have plotted
the underlying ellipse, the contours of the associated φ1, and the graph of its cor-
responding Φ, with γ = 1/2. The eigenfunction was computed at the p = 96545
vertices of 191488 triangles. The boundary was partitioned into m = 100 edges and
the associated Dirichlet eigenvalue was 20.45. Next, we set ε = 10r, let r range from

960 STEVEN J. COX AND PAUL X. UHLIG

Fig. 3. ‖Φ− Θ̂ε‖∞ as ε→ 0.

0 to −6, and denote by Θ̂10r the maximizer returned by constr on the grid quoted
above using the default stopping criteria. We measured the pointwise distance from
Θ̂10r to Φ via

R(r) ≡ ‖Φ− Θ̂10r‖∞ ≡ max
k
|Φk − Θ̂10r

k |

and have recorded its graph in Figure 3. That no improvement is seen for ε < 10−3

is most likely due to the fact that our computed Φ is itself accurate only to 10−2.
As a nonconvex example, we pursue the maximizer over the L-shaped region

familiar to users of MATLAB. It is well known (see, e.g., Fox, Henrici, and Moler [11])
that the gradient of the first Dirichlet eigenfunction is not bounded in a neighborhood
of the reentrant corner. As a result, we may not expect (4.11) to hold along the
entire boundary. In Figure 4 we have plotted Θ̂ε, the maximizer returned by constr

along with the level sets of its corresponding eigenfunction. Working over a grid of
p = 49665 vertices, 97792 triangles, and m = 192 boundary segments with ε = 10−3

and γ = 1/2 we found ξε1(Θ̂ε) ≈ 9.59. Note that the level sets indeed resemble those
of the first Dirichlet eigenfunction and that Θ̂ε behaves like a clipped version of its
normal derivative.

Finally, we wish to present numerical results for the minimization problem. As
above, we concentrate on the ellipse and the L. With respect to the former we offer in
Figures 5 and 6, respectively, the initial iterate supplied to, and final iterate delivered
by, the alternating search minimization algorithm presented at the close of the previ-
ous section. The domain was approximated by 13374 triangles with p = 7288 vertices.

WHERE BEST TO HOLD A DRUM FAST 961

Fig. 4. Maximal fastening of the L.

Fig. 5. Initial iterate.

962 STEVEN J. COX AND PAUL X. UHLIG

Fig. 6. Final iterate.

Fig. 7. Initial iterate.

WHERE BEST TO HOLD A DRUM FAST 963

Fig. 8. Final iterate.

Its boundary was partitioned into m = 1200 edges. With γ = 1/2 and ε = 0.1 the
algorithm came to rest in 69 iterations. The eigenvalue, 6.68, of the initial iterate was
diminished to 3.07. In both cases we have also plotted the contours of the associated
eigenfunction.

The initial and final iterates, along with the contours of their associated eigen-
functions, for the L-shaped drum are depicted in Figures 7 and 8. In this case the
domain was approximated by 18238 triangles with p = 9936 edges. Its boundary was
partitioned into m = 1632 edges. With γ = 1/2 and ε = 0.01 the algorithm came to
rest in 31 iterations and reduced the eigenvalue of the initial iterate, 4.08, to 0.88. We
note that the final iterate pulled the Dirichlet data away from the reentrant corner
and wrapped it around the outer corner. The resulting eigenvalue is indeed less than
1.09, the eigenvalue of the L with Dirichlet data on the three legs above the diagonal
x = y.

REFERENCES

[1] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, 1980.
[2] H. Bauer, Sur le prolongement des formes linéaires positives dans un espace vectorial ordonné,

C.R. Acad. Sci. Paris, 244 (1957), pp. 289–292.
[3] M.-H. Bossel, Membranes elastiquement liées inhomogènes ou sur une surface: Une nouvelle

extension de theoréme isoperimetrique de Rayleigh-Faber-Krahn, Z. Angew. Math. Phys.,
39 (1988), pp. 733–742.

[4] G. Buttazzo, Thin insulating layers: The optimization point of view, in Material Instabilities
in Continuum Mechanics and Related Mathematical Problems, J.M. Ball, ed., Oxford
University Press, Oxford, UK, 1988, pp. 11–19.

[5] C.H. Chuang and G.J.W. Hou, Eigenvalue sensitivity analysis of planar frames with variable
joint and support locations, AIAA J., 30 (1992), pp. 2138–2147.

964 STEVEN J. COX AND PAUL X. UHLIG

[6] F. Clarke, Optimization and Nonsmooth Analysis, 2nd ed., Classics Appl. Math. 5, SIAM,
Philadelphia, PA, 1990.

[7] S.J. Cox, The two–phase drum with the deepest bass note, Japan J. Indust. Appl. Math., 8
(1991), pp. 345–355.

[8] S.J. Cox, The generalized gradient at a multiple eigenvalue, J. Funct. Anal., 33 (1995), pp.
30–40.

[9] S.J. Cox and B. Kawohl, Circular symmetrization and extremal Robin conditions, Z. Angew.
Math. Phys., 50 (1999), pp. 301–311.

[10] J. Denzler, Windows of given area with minimal heat diffusion, Trans. Amer. Math. Soc., 351
(1999), pp. 569–580.

[11] L. Fox, P. Henrici, and C. Moler, Approximations and bounds for eigenvalues of elliptic
operators, SIAM J. Numer. Anal., 4 (1967), pp. 89–102.

[12] S. Friedland, Extremal eigenvalue problems defined for certain classes of functions, Arch.
Rational Mech. Anal., 67 (1977), pp. 73–81.

[13] Matlab User’s Guide, The Math Works Inc., Natick, MA, 1996.
[14] Z. Mroz and G.I.N. Rozvany, Optimal design of structures with variable support conditions,

J. Optim. Theory Appl., 15 (1975), pp. 85–101.
[15] G.A. Philippin, Some remarks on the elastically supported membrane, Z. Angew. Math. Phys.,

29 (1978), pp. 306–314.
[16] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971),

pp. 304–318.
[17] R. Sperb, An isoperimetric inequality for the first eigenvalue of the Laplacian under Robin

boundary conditions, in General Inequalities 6, W. Walter, ed., Birkhauser, Basel, 1992,
pp. 361–367.

A GLOBAL CONVERGENCE THEORY FOR DENNIS, EL-ALEM,
AND MACIEL’S CLASS OF TRUST-REGION ALGORITHMS FOR

CONSTRAINED OPTIMIZATION WITHOUT ASSUMING
REGULARITY∗

MAHMOUD EL-ALEM†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 965–990

To John Dennis on the occasion of his 60th birthday.

Abstract. This work presents a convergence theory for Dennis, El-Alem, and Maciel’s class of
trust-region-based algorithms for solving the smooth nonlinear programming problem with equality
constraints. The results are proved under very mild conditions on the quasi-normal and tangential
components of the trial steps. The Lagrange multiplier estimates and the Hessian estimates are
assumed to be bounded. No regularity assumption is made. In particular, linear independence of
the gradients of the constraints is not assumed. The theory proves global convergence for the class.
In particular, it shows that a subsequence of the iteration sequence satisfies one of four types of
Mayer–Bliss stationary conditions in the limit.

Key words. nonlinear programming, equality constrained problems, constrained optimization,
global convergence, regularity assumption, augmented Lagrangian, Mayer–Bliss points, stationary
points, quasi-normal step, trust region

AMS subject classifications. 65K05, 49D37

PII. S1052623497331762

1. Introduction. Over the last two decades, trust-region algorithms have en-
joyed a good reputation on the basis of their remarkable numerical reliability in con-
junction with a sound and complete convergence theory. They have proven to be very
effective and robust techniques for solving unconstrained and equality constrained
optimization problems.

The first trust-region algorithm was given by Levenberg [27] and later was red-
erived by Marquardt [30]. The algorithm was designed for solving nonlinear least-
squares problems. Powell [39] derived from the Levenberg–Marquardt method the
first trust-region algorithm for solving the unconstrained minimization problem. De-
tailed discussion of the Levenberg–Marquardt method can be found in Moré [35], and
discussion of the trust-region method for solving the unconstrained optimization prob-
lem can be found in Dennis and Schnabel [14], Fletcher [23], and Shultz, Schnabel,
and Byrd [42].

Since the mid 1980s, many authors have considered extending the trust-region
idea to the following equality constrained optimization problem:

(EQ) ≡
{

minimize f(x)
subject to C(x) = 0.

The functions f : <n → < and C : <n → <m are at least twice continuously differen-
tiable, where m < n.

∗Received by the editors December 23, 1997; accepted for publication (in revised form) March
8, 1999; published electronically September 24, 1999. This research was done while the author was
visiting the Center for Research on Parallel Computations, Rice University, Houston, TX. The author
was supported by NSF Cooperative Agreement CCR-9120008 as a visiting member of the Center for
Research on Parallel Computation.

http://www.siam.org/journals/siopt/9-4/33176.html
†Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt

(elalem@alex.eun.eg,mmelalem@hotmail.com).

965

966 MAHMOUD EL-ALEM

Most trust-region algorithms for solving problem (EQ) try to combine the trust-
region idea with the successive quadratic programming (SQP) method. In general,
the SQP method iteratively minimizes a quadratic model of the Lagrangian function

`(x, λ) = f(x) + λTC(x),(1.1)

where λ is the Lagrange multiplier vector, subject to a linear approximation of the
constraints. At each iteration k, the SQP method obtains a step sQPk and an associ-

ated Lagrange multiplier step ∆λQPk by solving the following quadratic programming
subproblem:

minimize ∇x`(xk, λk)T s+ 1
2s
THks

subject to C(xk) +∇C(xk)T s = 0,

where Hk is the Hessian of the Lagrangian function (1.1) at (xk, λk) or an approxi-
mation to it.

If a trust-region constraint is simply added to the quadratic programming sub-
problem, the resulting trust-region subproblem may be infeasible because the trust-
region constraint and the hyperplane C(xk)+∇C(xk)T s = 0 may have no intersecting
points. In other words, the two constrained sets may be disjoint. Even if they inter-
sect, there is no guarantee that when the trust-region radius δk is decreased, the above
subproblem remains feasible. Note that the global convergence of the trust-region
methods is based on being able to reduce δk until the model trust-region subproblem
accurately represents the actual problem.

To avoid possible infeasibility in the subproblem, different approaches have been
proposed. The first approach is to relax the linear constraints in such a way that the
resulting feasible set is nonempty. In particular, the hyperplane C(xk)+∇C(xk)T s =
0 is replaced by the relaxed hyperplane νkC(xk) +∇C(xk)T s = 0, where νk ∈ [0, 1].
This approach was first suggested by Miele, Huang, and Heideman [33] in the context
of a line-search globalization strategy for solving problem (EQ) (see also Miele, Cragg,
and Levy [32] and Miele, Levy, and Cragg [34]). It was later used to obtain a feasible
trust-region subproblem by Vardi [43], Byrd, Schnabel, and Schultz [10], and El-
Hallabi [21].

A major difficulty with this approach lies in the problem of choosing νk so that
a feasible trust-region subproblem is guaranteed. This difficulty makes this approach
impractical.

The second approach for resolving this infeasibility was proposed by Celis, Dennis,
and Tapia [12]. They replaced the linear constraints by the quadratic constraint
‖C(xk) + ∇C(xk)T s‖22 ≤ θk, where θk is a given parameter chosen to ensure that
the resulting trust-region subproblem is always feasible. This approach was used by
El-Alem [17] and Powell and Yuan [41]. The parameter θk is also chosen to ensure a
sufficient decrease in the quadratic model of the linearized constraints. This decrease
is at least a fraction of the decrease obtained by the Cauchy step, which is defined
to be the minimizer of ‖C(xk) +∇C(xk)T s‖22 inside the trust region in the steepest
descent direction.

In Celis, Dennis, and Tapia [12] and El-Alem [17], the parameter θk was taken to
be

θk = (1− ν̂)‖C(xk)‖22 + ν̂‖C(xk) +∇C(xk)T scpk ‖22

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 967

for some fixed ν̂ ∈ (0, 1), where scpk is the Cauchy step. In Powell and Yuan [41], the
choice of θk was

θk = {min ‖C(xk) +∇C(xk)T s‖22 : ν δk ≤ ‖s‖2 ≤ ν̄δk},
where 0 < ν ≤ ν̄ ≤ 1 and δk is the trust-region radius.

A major disadvantage with this approach lies in the fact that the resulting trust-
region subproblem has two quadratic constraints, so that there is no efficient algo-
rithm for finding a good approximation to the solution of this subproblem. Although
Williamson [45] has attempted to produce an efficient algorithm by computing an
inexact solution of the subproblem and others have suggested algorithms to solve
special cases of this subproblem (see El-Alem and Tapia [20], Yuan [46], [47], and
Zhang [51]), the results are not, in general, satisfactory. This approach will remain
impractical until an efficient way of solving the trust-region subproblem is discovered.

The reduced Hessian technique is another approach to overcoming the difficulty of
having an infeasible trust-region subproblem. This approach was suggested by Byrd
[9] and Omojokun [37]. In this approach, the trial step sk is decomposed into two
components: the tangential component stk and the normal component snk . The step
snk is computed by solving the following trust-region subproblem:

minimize ‖C(xk) +∇C(xk)T sn‖22
subject to ‖sn‖2 ≤ νδk

for some ν ∈ (0, 1). The tangential component stk is then obtained by solving another
trust-region subproblem. Let Zk be a matrix that forms an orthonormal basis for the
null space of ∇C(xk)T and let stk = Zks̄

t
k. The step s̄tk is computed by solving the

following trust-region subproblem:

minimize [ZTk (∇x`(xk, λk) +Hks
n
k)]T s̄t + 1

2 (s̄t)TZTk HkZks̄
t

subject to ‖Zks̄t‖22 ≤ δ2
k − ‖snk‖22.

The trial step sk has the form sk = snk + Zks̄
t
k.

This approach has been used by many authors. See, for example, Alexandrov [1],
[2], Alexandrov and Dennis [3], Biegler, Nocedal, and Schmid [4], Dennis and Vicente
[15], El-Alem [18], [19], Lalee [25], Lalee, Nocedal, and Plantenga [26], Maciel [28],
Plantenga [38], Vicente [44], and Zhang and Zhu [50].

One of the advantages of this approach is that the two trust-region subproblems
are similar to the trust-region subproblem for the unconstrained case.

Dennis, El-Alem, and Maciel [13] have considered a general class of trust-region-
based algorithms for solving problem (EQ). In their algorithms, the two components
of the trial step are not necessarily orthogonal. We present this class of algorithms in
the next section.

In unconstrained optimization, the use of a trust region has made it possible
to make strong guarantees of convergence. In particular, to guarantee global con-
vergence, it is not necessary to require that the Hessian approximation be positive
definite or even well conditioned, but only that it be uniformly bounded. To ensure
global convergence, the step is required only to satisfy the fraction of Cauchy decrease
condition; that is, the step must produce at least a fraction of the decrease obtained
by the Cauchy step.

Powell [40] proved a powerful theorem. He showed that if the sequence of iterates
generated by the algorithm satisfies the fraction of Cauchy decrease condition and if

968 MAHMOUD EL-ALEM

the sequence of Hessian approximations is bounded, then

lim inf
k→∞

‖∇f(xk)‖2 = 0.

Powell’s theorem does not prove convergence to a solution of the unconstrained prob-
lem. It proves only that a subsequence of the sequence of gradients of the objective
function converges to zero. The strength of this result, however, comes from the weak
assumptions imposed on the sequence of local models. Detailed discussion about the
convergence results of trust-region algorithms for unconstrained optimization can be
found in Carter [11], Moré [36], and Shultz, Schnabel, and Byrd [42].

Many authors have established global convergence results for algorithms that have
been suggested for solving problem (EQ). El-Alem [17] and Powell and Yuan [41] have
proved global convergence for variants of the Celis, Dennis, and Tapia trust-region
algorithm by showing that

lim inf
k→∞

{‖ZTk ∇f(xk)‖2 + ‖C(xk)‖2} = 0.

Analogous to Powell’s theorem for the unconstrained case, Dennis, El-Alem, and
Maciel [13] proved for their class of algorithms that

lim inf
k→∞

{‖WT
k ∇f(xk)‖2 + ‖C(xk)‖2} = 0,

where Wk is a matrix that forms a basis (not necessarily orthogonal) for the null space
of ∇C(xk)T .

In Dennis, El-Alem, and Maciel’s class of algorithms, the local model of the
problem is generally taken to be a linear model of the constraints and a quadratic
model of the Lagrangian function. The information in the local model depends on
the Lagrange multiplier estimates as well as the second-order information. Analogous
to Powell’s theorem, Dennis, El-Alem, and Maciel only require the boundedness of
the sequences of model Lagrange multipliers and Hessians. The results of Dennis,
El-Alem, and Maciel were proved under very mild conditions on the quasi-normal
and tangential components of the trial steps. However, their results were proved
under the linear independence assumption.

In this paper, we reduce Dennis, El-Alem, and Maciel’s assumptions even further
and still obtain similar global convergence results. In our theory, the linear indepen-
dence assumption on the gradients of the constraints is not made. Our theory is so
general that it holds for any algorithm that uses the augmented Lagrangian as a merit
function, the El-Alem scheme for updating the penalty parameter [17], and bounded
Lagrange multiplier and Hessian estimates. Similar results for related algorithms in
an abstract setting were established by Burke [6], [8].

The following notation is used throughout the rest of the paper. The sequence of
points generated by the algorithm is denoted by {(xk, λk)}. We abbreviate f(xk) as
fk, `(xk, λk) as `k, and so on. However, f(x) is not abbreviated when emphasizing the
dependence of f on x. We use the same symbol 0 to denote the real number zero, the
zero vector, and the zero matrix. Finally, all norms used in this paper are l2-norms.

The organization of the paper is as follows. In section 2, we present in detail
all the components of the general class of trust-region-based algorithms suggested
by Dennis, El-Alem, and Maciel [13]. An overall summary of the class is presented
at the end of this section. In section 3, we state the assumptions under which we
prove global convergence. The main results of this paper show that the algorithm

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 969

generates a sequence of iterates that has a subsequence that asymptotically satisfies
one of four types of stationary conditions for problem (EQ). In section 4, we identify
these conditions, state their definitions, and demonstrate some of their properties. In
section 5, we state our main global convergence results. Our convergence theory is
presented in sections 6–8. Finally, section 9 contains concluding remarks.

2. General trust-region-based algorithms. In this section, we present the
class of algorithms suggested by Dennis, El-Alem, and Maciel [13] for solving problem
(EQ). This is a general class of trust-region-based algorithms. The basic idea of the
trust-region algorithms is as follows. Approximate the problem by a model trust-
region subproblem. The trial step is obtained by solving this subproblem. Test for
accepting or rejecting the trial step and update the trust-region radius accordingly. If
the step is rejected, decrease the radius of the trust region and compute another one
using the new value of the trust-region radius. To test the trial steps, a merit function
must be employed. Such a merit function often involves a parameter, usually called
the penalty parameter. This parameter is updated using an updating scheme. More
details about the trust-region method for constrained optimization can be found in
Dennis, El-Alem, and Maciel [13].

In any trust-region algorithm for solving problem (EQ), there are four important
issues to be considered. At each iteration k, we must first compute a trial step, and
we address this issue in section 2.1. Once the step is computed, we will need a criteria
for accepting the trial step. Section 2.2 is devoted to this subject. To test the step,
the penalty parameter needs to be updated. We address this issue in section 2.3.
Finally, we need a procedure for updating the trust-region radius; it is presented in
section 2.4.

An overall summary of the algorithm is presented in section 2.5.

2.1. Computing a trial step. We do not present a particular way to compute
the trial steps. Instead, we present some conditions the steps must satisfy. Let sk be
decomposed into two components: the tangential component stk and the quasi-normal
component snk . The trial step will then have the form sk = stk + snk . Observe that the
two components of the trial step are not necessarily orthogonal.

If Ck 6= 0, then the quasi-normal component snk of the trial step is required to
produce at least a fraction of the decrease in the quadratic model of the linearized
constraints obtained by the Cauchy step. The Cauchy step scpk is the step that solves
the following problem:

minimize 1
2‖∇CTk s+ Ck‖2

subject to ‖s‖ ≤ τδk,
s = −ncpk ∇CkCk, ncpk > 0.

So, the quasi-normal component snk is chosen such that it satisfies, for some r1 ∈ (0, 1],

‖Ck‖2 − ‖Ck +∇CTk sn‖2 ≥ r1{‖Ck‖2 − ‖Ck +∇CTk scpk ‖2}.(2.1)

Dennis, El-Alem, and Maciel require that the quasi-normal component snk of the
trial step satisfy, at every iteration k,

‖snk‖ ≤ K‖Ck‖,(2.2)

where K is a positive constant. This condition is needed to obtain Dennis, El-Alem,
and Maciel’s global convergence results. It says that when the current point is close

970 MAHMOUD EL-ALEM

to the feasible region, the normal step must be short. It can be viewed as a relaxation
to the orthogonality condition of snk and stk.

Condition (2.2) on the normal step is inappropriate when the regularity assump-
tion is not made. It can contradict the Cauchy decrease condition (2.1) imposed
on snk . Let us consider the following example. If C(x) = x2, then the Cauchy step
scpk = −xk2 , which decreases the quadratic model by x4

k. However, any step satis-
fying (2.2) satisfies ‖snk‖ ≤ Kx2

k and will decrease the quadratic model by at most
2|CTk ∇CTk snk | ≤ 4Kx5

k. This is arbitrarily poor compared to the decrease obtained by
the Cauchy step when xk is small. For this reason, we modify condition (2.2) to be

‖snk‖ ≤ K‖smnk ‖,(2.3)

where smnk is the minimum-norm solution of

minimize ‖∇CTk s+ Ck‖2
subject to ‖s‖ ≤ τδk(2.4)

for some τ ∈ (0, 1), where δk is the trust-region radius.
Condition (2.3) deals with the above example with no difficulty. This condition is

equivalent to condition (2.2) whenever ∇Ck has full column rank and allows the full
SQP step to be taken when it is inside the trust region. We are indebted to Richard
Byrd for informing us of the importance of using condition (2.3) instead of (2.2) when
the regularity assumption is not made. We note here that the Cauchy step defined
above satisfies condition (2.3) for some K > 0.

As stated in section 5.1 of [13], we do not suggest choosing K and enforcing
condition (2.3). Rather, we suggest that (2.3) results naturally from any reasonable
algorithm for computing a step snk .

Now we use the quasi-normal component to choose a linear manifoldMk, parallel
to the null space of the constraints. Let Mk = {s : ∇CTk s = ∇CTk snk}. We select
the tangential component fromMk. Observe that the intersection ofMk and the set
{s = st + snk : ‖s‖ ≤ δk} is not empty.

On the manifold Mk, we consider the quadratic model qk(s) of the Lagrangian
function (1.1) given by

qk(s) = `k +∇x`Tk s+
1

2
sTHks.(2.5)

Let Wk be a matrix whose columns form a basis for the null space of ∇CTk . Then,
when WT

k ∇qk(snk) 6= 0, the tangential component stk is taken to be any step that
satisfies the fraction of Cauchy decrease condition from snk on qk(s) reduced to Mk.
That is, the trial step

sk = stk + snk ∈ Gk ∩Mk,(2.6)

where

Gk = {s = st+snk : ‖s‖ ≤ δk, qk(snk)−qk(s) ≥ r2[qk(snk)−qk(snk−tcpk WkW
T
k ∇qk(snk))]}.

The constant r2 ∈ (0, 1] and tcpk is given by

tcpk =

‖WT

k ∇qk(snk)‖2
∇qk(sn

k
)TWkH̄kWT

k
∇qk(sn

k
)

if
‖WT

k ∇qk(snk)‖2‖WkW
T
k ∇qk(snk)‖

∇qk(sn
k

)TWkH̄kWT
k
∇qk(sn

k
)
≤ δ̄k

and ∇qk(snk)TWkH̄kW
T
k ∇qk(snk) > 0,

δ̄k
‖WkWT

k
∇qk(sn

k
)‖ otherwise,

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 971

where H̄k = WT
k HkWk is the reduced Hessian matrix and δ̄k is the maximum length

of the step allowed inside the set Mk ∩ {s = st + snk : ‖s‖ ≤ δk} in the negative
reduced gradient direction −WT

k ∇qk(snk).
Once the trial step is computed, an estimate for the Lagrange multiplier λk+1 is

needed to determine whether the computed trial step will be accepted. At this point,
we will not present a particular way to estimate the Lagrange multiplier. Instead, we
impose a condition on the estimates of the Lagrange multiplier that is needed to prove
global convergence. The sequence {λk} of Lagrange multiplier estimates is required to
be bounded. So, any approximation to the Lagrange multiplier vector that produces a
bounded sequence can be used. For example, setting λk to a fixed vector (or even the
zero vector) for all k is valid. In section 9, we suggest two practical ways to estimate
λk that produce bounded sequences of multipliers.

2.2. Testing the trial steps. Let sk be a trial step computed by the algorithm
and let λk+1 be an estimate of the Lagrange multiplier vector. We test whether the
point (xk + sk, λk+1) will be taken as a next iterate. In order to do this, a merit
function is needed. We use, as a merit function, the augmented Lagrangian

Φ(x, λ; ρ) = f(x) + λTC(x) + ρ‖C(x)‖2,(2.7)

where ρ is the penalty parameter. Many authors have used (2.7) as a merit function.
See, for example, Gill, Murray, and Wright [24].

The actual reduction in the merit function in moving from (xk, λk) to (xk +
sk, λk+1) is defined to be

Aredk = Φ(xk, λk; ρk)− Φ(xk + sk, λk+1; ρk).

This can be written as

Aredk = `(xk, λk)− `(xk + sk, λk)−∆λTkC(xk + sk)

+ρk[‖Ck‖2 − ‖C(xk + sk)‖2],(2.8)

where ∆λk = λk+1 − λk. The predicted reduction has the form

Predk = −∇x`Tk sk −
1

2
sk
THksk −∆λTk [Ck +∇CTk sk]

+ρk[‖Ck‖2 − ‖Ck +∇CTk sk‖2].(2.9)

The acceptable step should be the step that produces a decrease in the merit
function. To test for this, the predicted reduction has to be forced to be greater than
zero by increasing the value of the penalty parameter if necessary. This takes us to
the following section.

2.3. Updating the penalty parameter. To update the penalty parameter,
Dennis, El-Alem, and Maciel [13] used a scheme proposed in [17]. This scheme ensures
that the merit function is predicted to be decreased at each iteration by at least a
fraction of the Cauchy decrease in the quadratic model of the linearized constraint.
This indicates compatibility with the fraction of Cauchy decrease condition imposed
on the quasi-normal component of the trial steps.

It is noteworthy that, since no regularity is assumed, there is no guarantee that
when ‖Ck‖2 − ‖∇CTk sk + Ck‖2 = 0, we have Predk ≥ 0. Therefore, it could happen
that ‖Ck‖2 − ‖∇CTk sk +Ck‖2 = 0 and Predk < 0. In this case, the algorithm should

972 MAHMOUD EL-ALEM

be terminated because it is an infeasible stationary point of the constraints, as we will
show in section 4. We write our way of updating the penalty parameter in algorithmic
form as follows.

Algorithm 2.1. Updating the Penalty Parameter.
Step 1. Initialization

Set ρ−1 = 1 and choose a small constant ρ̂ > 0.
Step 2. At the current iterate xk, after sk has been chosen:

set ρk = ρk−1.
(a) If Predk < 0 and ‖Ck‖2 − ‖∇CTk sk + Ck‖2 = 0, then terminate.
(b) If Predk <

ρk
2 [‖Ck‖2 − ‖∇CTk sk + Ck‖2], then set

ρk =
2[qk(sk)− qk(0) + ∆λTk (Ck +∇CTk sk)]

‖Ck‖2 − ‖∇CTk sk + Ck‖2 + ρ̂.(2.10)

The initial choice of the penalty parameter ρ−1 is arbitrary. However, it should be
chosen such that it is consistent with the scale of the problem. Here, for convenience,
we take ρ−1 = 1.

The termination at Step 2(a) of the above algorithm can occur only at an infeasible
Mayer–Bliss point, which is a good reason to stop. See section 4.

An immediate consequence of the above algorithm is that, at the current iteration,
either the point xk is an infeasible stationary point of the constraints (see section 4)
and the algorithm terminates at Step 2(a) of the above algorithm or

Predk ≥ ρk
2

[‖Ck‖2 − ‖Ck +∇CTk sk‖2].(2.11)

2.4. Updating the trust-region radius. After computing a trial step and
updating the penalty parameter, we test the step and accept it only if the actual
reduction is greater than some fraction of the predicted reduction. That is, we accept
the step sk if AredkPredk

≥ η1, where η1 ∈ (0, 1). Otherwise, we reject the step and decrease

the radius of the trust region by setting δk = α1‖sk‖, where α1 ∈ (0, 1).
The strategy that we follow for updating the trust-region radius is based on the

standard rules for the unconstrained case (see, for example, Shultz, Schnabel, and
Byrd [42]). However, for our global convergence theory, we use a modification due to
Zhang, Kim, and Lasdon [49] (see also El-Hallabi and Tapia [22] and Dennis, El-Alem,
and Maciel [13]). This modification is of no importance in practice; it is merely an
analytic formality. At the beginning we set constants δmax ≥ δmin, and each time
we find an acceptable step, we start the next iteration with a trust-region radius
greater than or equal to δmin. In short, δk can be reduced below δmin while seeking
an acceptable step, but δmin ≤ δk+1 must hold at the beginning of the next iteration
after finding an acceptable step. We must also have, for all k, δk ≤ δmax. We present
the method of updating the trust-region radius used by Dennis, El-Alem, and Maciel
[13] in Step 5 of Algorithm 2.2 below.

After accepting the step and updating the trust-region radius, the Hessian matrix
Hk must be updated. Our theory requires the sequence {Hk} of approximate Hessians
to be bounded. Thus, the exact Hessians or any approximation scheme that produces
a bounded sequence of Hessians can be used. For instance, setting Hk = 0 for all k is
valid.

Since we do not specify a particular way of computing Wk, it is required that
{‖Wk‖} be bounded and the sequence of smallest singular values of the matrices
Wk , k = 1, 2, . . ., be bounded away from zero.

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 973

2.5. Summary of the algorithm. We present a summary of the Dennis, El-
Alem, and Maciel class of trust-region-based algorithms for solving problem (EQ).

Algorithm 2.2. The Trust-Region Algorithm.

Step 0. (* Initialization *)
Given x0, λ0, compute W0.
Choose α1, α2, η1, η2, ρ̂, δmin, δ0, and δmax, such that 0 < α1 < 1 < α2,
0 < η1 < η2 < 1, ρ̂ > 0, and δmin ≤ δ0 ≤ δmax.
Set ρ−1 = 1 and k = 0.

Step 1. (* Compute a trial step *)
If xk is feasible, then

(a) Find a step stk that satisfies a fraction of Cauchy decrease condition
on the quadratic model qk(s) of the Lagrangian around xk. (* See
relation (2.6). *)

(b) Set sk = stk.
else (* C(xk) 6= 0 *)

(a) Compute a quasi-normal step snk that satisfies condition (2.3) and a
fraction of Cauchy decrease condition on the quadratic model of the
linearized constraints. (* See inequality (2.1). *)

(b) If WT
k ∇q(snk) = 0, then set stk = 0.

else (* WT
k ∇q(snk) 6= 0 *)

Find stk that satisfies a fraction of Cauchy decrease condition
on the quadratic model qk(snk + s) from snk . (* See relation
(2.6). *)

End if
(c) Set sk = snk + stk.

End if
Step 2. (* Update λk *)

Choose an estimate λk+1 of the Lagrange multiplier vector.
Set ∆λk = λk+1 − λk.

Step 3. (* Update the penalty parameter *)
Update ρk−1 to obtain ρk by using Algorithm 2.1.

Step 4. (* Evaluating the step and updating the trust-region radius *)
If Aredk

Predk
< η1 then

Reduce the trust-region radius: δk ← α1‖sk‖.
Go to Step 2.

Else if η1 ≤ Aredk
Predk

< η2 then
Accept the step: xk+1 = xk + sk.
Set the trust-region radius: δk+1 = max{δk, δmin}.

Else (* Aredk
Predk

≥ η2 *)
Accept the step: xk+1 = xk + sk.
Increase the trust-region radius: δk+1 = min{δmax,max{δmin, α2δk}}.

End if
Step 5. (* Update Hk and k *)

Update Hk.
Set k ← k + 1, and go to Step 1.

In a practical implementation of the algorithm, a stopping criterion should be
added. See section 9 for more details.

3. General assumptions. Let Ω be a convex subset of <n that contains all of
xk and xk + sk for all trial steps sk examined in the course of the algorithm. On the

974 MAHMOUD EL-ALEM

set Ω, we assume:
A1. f and C are twice continuously differentiable for all x ∈ Ω.
A2. f(x),∇f(x), ∇2f(x), C(x), ∇C(x), and ∇2Ci(x) for i = 1, . . . ,m are uni-

formly bounded in Ω.
A3. The sequence of Lagrange multiplier vectors {λk} is bounded.
A4. If approximations to the Hessian matrices are used, then we require that the

matrices Hk, k = 1, 2, . . . , be uniformly bounded in norms.
A5. The sequence {‖Wk‖}, is bounded and the sequence of smallest singular values

of the matrices Wk, k = 1, 2, . . . is bounded away from zero.
The above are the assumptions under which we prove global convergence. Observe

that they do not include the assumption of the linear independence of the gradients
of the constraints, an assumption commonly used by many researchers.

An immediate consequence of the above assumptions is the existence of positive
constants b and b1, such that for all k,

‖∇CkCk‖ ≤ b(3.1)

and

‖WT
k Hk‖ ≤ b1.(3.2)

4. Stationary points. In this section, we give definitions to four types of sta-
tionary points, show some of their properties, and show some relations between them.
The terminology used in this section follows Burke [7], [8] and Yuan [48].

Definition 4.1 (first-order point). A point x? ∈ <n is called a first-order point
of problem (EQ) if it satisfies

W (x)T∇f(x) = 0,(4.1)

C(x) = 0.(4.2)

Equations (4.1) and (4.2) are called the first-order conditions. If x? solves (4.1), then
this implies the existence of λ? such that x? and λ? satisfy ∇f(x) +∇C(x)λ = 0.

Definition 4.2 (Mayer–Bliss point). A point x? ∈ <n is called a feasible Mayer-
Bliss point or simply a Mayer–Bliss point of problem (EQ) if there exist a constant
γ? ∈ < and a Lagrange multiplier vector λ? ∈ <m such that (γ?, λ?) 6= (0, 0) and x?,
γ?, and λ? satisfy the following conditions:

γ∇f(x) +∇C(x)λ = 0,(4.3)

C(x) = 0.(4.4)

Equations (4.3) and (4.4) are called the feasible Mayer–Bliss conditions. See
Mayer [31] and Bliss [5].

The feasible Mayer–Bliss conditions are the same as the well-known Fritz John
conditions for general nonlinear programming when they are applied to problem (EQ).
See Mangasarian [29].

If (x?, γ?, λ?) is a feasible Mayer–Bliss point and γ? 6= 0, then (x?,
λ?
γ?

) is a first-

order point. Conversely, if (x?, λ?) is a first-order point then it is a feasible Mayer–Bliss
point with γ? = 1.

Definition 4.3 (infeasible Mayer-Bliss point). A point x? ∈ <n is called an
infeasible Mayer–Bliss point if x? satisfies the following conditions:

∇C(x)C(x) = 0,(4.5)

C(x) 6= 0.(4.6)

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 975

Equations (4.5) and (4.6) are called the infeasible Mayer–Bliss conditions.
If x? is an infeasible Mayer–Bliss point, then there exist a constant γ? ∈ < and

a Lagrange multiplier vector λ? ∈ <m such that (γ?, λ?) 6= (0, 0) and x?, γ?, and λ?
satisfy the following conditions:

γ∇f(x) +∇C(x)λ = 0,

∇C(x)C(x) = 0.

If, in addition, γ? 6= 0, then (x?,
λ?
γ?

) is an infeasible first-order point. The definition
of such a point is given in the following definition, which is added for completeness.

Definition 4.4 (infeasible first-order point). An infeasible point x? ∈ <n is
called an infeasible first-order point of problem (EQ) if it satisfies

W (x)T∇f(x) = 0,(4.7)

∇C(x)C(x) = 0.(4.8)

Equations (4.7) and (4.8) are called the infeasible first-order conditions for prob-
lem (EQ).

Definition 4.5 (stationary conditions). The conditions stated in any of Def-
initions 4.1–4.4 are called stationary conditions of problem (EQ) and the point that
satisfies any of these stationary conditions is called a stationary point.

The following are noteworthy:
(a) Mayer–Bliss points are the union of first-order points and feasible nonregular

points;
(b) infeasible first-order points are stationary points of ‖C(x)‖2 that are station-

ary with respect to

minimize f(x)
subject to C(x) = C(x?);

(c) infeasible Mayer–Bliss points are infeasible stationary points of ‖C(x)‖2.
The following lemma gives a condition for an infeasible iterate xk generated by

the algorithm to be a Mayer–Bliss point.
Lemma 4.1. If at a point xk generated by the algorithm, ‖Ck‖ 6= 0 and

minimum‖s‖≤δk ‖Ck +∇CTk s‖2 = ‖Ck‖2,(4.9)

then it is an infeasible Mayer–Bliss point.
Proof. If (4.9) holds, then sk = 0 is an unconstrained minimizer. Let q̄(s) =

‖Ck + ∇CTk s‖2. Because q̄(s) is convex, the local minimizer is a global one. Also,
∇sq̄(sk) = 0 implies that the minimizer satisfies ∇CkCk = 0. Hence (4.5) holds. This
completes the proof.

In the above lemma, it is easy to see that at the point xk, the matrix ∇Ck does
not have full column rank.

It is noteworthy that if the algorithm generates a point xk which is an infeasible
Mayer–Bliss point and Predk < 0, then the algorithm may not be able to move away
from this point. In this case, the algorithm terminates at Step 2(a) of Algorithm 2.1.
However, we will proceed with the analysis assuming that this will not occur.

The following lemma gives conditions for the sequence of iterates generated by
the algorithm to have a subsequence that satisfies the feasible Mayer–Bliss conditions
in the limit. A similar lemma for a different algorithm was given by Yuan [48]. By

976 MAHMOUD EL-ALEM

satisfying the feasible Mayer–Bliss conditions in the limit (asymptotically), we mean
the existence of λ and γ such that the left-hand sides of (4.3) and (4.4) converge to
zero.

Even though the following lemma is not used in our analysis, we include it because
it identifies a situation that may happen to a subsequence of the iteration sequence.
Namely, a sequence of steps {skj} succeeded in driving the sequence {‖Ckj‖} to zero
in the limit. At the same time, ‖sk‖ ≤ ‖Ck‖ holds for all k ∈ {kj}. As a result of
that, the sequence {‖skj‖} is driven to zero in the limit by the sequence {‖Ckj‖}.

Lemma 4.2. If there exists a subsequence of infeasible iterates {kj} such that
limkj→∞ ‖Ckj‖ = 0 and

lim
kj→∞

{
minimums∈<n

‖Ckj +∇CTkjs‖2
‖Ckj‖2

: ‖s‖ ≤ ‖Ckj‖
}

= 1,(4.10)

then it satisfies the feasible Mayer–Bliss conditions in the limit.
Proof. The above limit is equivalent to

lim
kj→∞

{
minimum‖d‖≤1 ‖Ukj +∇CTkjd‖2

}
= 1,(4.11)

where Ukj is a unit vector in the direction of Ckj and d = s
‖Ckj ‖

. Let d̄kj be a solution

to the minimization problem inside the above limit. Then there exists a nonnegative
parameter µkj such that

∇CkjUkj +∇Ckj∇CTkj d̄kj + µkj d̄kj = 0(4.12)

and

µkj (‖d̄kj‖2 − 1) = 0.(4.13)

From (4.11), we have

lim
kj→∞

{
2d̄kj

T∇CkjUkj + d̄kj
T∇Ckj∇CTkj d̄kj

}
= 0.(4.14)

If limkj→∞ d̄kj = 0, then from (4.12), we have limkj→∞∇CkjUkj = 0. Otherwise,
multiply (4.12) from the right by 2d̄kj

T , subtract from (4.14), and use (4.13). We
thus obtain, as kj →∞, ∇CTkj d̄kj → 0 and µkj → 0. This yields

lim
kj→∞

∇CkjUkj = 0.(4.15)

Hence, in both cases, (4.3) holds in the limit with γ = 0. This shows that the lemma
is true.

Notice that the result we obtained in the above lemma is independent of the
sequence {‖WT

kj
∇fkj‖}. In other words, it may be the case that the sequence of steps

{‖skj‖} converges to zero, while the sequence {‖WT
kj
∇fkj‖} is bounded away from

zero.
From Definition 4.2, we can easily see that, for any subsequence {kj} of the

iteration sequence that asymptotically satisfies the feasible Mayer–Bliss conditions
that are not first-order conditions, the corresponding sequence of smallest singular
values of the matrices ∇Ck for all k ∈ {kj} is not bounded away from zero.

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 977

The following lemma gives conditions for a subsequence of the iteration sequence
to satisfy the feasible Mayer–Bliss conditions in the limit.

Lemma 4.3. If there exists a subsequence of iterates {kj} such that {‖Ckj‖}
converges to zero and the sequence of smallest singular values of {∇Ckj} converges to
zero, then it satisfies the feasible Mayer–Bliss conditions in the limit.

Proof. Take {λkj} to be the sequence of the right singular vectors that correspond
to the smallest singular values of∇Ck for all k ∈ {ki}. In the limit, an equation similar
to (4.15) holds. This implies that (4.3) holds in the limit with γ = 0. This completes
the proof.

Throughout the rest of the paper, we use {σki} to denote the sequence of smallest
singular values of ∇Ck for all k ∈ {ki}.

In the rest of the paper, we present our convergence results. We start with the
following section, which summarizes our global convergence results.

5. Main result. In this section, we state the main result of our convergence
analysis in order to understand the motivation for the lemmas presented in the next
two sections.

Theorem 5.1. If A1–A5 hold, then the sequence of iterates generated by Algo-
rithm 2.2 has a subsequence that satisfies one of the Mayer–Bliss stationary conditions
of problem (EQ) in the limit.

The statement of the above theorem means that, asymptotically, the iteration
sequence satisfies either the infeasible Mayer–Bliss conditions that are not infeasi-
ble first-order conditions, the feasible Mayer–Bliss conditions that are not first-order
conditions, the infeasible first-order conditions, or the first-order conditions.

The above theorem summarizes the main results of this paper; its proof is pre-
sented in section 8. The proof needs some intermediate lemmas, which are presented
in the following two sections.

6. Intermediate results. In this section, we present some technical lemmas
needed in the proof of our main global convergence results.

The following two lemmas use the fact that the steps snk and stk satisfy the fraction
of Cauchy decrease condition. They express in a manageable form the pair of fraction
of Cauchy decrease conditions imposed on the trial steps.

Lemma 6.1. Assume A1–A2. Then there exists a positive constant K1 indepen-
dent of the iterates such that the quasi-normal component of the trial step snk satisfies

‖Ck‖2 − ‖Ck +∇CTk snk‖2 ≥ K1‖∇CkCk‖min{‖∇CkCk‖, δk}.(6.1)

Proof. If ∇CkCk = 0, then ∇CTk snk = 0 and (6.1) holds immediately, since the
right-hand side is zero.

Assume that ‖∇CkCk‖ > 0. In this case, the proof follows from the fact that the
step snk satisfies the fraction of Cauchy decrease condition and from using assumption
A2. For a proof, see Powell [40] or Moré [36].

From (2.6) and the above lemma, we have for all k

Predk ≥ K1ρk
2
‖∇CkCk‖min{‖∇CkCk‖, δk}.(6.2)

Lemma 6.2. Assume A1–A5. Then there exists a positive constant K2 indepen-
dent of the iterates such that

qk(snk)− qk(sk) ≥ K2‖WT
k ∇qk(snk)‖min{‖WT

k ∇qk(snk)‖, δk}.(6.3)

978 MAHMOUD EL-ALEM

Proof. The proof is similar to the proof of the above lemma.
The following two lemmas give upper bounds on the difference between the actual

reduction and the predicted reduction.
Lemma 6.3. Assume A1–A4. Then there exists a positive constant K3 indepen-

dent of k such that

|Aredk − Predk| ≤ K3 [‖sk‖2 + ρk‖sk‖3 + ρk‖sk‖2‖Ck‖].(6.4)

Proof. From (2.8), (2.9), and the Cauchy–Schwarz inequality, we have

|Aredk − Predk| ≤ |`(xk, λk) +∇`(xk, λk)T sk +
1

2
sTkHksk − `(xk + sk, λk)|

+|∆λTk [Ck +∇CTk sk − C(xk + sk)] |
+ρk|‖Ck +∇CTk sk‖2 − ‖C(xk + sk)‖2|

≤ 1

2
|sTk [Hk −∇2`(xk + ξ1sk)]sk|+ 1

2
|sTk∇2C(xk + ξ2sk)∆λksk|

+ρk|sTk [∇Ck∇CTk −∇C(xk + ξ3sk)∇C(xk + ξ3sk)T]sk|
+ρk|sTk∇2C(xk + ξ3sk)C(xk + ξ3sk)sk|

for some ξ1, ξ2, ξ3 ∈ (0, 1). By using assumptions A1–A4, the proof follows.
Lemma 6.4. Assume A1–A4. Then there exists a positive constant K4 indepen-

dent of k such that

|Aredk − Predk| ≤ K4ρk‖sk‖2.(6.5)

Proof. The proof follows directly from the above lemma and the fact that ρk ≥ 1
and ‖sk‖ and ‖Ck‖ are uniformly bounded.

The following lemma shows that if at any iteration k, the point xk is not a
stationary point of the constraints, then the algorithm cannot loop infinitely without
finding an acceptable step. To state the lemma, we need to introduce one more
notation. The ith trial iterate of iteration k is denoted by ki. We note here that
the notation ki does not refer to an element of a subsequence. In fact, k and i are
two independent indices, and ski is not a member of the sequence {sk} unless it is
acceptable.

Lemma 6.5. Assume A1–A4. If ‖∇CkCk‖ > 0, then an acceptable step is found
after finitely many trials; i.e., the condition Aredkj/Predkj ≥ η1 will be satisfied for
some finite j.

Proof. Since ‖∇CkCk‖ > 0, then using (6.2) and (6.5), we have∣∣∣∣AredkPredk
− 1

∣∣∣∣ =
|Aredk − Predk|

Predk
≤ 2K4δ

2
k

K1‖∇CkCk‖min{‖∇CkCk‖, δk} .

Now, as the trial step skj gets rejected, δkj becomes small, and eventually we will
have ∣∣∣∣AredkjPredkj

− 1

∣∣∣∣ ≤ 2K4δkj

K1‖∇CkCk‖ .

This inequality implies that after a finite number of trials (i.e., for j finite), the
acceptance rule will be met, and this completes the proof.

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 979

Lemma 6.6. Assume A1–A5. There exists a constant K5 > 0 such that for any
indices j and k, where ρkj is increased at the jth trial iterate of the kth iteration,

ρkj{‖Ck‖ − ‖Ck +∇CTk skj‖} ≤ K5 max{‖Ck‖, ‖smnkj ‖},

where smnkj is the minimum-norm solution of (2.4) with δk = δkj .

Proof. If ρkj is increased at the jth trial step of the kth iteration, then it is
updated by (2.10). Hence,

ρkj

2
[‖Ck‖2 − ‖Ck +∇CTk skj‖2] = [qk(skj)− qk(0)] + ∆λkj

T (Ck +∇CTk skj)

+
ρ̂

2
[‖Ck‖2 − ‖Ck +∇CTk skj‖2]

= [qk(skj)− qk(snkj)] + [qk(snkj)− qk(0)]

+ ∆λTkj (Ck +∇CTk snkj)
+
ρ̂

2
[−2(∇CkCk)T snkj − ‖∇CTk snkj‖2]

≤ [qk(skj)− qk(snkj)] + ‖∇`k‖‖snkj‖+
1

2
‖Hk‖‖snkj‖2

+ ‖∆λkj‖‖Ck +∇CTk snkj‖+ ρ̂[‖∇CkCk‖‖snkj‖
+ ‖∇CTk ‖2‖snkj‖2].

The rest of the proof follows by applying (6.3), (2.3), and the fact that δk ≤ δmax to
the right-hand side, followed by the use of the general assumptions.

From (6.1) and the above lemma, we can write, at any trial iteration kj at which
the penalty parameter is increased,

ρkj‖∇CkCk‖min{‖∇CkCk‖, δkj} ≤ K5

K1
max{‖Ck‖, ‖smnkj ‖}.(6.6)

Lemma 6.7. Assume A1–A4. If the jth trial step of a given iteration k satisfies

‖skj‖ ≤ min

{
(1− η1)K1

4K4
, 1

}
‖∇CkCk‖,(6.7)

then the step must be accepted.

Proof. The proof is by contradiction. Suppose that (6.7) holds but the step skj
is rejected. Then, we have

(1− η1) <
|Aredkj − Predkj |

Predkj
.

Substituting from (6.2) and (6.5) and using (6.7), we have

(1− η1) <
2K4‖skj‖2

K1‖∇CkCk‖‖skj‖
≤ 1

2
(1− η1).

This gives a contradiction and implies that the step must be accepted. This completes
the proof of the lemma.

The following lemma is a consequence of the above lemma.

980 MAHMOUD EL-ALEM

Lemma 6.8. Assume A1–A4. All trial iterates j of any iteration k generated by
the algorithm satisfy

δkj ≥ min

{
δmin

b
, α1

(1− η1)K1

4K4
, α1

}
‖∇CkCk‖,(6.8)

where b is as in (3.1) and α is as in Step 5 of Algorithm 2.2.

Proof. Consider any iterate kj . If the previous step was accepted, i.e., if j = 1,
then δkj = δk1 ≥ δmin. Using (3.1), we can write

δkj ≥ δmin

b
‖∇CkCk‖.

Therefore, (6.8) holds in this case.

Now assume that j > 1. That is, there exists at least one rejected trial step.
Hence, we must have

‖skj−1‖ > min

{
(1− η1)K1

4K4
, 1

}
‖∇CkCk‖;

otherwise, we get a contradiction with Lemma 6.7. From the method of updating the
trust region, we have

δkj = α1‖skj−1‖ > α1 min

{
(1− η1)K1

4K4
, 1

}
‖∇CkCk‖.

Hence the lemma is proved.

The following lemma is used in proving that the sequence {‖∇CkCk‖} converges
to zero. It says that as long as {‖∇CkCk‖} is bounded away from zero, the sequence
of trust-region radii {δkj} is bounded away from zero.

Lemma 6.9. Assume A1–A4. Given ε0 > 0, there exists K6 > 0 such that if
‖∇CkCk‖ ≥ ε0, then for all trial iterates j of any iteration k,

δkj > K6.

Proof. Using ‖∇CkCk‖ ≥ ε0 in (6.8) and taking

K6 = ε0 min

{
δmin

b
, α1

(1− η1)K1

4K4
, α1

}
,(6.9)

the proof follows directly from the above lemma.

From (6.6) and Lemma 6.8 and using the general assumptions, we have for all kj

at which the penalty parameter is increased

ρkj‖∇CkCk‖2 ≤ K7,(6.10)

where K7 is a positive constant that does not depend on j or k. This inequality is
used in studying the convergence of the sequence {‖∇CkCk‖}. This is the subject of
the following section.

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 981

7. Stationary points of the constraints. The following lemma proves that
for the iteration sequence generated by Algorithm 2.2, if {ρk} is unbounded, then the
sequence {‖∇CkCk‖} is not bounded away from zero.

Lemma 7.1. Assume A1–A5. If {ρk} is unbounded, then the sequence of iterates
generated by the algorithm satisfies

lim
ki→∞

‖∇CkiCki‖ = 0,(7.1)

where {ki} is the subsequence of the iteration sequence at which the penalty parameter
is increased.

Proof. The proof follows directly from the assumption that {ρk} is unbounded
and from (6.10).

If, in addition to the assumptions of the above lemma, we have lim supki→∞ ‖Cki‖ >
0, then the sequence {ki} has a subsequence that satisfies the infeasible Mayer–Bliss
conditions in the limit.

The following lemma proves a stronger result when limki→∞ ‖Cki‖ = 0, where
{ki} is the subsequence of the iteration sequence at which the penalty parameter is
increased.

Lemma 7.2. Assume A1–A5. If {ρk} is unbounded and limki→∞ ‖Cki‖ = 0,
where {ki} is the sequence of iterates at which the penalty parameter is increased,
then the iteration sequence satisfies

lim
k→∞

‖∇CkCk‖ = 0.(7.2)

Proof. Suppose that lim supk→∞ ‖∇CkCk‖ ≥ ε > 0. This implies the existence
of an infinite subsequence of indices {kj} indexing iterates that satisfy ‖∇CkCk‖ ≥ ε

2
for all k ∈ {kj}.

From Lemma 7.1, limki→∞ ‖∇CkiCki‖ = 0, where {ki} is the subsequence of
the iteration sequence at which the penalty parameter is increased. Therefore, for k
sufficiently large, there are no common elements between the two sequences {ki} and

{kj}. For all k̂ ∈ {kj}, using (6.2) and Lemma 6.9, we have

Aredk̂
ρk̂

≥ η1
Predk̂
ρk̂

≥ η1
εK1

4
min

[ε
2
, δk̂

]
≥ η1

εK1

4
min

[ε
2
, K̄6

]
,

where K̄6 is the same as K6 in (6.9) with ε0 replaced by ε
2 . Hence, we have

`k̂ − `k̂+1

ρk̂
+ ‖Ck̂‖2 − ‖Ck̂+1‖2 ≥ η1

εK1

4
min

[ε
2
, K̄6

]
> 0.(7.3)

On the other hand, for all acceptable steps generated by the algorithm, we have

`k − `k+1

ρk
+ ‖Ck‖2 − ‖Ck+1‖2 ≥ 0.(7.4)

Let kî and kî+1 be two consecutive elements of the sequence {ki} such that there
exists an iterate k ∈ {kj} between kî and kî+1. From (7.3) and (7.4), we can write

kî+1−1∑
k=kî

{`k − `k+1}
ρk

+ ‖Ckî‖2 − ‖Ckî+1
‖2 ≥ η1

εK1

4
min

[ε
2
, K̄6

]
> 0.

982 MAHMOUD EL-ALEM

Because the value of the penalty parameter is the same for all iterates kî, . . . , kî+1 − 1,
we have

`kî − `kî+1

ρkî
+ ‖Ckî‖2 − ‖Ckî+1

‖2 ≥ η1
εK1

4
min

[ε
2
, K̄6

]
.

But because |`k| is bounded and ρk →∞ as k →∞, we can write, for kî sufficiently
large,

‖Ckî‖2 − ‖Ckî+1
‖2 ≥ η1

εK1

8
min

[ε
2
, K̄6

]
> 0.

This contradicts the assumption that limki→∞ ‖Cki‖ = 0. The supposition is wrong.
This proves the lemma.

When {ρk} is bounded, we have the following result.
Lemma 7.3. Assume A1–A4. If {ρk} is bounded, then the sequence of iterates

generated by the algorithm satisfies

lim
k→∞

‖∇CkCk‖ = 0.(7.5)

Proof. The proof is by contradiction. Suppose that lim supk→∞ ‖∇CkCk‖ ≥
ε0 > 0. This implies the existence of an infinite subsequence of indices {kj} indexing
iterates that satisfy ‖∇CkCk‖ ≥ ε0

2 for all k ∈ {kj}.
Since {ρk} is bounded, there exist an integer k̄ and a positive constant ρ̄ such

that for all k ≥ k̄, ρk = ρ̄. Using the general assumptions, this fact implies that {Φk}
is bounded.

From (6.2), we have for all acceptable steps generated by the algorithm

Φk − Φk+1 = Aredk ≥ η1Predk ≥ 0.

From (6.2) and Lemma 6.9, we have for all kj ≥ k̄

P redkj ≥
K1ρ̄ε0

4
min

{ε0

2
, K̂6

}
> 0,(7.6)

where K̂6 is the same as K6 in (6.9) with ε0 replaced by ε0
2 . Using the fact that the

steps indexed by any member of the sequence {kj} are acceptable, we have

Φkj − Φkj+1 = Aredkj ≥ η1Predkj ≥ η1
K1ρ̄ε0

4
min

{ε0

2
, K̂6

}
> 0.(7.7)

Since {Φk} is bounded below, a contradiction arises if we let kj go to infinity. This
proves the lemma.

Theorem 7.4. Assume A1–A5. If lim supk→∞ ‖Ck‖ > 0, then the iteration
sequence has a subsequence that satisfies the infeasible Mayer–Bliss conditions in the
limit.

Proof. Consider first the case when {ρk} is unbounded. From Lemma 7.1, we
have limki→∞ ‖∇CkiCki‖ = 0, where {ki} is the sequence of iterates at which the
penalty parameter is increased.

If lim supki→∞ ‖Cki‖ > 0, then there exists a subsequence of the sequence {ki}
that satisfies the infeasible Mayer–Bliss conditions in the limit.

Assume that limki→∞ ‖Cki‖ = 0. From Lemma 7.2, we have limk→∞ ‖∇CkCk‖ =
0. On the other hand, because lim supk→∞ ‖Ck‖ > 0, there exists a subsequence of
the iteration sequence that satisfies the infeasible Mayer–Bliss conditions in the limit.

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 983

Now, consider the case when {ρk} is bounded. From Lemma 7.3, we have
limk→∞ ‖∇CkCk‖ = 0. This limit and the assumption that lim supk→∞ ‖Ck‖ > 0
imply the existence of a subsequence of the iteration sequence that satisfies the infea-
sible Mayer–Bliss conditions in the limit. This completes the proof.

8. Stationary conditions. In this section, we answer the following questions.
Does the iteration sequence have a subsequence that satisfies the Mayer–Bliss con-
ditions in the limit? If yes, can we identify it? Does the iteration sequence have
a subsequence that satisfies the first-order conditions in the limit? If yes, can we
identify it? To answer these questions, we need the following three technical lemmas.

The following lemma gives a lower bound on the predicted decrease in the merit
function produced by the trial step.

Lemma 8.1. Assume A1–A5. The predicted decrease in the merit function satis-
fies

Predki ≥ K2‖WT
k ∇qk(snki)‖ min{‖WT

k ∇qk(snki)‖ , δki}
−K8 max{‖Ck‖, ‖smnki ‖}+ ρk[‖Ck‖2 − ‖Ck +∇CTk ski‖2],

where K2 is as in Lemma 6.2 and K8 is a positive constant independent of k and i.
Proof. We have

qk(0)− qk(snki) = −∇x`Tk snki −
1

2
snki

THks
n
ki

≥ −‖∇x`k‖ ‖snki‖ −
1

2
‖Hk‖ ‖snki‖2

= −(‖∇x`k‖+
1

2
‖Hk‖ ‖snki‖) ‖snki‖.

Using (2.3) and the fact that ‖snki‖ < δmax, we can write

qk(0)− qk(snki) ≥ −K
(
‖∇x`k‖+

1

2
‖Hk‖ δmax

)
‖smnki ‖.

Using the facts that λk and ∆λk are bounded, ‖Ck + ∇CTk ski‖ ≤ ‖Ck‖, and the
general assumptions, there exists a positive constant K8 such that

qk(0)− qk(snki)−∆λki
T (Ck +∇CTk ski) ≥ −K8 max{‖Ck‖, ‖smnki ‖}.(8.1)

Now, we have

Predki = qk(0)− qk(ski)−∆λki
T (Ck +∇CTk ski) + ρ[‖Ck‖2 − ‖Ck +∇CTk ski‖2]

= (qk(snki)− qk(ski))

+ (qk(0)− qk(snki))−∆λki
T (Ck +∇CTk ski)

+ ρ[‖Ck‖2 − ‖Ck +∇CTk ski‖2].

Substituting (6.3) and (8.1) in this inequality, we obtain the desired result.
Lemma 8.2. Assume A1–A5. If at a given trial iteration ki, ‖WT

k ∇fk‖ ≥ ε0 and
max{‖Ck‖, ‖smnki ‖} ≤ βδki , where ε0 is a positive constant and β is given by

0 < β ≤ min

{
ε0

2b1Kδmax
,
K2ε0

4K8
min

{
ε0

2δmax
, 1

}}
,

984 MAHMOUD EL-ALEM

where K is as in (2.3), b1 is as in (3.2), K2 is as in (6.3), and K8 is as in Lemma
8.1, then there exists a positive constant K9 that depends on ε0 but does not depend
on k or i, such that

Predki ≥ K9δki + ρki{‖Ck‖2 − ‖Ck +∇CTk ski‖2}.(8.2)

Proof. Since

‖WT
k ∇qk(snki)‖ = ‖WT

k (∇x`k +Hks
n
ki)‖ ≥ ‖WT

k ∇x`k‖ − ‖WT
k Hks

n
ki‖

≥ ε0 − b1K‖smnki ‖ ≥ ε0 − b1Kβδki ,
and since β ≤ ε0

2b1Kδmax
, it follows that

‖WT
k ∇qk(snki)‖ ≥

1

2
ε0.

From Lemma 8.1, the above inequality, and the assumption that max{‖Ck‖, ‖smnki ‖} ≤
βδki , we have

Predki ≥ K2ε0

2
min

{ε0

2
, δki

}
−K8βδki + ρ[‖Ck‖2 − ‖Ck +∇CTk ski‖2].

Thus

Predki ≥ K2ε0

4
min

{
ε0

2δmax
, 1

}
δki + ρ[‖Ck‖2 − ‖Ck +∇CTk ski‖2].

The result follows if we take K9 = K2ε0
4 min{ ε0

2δmax
, 1}.

The above lemma shows that at any trial iteration ki with ‖WT
k ∇fk‖ ≥ ε0, if it

satisfies max{‖Ck‖, ‖smnki ‖} ≤ βδki , then the penalty parameter is not increased at
this trial iterate.

The following lemma bounds ‖smnki ‖ by ‖Ck‖ and ‖Ck‖ by ‖∇CkCk‖ for any
iteration where the smallest singular value of ∇Ck is not zero.

Lemma 8.3. Assume A1 and A2. If there exists a subsequence {ki} of the
iteration sequence such that the sequence of smallest singular values {σki} is bounded
away from zero, then all trial iterates j of any iteration k ∈ {ki} satisfy

‖smnkj ‖ ≤ K10‖Ck‖,(8.3)

and for any k ∈ {ki}
‖Ck‖ ≤ K11‖∇CkCk‖,(8.4)

where K10 and K11 are two positive constants that do not depend on k or j.
Proof. The proof of (8.3) is similar to the proof of Lemma 7.1 of Dennis,

El-Alem, and Maciel [13]. The proof of (8.4) follows from the fact that for
all k ∈ {ki}, ‖Ck‖ ≤ ‖(∇CTk ∇Ck)−1∇CTk ‖‖∇CkCk‖, followed by the use of the
assumptions.

From the above two lemmas, if for the subsequence {ki} of the iteration sequence
at which the penalty parameter is increased, {σki} is bounded away from zero, and
‖WT

k ∇fk‖ ≥ ε0 for all k ∈ {ki}, then

‖Ck‖ > β1δk(8.5)

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 985

holds for all k ∈ {ki}, where β1 = β
max{1,K10} , β is as in Lemma 8.2, and K10 is as in

(8.3).
From (6.6), (8.3), and (8.4), if {kji } is the sequence of iterates at which the

penalty parameter is increased and {σki} is bounded away from zero, then we have
for all k ∈ {kji },

ρjk‖Ck‖ ≤ K12,(8.6)

where K12 is a positive constant independent of k.
The following theorem studies the behavior of the iteration sequence when {‖Ck‖}

converges to zero and {ρk} is unbounded.
Theorem 8.4. Assume A1–A5. Assume also that {ρk} is unbounded and {‖Ck‖}

converges to zero. The iteration sequence at which ρk is increased has a subsequence
that satisfies the feasible Mayer–Bliss conditions in the limit.

Proof. Let {kj} be the iteration sequence at which the penalty parameter is
increased. Since limkj→∞ ‖Ckj‖ = 0, if a subsequence of σkj converges to zero, then
by Lemma 4.3, the corresponding subsequence of iterates satisfies the feasible Mayer–
Bliss conditions in the limit and the proof ends here.

Consider the case where {σkj} is bounded away from zero. Suppose that, for all
k ∈ {kj},

‖WT
k ∇fk‖ ≥ ε0 > 0.(8.7)

From (8.5), there exist some trial iterates i of k for all k ∈ {kj}, such that ‖Ck‖ >
β1δki . But because limkj→∞ ‖Ckj‖ = 0, we have

lim
kj→∞

δki
j

= 0.(8.8)

The rest of the proof is by contradiction. From the method of updating the trust-
region radius, δk1

j
≥ δmin. Therefore, the superscript i 6= 1 in (8.8). Because δk1

j
≥

δmin, ‖Ck‖ > β1δki , and both of δki
j

and Ckj are converging to zero, then for kj

sufficiently large, there must be an m > 1 such that ‖Ckj‖ > β1δkm
j

and ‖Ckj‖ ≤
β1δkm−1

j
, where β1 is as in (8.5). Using δkm

j
= α1‖skm−1

j
‖ and (8.6), we have

ρkm−1
j
‖skm−1

j
‖ ≤ ρkm

j

δkm
j

α1
≤ ρkm

j

‖Ckj‖
α1β1

≤ K12

α1β1
.

From Lemma 6.3 and the above inequality, we have∣∣∣Aredkm−1
j
− Predkm−1

j

∣∣∣ ≤ K3[1 + (1 + β1) ρkm−1
j
‖skm−1

j
‖] ‖skm−1

j
‖ δkm−1

j

≤ K3

[
1 + (1 + β1)

K12

α1β1

]
‖skm−1

j
‖ δkm−1

j
.

Also, ‖Ckj‖ ≤ β1δkm−1
j

implies that max{‖Ckj‖, ‖smnkm−1
j

‖} ≤ βδkm−1
j

. Hence, from

Lemma 8.2, we have

Predkm−1
j
≥ K9δkm−1

j
.

Therefore, since skm−1
j

was a rejected step,

(1− η1) <
|Aredkm−1

j
− Predkm−1

j
|

Predkm−1
j

≤
K3[1 + (1 + β1) K12

α1β1
]‖skm−1

j
‖

K9
.

986 MAHMOUD EL-ALEM

Hence, ‖skm−1
j
‖ > K9(1−η1)

K3[1+(1+β1)
K12
α1β1

]
and we obtain

δkm
j
≥ α1‖skm−1

j
‖ ≥ α1K9(1− η1)

K3[1 + (1 + β1) K12

α1β1
]
.

This means that δkm
j

is bounded below. Hence {‖Ckj‖} is bounded away from zero.

This contradicts the assumption that {‖Ck‖} converges to zero and means that for
kj sufficiently large there is no m such that ‖Ckj‖ > β1δkm

j
holds. Hence, all trial

iterates i of kj satisfy ‖Ckj‖ ≤ β1δki
j
. But this contradicts the fact that kj is an

iterate at which ρki
j
, for some trial i, is increased. This contradiction implies that the

supposition (8.7) was wrong and completes the proof of the theorem.
From the above lemma, we conclude that, if along the subsequence of the iteration

sequence at which ρk is increased, the corresponding subsequence of σk converges to
zero, then it has a subsequence that asymptotically satisfies the feasible Mayer–Bliss
conditions. Otherwise, it has a subsequence that satisfies the first-order conditions in
the limit.

When {ρk} is bounded, there must exist a positive integer k̄ and a positive con-
stant ρ̄ such that for all k ≥ k̄, ρk = ρ̄. Without loss of generality we will take ρk = ρ̄
for all k, whenever we assume that {ρk} is bounded.

The following theorem studies the asymptotic behavior of the iteration sequence
when {ρk} is bounded.

Theorem 8.5. Assume A1–A5. Assume also that the sequence {ρk} is bounded
and limk→∞ ‖Ck‖ = 0. Then the iteration sequence has a subsequence that satisfies
the feasible Mayer–Bliss conditions in the limit.

Proof. Suppose that there exists an infinite subsequence {kj} of the iteration
sequence such that {σkj} is not bounded away from zero. Then, from Lemma 4.3,
there exists a subsequence that satisfies the feasible Mayer–Bliss conditions in the
limit.

Let us assume that {σk} is bounded away from zero and suppose that for all k,

‖WT
k ∇fk‖ ≥ ε0 > 0. Define δ′ = min{K9(1−η1)

K4ρ̄
, δmin}. For any k, either δk ≥ δ′ or

for some trial iterate i, δki ∈ [α1δ
′, δ′]. Since Ck is converging to zero, we know that

in either case the conditions of Lemma 8.2 are satisfied by ki, if k is large enough,
and Predki ≥ K9δki . Now, if δki ∈ [α1δ

′, δ′], then

|Aredki − Predki |
Predki

≤ K4ρ̄δ
′

K9
≤ (1− η1).

Thus the trial step is accepted and δk = δki . This implies that δk ≥ α1δ
′ for all k

sufficiently large. This means that δk is bounded below away from zero.
On the other hand, we have

Φk − Φk+1 = Aredk ≥ η1Predk ≥ η1K9δk.

If we take the limit as k →∞, we obtain

lim
k→∞

δk = 0.(8.9)

This shows a contradiction. Therefore, the supposition is wrong and we have

lim
kj→∞

‖WT
kj∇fkj‖ = 0.

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 987

This completes the proof of the theorem.
Let us again state and then prove our main global convergence result, Theorem

5.1.
Theorem 5.1. Assume A1–A5. Then the sequence of iterates generated by Algo-

rithm 2.2 has a subsequence that satisfies one of the Mayer–Bliss stationary conditions
of problem (EQ) in the limit.

Proof. The proof follows immediately from Theorems 7.4, 8.4, and 8.5.

9. Summary and concluding remarks. We have established a global con-
vergence theory for the class of trust-region-based algorithms suggested by Dennis,
El-Alem, and Maciel [13]. This class of algorithm is characterized by generating steps
such that their quasi-normal components satisfy a fraction of Cauchy decrease con-
dition on the quadratic model of the linearized constraints. Furthermore, their tan-
gential components satisfy a fraction of Cauchy decrease condition on the quadratic
model of the Lagrangian function associated with the problem reduced to the tangent
space of the constraints. The augmented Lagrangian is used as a merit function. To
update the penalty parameter, a scheme proposed in [16] was used.

Because the two components of the trial step are not necessarily orthogonal,
an additional condition on the length of the normal component is needed to prove
global convergence. Dennis, El-Alem, and Maciel [13] suggested the condition ‖snk‖ ≤
K‖Ck‖. In this paper, we used ‖snk‖ ≤ K‖smnk ‖, where smnk is the minimum-norm
solution that minimizes ‖Ck + ∇CTk s‖ inside the trust region δk. This condition is
equivalent to the above condition whenever ∇Ck has full column rank and allows the
full SQP step to be taken when it is inside the trust region.

As pointed out in section 2.3, if at a given iteration k the algorithm generates
an infeasible point with ‖Ck‖2 − ‖Ck + ∇Cksk‖2 = 0, then it may not be able to
move away from that point. We pointed out in Lemma 4.1 that in this case the point
is necessarily an infeasible Mayer–Bliss point. Probably, if a good estimate of the
Lagrange multiplier vector is used every iteration, or at least at this point, then the
algorithm moves away from such points. Avoiding Mayer–Bliss points that are not
first-order points is an important issue for algorithms that are designed to handle
the lack of linear independence in the gradients of the constraints. This issue indeed
deserves to be studied.

The main feature of the global convergence theory presented in this paper is that
the gradients of the constraints are allowed to be linearly dependent. We showed that
under the general assumptions of section 3, and without the regularity assumption,
the iteration sequence has a subsequence that asymptotically satisfies one of four
types of stationary conditions. In particular, it asymptotically satisfies either the
infeasible Mayer–Bliss conditions that are not infeasible first-order conditions, the
feasible Mayer–Bliss conditions that are not first-order conditions, the infeasible first-
order conditions, or the first-order conditions.

In a practical implementation of the algorithm, a stopping criterion should be
added. To stop their algorithm, Dennis, El-Alem, and Maciel used the condition “if
‖WT

k ∇fk‖+ ‖∇CkCk‖ ≤ εtol, for some εtol > 0, then terminate.” But, because we do
not assume that the columns of ∇Ck are linearly independent, the iteration sequence
may have no subsequence that asymptotically satisfies the first-order conditions. In
other words, it may be the case that no iterate k generated by the algorithm satisfies
the above condition. Therefore, other termination conditions should be added. A
reasonable stopping rule would be to test for the three kinds of stationary conditions
(see section 4).

988 MAHMOUD EL-ALEM

Our theory requires that the sequence of Lagrange multipliers {λk} be bounded.
This means that any update formula that produces bounded multipliers {λk} can
be used. However, because we do not make any assumptions on the gradient of the
constraints, most formulas for updating the Lagrange multiplier may be undefined
or produce an unbounded sequence of multipliers. We suggest computing λk as the
solution of the following trust-region subproblem:

minimize ‖∇Ckλ+∇fk‖(9.1)

subject to ‖λ‖ ≤ δk.

It is clear that the Lagrange multipliers are well defined and satisfy at every iteration
k, ‖λk‖ ≤ δmax.

Another way of enforcing boundedness on the multipliers is to replace the matrix
∇Ck with another matrix ∇̂Ck such that for all k, (∇̂Ck)+ is uniformly bounded,

where (∇̂Ck)+ denotes the pseudoinverse matrix of ∇̂Ck. Then λk is obtained as the
minimum-norm solution to the following minimization problem:

minimize ‖∇̂Ckλ+∇fk‖.(9.2)

As an example, if we factor ∇Ck using the SVD decomposition, we obtain ∇Ck =
UkΣkV

T
k . Now for all k, we construct another matrix Σ̂k from Σk by setting to zero all

singular values less than a prespecified small constant. Let ∇̂Ck = UkΣ̂kV
T
k . We have

for all k that (∇̂Ck)+ is uniformly bounded. Therefore, using the global assumptions
(see section 4), problem (9.2) will produce a bounded sequence of Lagrange multipliers.

There are many interesting questions that have not been properly discussed in
the literature. The problem of the unboundedness of the multipliers and the Hessian
matrices is one question that deserves to be investigated.

Another important question is related to the assumptions stated in section 3 of
this paper. In the general assumptions, it is assumed that Ω is a convex set that con-
tains xk and xk+sk for all trial steps and that the objective function, the constraints,
and the first and the second derivatives of the constraints are bounded in Ω. These are
assumptions on the behavior of the algorithm, and not assumptions on the problem.
No reasonable, sufficient condition, under which these algorithmic assumptions hold,
has appeared in the literature. Of course, a sufficient condition is that Ω is compact.
But this is again a condition on the algorithm and not on the problem. In uncon-
strained optimization, the usual reasonable condition is “bounded level set.” But in
the equality constrained case, the difficulty is serious. It is not clear what should be
bounded. This important question of equality constrained optimization deserves to
be investigated.

Acknowledgments. The author thanks Rice University for the congenial sci-
entific atmosphere that it provided. The author is also greatly indebted to Richard
Byrd, two anonymous referees, and the associate editor for their careful and insightful
reading of an earlier version of this paper.

REFERENCES

[1] N. Alexandrov, Multi-level Algorithms for Nonlinear Equations and Equality Constrained
Optimization, Tech. Rep. 93-20, Department of Computational and Applied Mathematics,
Rice University, Houston, TX, May 1993.

[2] N. Alexandrov, Multi-level Algorithms for Nonlinear Equations and Equality Constrained
Optimization, Ph.D. thesis, Rice University, Houston, TX, 1993.

A CONVERGENCE THEORY WITHOUT ASSUMING REGULARITY 989

[3] N. Alexandrov and J. E. Dennis, Jr., Multi-Level Algorithms for Nonlinear Optimization,
Tech. Rep. 94-24, Department of Computational and Applied Mathematics, Rice Univer-
sity, Houston, TX, June 1994.

[4] L. T. Biegler, J. Nocedal, and C. Schmid, A reduced Hessian method for large-scale con-
strained optimization, SIAM J. Optim., 5 (1995), pp. 314–347.

[5] G. A. Bliss, Normality and abnormality in the calculus of variations, Trans. Amer. Math.
Soc., 43 (1938), pp. 365–376.

[6] J. V. Burke, A sequential quadratic programming method for potentially infeasible mathemat-
ical programs, J. Math. Anal. Appl., 139 (1989), pp. 319–351.

[7] J. V. Burke, An exact panelization viewpoint of constrained optimization, SIAM J. Control
Optim., 29 (1991), pp. 968–998.

[8] J. V. Burke, A robust trust region method for constrained nonlinear programming problems,
SIAM J. Optim., 2 (1992), pp. 325–347.

[9] R. H. Byrd, Robust Trust Region Methods for Nonlinearly Constrained Optimization, pre-
sented at SIAM Conference on Optimization, Houston, TX, 1987.

[10] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, A trust region algorithm for nonlinearly
constrained optimization, SIAM J. Numer. Anal., 24 (1987), pp. 1152–1170.

[11] R. Carter, Multi-Model Algorithms for Optimization, Ph.D. thesis, Rice University, Houston,
TX, 1986.

[12] M. R. Celis, J. E. Dennis, and R. A. Tapia, A trust region strategy for nonlinear equality
constrained optimization, in Numerical Optimization 1984, SIAM, Philadelphia, PA, 1985.

[13] J. E. Dennis, Jr., M. M. El-Alem, and M. C. Maciel, A global convergence theory for general
trust-region-based algorithms for equality constrained optimization, SIAM J. Optim., 7
(1997), pp. 177–207.

[14] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice–Hall, Englewood Cliffs, NJ, 1983; Russian edition: Mir,
Moscow, O. Burdakov, trans., 1988.

[15] J. E. Dennis, Jr., and L. N. Vicente, On the convergence theory of trust-region-based algo-
rithms for equality-constrained optimization, SIAM J. Optim., 7 (1997), pp. 927–950.

[16] M. M. El-Alem, A Global Convergence Theory for a Class of Trust Region Algorithms for
Constrained Optimization, Ph.D. thesis, Rice University, Houston, TX, 1988.

[17] M. M. El-Alem, A global convergence theory for the Celis–Dennis–Tapia trust-region algo-
rithm for constrained optimization, SIAM J. Numer. Anal., 28 (1991), pp. 266–290.

[18] M. M. El-Alem, A robust trust-region algorithm with a nonmonotonic penalty parameter
scheme for constrained optimization, SIAM J. Optim., 5 (1995), pp. 348–378.

[19] M. M. El-Alem, Convergence to a second-order point of a trust-region algorithm with a non-
monotonic penalty parameter for constrained optimization, J. Optim. Theory Appl., 91
(1996), pp. 61–79.

[20] M. M. El-Alem and R. A. Tapia, Numerical experience with a polyhedral norm CDT trust-
region algorithm, J. Optim. Theory Appl., 85 (1995), pp. 575–592.

[21] M. El-Hallabi, A Global Convergence Theory for Arbitrary Norm Trust-Region Algorithms
for Equality Constrained Optimization, Tech. Rep. TR93-60, Department of Computa-
tional and Applied Mathematics, Rice University, Houston, TX, 1993.

[22] M. El-Hallabi and R. Tapia, A Global Convergence Theory for Arbitrary Norm Trust-Region
Method for Nonlinear Eequations, Tech. Rep. TR93-41, Department of Computational and
Applied Mathematics, Rice University, Houston, TX, 1993.

[23] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, New York, 1987.
[24] P. E. Gill, W. Murray, and M. Wright, Some theoretical properties of an augmented la-

grangian merit function, in Advances in Optimization and Parallel Computing, Elsevier,
New York, 1992, pp. 127–143.

[25] M. Lalee, Algorithms for Nonlinear Optimization, Ph.D. thesis, Northwestern University,
Evanston, IL, 1993.

[26] M. Lalee, J. Nocedal, and Plantenga, On the Implementation of an Algorithm for Large-
Scale Equality Constrained Optimization, Tech. Rep. 93, EECS Department, Northwestern
University, Evanston, IL, Oct. 1993.

[27] K. Levenberg, A method for the solution of certain problems in least squares, Quart. Appl.
Math., 2 (1944), pp. 164–168.

[28] M. C. Maciel, A Global Convergence Theory for a General Class of Trust Region Algorithm
for Equality Constrained Optimization, Ph.D. thesis, Department of Computational and
Applied Mathematics, Rice University, Houston, TX, 1992.

[29] O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.
[30] D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J.

990 MAHMOUD EL-ALEM

SIAM, 11 (1963), pp. 431–441.
[31] A. Mayer, Begrudung der lagrange’schen multiplicatorenmethode in der variationsrechnung,

Math. Annal., 26 (1886), pp. 74–82.
[32] A. Miele, E. E. Cragg, and A. V. Levy, Use of the augmented penalty function in mathe-

matical programming problems: Part 2, J. Optim. Theory Appl., 8 (1971), pp. 131–153.
[33] A. Miele, H. Y. Huang, and J. C. Heideman, Sequential gradient-restoration algorithm for

the minimization of constrained functions: Ordinary and conjugate gradient versions, J.
Optim. Theory Appl., 4 (1969), pp. 213–243.

[34] A. Miele, A. V. Levy, and E. E. Cragg, Modifications and extensions of the conjugate
gradient-restoration algorithm for mathematical programming problems, J. Optim. Theory
Appl., 7 (1971), pp. 450–472.

[35] J. J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, in Numerical
Analysis, Lecture Notes in Math. 630, G. A. Watson, ed., Springer-Verlag, Berlin, New
York, 1977, pp. 105–116.

[36] J. J. Moré, Recent developments in algorithms and software for trust region methods, in
Mathematical Programming. The State of the Art, A. Bachem, M. Grotschel, and B. Korte,
eds., Springer-Verlag, New York, 1983, pp. 258–287.

[37] E. O. Omojokun, Trust Region Strategies for Optimization with Nonlinear Equality and In-
equality Constraints, Ph.D. thesis, University of Colorado, Boulder, 1989.

[38] T. Plantenga, Large-Scale Nonlinear Constrained Optimization Using Trust Regions, Ph.D.
thesis, Northwestern University, Evanston, IL, 1995.

[39] M. J. D. Powell, A new algorithm for unconstrained optimization, in Nonlinear Programming,
J. Rosen, O. Mangasarian, and K. Ritter, eds., Academic Press, New York, 1970, pp. 31–65.

[40] M. J. D. Powell, Convergence properties of a class of minimization algorithms, in Nonlinear
Programming 2, O. Mangasarian, R. Meyer, and S. Robinson, eds., Academic Press, New
York, 1975, pp. 1–27.

[41] M. J. D. Powell and Y. Yuan, A trust region algorithm for equality constrained optimization,
Math. Programming, 49 (1991), pp. 189–211.

[42] G. A. Shultz, R. B. Schnabel, and R. H. Byrd, A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties, SIAM J. Numer.
Anal., 22 (1985), pp. 47–67.

[43] A. Vardi, A trust region algorithm for equality constrained minimization: Convergence prop-
erties and implementation, SIAM J. Numer. Anal., 22 (1985), pp. 575–591.

[44] L. N. Vicente, Trust-Region Interior-Point Algorithms for a Class of Nonlinear Programming
Problems, Ph.D. thesis, Rice University, Houston, TX, 1996.

[45] K. A. Williamson, A Robust Trust Region Algorithm for Nonlinear Programming, Ph.D.
thesis, Rice University, Houston, TX, 1990.

[46] Y. Yuan, A Dual Algorithm for Minimizing a Quadratic Function with Two Quadratic Con-
straints, Report DAMTP-NA3, University of Cambridge, Cambridge, UK, 1988.

[47] Y. Yuan, On a subproblem of trust-region algorithm for constrained optimization, Math. Pro-
gramming, 47 (1990), pp. 53–63.

[48] Y. Yuan, On the convergence of a new trust region algorithm, Numer. Math., 70 (1995),
pp. 515–539.

[49] J. Zhang, N. Kim, and L. Lasdon, An improved successive linear programming algorithm,
Management Sci., 31 (1985), pp. 1312–1331.

[50] J. Z. Zhang and D. T. Zhu, Projected quasi-Newton algorithm with trust region for constrained
optimization, J. Optim. Theory Appl., 67 (1990), pp. 369–393.

[51] Y. Zhang, Computing a Celis-Dennis-Tapia trust-region step for equality constrained opti-
mization, Math. Programming, 55 (1992), pp. 109–124.

EXPRESSING COMPLEMENTARITY PROBLEMS IN
AN ALGEBRAIC MODELING LANGUAGE AND

COMMUNICATING THEM TO SOLVERS∗

MICHAEL C. FERRIS† , ROBERT FOURER‡ , AND DAVID M. GAY§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 991–1009

Dedicated to John Dennis on his 60th birthday, in appreciation of
his many contributions to the discipline of nonlinear optimization

Abstract. Diverse problems in optimization, engineering, and economics have natural formu-
lations in terms of complementarity conditions, which state (in their simplest form) that either a
certain nonnegative variable must be zero or a corresponding inequality must hold with equality, or
both. A variety of algorithms has been devised for solving problems expressed in terms of comple-
mentarity conditions. It is thus attractive to consider extending algebraic modeling languages, which
are widely used for sending ordinary equations and inequality constraints to solvers, so that they
can express complementarity problems directly. We describe an extension to the AMPL modeling
language that can express the most common complementarity conditions in a concise and flexible
way, through the introduction of a single new “complements” operator. We present details of an
efficient implementation that incorporates an augmented presolve phase to simplify complementarity
problems, and that converts complementarity conditions to a canonical form convenient for solvers.

Key words. complementarity, algebraic modeling languages, optimization

AMS subject classifications. 49J40, 65K10, 90C33

PII. S105262349833338X

1. Introduction. After equations and inequalities, complementarity conditions
are among the most common kinds of constraints formulated in terms of decision
variables. In their simplest form, they state that either a certain nonnegative variable
must be zero or a corresponding inequality must hold with equality, or both.

Complementarity conditions play a key role in the theory of convex optimization,
being the natural form for optimality conditions in inequality-constrained problems.
They also arise in a variety of applications from engineering to economics. As a re-
sult, various algorithms have been proposed to solve complementarity problems whose
constraints consist partly or entirely of complementarity conditions. Several of these
algorithms have been developed into large-scale, robust implementations of solvers for
complementarity problems.

The work described in this paper is concerned not with the details of any partic-
ular algorithm for complementarity problems but with the broader concern of helping
people communicate such problems to a variety of solvers. We consider specifically
the possibilities for extending algebraic modeling languages, which are widely used in
communicating equality and inequality constraints, so as to express linear and nonlin-
ear complementarity conditions. We show how the introduction of a “complements”
operator enables a modeling language to express a variety of these conditions clearly

∗Received by the editors January 29, 1998; accepted for publication (in revised form) January 15,
1999; published electronically September 24, 1999.

http://www.siam.org/journals/siopt/9-4/33338.html
†Computer Sciences Department, University of Wisconsin, Madison, WI 53706 (ferris@cs.wisc.

edu). The research of this author was supported in part by National Science Foundation grant CCR-
9619765.
‡Department of Industrial Engineering and Management Sciences, Northwestern University,

Evanston, IL 60208-3119 (4er@iems.nwu.edu). The research of this author was supported in part
by National Science Foundation grants DMI-9414487 and DMI-9800077.
§Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (dmg@research.bell-labs.com).

991

992 MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY

and concisely for human modelers while remaining amenable to efficient translation
to forms required by solvers.

As a practical illustration of this approach, we describe its implementation in the
AMPL modeling language. We touch upon a number of practical concerns, such as the
extension of the presolve phase for simplifying problems and the design of a canonical
form for communicating problems to solvers.

Relevant background in complementarity and in modeling languages is summa-
rized in section 2 below. The kinds of complementarity conditions that we aim to
represent are surveyed in section 3, along with a critique of previous representations
for complementarity in modeling languages. Our new AMPL representation is then
presented in section 4 and is evaluated with respect to specific design criteria.

The remainder of this paper addresses further aspects of our complementarity
enhancements to the AMPL design, including extension of the presolve phase (section
5), canonical forms for communication with solvers (section 6), and extensions of
related constraint notations and representations (section 7). All of these features have
been implemented as part of a recent release of the AMPL software; a demonstration
version, including a link to the PATH solver, can be tried out through a Web interface,
as explained in our concluding remarks in section 8.

2. Background. The significance of our topic stems from the existence of ap-
plications and algorithms for complementarity problems, together with modeling lan-
guages capable of expressing such problems. We begin by briefly reviewing each of
these areas.

2.1. Applications. Complementarity relations arise in a variety of engineering
and economics applications [17, 18, 26], most commonly to express an equilibrium of
quantities such as forces or prices.

One standard application in engineering arises in contact mechanics, where com-
plementarity expresses the fact that friction occurs only when two bodies are in con-
tact. Other applications are found in structural mechanics, structural design, traffic
equilibrium, and optimal control [18].

Interest among economists in solving complementarity problems is due in part to
increased use of computational general equilibrium models [34], where complemen-
tarity is used to express Walras’s law, and to the equivalence of various games to
complementarity problems [10].

Some generalizations of nonlinear programming, such as multilevel optimization—
in which auxiliary objectives are to be minimized—may be reformulated as prob-
lems with complementarity conditions [1, 2, 3, 14]. There is a growing literature on
these and other mathematical programming problems with equilibrium constraints,
or MPECs [28, 29].

2.2. Solvers. The demands of applications have motivated a variety of algo-
rithms for complementarity problems [4]. Modelers currently have a choice of robust
and efficient implementations, such as MILES [33] and PATH [12, 16].

Recent research in this area can be divided into two general algorithmic ap-
proaches [4]. One approach transforms complementarity problems so that they can
be solved using existing methods for differentiable optimization or equation solving.
The other generalizes existing methods—including Newton-type methods, path search
methods, projection and proximal methods, and interior-point methods—to apply to
complementarity problems of certain kinds. In particular, many standard techniques
have been extended to deal with the special forms of nonsmoothness that naturally

EXPRESSING COMPLEMENTARITY PROBLEMS 993

appear when formulating complementarity problems. No comprehensive survey of al-
gorithms for complementarity problems is currently available, but extensive references
to algorithms can be found in [17, 18, 26].

2.3. Modeling languages. Constructing problem descriptions suitable for sol-
vers is a substantial task that can easily consume more time and expense than finding
problem solutions. Modeling languages have become a popular means of streamlin-
ing this task. They allow people to work with general models expressed in a natural
and convenient form while leaving for the language processor the work of translating
models and communicating problem instances to solvers.

We are concerned in particular with algebraic modeling languages, which describe
expressions, equations, and inequalities by use of familiar algebraic terms and opera-
tors. As an example, a collection of inequality constraints defined by∑

r∈R
Tru ≥ q0

c

∏
j∈M

(Pju/p
0
j)
ecj for all c ∈ C, u ∈ U

could be transcribed to the AMPL language [22, 23] as

subject to ineq1 {c in C, u in U}:
sum {r in R} T[r,u] >=

q0[c] * prod {j in M} (P[j,u] / p0[j]) ** e[c,j];

or, using somewhat more mnemonic identifiers, as

subject to CrudeSupply {cr in CRUDES, u in USERS}:
sum {r in REFIN} Trans[r,u] >=

q0[cr] * prod {co in COMOD} (P[co,u] / p0[co]) ** esub[cr,co];

Other AMPL statements define the index sets, numerical data, and variables that ap-
pear in such an expression, as seen in the illustration of an AMPL complementarity
problem in Figure 1 of section 4. Algebraic languages, such as AMPL, AIMMS [5],
GAMS [6, 8], and LINGO [35], are currently the most popular type of modeling lan-
guage for describing linear and nonlinear optimization problems.

With the specification of the objective omitted, algebraic modeling languages are
equally useful for describing problems of finding feasible solutions to systems of equal-
ity and inequality constraints. We thus approach complementarity conditions as an
additional kind of constraint to which modeling languages may be extended. The de-
sign of any such extension involves many tradeoffs between the goal of making the
language natural and convenient for people and the requirement that the language
be processed with reasonable efficiency by a computer system. We have previously
described the tradeoffs involved in various extensions to AMPL [19, 21]; similar con-
siderations have influenced our extensions for complementarity, as we explain next.

3. Design issues. To motivate our choice of a modeling language representation
for complementarity conditions, we first describe the variety of conditions that we want
the language to be able to represent. We then take a critical look at representations
that have been used previously in the GAMS and AMPL languages.

3.1. Forms of complementarity. A few fundamental forms account for almost
all of the complementarity conditions that people want to use in models. The simplest
of these forms can be written in terms of a variable xj and an associated function
gj(x), where x is a vector of variables that contains xj .

994 MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY

The classical form of complementarity condition is the one described at the be-
ginning of this paper. It requires that

either xj = 0 and gj(x) ≥ 0
or xj > 0 and gj(x) = 0.

(1)

This condition can be viewed as consisting of the inequalities xj ≥ 0 and gj(x) ≥ 0,
together with the complementarity restriction that at least one of these must hold
with equality. The complementarity restriction can be written equivalently as

xj · gj(x) = 0

or as the nonsmooth equation

min(xj , gj(x)) = 0.

If conditions of this sort are imposed for every j ∈ J , then they may also be written
jointly as x ≥ 0, g(x) ≥ 0, and xT g(x) = 0.

The more general mixed complementarity condition on a bounded variable `j ≤
xj ≤ uj and a function gj(x) states that

either xj = `j and gj(x) ≥ 0
or xj = uj and gj(x) ≤ 0
or `j < xj < uj and gj(x) = 0.

(2)

This form generalizes the classical complementarity condition, which is the special
case in which `j = 0 and uj =∞. It can be expressed equivalently as the variational
inequality problem of finding xj ∈ [`j , uj] such that

(yj − xj) · gj(x) ≥ 0 for all yj ∈ [`j , uj],

or, where there is such a condition for each j ∈ J , as the joint problem of finding
x ∈ [`, u] such that (y − x)T g(x) ≥ 0 for all y ∈ [`, u]. A mixed complementarity
condition can be split into two of the classical conditions, but only through the addi-
tion of auxiliary variables. Thus it is desirable for a modeling language to represent
mixed complementarity directly, rather than requiring that all mixed conditions be
transformed to classical ones. The greater simplicity of classical complementarity (as
in (1)) argues that it should also be represented directly, however, rather than having
to be written as a special case of the mixed form with an infinite bound.

For completeness, our collection of fundamental complementarity conditions also
includes the trivial case

xj “free” and gj(x) = 0,(3)

which can be seen to be another special case of mixed complementarity, with `j = −∞
and uj = +∞.

The above forms may be extended by substituting a function fj(x) for the individ-
ual variable xj . Thus a generalized classical complementarity condition can be written

either fj(x) = 0 and gj(x) ≥ 0
or fj(x) > 0 and gj(x) = 0,

(4)

and a generalized mixed complementarity condition has the form

EXPRESSING COMPLEMENTARITY PROBLEMS 995

either fj(x) = `j and gj(x) ≥ 0
or fj(x) = uj and gj(x) ≤ 0
or `j < fj(x) < uj and gj(x) = 0.

(5)

Complementarity conditions in these forms can be transformed to the simpler forms
(1) and (2), but only by adding a variable and a defining equation. Thus it is desirable
that a modeling language be able to directly represent these forms as well.

The above forms allow a modeler to express not only models that are well formed,
solvable, and stable but also models that are poorly specified or badly behaved. For
gj(x) as simple a function as 1− xj , the complementarity condition (1) is equivalent
to specifying that xj can take only the values zero and one. This gives some indication
of the difficulties associated with solving complementarity problems; the “tightness”
requirement is combinatorial in nature and the solution set of a complementarity
problem need not be convex or even connected.

It is possible to avoid undesirably hard cases by placing some restrictions on the
functions involved. Just as there are classes of well-behaved nonlinear optimization
problems that involve convex functions, for complementarity problems there is a cor-
responding notion of a monotone function gj , which satisfies

(y − x)T (gj(y)− gj(x)) ≥ 0

for all x and y [26, 32]. Current modeling languages largely avoid such restrictions,
however, in the interest of keeping their design simple and general. Especially in
working with nonlinear problems, a modeler is expected to be aware that solvers
frequently have difficulties if the model is poorly specified or if the initial point is
far from a solution. Some assistance may be provided by routines that test functions
for desirable properties, but they are typically incorporated into individual solvers or
related analysis tools such as MProbe [9].

3.2. Modeling language representations. The GAMS modeling language
[6, 8] was the first (to our knowledge) to provide for specification of complemen-
tarity problems [15]. As explained in [34], GAMS does not express complementarity
through any modification to its constraint syntax, but rather by an extension to its
model-defining statement. The list of constraints in its model statement is general-
ized to allow the specification of complementary constraint-variable pairs, as in the
following example from pies.gms in MCPLIB [13]:

model pies / delc.c, delo.o, delct.ct, delot.ot, dellt.lt, delht.ht,

dembal.p, cmbal.cv, ombal.ov, lmbal.lv, hmbal.hv, ruse.mu /;

The specification delc.c, for example, indicates that the constraints delc,

delc(creg,ctyp) ..

ccost(creg,ctyp) + sum(R, cruse(R,creg,ctyp) * mu(R)) =g= cv(creg);

are complementary to the variables c having lower bounds 0,

positive variables

c(creg,ctyp), . . .

and having upper bounds assigned from a data table,

c.up(creg,ctyp) = cmax(creg,ctyp);

996 MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY

From the fact that c has finite lower and upper bounds, GAMS infers that a certain
mixed complementarity condition is intended; from the expression in the delc con-
straint statement, GAMS determines what we have been calling the function gj(x).
Thus explicit conditions of the form (2) need not be added to the model. Analogous
inferences allow variables that have only one finite bound to induce classical comple-
mentary conditions of the form (1).

These simple conventions provide sufficient expressiveness to describe a consid-
erable variety of applications, as evidenced by the over 50 GAMS complementarity
models collected in MCPLIB. The design of these extensions also promotes the reuse
of equations previously declared, thus helping modelers to transform existing models
into the complementarity framework.

Nevertheless, several aspects of the GAMS approach remain problematical. A full
description of any one complementarity condition tends to be spread over several sec-
tions of the GAMS model, as seen in the example above. Generalized complementarity
conditions can only be represented via transformations to simpler forms. Finally, and
most seriously, the sense of the inequality in a complementary constraint is deter-
mined from the bounds on the corresponding variable, not by the inequality actually
written in the statement of the constraint. As a result, both mixed and classical com-
plementarity conditions may be interpreted by the GAMS processor in ways that are
counterintuitive to modelers.

For the mixed case, the function gj(x) in (2) must be specified by means of a
GAMS constraint declaration, even though it is not subject to any inequality. For
example, although the delc statement above appears to define =g= (≥) constraints,
the implied complementarity condition allows the left-hand side of delc(creg,ctyp)
to be less than the right-hand side when the corresponding variable c(creg,ctyp) is
at upper bound. (The GAMS result listing marks a constraint as “redefined” if it is
violated by the solution in this way.)

For the classical case, it is up to the modeler to correctly state the inequality
on gj(x) in (1). As another example (also from pies.gms), the nonnegative variables
ct(creg,users) are defined as being complementary to the constraints

delct(creg,users) ..

ctcost(creg,users) + cv(creg) =g= p("C",users);

Because the ct variables have finite lower bounds but not finite upper bounds, the
relational operator in this case must be =g=. The mathematically equivalent constraint

delct(creg,users) ..

p("C",users) =l= ctcost(creg,users) + cv(creg);

is rejected as an error, because the relational operator =l= (≤) is not compatible with
complementary variables having only a finite lower bound. This distinction is hard to
impress upon modelers, who see the above statements as two ways of saying the same
thing.

A similar complementarity representation has been implemented in [11, Chap. 2]
for the AMPL modeling language [22, 23], although with some differences in the na-
ture of the extension. Complementarity is indicated by writing a constraint in the
equivalent multiplicative form xj · gj(x) = 0, with bounds on the variable xj specified
in the declaration for the variable. Thus no new syntax is added to any part of the
AMPL language (a key requirement of the design in [11]) and the existing AMPL trans-
lator can process the model and create a problem file in its usual format. Detection
of complementarity conditions is left to the solver, or more accurately to the AMPL

EXPRESSING COMPLEMENTARITY PROBLEMS 997

driver (or interface routines) for the solver. The driver examines the expression tree
for each constraint to determine the variable xj and then generates an appropriate
complementarity constraint for the solver, depending on which bounds of xj are finite,
using much the same logic as the GAMS implementation.

This design also has many of the same drawbacks as the GAMS one. Most se-
riously, constraints that appear in the model are not necessarily enforced by the
complementarity solver. The conditions actually enforced must be inferred from in-
formation that is partly in one place (a constraint) and partly in another (a variable’s
bounds). Generalized complementarity conditions must be handled by transformation
to a simpler form.

4. A new representation. In creating a new form for complementarity condi-
tions, we have sought to address the drawbacks of previous designs while preserving
the existing strengths of the AMPL language. We begin this section by describing the
representation that we ended up choosing. We then consider the extent to which our
representation satisfies a range of design criteria.

Of particular importance for our discussion is the variety of arithmetic constraint
expressions that AMPL recognizes. They can be summarized as

expr1 <= expr2,
expr1 >= expr2,
expr1 = expr2,
const1 <= expr <= const2,
const1 >= expr >= const2,

where expr is any valid arithmetic expression, possibly involving variables (linearly or
nonlinearly), and const is an arithmetic expression that does not contain variables.

Illustrations in this section are taken from pies.mod, the previous GAMS ex-
ample’s AMPL counterpart, which is shown in Figures 1 and 2. Additional AMPL

complementarity models and corresponding data files can be found in MCPLIB [13]
and at http://www.ampl.com/ampl/NEW/COMPLEMENT/.

4.1. Design specifics. The key to our design is the realization that the different
complementarity forms (1), (2), and (3) have the same general structure. In each case,
a variable is complementary, in some sense, to a function of variables; and in each
case, exactly two inequalities are involved (counting one equality as two inequalities).
The function can be defined by a modeling language expression, and the inequalities
are corresponding modeling language constraints. The same observations apply to
the generalized forms (4) and (5), except that the variable is replaced by a second
function.

These observations suggest that all of the fundamental complementarity condi-
tions identified in section 3.1 can be represented by AMPL expressions of the form

item1 complements item2

The keyword complements is a new operator. Its operands item1 and item2 may be
AMPL arithmetic expressions, or they may be AMPL arithmetic constraints of any of
the types listed above, provided that together they contain exactly two inequalities. A
solution satisfies such an expression if it satisfies the constraints among the operands to
complements and also the appropriate kind of complementarity between the operands.

If a constraint of this new kind has two single inequality operands, as in

subject to delct {c in CREG, u in USERS}:

998 MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY

set COMOD := {"C","L","H"}; # coal and light and heavy oil

set R; # resources
set CREG; # coal producing regions
set OREG; # crude oil producing regions
set CTYP; # increments of coal production
set OTYP; # increments of oil production
set REFIN; # refineries
set USERS; # consumption regions

param rmax {R}; # maximum resource usage
param cmax {CREG,CTYP}; # coal prod. limits
param omax {OREG,OTYP}; # oil prod. limits
param rcost {REFIN}; # refining cost
param q0 {COMOD}; # base demand for commodities
param p0 {COMOD}; # base prices for commodities
param demand {COMOD,USERS}; # computed at optimality
param output {REFIN,COMOD}; # % output of light/heavy oil
param esub {COMOD,COMOD}; # cross-elasticities of substitution
param cruse {R,CREG,CTYP}; # resource use in coal prod
param oruse {R,OREG,OTYP}; # resource use in oil prod
param ccost {CREG,CTYP}; # coal production cost
param ocost {OREG,OTYP}; # oil production cost
param ctcost {CREG,USERS}; # coal transportation costs
param otcost {OREG,REFIN}; # crude oil transportation costs
param ltcost {REFIN,USERS}; # light oil transportation costs
param htcost {REFIN,USERS}; # heavy oil transportation costs

var C {CREG, CTYP}; # coal production
var O {OREG, OTYP}; # oil production
var Ct {CREG, USERS}; # coal transportation levels
var To {OREG, REFIN}; # crude oil transportation levels
var Lt {REFIN, USERS}; # light transportation levels
var Ht {REFIN, USERS}; # heavy transportation levels
var P {COMOD, USERS}; # commodity prices
var Mu {R}; # dual to ruse: marginal utility
var Cv {CREG}; # dual to cmbal
var Ov {OREG}; # dual to ombal
var Lv {REFIN}; # dual to lmbal
var Hv {REFIN}; # dual to hmbal

Fig. 1. An AMPL model of a complementarity problem, part 1 : Declarations of sets, numerical
data, and decision variables.

0 <= Ct[c,u] complements ctcost[c,u] + Cv[c] >= P["C",u];

then it specifies a classical complementarity condition. Both inequalities must hold,
at least one with equality.

If a constraint of this kind has instead one double inequality operand and one
expression operand, as in

subject to delc {c in CREG, t in CTYP}:
0 <= C[c,t] <= cmax[c,t] complements

ccost[c,t] + sum {res in R} cruse[res,c,t] * Mu[res] - Cv[c];

EXPRESSING COMPLEMENTARITY PROBLEMS 999

subj to delc {c in CREG, t in CTYP}:
0 <= C[c,t] <= cmax[c,t] complements
ccost[c,t] + (sum {res in R} cruse[res,c,t] * Mu[res]) - Cv[c];

subj to delo {o in OREG, t in OTYP}:
0 <= O[o,t] <= omax[o,t] complements
ocost[o,t] + (sum {res in R} oruse[res,o,t] * Mu[res]) - Ov[o];

subj to delct {c in CREG, u in USERS}:
0 <= Ct[c,u] complements
ctcost[c,u] + Cv[c] >= P["C",u];

subj to delot {o in OREG, r in REFIN}:
0 <= To[o,r] complements
otcost[o,r] + rcost[r] + Ov[o] >=

output[r,"L"] * Lv[r] + output[r,"H"] * Hv[r];

subj to dellt {r in REFIN, u in USERS}:
0 <= Lt[r,u] complements
ltcost[r,u] + Lv[r] >= P["L",u];

subj to delht {r in REFIN, u in USERS}:
0 <= Ht[r,u] complements
htcost[r,u] + Hv[r] >= P["H",u];

subj to dembal {co in COMOD, u in USERS}: # excess supply of product
.1 <= P[co,u] complements
(if co = "C" then sum {c in CREG} Ct[c,u]) +
(if co = "L" then sum {r in REFIN} Lt[r,u]) +
(if co = "H" then sum {r in REFIN} Ht[r,u]) >=

q0[co] * prod {cc in COMOD} (P[cc,u]/p0[cc])**esub[co,cc];

subj to cmbal {c in CREG}: # coal material balance
Cv[c] complements
sum {t in CTYP} C[c,t] = sum {u in USERS} Ct[c,u];

subj to ombal {o in OREG}: # oil material balance
Ov[o] complements
sum {t in OTYP} O[o,t] = sum {r in REFIN} To[o,r];

subj to lmbal {r in REFIN}: # light material balance
Lv[r] complements
sum {o in OREG} To[o,r] * output[r,"L"] = sum {u in USERS} Lt[r,u];

subj to hmbal {r in REFIN}: # heavy material balance
Hv[r] complements
sum {o in OREG} To[o,r] * output[r,"H"] = sum {u in USERS} Ht[r,u];

subj to ruse {res in R}: # resource use constraints
0 <= Mu[res] complements
rmax[res] >=

sum {c in CREG, t in CTYP} C[c,t] * cruse[res,c,t] +
sum {o in OREG, t in OTYP} O[o,t] * oruse[res,o,t];

Fig. 2. An AMPL model of a complementarity problem, part 2: Declarations of complementarity
conditions.

1000 MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY

then it specifies a mixed complementarity condition. Again both inequalities must
hold, but the nature of the complementarity is somewhat different. Either the lower
inequality holds with equality and the expression is nonnegative, or the upper in-
equality holds with equality and the expression is nonpositive, or neither inequality
holds with equality and the expression is zero.

A single equality constraint may take the place of the double inequality:

subject to cmbal {c in CREG}:
Cv[c] complements

sum {t in CTYP} C[c,t] = sum u in USERS Ct[c,u];

This form of constraint merely imposes the equality. It has no effect on the expression
operand, which could just as well be omitted (along with the complements operator).
It does have some value in exhibiting “square” models (like pies.mod), where each
constraint is paired with a different complementary variable; squareness is required
by some solvers, as discussed further in section 6.2.

Although the first operand to complements in the above examples involves only
a single variable, our definitions make no mention of this fact, and indeed it is not a
requirement of our representation. So long as the total number of inequality operators
is two, our representation allows each operand to be any arithmetic expression or
constraint.

4.2. Design criteria. Our representation’s introduction of the complements

operator is valuable in several respects. Its presence clearly distinguishes complemen-
tarity constraints from other types, and its operands contain all of the information
necessary to define a complementarity condition. The definition of an AMPL com-
plementarity constraint (or indexed collection of constraints) thus appears all in one
place, rather than being divided among different statements, as in earlier designs.

There is also no question as to which kind of complementarity is intended by
our representation, since the classical and mixed forms are readily distinguished by
the position of the inequalities relative to the complements operator. Nor is there
any question as to which two inequalities are implied, since both appear explicitly
as operands to complements. Earlier designs’ practice of inferring such information
from the number of finite bounds is avoided entirely. At the same time, the interpre-
tation of existing AMPL constraint forms—ones that do not contain the complements

operator—is left unchanged, and existing models are unaffected.
The incorporation of existing AMPL expression and constraint forms into the new

representation is also valuable. By allowing operands to complements to be any AMPL

arithmetic expressions and constraints, subject only to the two-inequality restriction,
we keep our language rules simple to apply and easy to remember. The constraint
delct above, for example, may be written in any obviously equivalent fashion, such as

subject to delct {c in CREG, u in USERS}:
Ct[c,u] >= 0 complements ctcost[c,u] + Cv[c] >= P["C",u];

or

subject to delct {c in CREG, u in USERS}:
0 >= P["C",u] - ctcost[c,u] - Cv[c] complements Ct[c,u] >= 0;

We also make no special distinction for inequalities that happen to be bounds on
individual variables. As a result, the generalized complementarity forms (4) and (5)
are specified as easily as their more restricted counterparts (1) and (2), without any

EXPRESSING COMPLEMENTARITY PROBLEMS 1001

of the transformations required by earlier designs.
Our representation does require the modeler or reader to remember the rules for

deriving a complementarity condition from complements and its operands. In this
respect, complements is a primitive operator, like + or <=, whose meaning must be
furnished from a user’s knowledge of the modeling language. The alternative would be
to write out the complementarity requirement more explicitly, perhaps in forms (1)
or (2) or their generalizations. As an example, the constraint delc introduced above
might be declared equivalently in the following form motivated by (2):

var Cdual {c in CREG, t in CTYP}
= ccost[c,t] + sum {res in R} cruse[res,c,t] * Mu[res];

subject to delc {c in CREG, t in CTYP}:
C[c,t] = 0 and Cdual[c,t] >= Cv[c] or

C[c,t] = cmax[c,t] and Cdual[c,t] <= Cv[c] or

0 <= C[c,t] <= cmax[c,t] and Cdual[c,t] = 0;

This representation clearly states the entire complementarity condition using only ex-
isting AMPL operators. However, its adoption would require that AMPL be extended
to allow variables in the operands to boolean operators (such as and and or). Such
an extension would introduce a great variety of constraint types unrelated to com-
plementarity, making complementarity constraints much harder for the modeler (and
AMPL processor) to recognize. We could further modify the design to preserve rec-
ognizability, but only by introducing complex new rules on the use of variables with
boolean operators. In light of this and similar examples, we have decided that the
drawbacks of having a primitive complements operator are greatly outweighed by the
advantages.

5. Extending presolve. Often it is worthwhile to simplify an optimization
problem before sending it to a solver. Brearley, Mitra, and Williams [7] describe a
set of simplification techniques based on iteratively tightening the bounds on vari-
ables and constraint expressions. These “presolve” techniques have been found to
work well for linear programs and are provided as an option by many commercial
linear programming solvers.

The AMPL modeling language processor also incorporates a primal presolve phase
[20] that applies the ideas of [7] to linear constraints. (Nonlinearities are handled, but
in a naive way. Because AMPL may send several objectives to the solver, we have
not yet exploited the opportunities described in [7] to use dual information.) An
integrated presolver is useful to a modeling language system in several respects. By
identifying constraints involving only one variable, the presolver makes it irrelevant
whether one states bounds on a variable in the variable’s declaration or in a separate
constraint declaration. Presolving sometimes results in a significantly smaller problem
to convey to the solver, reducing communication time. Presolving on the modeling
language side can also benefit any solver that does not have its own presolve phase.

Complementarity constraints introduce new information that we can exploit in
AMPL’s presolve routines. For instance, given a constraint of the form

expr1 >= 0 complements expr2 >= 0,

if we can deduce a positive lower bound on expr1, then we can infer that it is strictly
positive for all feasible points, and we can replace the constraint by

expr2 = 0.

1002 MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY

Similarly, for a constraint of the form

const1 <= expr2 <= const3 complements expr4,

there are various possibilities. If we can deduce that, say, expr2 < const3 for all
feasible points, then we can replace the constraint by

const1 <= expr2 complements expr4 >= 0.

If we can deduce that always const1 < expr2 < const3, then we can replace the
constraint by

expr4 = 0.

Conversely, if we can deduce that expr4 < 0, then we can replace the constraint by

expr2 = const3,

and so forth.

Each of these deductions can be triggered by presolve’s manipulations of variable
and constraint bounds. There are many combinations to be considered, but they are
straightforward to enumerate and fast to check. As a simple illustration, consider the
model

var x1;

var x2;

var x3;

subj to f1: x1 >= 0 complements x1 + 2*x2 + 3*x3 >= 1;

subj to f2: x2 >= 0 complements x2 - x3 >= -1;

subj to f3: x3 >= 0 complements x1 + x2 >= -1;

proposed by Munson [30] and called munson1.mod in MCPLIB [13]. The first inequal-
ities in the complementarity constraints imply that all the variables are nonnegative.
Then the second constraint in f3 must always be slack, which implies that x3 = 0,
whence the second constraint in f2 must always be slack, which implies that x2 = 0.
The second constraint in f1 now reduces to x1 ≥ 1, which implies that the first inequal-
ity in f1 must always be slack, which implies x1 = 1, and the presolver completely
determines the solution. Our results in section 6 identify two larger test problems for
which presolve’s simplifications are significant.

Presolve folds together all bounds on a variable, whether specified in an ordinary
var or subj to declaration or as an operand to complements. The user has the option
of turning off most of presolve’s logic, in which case separate bounds on some variables
may remain separate. However, regardless of the presolve setting, AMPL detects when
bounds given in a var declaration are redundant due to the same or tighter bounds
being given as an argument to complements in a subsequent constraint. For example,
to enhance the definition of variable Ct in Figure 1, we could add bounds,

var Ct {CREG, USERS} >= 0;

even though Figure 2 defines the same bounds in a subsequent complementarity con-
straint:

subj to delct {c in CREG, u in USERS}:
0 <= Ct[c,u] complements ctcost[c,u] + Cv[c] >= P["C",u];

The redundant bounds do not make any difference to the form of the problem seen
by the solver.

EXPRESSING COMPLEMENTARITY PROBLEMS 1003

6. Communicating problems to solvers. Since a modeling language is de-
signed for the convenience of human modelers, the language processing software must
do a certain amount of transformation to put problems into the forms required by ef-
ficient solvers. We describe in this section the transformations performed by AMPL’s
language processor to yield a canonical complementarity form useful for a variety
of solvers. We then briefly comment on specific drivers for the PATH solver and for
solvers written in Matlab.

6.1. Transformation to canonical form. To simplify the task of presenting
complementarity problems to solvers, we have arranged for the AMPL processor to
transform general complementarity constraints to the form

(6) `1 ≤ expr ≤ u1 complements `2 ≤ variable ≤ u2,

where the complemented variables are all distinct, and exactly two of the constants
`1, u1, `2, u2 are finite. Ignoring the infinite bounds, this representation clearly de-
scribes a classical or mixed complementarity condition by the rules previously given.

This canonical form has the advantage of allowing the left operand and right
operand of complements to be communicated to the solver as an ordinary constraint
and an ordinary variable, respectively, as described in [24]. The complementarity
extension can then be implemented by sending the solver only one new array, cvar,
which pairs constraints with variables. Specifically, if the ith constraint seen by the
solver has arisen by a complementarity relationship of the form (6) with the jth
variable, then cvar[i] is set to j. Otherwise, the ith constraint has not arisen from
any complementarity relation, and cvar[i] is set to an index that does not correspond
to any variable.

The form of the transformation to (6) is straightforward, though it sometimes
involves adding a new variable and an equality constraint defining the new variable.
An expression complementing a general double-inequality constraint, for example, is
transformed by

expr1 complements ` ≤ expr2 ≤ u
=⇒ −∞ ≤ expr1 ≤ +∞ complements ` ≤ z ≤ u, z = expr2,

where z is the new variable. In the common case of a bounded variable v comple-
menting a single inequality, it is unnecessary to introduce a new variable and equality
constraint, as long as v has not already been used as the canonical variable in another
complementarity constraint. For example,

v ≥ 0 complements expr ≥ 0
=⇒ 0 ≤ expr ≤ +∞ complements 0 ≤ v ≤ +∞.

However, if v is used in two such constraints, then it can serve as the canonical variable
for the first, but a new variable w must be introduced as the canonical variable of the
second:

v ≥ 0 complements expr1 ≥ 0, v ≥ 0 complements expr2 ≥ 0
=⇒ 0 ≤ expr1 ≤ +∞ complements 0 ≤ v ≤ +∞,

0 ≤ expr2 ≤ +∞ complements 0 ≤ w ≤ +∞, w = v.

Other cases are similarly straightforward. All of AMPL’s transformations to canonical
form preserve the property of monotonicity described in section 3.1, ensuring that
the complementarity problem sent to a solver will tend to be as well behaved as the

1004 MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY

problem originally formulated by the modeler.

6.2. Interface to PATH. Some current solvers, such as PATH [12, 16], want
to see only complementarity conditions. If a problem is “square” in the sense that
the number of variables equals the number of equality constraints plus the number
of canonical complementarity conditions (6), then it is straightforward to create an
equivalent pure complementarity problem in which all constraints have the form (6).

First, each finite bound on an unassociated variable (one not yet associated with
a canonical complementarity constraint) is removed from the variable and added as a
separate inequality constraint instead. Then each equality constraint can be converted
to a complementarity condition by the transformation

expr = const
=⇒ const ≤ expr ≤ const complements −∞ ≤ v ≤ +∞,

where v is any unassociated variable. The squareness of the problem ensures that every
equality can be covered by a different variable in this way. Finally, a new variable
is associated with each of the inequality constraints (including the aforementioned
constraints created from variable bounds), after which the inequalities can also be
converted to complementarity conditions. For example,

expr ≥ const
=⇒ const ≤ expr ≤ +∞ complements 0 ≤ z ≤ +∞,

where z is the new variable. The other inequality forms are handled similarly.
We have implemented an interface (or driver) that, when compiled with PATH,

produces an AMPL solver path for square complementarity problems. It can be used
in the AMPL command environment in the same way as other solvers:

ampl: model pies.mod;

ampl: data pies.dat;

ampl: option solver path;

ampl: solve;

PATH 3.0: Solution found.

14 iterations (1 for crash); 28 pivots.

30 function, 16 gradient evaluations.

The driver reads a problem in the canonical form (6) and applies the manipulations
described above to produce a problem consisting entirely of complementarity condi-
tions, as the PATH solver requires. Instructions and C source for this driver are freely
available from ftp://netlib.bell-labs.com/netlib/ampl/solvers/path.

Table 1 shows the results of running path on some AMPL problems from MCPLIB
[13]. Certain problems are supplied with several starting guesses, as distinguished in
the start column. Results are given both with (“yes”) and without (“no”) deduction of
bounds by AMPL’s presolver, in the two cases (choi and pies) where presolving makes
a difference. The columns headed nv, ncc, and nsc give the numbers of variables,
complementarity constraints (6), and side constraints seen by the solver (before it
makes the previously described manipulations). The nfunc and ngrad columns report
the numbers of function and gradient (Jacobian) evaluations.

6.3. Interface to MATLAB. Often it is convenient to use Matlab [25, 31]
implementations to experiment with algorithms. The examples associated with [24]
include source for Matlab mex functions that provide various information about op-

EXPRESSING COMPLEMENTARITY PROBLEMS 1005

Table 1
Tests of the path solver for AMPL.

Problem Start Presolve nv ncc nsc Iters Pivots nfunc ngrad
bertsek 1 — 15 10 5 5 13 25 6
bertsek 2 — 15 10 5 4 5 10 6
bertsek 3 — 15 10 5 6 12 14 8
bertsek 4 — 15 10 5 5 13 25 6
bertsek 5 — 15 10 5 4 3 10 6
bertsek 6 — 15 10 5 5 13 25 6
choi 1 no 14 13 2 4 7 10 6
choi 1 yes 13 13 0 4 3 10 6
ehl def 1 — 101 100 1 5 6 12 7
ehl kost 1 — 101 100 1 5 6 12 7
josephy 1 — 4 4 0 8 18 29 10
josephy 2 — 4 4 0 10 16 27 12
josephy 3 — 4 4 0 16 22 34 18
josephy 4 — 4 4 0 5 4 13 7
josephy 5 — 4 4 0 3 2 8 5
josephy 6 — 4 4 0 10 31 26 12
josephy 7 — 4 4 0 10 16 25 12
josephy 8 — 4 4 0 2 1 6 4
kojshin 1 — 4 4 0 10 21 26 12
kojshin 2 — 4 4 0 13 34 68 16
kojshin 3 — 4 4 0 16 36 34 18
kojshin 4 — 4 4 0 1 0 4 3
kojshin 5 — 4 4 0 5 6 12 7
kojshin 6 — 4 4 0 15 29 39 17
kojshin 7 — 4 4 0 10 27 25 12
kojshin 8 — 4 4 0 4 5 10 6
nash 1 — 10 10 0 6 5 14 8
nash 2 — 10 10 0 6 5 14 8
nash 3 — 10 10 0 5 4 12 7
nash 4 — 10 10 0 3 2 8 5
obstacle 1 — 2500 2500 0 7 1 14 9
pies 1 no 42 34 16 14 150 30 16
pies 1 yes 42 34 8 14 28 30 16

timization problems expressed in AMPL, such as dimensions, bounds, starting guesses,
and function, gradient (or Jacobian matrix), and Lagrangian Hessian values. To en-
courage experiments with complementarity algorithms, we have extended these mex
functions to also make available the cvar array of complementarity relations (as de-
fined in section 6.1).

7. Related notation. The complementarity extensions to AMPL constraints
necessitate corresponding extensions to notation for referring to constraints. This
section briefly describes extensions to the “dot suffix” notation for constraint-related
quantities, and to “synonyms” for constraint names.

7.1. Suffixes. As an aid to evaluating and understanding computed solutions,
it is convenient to have notation for quantities such as lower and upper bounds,
slack values (distances from bounds), and reduced costs associated with variables
and constraints. The AMPL language admits various .suffix notations to denote these
quantities. In particular, AMPL puts each constraint into the canonical form ` ≤
body ≤ u, in which ` and u are constants (possibly −∞ and +∞), with ` = u
for equality constraints, after which the most frequently used .suffix options can be
defined as shown in Table 2.

For dealing with complementarity constraints, we extend the .suffix notations

1006 MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY

Table 2
Most frequently used suffixes for a constraint Foo, in terms of the canonical form ` ≤ body ≤ u.

Notation Meaning
Foo.body body
Foo.lb `
Foo.ub u
Foo.lslack body − `
Foo.uslack u− body
Foo.slack min(Foo.lslack, Foo.uslack)

in several ways. A complementarity constraint Goo may be viewed as consisting of
a “left” and “right” constraint, Goo.L and Goo.R, with a complementarity condition
between them. To indicate quantities associated with Goo’s left and right constraints,
we introduce the notations Goo.Lsuf and Goo.Rsuf, where suf is any suffix permitted
for an ordinary constraint. For showing how close a complementarity condition is to
holding, we also introduce the notation Goo.slack, whose meaning depends on Goo’s
nature. If Goo.L and Goo.R involve one explicit inequality each, then

Goo.slack = min(Goo.Lslack, Goo.Rslack).

Otherwise Goo has one of the forms

Goo.Lbody complements ` <= Goo.Rbody <= u,
` <= Goo.Lbody <= u complements Goo.Rbody.

In the former case,

Goo.slack =

min(Goo.Lbody, Goo.Rbody− `) if Goo.Rbody ≤ `,
min(−Goo.Lbody, u− Goo.Rbody) if Goo.Rbody ≥ u,
−|Goo.Lbody| otherwise;

the latter case is defined analogously. Clearly Goo.slack is zerowhen the complemen-
tarity condition is satisfied. If Goo.L and Goo.R involve one inequality each, Goo.slack
can be positive (if both constraints are strictly satisfied) or negative (if at least one
is violated), so its sign conveys some information. In the other cases Goo.slack is
always nonpositive.

7.2. Synonyms. Models are usually most conveniently described in terms of
several kinds of differently named (and indexed) constraints, as seen in Figure 2.
But sometimes it is helpful to address the variables and constraints with a uniform
notation. For this purpose, AMPL offers generic synonyms for constraints (as well
as variables and objectives). The synonym _con[i] denotes the ith constraint as
the modeler sees constraints (before presolve) for i = 1, . . . , _ncons, and _scon[i]
denotes the ith constraint that the solver sees (after presolve) for i = 1, . . . , _sncons.
The notations _conname[i] and _sconname[i] denote the corresponding names of
these constraints.

After considering several possibilities, we have found it most convenient to intro-
duce separate synonyms for complementarity constraints, reserving _con and other ex-
isting synonyms for “ordinary” constraints (including each of the pair of constraints in-
volved in a complementarity constraint declaration). The new synonyms are _ccon[i]
for the ith complementarity constraint before presolve and _cconname[i] for its name,
both for i = 1, . . . , _nccons. We also define _scvar[i] as the index of the comple-
menting variable associated with constraint i in the canonical form (6) sent to the

EXPRESSING COMPLEMENTARITY PROBLEMS 1007

solver. As an example of the use of these synonyms, one can see the extent to which
the current solution satisfies the constraints of a complementarity problem by issuing
the AMPL command

display max {i in 1.. nccons} abs(ccon[i].slack),

min {i in 1.. ncons} con[i].slack;

to show the maximum complementarity violation and, over all constraints, the maxi-
mum constraint violation (negative values of .slack indicating violations).

8. Concluding remarks. Modeling languages make it easy for people to go
from a familiar mathematical formulation to the solution of a specific problem instance
without worrying about computer programming details such as the data structures
that solvers require. Thus modelers can focus on choosing the right model instead of
worrying over lower-level aspects of implementation. Modeling languages have hith-
erto been used mainly for expressing conventional linear and nonlinear programs.
The present work describes an extension to a wider class, including complementarity
problems and mathematical programming problems with equilibrium constraints.

We hope that experience with and reaction to the present work will guide us in
designing other useful extensions. One obvious possibility concerns expressing bilevel
and multilevel optimization problems. These can be transformed to complementar-
ity problems of the kind we have addressed, but only by means of a cumbersome
conversion that requires one to write hand-coded derivative expressions in the com-
plementarity constraints. It might be possible instead to introduce a simple extension
that allows a constraint to reference the values of lower-level objectives.

An implementation of AMPL that includes the new complementarity extensions
can be accessed through Web interfaces at either of the following sites:

http://www.ampl.com/ampl/TRYAMPL/
http://www.mcs.anl.gov/neos/Server/server-solvers.html

Although they differ in details, both of these interfaces accept AMPL models, data,
and commands for execution on a remote computer, with PATH as one option for the
choice of solver. Both then generate a Web page showing the results. Thus it is not
necessary to have AMPL running locally to experiment with the new complementarity
features.

Acknowledgments. We thank Brian Kernighan, Margaret Wright, and the
anonymous referees for helpful comments on the manuscript.

REFERENCES

[1] J.F. Bard, An algorithm for solving the general bilevel programming problem, Math. Oper.
Res., 8 (1983), pp. 260–272.

[2] J.F. Bard, Optimality conditions for the bilevel programming problem, Naval Res. Logist., 31
(1984), pp. 13–26.

[3] J.F. Bard, Convex two-level optimization, Math. Programming, 40 (1988), pp. 15–27.
[4] S.C. Billups, S.P. Dirkse, and M.C. Ferris, A comparison of large scale mixed complemen-

tarity problem solvers, Comput. Optim. Appl., 7 (1997), pp. 3–25.
[5] J.J. Bisschop and R. Entriken, AIMMS: The Modeling System, Paragon Decision Technol-

ogy, Haarlem, the Netherlands, 1993.
[6] J. Bisschop and A. Meeraus, On the development of a general algebraic modeling system in

a strategic planning environment, Math. Programming Stud., 20 (1982), pp. 1–29.
[7] A.L. Brearley, G. Mitra, and H.P. Williams, Analysis of mathematical programming prob-

lems prior to applying the simplex method, Math. Programming, 8 (1975), pp. 54–83.

1008 MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY

[8] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User’s Guide, Release 2.25, Scientific
Press/Duxbury Press, San Francisco, CA, 1992.

[9] J.W. Chinneck, MProbe: Software for exploring nonlinear models, Ann. Oper Res. special issue
on modeling languages, to appear; also available online from http://www.sce.carleton.ca/
faculty/chinneck/mprobe.html.

[10] R.W. Cottle, J.-S. Pang, and R.E. Stone, The Linear Complementarity Problem, Academic
Press, New York, 1992.

[11] S.P. Dirkse, Robust Solution of Mixed Complementarity Problems, Mathematical Program-
ming Technical Report 94-12, Computer Sciences Department, University of Wisconsin,
Madison, 1994; also available online from ftp://ftp.cs.wisc.edu/math-prog/tech-reports/
94-12.ps.Z.

[12] S.P. Dirkse and M.C. Ferris, The PATH solver: A non-monotone stabilization scheme for
mixed complementarity problems, Optim. Methods Softw., 5 (1995), pp. 123–156.

[13] S.P. Dirkse and M.C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity
problems, Optim. Methods Softw., 5 (1995), pp. 319–345; also available online from ftp://
ftp.cs.wisc.edu/math-prog/mcplib/.

[14] S.P. Dirkse and M.C. Ferris, Modeling and solution environments for MPEC: GAMS &
MATLAB, in Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, M.
Fukishima and L. Qi, eds., Kluwer Academic Publishers, Norwell, MA, 1998; also available
online from ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-09.ps.Z.

[15] S.P. Dirkse, M.C. Ferris, P.V. Preckel, and T.F. Rutherford, The GAMS Callable Pro-
gram Library for Variational and Complementarity Solvers, Mathematical Programming
Technical Report 94-07, Computer Sciences Department, University of Wisconsin, Madison,
1994; also available online from ftp://ftp.cs.wisc.edu/math-prog/tech-reports/94-07.ps.Z.

[16] M.C. Ferris and T.S. Munson, Interfaces to PATH 3.0: Design, implementation and us-
age, Comput. Optim. Appl., 12 (1999), pp. 207–227. Also available online from ftp://
ftp.cs.wisc.edu/math-prog/tech-reports/97-12.ps.Z

[17] M.C. Ferris and J.-S. Pang, Complementarity and Variational Problems: State of the Art,
SIAM, Philadelphia, 1997.

[18] M.C. Ferris and J.-S. Pang, Engineering and economic applications of complementarity prob-
lems, SIAM Rev., 39 (1997), pp. 669–713.

[19] R. Fourer, Extending a general-purpose algebraic modeling language to combinatorial opti-
mization: A logic programming approach, in Advances in Computational and Stochastic
Optimization, Logic Programming, and Heuristic Search: Interfaces in Computer Science
and Operations Research, D.L. Woodruff, ed., Kluwer Academic Publishers, Norwell, MA,
1998, pp. 31–74.

[20] R. Fourer and D.M. Gay, Experience with a primal presolve algorithm, in Large Scale Op-
timization: State of the Art, W.W. Hager, D.W. Hearn, and P.M. Pardalos, eds., Kluwer
Academic Publishers, Norwell, MA, 1994, pp. 135–154.

[21] R. Fourer and D.M. Gay, Expressing special structures in an algebraic modeling language
for mathematical programming, ORSA J. Comput., 7 (1995), pp. 166–190.

[22] R. Fourer, D.M. Gay, and B.W. Kernighan, A modeling language for mathematical pro-
gramming, Management Sci., 36 (1990), pp. 519–554.

[23] R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, Scientific Press/Duxbury Press, San Francisco, CA, 1993.

[24] D.M. Gay, Hooking Your Solver to AMPL, Technical Report 97-4-06, Computing Sciences
Research Center, Bell Laboratories, Lucent Technologies, 1997; also available online from
http://www.ampl.com/ampl/REFS/hooking2.ps.gz.

[25] D.C. Hanselman and B.C. Littlefield, Mastering MATLAB 5: A Comprehensive Tutorial
and Reference, Prentice-Hall, Upper Saddle River, NJ, 1997.

[26] P.T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear comple-
mentarity problems: A survey of theory, algorithms and applications, Math. Programming,
48 (1990), pp. 161–220.

[27] M.M. Kostreva, Elasto-hydrodynamic lubrication: A non-linear complementarity problem,
Internat. J. Numer. Methods Fluids, 4 (1984), pp. 377–397.

[28] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints,
Cambridge University Press, Cambridge, UK, 1996.

[29] Z.-Q. Luo, J.-S. Pang, D. Ralph, and S.-Q. Wu, Exact penalization and stationarity con-
ditions of mathematical programs with equilibrium constraints, Math. Programming, 75
(1996), pp. 19–76.

[30] T.S. Munson, Private communication, December 1997.
[31] D. Redfern and C. Campbell, MATLAB Handbook, Springer-Verlag, New York, 1998.

EXPRESSING COMPLEMENTARITY PROBLEMS 1009

[32] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[33] T.F. Rutherford, MILES: A Mixed Inequality and Nonlinear Equation Solver, Working pa-

per, Dept. of Economics, University of Colorado, 1993; also available online from http://
robles.colorado.edu/˜tomruth/milesdoc/milesdoc.htm.

[34] T.F. Rutherford, Extensions of GAMS for complementarity problems arising in applied eco-
nomic analysis, J. Econom. Dynam. Control, 19 (1995), pp. 1299–1324.

[35] L. Schrage, Optimization Modeling with LINGO, LINDO Systems, Chicago, IL, 1998.

ON THE COMPLEXITY OF SOLVING FEASIBLE LINEAR
PROGRAMS SPECIFIED WITH APPROXIMATE DATA∗

SHARON FILIPOWSKI†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1010–1040

This paper is dedicated with respect and admiration to John Dennis
on the occasion of his 60th birthday

Abstract. The problem of solving linear programs specified with approximate data is considered.
Algorithms are given for linear programs having both general inequality and nonnegativity constraints
and for linear programs having only general inequality constraints.

Given approximate data for the actual (unknown) instance, the algorithms use knowledge that the
instance in question is primal feasible to reduce the data precision necessary to give an approximation
to the solution set of the actual instance when the actual instance has an optimal solution. In some
cases, problem instances that would otherwise require perfect precision to solve can now be solved
with approximate data because of the knowledge of primal feasibility.

The algorithms are computationally efficient. Furthermore, the algorithms require not much more
data accuracy than the minimum amount necessary to give an approximate solution of a desired ac-
curacy when the actual instance has an optimal solution. This work aids in the development of a
computational complexity theory that uses approximate data and knowledge.

Key words. complexity of linear programming, approximate data, approximate solutions, con-
dition measures, knowledge

AMS subject classifications. 90C05, 90C60

PII. S1052623494268467

1. Introduction. In traditional complexity theory based on the Turing machine
model of computation, all data are assumed to be rational and exact. Because of the
existence of real numbers and because of experimental and round-off errors, these as-
sumptions are not always appropriate. Furthermore, in traditional complexity theory,
the efficiency of an algorithm in solving a particular problem instance is measured in
terms of the bit length of the problem instance. Therefore, no attention is paid to the
intrinsic difficulty of solving the particular problem instance (see Smale [6]).

Renegar [4, 5] developed a complexity theory that allows the problem data to
consist of real numbers and approximate data while still maintaining finite precision
computations. This new complexity theory uses the Turing machine as the underlying
model of computation; however, the efficiency of an algorithm in solving a particular
problem instance is measured not in terms of the bit length of the problem instance
in question but in terms of a condition measure. This condition measure reflects the
intrinsic difficulty of the problem instance to be solved and is similar to traditional
condition numbers for systems of linear equations.

Renegar [5] and Vera [7, 8, 9] have obtained many interesting results within this
new framework. Their results range from providing an algorithm that efficiently de-
termines if a system of linear inequalities specified with approximate data is feasible or
infeasible to providing an algorithm that efficiently solves convex quadratic programs
specified with approximate data.

∗Received by the editors May 27, 1994; accepted for publication (in revised form) August 3, 1998;
published electronically September 24, 1999.

http://www.siam.org/journals/siopt/9-4/26846.html
†The Boeing Company, P.O. Box 3707, MS 7L-20, Seattle, WA 98124-2207 (sharon.k.filipowski@

boeing.com).

1010

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1011

Our work presented in [1, 2] took a step forward by allowing for the use of knowl-
edge in this new complexity theory. An example of knowledge, and one that is con-
sidered in [1], is the knowledge that the actual system of linear inequalities is feasible
before computations begin. Furthermore, as another example of knowledge, it is as-
sumed in [2] that certain of the constraint matrix coefficients of the actual linear
program are known to be equal to zero before computations begin. In this paper, we
assume it is known that the actual linear program is primal feasible before computa-
tions begin. The use of knowledge is discussed in more detail in the remainder of this
section as well as in section 4.

We now discuss what it means for an algorithm to solve efficiently a feasible linear
program specified with approximate data. To do this, we first discuss solving linear
programs of the following form:

max cTx

Ax ≤ b,
x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and x ∈ Rn, assuming it is known that the actual
(unknown) instance is primal feasible before computations begin.

Let d = (A, b, c) ∈ Rmn+m+n denote the data vector of the actual instance. We
assume that a rational approximation d̄ = (Ā, b̄, c̄) to the actual instance is given,
along with a rational error bound δ̄. Thus we have approximate data (d̄, δ̄) satisfying
‖d − d̄‖ < δ̄, where the norm used here (and throughout this paper) is the infinity
norm for vectors. That is, ‖d‖ ≡ maxi(|di|).

Because of the knowledge of primal feasibility, the actual instance either has
an optimal solution or is unbounded. First, assume that the actual instance has an
optimal solution. Because only an approximation to the data of the actual instance is
available, we can in general provide only an approximation to the solution set of the
instance in question. Therefore, given approximate data (d̄, δ̄), an algorithm is said to
solve the actual instance if it provides an x̄ ∈ Rn and an ε̄ ∈ (0,∞) such that

x̄ ∈ {x̃ : ‖x∗ − x̃‖ < ε̄ for some x∗ that solves max cTx such that Ax ≤ b, x ≥ 0}.

We define x̄ to be an ε̄-approximate solution to the actual instance. Second, if the
actual instance is unbounded, an algorithm is said to solve the actual instance if,
given approximate data (d̄, δ̄), it responds that the instance in question is unbounded.

Finally, given approximate data (d̄, δ̄) and the knowledge of primal feasibility, we
want an algorithm to return correctly with one of the following statements:

• The actual linear program is unbounded.
• The actual linear program has an optimal solution and x̄ ∈ Rn and ε̄ ∈ (0,∞)

are guaranteed to satisfy x̄ ∈ {x̃ : ‖x∗−x̃‖ < ε̄ for some x∗ that solves max cTx
such that Ax ≤ b, x ≥ 0}.
• Better data accuracy is needed. (In this case, the algorithm is not able either

to respond that the actual linear program is unbounded or to provide an ε̄-
approximate solution, for any ε̄ ∈ (0,∞), with the given approximate data
(d̄, δ̄).)

Because the actual instance is unknown, for an algorithm to be able to provide x̄ as
an ε̄-approximate solution, given approximate data (d̄, δ̄) and the knowledge of primal
feasibility, it must be able to guarantee that x̄ will serve as an ε̄-approximate solution
to all primal feasible instances d̃ satisfying ‖d̃− d̄‖ < δ̄. Similarly, for an algorithm to

1012 SHARON FILIPOWSKI

be able to reply that the actual instance is unbounded, given approximate data (d̄, δ̄)
and the knowledge of primal feasibility, it must be able to guarantee that all primal
feasible instances d̃ satisfying ‖d̃− d̄‖ < δ̄ are unbounded.

Because of the knowledge of primal feasibility, an algorithm does not need to
determine that the actual instance is primal feasible before solving the instance in
question. Therefore, it might be the case that an algorithm does not need as much
data precision to solve the actual instance as it does when there is no knowledge.
Furthermore, in some cases, problem instances that would otherwise require perfect
precision to solve without the knowledge of primal feasibility can now be solved with-
out perfect precision because of the knowledge. The use of primal feasibility knowledge
is discussed in more detail in section 4.

We now briefly discuss what it means for an algorithm to be efficient in solving
a feasible linear program specified with approximate data. We refer the reader to
[5] and to the introductions in [1, 8] for a more thorough discussion about this new
complexity theory.

An algorithm is said to be efficient if it is both computationally efficient and data
efficient. An algorithm is said to be computationally efficient if it runs in polynomial-
time in the bit length of the approximate data (d̄, δ̄). An algorithm is said to be data
efficient if it uses nearly minimal data precision. We now briefly discuss data efficiency.

Assume that the actual instance d has an optimal solution. For a solution accuracy
ε ∈ (0,∞), there is a minimum perturbation size necessary such that there does not
exist a point that serves as an ε-approximate solution for all primal feasible instances
d̃ satisfying ‖d− d̃‖ < δ for any δ strictly larger than this minimum perturbation size.
Furthermore, assuming that the actual instance is unbounded, there is a minimum
perturbation size necessary such that not all primal feasible instances d̃ satisfying
‖d− d̃‖ < δ are unbounded for any δ strictly larger than this minimum perturbation
size. Assuming the knowledge of primal feasibility, denoted by pf, for each instance d
and solution accuracy ε, denote this minimum perturbation size by δpf (d, ε).

In defining what it means for an algorithm to be data efficient, we use a condition
measure, as first discussed by Renegar [5]. The condition measure for a pair d and ε,
assuming the knowledge of primal feasibility, is

Cpf (d, ε) ≡
{ ‖d‖

δpf (d,ε) if δ(d, ε) > 0,

∞ otherwise.

Roughly, log[Cpf (d, ε)] relative bits of accuracy are necessary to solve the actual in-
stance so that this condition measure reflects the intrinsic difficulty of solving the
problem instance in question.

Finally, an algorithm is said to be data efficient if there exist polynomials p(m,n),
q(m,n), r(m,n), and t(m,n) in the variables m and n that are independent of the
actual instance and desired solution accuracy such that the algorithm is guaranteed
either to respond that the actual instance is unbounded or to provide a q(m,n)ε-
approximate solution when provided with approximate data that has error bound
satisfying

δ̄

‖d‖ ≤
(

1

Cpf (d, ε)

)r(m,n)(
1

p(m,n)t(m,n)

)
.

Therefore, the algorithm is guaranteed either to respond that the actual instance is
unbounded or to provide a q(m,n)ε-approximate solution when provided with only

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1013

linearly more, in terms of log[Cpf (d, ε)], bits of accuracy than the minimum amount
necessary. The factor of q(m,n) is added to make the definition norm independent.
(It is assumed that all polynomials in the variables m and n in this paper are greater
than or equal to 1 for all m,n ≥ 1.)

Renegar originally defined data efficiency with r(m,n) being restricted to a con-
stant and with t(m,n) being restricted to a value of 1. However, he mentioned in [5]
that a slightly weaker definition of data efficiency might be needed in general.

We present two algorithms in this paper. In section 2 we present a computationally
efficient algorithm that solves linear programs of the following form:

(P) max cTx

Ax ≤ b,
x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and x ∈ Rn. Furthermore, assuming it is known
that the actual instance is primal feasible before computations begin, we show that
the algorithm is data efficient when the actual instance has an optimal solution. We
give an example after the statement of Theorem 2.7 that shows that the algorithm is
not data efficient when the actual instance is unbounded. When the actual instance
is unbounded, the algorithm is the same as Renegar’s algorithm [5], where there is no
knowledge so that the knowledge of primal feasibility has not been used.

In section 3 we present a computationally efficient algorithm that solves linear
programs of the following form:

(P) max cTx

Ax ≤ b,
where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and x ∈ Rn. Similar to the previous case, assum-
ing it is known that the actual instance is primal feasible before computations begin,
we show that the algorithm is data efficient when the actual instance has an optimal
solution. Furthermore, we give an example after the statement of Theorem 3.10 that
shows that the algorithm is not data efficient when the actual instance is unbounded.
As before, in this case the algorithm is the same as Vera’s algorithm [9], in which
there is no knowledge, so the knowledge of primal feasibility has not been used.

In section 4, we discuss the use of the knowledge of primal feasibility. In particular,
we give examples to show how use of the knowledge can lessen the data accuracy
necessary to solve the problem instance in question. In addition, we give an example
to show that in some cases, problem instances that would require perfect precision to
solve without the knowledge of primal feasibility can now be solved without perfect
precision because of the use of the knowledge. Furthermore, we give a brief comparison
of our algorithm presented in section 2 with Renegar’s algorithm [5], where knowledge
is not considered.

Finally, in contrast to traditional complexity theory based on the Turing machine
model of computation, transformations of the constraints of a linear program do not
exist in this new theory such that one algorithm provides a fully efficient algorithm for
all forms of a linear program. (For example, see Renegar [5].) This is the reason that
two different algorithms are needed for the two different linear programs mentioned
above. However, the algorithm and the analysis for linear programs with only general
inequality constraints use the algorithm and analysis for linear programs with both
general inequality and nonnegativity constraints. Therefore, an effort has been made

1014 SHARON FILIPOWSKI

to create an algorithm that can be used for all forms of a linear program, so that
this new theory can share some of the beneficial properties of traditional complexity
theory. This is discussed in more detail in section 3.

2. Linear programming: max{ cTx : Ax ≤ b, x ≥ 0}.
2.1. The algorithm. We first consider solving linear programs of the following

form:

(P) max cTx

Ax ≤ b,
x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and x ∈ Rn, assuming it is known that the actual
instance is primal feasible before computations begin. The dual of this linear program
can be written

(D) min bTy

ATy ≥ c,
y ≥ 0,

where y ∈ Rm. The algorithm and a sketch of the algorithm will be given after some
definitions are made and after some previous results that will be used by the algorithm
are stated.

For a particular instance d = (A, b, c), let Feas(d) denote the feasible region for
the instance d, let DualFeas(d) denote the feasible region for the dual of the instance
d, and let Opt(d) denote the set of primal optimal solutions for the instance d. Also,
if d has an optimal solution, let k(d) denote the optimal objective function value for
the instance d. That is,

Feas(d) ≡ {x : Ax ≤ b, x ≥ 0},

DualFeas(d) ≡ {y : ATy ≥ c, y ≥ 0},

Opt(d) ≡ {x∗ : x∗ ∈ Feas(d) and cTx∗ ≥ cTx for all x ∈ Feas(d)},

and

k(d) ≡ max{cTx : Ax ≤ b, x ≥ 0}.

Let e denote the vector of all ones, with the dimension being clear from the
context. Given approximate data (d̄, δ̄), define

d̄+ ≡ (Ā− δ̄eeT, b̄+ δ̄e, c̄+ δ̄e),

d̄− ≡ (Ā+ δ̄eeT, b̄− δ̄e, c̄− δ̄e).

Furthermore, let ei ∈ Rn denote the ith unit vector in Rn, for i = 1, . . . , n. For
an instance d̃ whose feasible region is bounded, let cen∞(Feas(d̃)) ∈ Rn denote the
infinity center, defined in terms of the infinity norm, of the feasible region for d̃. That
is, for i = 1, . . . , n,

(cen∞(Feas(d̃)))i ≡ 1

2
(v+
i (d̃) + v−i (d̃)),

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1015

where
v+
i (d̃) ≡ max{ eTi x : Ãx ≤ b̃, x ≥ 0 }

and

v−i (d̃) ≡ min{ eTi x : Ãx ≤ b̃, x ≥ 0 }.

Also, if the feasible region for the instance d̃ is bounded, let rad∞(Feas(d̃)) ∈ R
denote the infinity radius, defined again in terms of the infinity norm, of the feasible
region for the instance d̃. That is,

rad∞(Feas(d̃)) ≡ max
1≤i≤n

{
1

2
(v+
i (d̃)− v−i (d̃))

}
.

Finally, if the feasible region for an instance d̃ is unbounded, cen∞(Feas(d̃)) is unde-
fined, and we let rad∞(Feas(d̃)) ≡ ∞.

The algorithm uses the following three lemmas, due to Renegar [5].
Lemma 2.1 (see [5, equation (4.2)]). Feas(d̄−) ⊆ Feas(d̃) ⊆ Feas(d̄+) for all d̃

satisfying ‖d̃− d̄‖ ≤ δ̄.
Because of the symmetry of the primal and dual linear programs considered, a

similar result holds for the feasible regions of the dual linear programs.
Lemma 2.2 (see [5, equation (4.3)]). DualFeas(d̄+) ⊆ DualFeas(d̃) ⊆ DualFeas(d̄−)

for all d̃ satisfying ‖d̃− d̄‖ ≤ δ̄.
The following lemma states that given approximate data (d̄, δ̄), if d̄− has an

optimal solution, a portion of the feasible region of the instance d̄+ contains all optimal
solutions for all instances d̃ satisfying ‖d̄− d̃‖ ≤ δ̄.

Lemma 2.3 (see [5, equation (4.4)]). Given approximate data (d̄, δ̄), assume
that d̄− has an optimal solution. Then ‖d̄ − d̃‖ ≤ δ̄ and x̃ ∈ Opt(d̃) imply that
x̃ ∈ Feas(d̄+) ∩ {x : (c̄+ δ̄e)Tx ≥ k(d̄−)}.

We now give a sketch of the algorithm. Given approximate data (d̄, δ̄) and the
knowledge of primal feasibility, the algorithm first checks if the actual instance is
unbounded. Because of the knowledge of primal feasibility, it is enough to check if
the actual instance is dual infeasible. Using Lemma 2.2, this checking can be done by
deciding if d̄− is dual infeasible (i.e., deciding if (Ā + δ̄eeT)Ty ≥ (c̄ − δ̄e), y ≥ 0, is
infeasible). If d̄− is dual infeasible, so that all instances d̃ satisfying ‖d̃ − d̄‖ ≤ δ̄ are
dual infeasible, the algorithm can reply that the actual instance is unbounded.

If the algorithm does not stop on the first step, the algorithm then checks if the
actual instance has an optimal solution. Because of the knowledge of primal feasibility,
it is enough to check if the actual instance is dual feasible. Again, using Lemma 2.2,
this checking can be accomplished by deciding if d̄+ is dual feasible (i.e., deciding if
(Ā− δ̄eeT)Ty ≥ (c̄+ δ̄e), y ≥ 0, is feasible). If d̄+ is dual feasible, the actual instance
is guaranteed to have an optimal solution, and the algorithm can continue. However,
if d̄+ is dual infeasible, so that not all instances d̃ satisfying ‖d̃ − d̄‖ ≤ δ̄ are dual
feasible, the algorithm must stop. In this case, the algorithm does not have enough
accuracy to be able to determine that the actual instance has an optimal solution,
and, hence, to provide an approximate solution of any accuracy. This will follow from
Lemma 2.10.

If it has been determined that the actual instance has an optimal solution, the
algorithm then tries to provide an ε̄-approximate solution to the actual instance for
some ε̄ ∈ (0,∞). It does this by first using Lemmas 2.5 and 2.6 to check if the origin is
an optimal solution for the actual instance. If this is the case, the algorithm can stop

1016 SHARON FILIPOWSKI

with the origin as an ε̄-approximate solution for all ε̄ ∈ (0,∞). This step is needed to
make the algorithm data efficient when the actual instance has an optimal solution;
this is discussed in more detail in section 2.2.

If it has not been determined that the origin is an optimal solution for the actual
instance, it is then checked if all instances d̃ satisfying ‖d̃ − d̄‖ ≤ δ̄ have an optimal
solution. Because it has already been determined that all instances d̃ satisfying ‖d̃−
d̄‖ ≤ δ̄ are dual feasible, all such instances will have an optimal solution if they all are
primal feasible. Therefore, using Lemma 2.1, this checking can be done by deciding
if d̄− is primal feasible (i.e., deciding if (Ā+ δ̄eeT)x ≤ (b̄− δ̄e), x ≥ 0, is feasible). If
d̄− is primal feasible, so that all instances d̃ satisfying ‖d̃− d̄‖ ≤ δ̄ are primal feasible,
the algorithm continues as in Renegar’s algorithm [5]: the algorithm calculates the
infinity radius of the portion of the feasible region for d̄+ that contains all optimal
solutions for all instances d̃ satisfying ‖d̃− d̄‖ ≤ δ̄ (Lemma 2.3). If the radius of this
region is finite, the infinity center is calculated and the algorithm stops and provides
the infinity center as an ε̄-approximate solution, where ε̄ is any number larger than
the calculated radius.

If all instances d̃ satisfying ‖d̃ − d̄‖ ≤ δ̄ are not primal feasible, the algorithm
checks if there exists an ε̄-approximate solution to all feasible points and, hence, to all
optimal solutions, for all primal feasible instances d̃ satisfying ‖d̃ − d̄‖ ≤ δ̄. Because
the feasible region of d̄+ contains all such feasible points (Lemma 2.1), if the radius
of the feasible region is finite, the infinity center is calculated and the algorithm stops
and provides the infinity center as an ε̄-approximate solution, where ε̄ is any number
larger than the calculated radius.

Finally, the algorithm might not have enough data accuracy either to determine
that the actual instance is unbounded or to provide an ε̄-approximate solution, for
any ε̄ ∈ (0,∞), with the given approximate data (d̄, δ̄).

The algorithm is given below.
Algorithm 2.4.

(0) The algorithm assumes that (d̄, δ̄) is given and that d is known to be primal feasible
before computations begin.

(1) Check if d̄− is dual infeasible. If so, STOP; the actual instance is unbounded.
(2) Check if d̄+ is dual feasible. If not, GOTO (6).
(3) Check if 0 ∈ Opt(d̃) for all d̃ satisfying both ‖d̄ − d̃‖ ≤ δ̄ and Feas(d̃) 6= ∅, using

Lemmas 2.5 and 2.6. If so, STOP; x̄ = 0 serves as an ε̄-approximate solution
for all ε̄ ∈ (0,∞).

(4) Check if d̄− is primal feasible. If so, check if rad ∞(Feas(d̄+)∩ { x : (c̄+ δ̄e)Tx ≥
k(d̄−)}) <∞. If so, STOP; x̄ = cen∞(Feas(d̄+)∩{ x : (c̄+ δ̄e)Tx ≥ k(d̄−)})
is an ε̄-approximate solution for all ε̄ > rad∞(Feas(d̄+) ∩ { x : (c̄ + δ̄e)Tx ≥
k(d̄−)}).

(5) Check if rad∞(Feas(d̄+)) < ∞. If so, STOP; x̄ = cen∞(Feas(d̄+)) is an ε̄-
approximate solution for all ε̄ > rad∞(Feas(d̄+)).

(6) “Better data accuracy is needed.”
The following two lemmas present conditions that determine if the origin is an

optimal solution for all primal feasible instances d̃ satisfying ‖d̃ − d̄‖ ≤ δ̄. The first
lemma is from [1].

Lemma 2.5 (see [1, Lemma 2.3]). Consider the following m linear programs in
the variables x ∈ Rn and ∆b ∈ Rm for i = 1, . . . ,m:

min eTi (b̄+ ∆b)

(Ā− δ̄eeT)x ≤ b̄+ ∆b,

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1017

x ≥ 0,

∆b ≤ δ̄e,
−∆b ≤ δ̄e.

Let ∆b∗i ∈ Rm solve the ith linear program for i = 1, . . . ,m. Then eTi (b̄+ ∆b∗i) ≥ 0 for
all i if and only if 0 ∈ Feas(d̃) for all primal feasible instances d̃ satisfying ‖d̄−d̃‖ ≤ δ̄.

Proof. Assume that eTi (b̄+ ∆b∗i) < 0 for some i and let d̂ = (Ā− δ̄eeT, b̄+ ∆b∗i , c).
Then ‖d̄− d̂‖ ≤ δ̄,Feas(d̂) 6= ∅, and 0 6∈ Feas(d̂).

Next, assume that there exists an instance d̂ = (Â, b̂, ĉ) that satisfies ‖d̄− d̂‖ ≤ δ̄,
Feas(d̂) 6= ∅, and b̂i < 0 for some i (i.e., 0 6∈ Feas(d̂)). Using Lemma 2.1, the instance

d̃ = (Ā− δ̄eeT, b̂, ĉ) is primal feasible. Thus the ith linear program has optimal value

eTi (b̄+ ∆b∗i) ≤ eTi b̂ < 0.
Lemma 2.6. Assume that the actual instance d is primal feasible, that ‖d−d̄‖ < δ̄,

and that the origin is a feasible point for all primal feasible instances d̃ satisfying
‖d̄− d̃‖ ≤ δ̄. Then (c̄+ δ̄e) ≤ 0 if and only if the origin is an optimal solution for all
primal feasible instances d̃ satisfying ‖d̄− d̃‖ ≤ δ̄.

Proof. First assume that (c̄+ δ̄e) ≤ 0. Therefore, for all primal feasible instances
d̃ satisfying ‖d̃− d̄‖ ≤ δ̄, we have x̃ ∈ Feas(d̃), implying that c̃Tx̃ ≤ 0. Thus, the origin
is an optimal solution for all primal feasible instances d̃ satisfying ‖d̃− d̄‖ ≤ δ̄.

Next assume that the origin is an optimal solution for all primal feasible instances
d̃ satisfying ‖d̄ − d̃‖ ≤ δ̄. Because of the knowledge of primal feasibility, the actual
instance is primal feasible so that the origin is feasible for the actual instance d.
Because the approximate data (d̄, δ̄) satisfies ‖d − d̄‖ < δ̄, we have (Ā − δ̄eeT) < A
and b̄+ δ̄e > b so that the feasible region for the instance (Ā− δ̄eeT, b̄+ δ̄e, c̃) must
be full-dimensional for any c̃ satisfying ‖c̃ − c̄‖ ≤ δ̄. Therefore, because the origin
is an optimal solution for any instance d̃ = (Ā − δ̄eeT, b̄ + δ̄e, c̃), where c̃ satisfies
‖c̃− c̄‖ ≤ δ̄, we have (c̄+ δ̄e) ≤ 0.

2.2. Efficiency of the algorithm. The algorithm is computationally efficient
because it relies just on linear programming (i.e., we assume that the algorithm uses
a polynomial-time linear programming algorithm to solve all linear programs). The
remainder of this section is devoted to showing that the algorithm is data efficient
when the actual instance has an optimal solution. After the statement of Theorem 2.7,
we give an example to show that the algorithm is not data efficient when the actual
instance is unbounded.

Before proving that the algorithm is data efficient when the actual instance has
an optimal solution, we state some definitions that will be used throughout the paper.
For a particular primal feasible instance d, let δ

′
p(d) denote the distance between the

instance d and the set of primal infeasible instances. That is,

δ
′
p(d) ≡ sup{δ : ‖d− d̃‖ < δ implies that Feas(d̃) 6= ∅}.

Similarly, if d is dual feasible, let δ
′
d(d) denote the distance between the instance d and

the set of dual infeasible instances. Otherwise, if d is dual infeasible, let δ
′
d(d) denote

the distance between the instance d and the set of dual feasible instances. That is,

δ
′
d(d) ≡

{
sup{δ : ‖d− d̃‖ < δ implies that DualFeas(d̃) 6= ∅} if d is dual feasible,

sup{δ : ‖d− d̃‖ < δ implies that DualFeas(d̃) = ∅} otherwise.

Also, let

δ
′
(d) ≡ min{δ′p(d), δ

′
d(d)}.

1018 SHARON FILIPOWSKI

Furthermore, let δ0
pf (d) denote the distance between the instance d and the set of

primal feasible instances that do not have the origin as an optimal solution. If 0 ∈
Opt(d), then

δ0
pf (d) ≡ sup{δ : ‖d− d̃‖ < δ and Feas(d̃) 6= ∅ imply that 0 ∈ Opt(d̃)}.

Furthermore, if 0 6∈ Opt(d), then δ0
pf (d) = 0.

Using the knowledge that the actual instance is primal feasible, if the actual in-
stance has an optimal solution, given a solution accuracy ε ∈ (0,∞), the minimum
perturbation size necessary such that there does not exist a point that serves as an
ε-approximate solution for all primal feasible instances d̃ satisfying ‖d − d̃‖ < δ for
any δ strictly larger than this minimum perturbation size is denoted by δpf (d, ε) and
can be written

δpf (d, ε) ≡ sup{δ : there exists x̄ ∈ Rn such that ‖d− d̃‖ < δ and Feas(d̃) 6= ∅ imply

that there exists an x̃ ∈ Opt(d̃) satisfying ‖x̄− x̃‖ < ε}.

Also, if the actual instance is unbounded, the minimum perturbation size necessary
such that not all primal feasible instances d̃ satisfying ‖d̃− d‖ < δ are unbounded for
any δ strictly larger than this minimum perturbation size is denoted by δpf (d, ε) and
can be written

δpf (d, ε) ≡ sup{δ : ‖d− d̃‖ < δ and Feas(d̃) 6= ∅ imply that d̃ is unbounded}.
Notice that δpf (d, ε) is independent of ε.

The data efficiency of the algorithm, when the actual instance has an optimal
solution, follows from the following theorem. As mentioned in the introduction, when
the actual instance is unbounded, we give an example to show that the algorithm is not
data efficient. Furthermore, when the actual instance is unbounded, the algorithm is
the same as Renegar’s algorithm [5], in which there is no knowledge, so the knowledge
of primal feasibility has not been used.

Theorem 2.7. Assume it is known that the actual instance d is primal feasible be-
fore computations begin. There exist polynomials p1(m,n) and t1(m,n) in the variables
m and n that are independent of the actual instance and desired solution accuracy such
that, given ε ∈ (0, 1], Algorithm 2.4 is guaranteed to provide a 2m

√
nε-approximate

solution when the actual instance has an optimal solution and when provided with
approximate data that has error bound satisfying

δ̄

‖d‖ ≤
(
δpf (d, ε)

‖d‖
)25n(

1

p1(m,n)t1(m,n)

)
.

(Because the analysis in this paper relies on the analysis in [1], the desired solution
accuracy ε is required to satisfy ε ∈ (0, 1]. We comment on this again when we present
Proposition 2.11.)

Before proving Theorem 2.7, we give an example to show why the algorithm with
only steps (0), (1), (2), (4), (5), and (6) is not data efficient. After that we show that
the algorithm is not data efficient when the actual instance is unbounded.

Consider the following instance d = (A, b, c), where A = (1, 1), b = (0), and
c = (−1,−1)T. That is,

max−x1 − x2

x1 + x2 ≤ 0,

x1, x2 ≥ 0.

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1019

For this instance, ‖d‖ = 1, δ
′
p(d) = 0, δ0

pf (d) = 1, and δpf (d, ε) = 1 for all ε ∈ (0, 1].

In particular, the origin is an optimal solution for all primal feasible instances d̃ that
satisfy ‖d− d̃‖ < 1, and there exists an unbounded instance d̃ such that ‖d− d̃‖ = 1.

Let p(m,n), q(m,n), t(m,n), and r(m,n) be any polynomials in the variables
m and n. We will show that for small enough ε, the algorithm is not able either to
respond that the actual instance is unbounded on step (1) or to provide a q(m,n)ε-
approximate solution on either step (4) or step (5) when provided with approximate
data that has error bound satisfying

δ̄ ≤
(
δpf (d, ε)

‖d‖
)r(m,n)(

1

p(m,n)t(m,n)

)
=

1

p(m,n)t(m,n)
.

First, because d is dual feasible, the algorithm cannot stop on step (1). Moreover,
because δ

′
p(d) = 0, the algorithm cannot stop on step (4) without perfect precision.

Furthermore, with the above approximate data error bound

δ̄ ≤ 1

p(m,n)t(m,n)
,

let d̄+ be an instance that the algorithm might consider in step (5). Then, assuming
that δ̄ > 0, rad∞(Feas(d̄+)) > 0. Thus for ε < 1

q(m,n) rad∞(Feas(d̄+)), the algorithm

will not stop on step (5).
Therefore, for this instance and others as well, steps (0), (1), (2), (4), (5), and (6)

of the algorithm are not sufficient to guarantee data efficiency. Theorem 2.7 states
that the addition of step (3) is enough to guarantee data efficiency when the actual
instance has an optimal solution.

Finally, we now show that the algorithm is not data efficient when the actual
instance is unbounded. Consider the following linear program and its dual:

(P) max x

−γx ≤ −1,

x ≥ 0,

and

(D) min −y
−γy ≥ 1,

y ≥ 0,

where 0 < γ < 1. We have that ‖d‖ = 1 and that δ
′
p(d) = δ

′
d(d) = γ. Furthermore, we

have that δpf (d, ε) = 1 because any primal feasible instance d̃ satisfying ‖d− d̃‖ < 1

is dual infeasible and because there exists a d̃ such that Opt(d̃) 6= ∅ and ‖d− d̃‖ = 1.
However, the algorithm will require the approximate data error bound to satisfy

δ̄ ≤ δ
′
d(d)

2
=
γ

2

to be guaranteed to stop with the answer that the actual instance is unbounded.
(The extra factor of 1/2 is needed because, when given approximate data (d̄, δ̄), the
algorithm might be considering instances that are as far as 2δ̄ away from the actual

1020 SHARON FILIPOWSKI

instance.) Because γ = δ
′
d(d) can be made arbitrarily small, the algorithm is not data

efficient.
The proof of Theorem 2.7 follows from the following two propositions and one

lemma. In these propositions and the lemma, we assume that ‖d‖ = 1. It is not until
the proof of Theorem 2.7 that we consider the general case. The first proposition gives
conditions on the actual instance d and the approximate data error bound such that
for a given ε ∈ (0, 1], the radius of the feasible region of an instance d̄+ considered by
the algorithm is guaranteed to be smaller than m

√
nε. In particular, it gives conditions

for which, given some ε ∈ (0, 1], the algorithm is guaranteed to stop on step (5) with
an m

√
nε-approximate solution.

Proposition 2.8. Assume it is known that the actual instance d is primal feasible
before computations begin. Furthermore, assume that d has an optimal solution and
that ‖d‖ = 1. There exist polynomials p2(m,n) and t2(m,n) in the variables m and
n that are independent of the actual instance and desired solution accuracy such that
if ε ∈ (0, 1], δ0

pf (d) ≤ δpf (d, ε)/2, and

max{δ′p(d), ‖d− d̃‖} ≤ (δpf (d, ε))6n

p2(m,n)t2(m,n)
,

then rad∞(Feas(d̃)) < m
√
nε.

The second proposition is an adaptation of a proposition by Renegar (Proposition
4.2 in [5]). It gives conditions on the actual instance d and the approximate data error
bound such that, given an ε ∈ (0, 1], the algorithm is guaranteed to provide a 2ε-
approximate solution on step (4).

Proposition 2.9. Assume it is known that the actual instance d is primal feasible
before computations begin. Furthermore, assume that d has an optimal solution and
that ‖d‖ = 1. There exists a polynomial p3(m,n) in the variables m and n that is
independent of the actual instance and desired solution accuracy such that if ε ∈ (0, 1],
δ0
pf (d) ≤ δpf (d, ε)/2, and δ

′
p(d) ≥ (δpf (d, ε))6n/p2(m,n)t2(m,n), where p2(m,n) and

t2(m,n) are from Proposition 2.8, then Algorithm 2.4 is guaranteed to provide a 2ε-
approximate solution on step (4) when provided with approximate data that has error
bound satisfying

δ̄ ≤ (δpf (d, ε))7n(δ
′
(d))3

p3(m,n)t2(m,n)
.

Finally, the lemma shows that δpf (d, ε) ≤ δ
′
d(d) for all ε ∈ (0,∞) if d is dual

feasible. In particular, to be able to provide an ε-approximate solution of any accuracy
when the actual instance has an optimal solution, the algorithm must have enough
data accuracy such that only dual feasible instances are considered. It is not the case
that δpf (d, ε) ≤ δ

′
d(d) for all ε ∈ (0,∞) if the actual instance is dual infeasible, as

shown in the second example after the statement of Theorem 2.7.
Lemma 2.10. Assume it is known that the actual instance d is primal feasible

before computations begin. Furthermore, assume that d is dual feasible and that ε ∈
(0,∞). Then

δpf (d, ε) ≤ δ′d(d).

We now prove Theorem 2.7 using Propositions 2.8 and 2.9 and Lemma 2.10.
Proof of Theorem 2.7. Consider the polynomials p1(m,n) = 4p3(m,n)p2(m,n)

and t1(m,n) = 3t2(m,n), where p2(m,n) and t2(m,n) are from Proposition 2.8 and

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1021

where p3(m,n) is from Proposition 2.9, and assume that

δ̄

‖d‖ ≤
(
δpf (d, ε)

‖d‖
)25n(

1

p1(m,n)t1(m,n)

)
.(2.1)

It is assumed that the actual instance has an optimal solution. Notice that using
Lemmas 2.2 and 2.10, the algorithm is guaranteed to determine that the actual in-
stance is dual feasible on step (2) when provided with approximate data error bound
δ̄ satisfying (2.1).

First, assume that δpf (d, ε)/2 < δ0
pf (d). Using Lemmas 2.5 and 2.6, the algorithm

is guaranteed to provide the origin as an ε̄-approximate solution on step (3) for all
ε̄ ∈ (0,∞) when provided with approximate data that has error bound satisfying

δ̄ ≤ δ0
pf (d)

2
.

(The extra factor of 1/2 is needed because, when given approximate data (d̄, δ̄), the
algorithm might be considering instances that are as far as 2δ̄ away from the actual
instance.) Therefore, using the facts that δpf (d, ε) ≤ ‖d‖ and that δpf (d, ε)/2 <
δ0
pf (d), the algorithm is guaranteed to stop with the approximate data error bound

satisfying (2.1) because

δ̄

‖d‖ ≤
(
δpf (d, ε)

‖d‖
)25n(

1

p1(m,n)t1(m,n)

)
≤ δpf (d, ε)

4‖d‖ <
δ0
pf (d)

2‖d‖ .

Finally, assume that δ0
pf (d) ≤ δpf (d, ε)/2. Within this case, first assume that

‖d‖ = 1. We consider the more general case at the end of the proof. Furthermore,
within this case, consider two subcases. First assume that

(δpf (d, ε))6n

p2(m,n)t2(m,n)
< δ

′
p(d).(2.2)

In this case, an algorithm does not necessarily need to determine that the actual
instance is primal feasible before it can provide an ε-approximate solution; however,
it cannot allow for much more inaccuracy in the approximate data than the distance
to the set of primal infeasible instances. For this case, we now show that the algorithm
is guaranteed to provide a 2ε-approximate solution on step (4) with the approximate
data error bound satisfying (2.1).

Within this case, first assume that δ
′
(d) = δ

′
d(d) ≤ δ

′
p(d). Because δpf (d, ε) ≤ 1

(i.e., ‖d‖ ≤ 1) and δpf (d, ε) ≤ δ′d(d) (Lemma 2.10),

δ̄ ≤ (δpf (d, ε))25n

p1(m,n)t1(m,n)
≤ (δpf (d, ε))7n(δpf (d, ε))3

p3(m,n)t2(m,n)
≤ (δpf (d, ε))7n(δ

′
(d))3

p3(m,n)t2(m,n)
.

Therefore, because of (2.2) and because δ0
pf (d) ≤ δpf (d, ε)/2, the algorithm is guar-

anteed to provide a 2ε-approximate solution on step (4), using Proposition 2.9.
Otherwise, within this case, assume that δ

′
(d) = δ

′
p(d) < δ

′
d(d). Because of (2.2),

δ̄ ≤ (δpf (d, ε))25n

p1(m,n)t1(m,n)
=

(
(δpf (d, ε))7n

(4p3(m,n))3t2(m,n)

)(
(δpf (d, ε))6n

p2(m,n)t2(m,n)

)3

<
(δpf (d, ε))7n(δ

′
(d))3

p3(m,n)t2(m,n)
.

1022 SHARON FILIPOWSKI

Again, because of (2.2) and the fact that δ0
pf (d) ≤ δpf (d, ε)/2, the algorithm is guar-

anteed to provide a 2ε-approximate solution on step (4), using Proposition 2.9.
Otherwise, assume that

δ
′
p(d) ≤ (δpf (d, ε))6n

p2(m,n)t2(m,n)
.

As in the first case, an algorithm also does not need to determine that the actual
instance is primal feasible before being able to provide an ε-approximate solution.
However, in this case, an algorithm might be able to provide an ε-approximate solution
with a lot less accuracy in the approximate data error bound than the distance to the
set of primal infeasible instances. In particular, an algorithm might be able to provide
an ε-approximate solution without perfect precision even if the distance between the
instance in question and the set of primal infeasible instances is zero. For this case,
we show that the algorithm is guaranteed to provide an m

√
nε-approximate solution

on step (5).
Because δpf (d, ε) ≤ 1,

δ̄ ≤ (δpf (d, ε))25n

p1(m,n)t1(m,n)
≤ (δpf (d, ε))6n

2p2(m,n)t2(m,n)
.

Furthermore, because δ0
pf (d) ≤ δpf (d, ε)/2 as well, the algorithm is guaranteed to

provide an m
√
nε-approximate solution on step (5) using Proposition 2.8. (Again, the

extra factor of 1/2 is needed because, given approximate data (d̄, δ̄), the algorithm
might be considering instances as far as 2δ̄ away from the actual instance.)

Now, assume that ‖d‖ 6= 1. We can assume that ‖d‖ 6= 0, because δ̄ > 0 implies
that δpf (d, ε) > 0. However, ‖d‖ = 0 implies that d = 0, so that with an arbitrarily
small perturbation of d an unbounded instance exists so that δpf (d, ε) = 0 for all
ε ∈ (0, 1]. Finally, consider the scaled instance

d̂ =
d

‖d‖ .

Because Opt(d) is invariant under positive scaling of the data for any instance d, we

can assume that the algorithm is attempting to solve the instance d̂. In particular, if
an approximate data error bound δ̄ can be given such that the algorithm would be
guaranteed to provide a 2m

√
nε-approximate solution to the scaled instance d̂, this

approximate data error bound would be small enough to guarantee that the algorithm
is going to stop with a 2m

√
nε-approximate solution to the actual instance.

We have that

δpf (d̂, ε) =
δpf (d, ε)

‖d‖

(i.e., write every instance d̃ around d̂ as a scaled instance). Similarly, given the ap-
proximate data (d̄, δ̄), a box of size δ̄ around the actual approximate data instance
d̄ corresponds to a box of size δ̄/‖d‖ around the scaled instance d̄/‖d‖. As a result,
once

δ̄

‖d‖ ≤
(
δpf (d, ε)

‖d‖
)25n(

1

p1(m,n)t1(m,n)

)
=

(
1

Cpf (d, ε)

)25n(
1

p1(m,n)t1(m,n)

)
,

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1023

the algorithm is guaranteed to provide a 2m
√
n-approximate solution to the scaled

instance d̂ and, hence, to the actual instance, which proves the result of the theo-
rem.

In the remainder of this section, we prove Propositions 2.8 and 2.9 and Lemma 2.10.
Proposition 2.8 can be proved with the following two propositions and one lemma.
The first proposition considers just the feasible regions of the instances in question.
For a desired solution accuracy ε ∈ (0, 1], it gives conditions in terms of the actual
instance, desired solution accuracy, and approximate data error bound size such that
the algorithm is guaranteed to provide an m

√
nε-approximate solution on step (5) of

the algorithm. This is Proposition 3.3 in [1] and is the part of the analysis where the
requirement ε ∈ (0, 1] comes from.

Proposition 2.11 (see [1, Proposition 3.3]). Let d = (A, b) be the data of a
feasible system of linear inequalities of the form {x : Ax ≤ b, x ≥ 0}. Assume that
‖d‖ = 1 and let

δ̄pf (d, ε) ≡ sup{δ : there exists x̄ ∈ Rn such that ‖d− d̃‖ < δ and Feas(d̃) 6= ∅ imply

that there exists x̃ ∈ Feas(d̃) satisfying ‖x̄− x̃‖ < ε}.

There exist polynomials p4(m,n) and t2(m,n) in the variables m and n that are in-
dependent of the actual instance and desired solution accuracy such that if ε ∈ (0, 1]
and

max{δ′p(d), ‖d− d̃‖} ≤ (δ̄pf (d, ε))5nε

p4(m,n)t2(m,n)
,

then rad∞(Feas(d̃)) < m
√
nε.

The next proposition adjusts the previous proposition so that providing an ap-
proximate solution of a desired accuracy to the optimal solution set of the actual
instance instead of just the feasible region of the instance in question is considered so
that it can be used to prove Proposition 2.8.

Proposition 2.12. Assume it is known that the actual instance d = (A, b, c) is
primal feasible before computations begin. Furthermore, assume that d has an opti-
mal solution and that ‖d‖ = 1. There exist polynomials p4(m,n) and t2(m,n) in the
variables m and n independent of the actual instance and desired solution accuracy
such that if ε ∈ (0, 1] and

max{δ′p(d), ‖d− d̃‖} ≤ (δpf (d, ε))5nε

p4(m,n)t2(m,n)
,

then rad∞(Feas(d̃)) < m
√
nε.

Proof. Let p4(m,n) and t2(m,n) be the polynomials in Proposition 2.11. If x̄ ∈
Rn is an ε-approximate solution to the optimal solution set of an instance d, then
it is an ε-approximate solution to the feasible region of the instance d. Therefore,
δpf (d, ε) ≤ δ̄pf (d, ε), so that

max{δ′p(d), ‖d− d̃‖} ≤ (δ̄pf (d, ε))5nε

p4(m,n)t2(m,n)

as well. Assuming that ‖(A, b)‖ = 1, the assumptions of Proposition 2.11 hold, and
thus the result of this proposition holds as well.

1024 SHARON FILIPOWSKI

Therefore, assume that ‖(A, b)‖ < 1. We will show that

max{δ′p(d), ‖d− d̃‖} ≤ (δpf (d, ε))5nε

p4(m,n)t2(m,n)

is sufficient as well.
Consider the scaled instance

d̂ ≡ d

‖(A, b)‖ = (Â, b̂, ĉ).

We can assume that ‖(A, b)‖ 6= 0; otherwise, δpf (d, ε) = 0 for all ε ∈ (0, 1], so that
δ̄ > 0 cannot satisfy the assumption of the proposition.

Because the feasible region of a linear program is invariant under positive scaling
of the data, if we can show that

rad∞

(
Feas

(
d̃

‖(A, b)‖

))
< m
√
nε

for all considered d̃, the result of the proposition follows. Furthermore, because
‖(Â, b̂)‖ = 1, Proposition 2.11 can be applied to (Â, b̂).

We have that

δ
′
p(d̂) =

δ
′
p(d)

‖(A, b)‖
and

δpf (d̂, ε) =
δpf (d, ε)

‖(A, b)‖ .

As a result, because

δp
′(d) ≤ (δpf (d, ε))5nε

p4(m,n)t2(m,n)
,

we have that

δ
′
p(d̂) =

δ
′
p(d)

‖(A, b)‖
≤
(

1

‖(A, b)‖
)

(δpf (d, ε))5nε

p4(m,n)t2(m,n)

=

(
1

‖(A, b)‖
)

(‖(A, b)‖δpf (d̂, ε))5nε

p4(m,n)t2(m,n)
.

Because ‖(A, b)‖ < 1, we have that

δ
′
p(d̂) ≤ (δpf (d̂, ε))5nε

p4(m,n)t2(m,n)
.

Therefore, because ‖(Â, b̂)‖ = 1, Proposition 2.11 can be used to come to the conclu-
sion that

‖d̂− d̃‖ ≤ (δpf (d̂, ε))5nε

p4(m,n)t2(m,n)
=

(
δpf (d, ε)

‖(A, b)‖
)5n

ε

p4(m,n)t2(m,n)

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1025

implies that rad∞(Feas(d̃)) < m
√
nε. However, a box around d of size

(δpf (d, ε))5nε

p4(m,n)t2(m,n)

corresponds to a box around d̂ of size

1

‖(A, b)‖
(

(δpf (d, ε))5nε

p4(m,n)t2(m,n)

)
.

Because ‖(A, b)‖ < 1, the result of the proposition follows.
To use Proposition 2.12 to prove Proposition 2.8, we need to be able to express

the need for accuracy in the approximate data to be at least ε in terms of δpf (d, ε).
In particular, we need a polynomial k(m,n) such that δpf (d, ε)/k(m,n) ≤ ε for all
instances considered in Proposition 2.8. The following lemma gives this polynomial.

Lemma 2.13. Assume it is known that the actual instance d is primal feasible
before computations begin. Furthermore, assume that d has an optimal solution, that
‖d‖ = 1, and that δ0

pf (d) ≤ δpf (d, ε)/2. Then

δpf (d, ε)

8n
≤ ε

for all ε ∈ (0,∞).
Proof. Assume that δpf (d, ε) > 0; otherwise, the lemma holds already. First

assume that 0 6∈ Opt(d). Let x̄ ∈ Opt(d) be an extreme point. By assumption, x̄ 6= 0.
Either {x̄} = Opt(d) or, by an arbitrarily small perturbation of the objective function
of d, there exists an instance whose solution set consists solely of the point x̄.

Let f̄ ∈ Rn be defined by

f̄i ≡
{

1 if x̄i > 0,
0 otherwise,

and consider the instance d̂ = (A, b + 2εAf̄ , c). Thus ‖d − d̂‖ ≤ 2nε, and it can

be shown that x̂ = x̄ + 2εf̄ is an optimal extreme point for d̂. Again, either {x̂} =

{x̄+ 2εf̄} = Opt(d̂) or, by an arbitrarily small perturbation of the objective function,
one can create an instance whose solution set consists solely of the point x̂. Because
‖x̄− (x̄+ 2εf̄)‖ = 2ε, we have ‖d− d̂‖ ≥ δpf (d, ε), so that δpf (d, ε) ≤ 2nε.

Now assume that 0 ∈ Opt(d). Either {0} = Opt(d) or, by an arbitrarily small
perturbation of the objective function of d, there exists an instance whose solution
set consists solely of the origin.

Let d̃ satisfy ‖d−d̃‖ ≤ 3
4δpf (d, ε),Opt(d̃) 6= ∅, and 0 6∈ Opt(d̃). By the assumptions

of the lemma, such an instance exists. Let x̄ ∈ Opt(d̃) be an extreme point. Define f̄ as

above and consider the instance d̂ = (Ã, b̃+2εÃf̄ , c̃). Again, ‖d̃− d̂‖ ≤ 2nε, and x̂ =

x̄ + 2εf̄ is the optimal extreme point for d̂ or an instance arbitrarily close to d̂.
Therefore,

δpf (d, ε) ≤ ‖d− d̂‖
≤ ‖d− d̃‖+ ‖d̃− d̂‖
≤ 3

4
δpf (d, ε) + 2nε

1026 SHARON FILIPOWSKI

so that δpf (d, ε) ≤ 8nε.
We now use Proposition 2.12 and Lemma 2.13 to prove Proposition 2.8.
Proof of Proposition 2.8. Consider the polynomials p2(m,n) = 8np4(m,n) and

t2(m,n), where p4(m,n) and t2(m,n) are from Proposition 2.12. Assume that

max{‖d− d̃‖, δ′p(d)} ≤ (δpf (d, ε))6n

p2(m,n)t2(m,n)
=

(δpf (d, ε))6n

((8n)p4(m,n))t2(m,n)
,(2.3)

as in the assumption of Proposition 2.8. Using the result of Lemma 2.13, that δpf (d, ε) ≤
1, and (2.3), we obtain that

max{‖d− d̃‖, δ′p(d)} ≤
(

(δpf (d, ε))5n

p4(m,n)t2(m,n)

)(
δpf (d, ε)

8n

)
≤ (δpf (d, ε))5nε

p4(m,n)t2(m,n)
.

Thus, using the result of Proposition 2.12, Proposition 2.8 is proved.
We now prove Proposition 2.9. The proof is similar to a proof by Renegar in [5]

and relies on the following proposition (Proposition 2.14), also by Renegar. Also, if
d̄− has an optimal solution, let ε̄ = rad∞(Feas(d̄+) ∩ {x : (c̄+ δ̄e)Tx ≥ k(d̄−)}), with
ε̄ possibly being equal to ∞, just as in the algorithm.

Proposition 2.14 (see [5, Proposition 4.6]). Assume it is known that the actual
instance d is primal feasible before computations begin. Furthermore, assume that
‖d‖ = 1. There exist constants K5 ∈ R+ and K6 ∈ R+ that are independent of the
problem instance and desired solution accuracy and such that if δ̄ and ∆δ are positive
numbers satisfying δ̄ + ∆δ ≤ K5δ

′
(d), then for all ε ∈ (0,∞),

ε < ε̄−K6

(
δ̄

∆δ

)(
1

δ′(d)

)3

implies that 2δ̄ + ∆δ ≥ δpf (d, ε).

Proof of Proposition 2.9. Let p3(m,n) = 16nK6p2(m,n)/(min{ 1/2,K5}), where
p2(m,n) is from Proposition 2.8 and where K5 and K6 are from Proposition 2.14.
Also assume that

δ̄ ≤ (δpf (d, ε))7n(δ
′
(d))3

p3(m,n)t2(m,n)
,(2.4)

where t2(m,n) is from Proposition 2.8.
First, (2.4) and δ̄ > 0 imply that

δpf (d, ε) > 0.(2.5)

Define

∆δ ≡ min

{
1

2
,K5

}
(δpf (d, ε))6n

p2(m,n)t2(m,n)
− 2δ̄,(2.6)

where K5 is from Proposition 2.14. Note that (2.5), (2.6), and δpf (d, ε) ≤ 1 imply
that

2δ̄ + ∆δ <
(δpf (d, ε))6n

p2(m,n)t2(m,n)
≤ δpf (d, ε).(2.7)

Also because δpf (d, ε) ≤ 1, δ
′
(d) ≤ 1, and because of (2.4),

δ̄ ≤ 1

4
min

{
1

2
,K5

}
(δpf (d, ε))6n

p2(m,n)t2(m,n)

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1027

so that, using (2.6),

∆δ ≥ 1

2
min

{
1

2
,K5

}
(δpf (d, ε))6n

p2(m,n)t2(m,n)
.(2.8)

Thus, because δpf (d, ε) > 0 and K5 ∈ R+, we have that ∆δ > 0. Furthermore, using

the fact that δ̄ > 0, δpf (d, ε) ≤ δ′d(d) (Lemma 2.10), (2.6), and

(δpf (d, ε))6n

p2(m,n)t2(m,n)
≤ δ′p(d),

we have

δ̄ + ∆δ ≤ K5
(δpf (d, ε))6n

p2(m,n)t2(m,n)
≤ K5δ

′
(d).(2.9)

Therefore, we can use the results of Proposition 2.14 along with (2.7) to get that

ε ≥ ε̄−K6

(
δ̄

∆δ

)(
1

δ′(d)

)3

.(2.10)

Using (2.4), (2.8), the fact that δpf (d, ε) ≤ 1, and the fact that δpf (d, ε) ≤ 8nε
(Lemma 2.13), we have

ε ≥ ε̄− ε.
Therefore, the results of the proposition hold.

We finally prove Lemma 2.10.
Proof of Lemma 2.10. Assume that δpf (d, ε) > 0; otherwise, the lemma follows

already. Furthermore, assume that δpf (d, ε) > δ
′
d(d). We will show that there exists

an instance d̂ that satisfies ‖d − d̂‖ < δpf (d, ε) and is unbounded, thus deriving a
contradiction to the definition of δpf (d, ε).

Because δpf (d, ε) > δ
′
d(d), there exists an instance d̃ that satisfies ‖d − d̃‖ <

δpf (d, ε) and is dual infeasible. Either d̃ is primal infeasible or it is unbounded. If it

is unbounded, we have arrived at a contradiction (i.e., let d̂ = d̃). Thus assume that
d̃ is primal infeasible. We now show that with an arbitrarily small perturbation of d̃
there exists an unbounded linear program, thus deriving a contradiction.

Because d̃ = (Ã, b̃, c̃) is dual infeasible, it can be shown, using Farkas’ lemma,
that the following system is feasible:

Ãx ≤ 0,

x ≥ 0,

c̃Tx > 0.

Let x be any solution to the above system. Because d̃ is primal infeasible, x cannot
satisfy Ãx < 0. However, because x 6= 0 (since c̃Tx > 0) with an arbitrarily small
perturbation of the entries of Ã (call the new matrix Â), the following sys-
tem is feasible:

Âx < 0,

x ≥ 0,

c̃Tx > 0.

Therefore, the instance d̂ = (Â, b̃, c̃) is unbounded.

1028 SHARON FILIPOWSKI

3. Linear programming: max{ cTx : Ax ≤ b}.
3.1. The algorithm. We now consider solving linear programs of the following

form:

(P) max cTx

Ax ≤ b,
where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and x ∈ Rn, assuming it is known that the actual
instance is primal feasible before computations begin. The dual of this linear program
can be written

(D) min bTy

ATy = c,

y ≥ 0,

where y ∈ Rm.
As discussed in the introduction, we have made an effort to create an algorithm

that can be used for all forms of a linear program. Because the combination of general
inequality and nonnegativity constraints provides many useful properties in a linear
program (Lemmas 2.1, 2.2, and 2.3) that other forms of the constraints in general do
not provide, we have made an effort for the algorithm and analysis for linear programs
with only general inequality constraints to use the algorithm and analysis for linear
programs with both general inequality and nonnegativity constraints.

We now give a brief sketch of the algorithm. Given approximate data (d̄, δ̄), the
algorithm determines whether the actual instance is unbounded, the actual instance
has an optimal solution, or better data accuracy is needed. If it has been determined
that the actual instance has an optimal solution, the feasible regions and, hence, opti-
mal solution sets of all primal feasible instances d̃ satisfying ‖d̃− d̄‖ ≤ δ̄ are translated
toward the nonnegative orthant. Then, methods from Algorithm 2.4, where linear
programs with both general inequality and nonnegativity constraints are considered,
are used to try to provide an ε̄-approximate solution to all primal feasible translated
instances, for some ε̄ ∈ (0,∞). If such an ε̄-approximate solution is found, it is trans-
lated back to provide an ε̄-approximate solution to the actual instance. The details of
the algorithm are discussed more thoroughly in the remainder of this section.

As before, for a particular instance d, let

Feas(d) ≡ {x : Ax ≤ b},
let

DualFeas(d) ≡ {y : ATy = c, y ≥ 0},
and let

Opt(d) ≡ {x∗ : x∗ ∈ Feas(d) and cTx∗ ≥ cTx for all x ∈ Feas(d)}.
Also, if d has an optimal solution, let

k(d) ≡ max{cTx : Ax ≤ b}.
In addition, for a particular primal feasible instance d, let δ

′
p(d) denote the distance

between the instance d and the set of primal infeasible instances. If d is dual feasible,

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1029

let δ
′
d(d) denote the distance between the instance d and the set of dual infeasible

instances, and if d is dual infeasible, let δ
′
d(d) denote the distance between the instance

d and the set of dual feasible instances. Finally, let δ
′
(d) ≡ min{δ′p(d), δ

′
d(d)}.

We now give a detailed sketch of the algorithm. As in Algorithm 2.4, it is first
checked if the actual instance is unbounded. Because of the knowledge of primal
feasibility, it is enough to check that the actual instance is dual infeasible. Therefore,
it is first checked if all instances d̃ satisfying ‖d̃ − d̄‖ ≤ δ̄ are dual infeasible. If all
such instances are dual infeasible, it can be concluded that the actual instance is
unbounded.

Because of the combination of equality and nonnegativity constraints present in
the dual linear programs, the dual infeasibility of all instances d̃ satisfying ‖d̃− d̄‖ ≤ δ̄
can be checked by solving just one linear program, as shown by Vera [8]. We present
his result in the following theorem.

Theorem 3.1 (see [8, Proposition 3.12]). There exists a computationally efficient
algorithm that will ask for better data accuracy if the actual instance d is dual feasible
or will correctly determine the dual infeasibility of d when provided with approximate
data that has error bound satisfying

δ̄ ≤ δ
′
d(d)

2
.

If it has not been determined that the actual instance is unbounded, it is then
checked if the actual instance has an optimal solution. Again, because of the knowl-
edge of primal feasibility, it is enough to check if the actual instance is dual feasible.
Therefore, it is then checked if all instances d̃ satisfying ‖d̃− d̄‖ ≤ δ̄ are dual feasible.
If all such instances are not dual feasible, the algorithm must stop because it does not
have enough data accuracy to provide an ε̄-approximate solution for any ε̄ ∈ (0,∞),
as will be shown in Lemma 3.12.

As discussed above, Vera has shown that the dual infeasibility of all instances
considered given the approximate data (d̄, δ̄) can be determined by checking the dual
infeasibility of just one linear program. This result does not extend to the case of
checking the dual feasibility of all instances considered, given the approximate data;
however, Freund and Vera [3] have shown that there exists a computationally effi-
cient algorithm such that the dual feasibility of all instances d̃ considered given the
approximate data can be determined using minimal precision. We state this result in
the following theorem.

Theorem 3.2 (see [3, Remark 3.1]). There exists a computationally efficient
algorithm that will ask for better data accuracy if the actual instance d is dual infeasible
or will correctly determine the dual feasibility of d when provided with approximate
data that has error bound satisfying

δ̄ ≤ δ
′
d(d)

2
.

As mentioned earlier, if it has been determined that the actual instance has an
optimal solution, the feasible regions and, hence, optimal solution sets of all primal fea-
sible instances d̃ satisfying ‖d̄− d̃‖ ≤ δ̄ are translated toward the positive orthant. The
algorithm then uses Algorithm 2.4, where the linear programs considered have both
general inequality and nonnegativity constraints, to try to provide an ε̄-approximate
solution to all the primal feasible translated instances for some ε̄ ∈ (0,∞). If such
an ε̄-approximate solution is found, it is translated back to provide an ε̄-approximate

1030 SHARON FILIPOWSKI

solution to the actual instance. We now explain the details of the translation and how
Algorithm 2.4 is used.

For an instance d̃ and a translation size γ ∈ R+, let

d̃γ ≡ (Ã, b̃+ γÃe, c̃)

be the associated translated instance. Using this definition, we have the following
lemma that relates the optimal solution set of an original instance d̃ to the optimal
solution set of the associated translated instance d̃γ .

Lemma 3.3. Let γ ∈ R. Then x̃ ∈ Opt(d̃) if and only if x̃+ γe ∈ Opt(d̃γ).

Proof. We first show that x̃ ∈ Feas(d̃) if and only if x̃ + γe ∈ Feas(d̃γ). Let

x̃ ∈ Feas(d̃). Then Ã(x̃ + γe) ≤ b̃ + γÃe so that x̃ + γe ∈ Feas(d̃γ). Similarly, let

z̃ ∈ Feas(d̃γ). Then Ã(z̃ − γe) ≤ b̃+ γÃe− γÃe = b̃ so that z̃ − γe ∈ Feas(d̃).

Let x̃ ∈ Opt(d̃) so that x̃ + γe ∈ Feas(d̃γ). Assume there exists a z̃ ∈ Feas(d̃γ)
satisfying c̃Tz̃ > c̃T(x̃+ γe). We then have c̃T(z̃ − γe) > c̃Tx̃, deriving a contradiction
to the claim that x̃ ∈ Opt(d̃). The other direction follows in a similar way.

Before we state another lemma, recall the following definitions. If

x̄ ∈ {x̃ : ‖x̃− x∗‖ < ε for some x∗ ∈ Opt(d)},
then x̄ is called an ε-approximate solution to the instance d. Similarly, if

z̄γ ∈ {z̃γ : ‖z̃γ − z∗γ‖ < ε for some z∗γ ∈ Opt(dγ)},
then z̄γ is called an ε-approximate solution to the instance dγ .

Using these definitions, we have the following lemma that relates an ε-approximate
solution to original instances to an ε-approximate solution to translated instances.

Lemma 3.4. Given a vector x̄ and a scalar γ, x̄ is an ε-approximate solution to
d̃ if and only if z̄γ = x̄+ γe is an ε-approximate solution to d̃γ for all data instances

d̃ = (Ã, b̃, c̃) satisfying both ‖d− d̃‖ ≤ δ and Feas(d̃) 6= ∅, where d̃γ = (Ã, b̃+ γÃe, c̃).

Proof. Assume that x̄ is an ε-approximate solution to all d̃ satisfying both ‖d −
d̃‖ ≤ δ and Feas(d̃) 6= ∅, so that for all such instances d̃, there exists an x̃ ∈ Opt(d̃)
that satisfies ‖x̄ − x̃‖ < ε. Using Lemma 3.3, z̃γ = x̃ + γe ∈ Opt(d̃γ). Furthermore,

‖(x̄+ γe)− (x̃+ γe)‖ < ε, so that z̄γ = x̄+ γe is an ε-approximate solution to all d̃γ ,

where d̃ satisfies both ‖d− d̃‖ ≤ δ and Feas(d̃) 6= ∅.
The other direction follows in a similar way.
We now discuss how Lemma 3.4 is used by the algorithm. Let ∆A1 ∈ Rm×n,

∆b1 ∈ Rm, and ∆c1 ∈ Rn. Also, for an instance d̃ = (Ã, b̃, c̃), a translation size γ, and
a perturbation size δ, let

S1(d̃, γ, δ) ≡ {(Ã+ ∆A1, b̃+ γÃe+ γ∆A1e+ ∆b1, c̃+ ∆c1) : ‖(∆A1,∆b1,∆c1)‖ < δ}.
Given approximate data (d̄, δ̄), assume that it has been determined that the actual

instance has an optimal solution. Then, to try to provide an ε̄-approximate solution to
the actual instance d for some ε̄ ∈ (0,∞), the algorithm uses Algorithm 2.4 to try to
provide an ε̄-approximate solution z̄γ ∈ Rn to all primal feasible translated instances

d̃γ ∈ S1(d̄, γ, δ̄), for some translation size γ ∈ R+. If the algorithm can do this, then,
using Lemma 3.4, it can provide x̄ = z̄γ − γe as an ε̄-approximate solution to the
actual instance.

To be able to use Algorithm 2.4 and S1(d̄, γ, δ̄), the translation size γ must be large
enough such that either all instances d̃γ ∈ S1(d̄, γ, δ̄) have an optimal solution and all

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1031

optimal solutions are contained in the nonnegative orthant, or such that all feasible
points for all primal feasible instances d̃γ ∈ S1(d̄, γ, δ̄) are contained in the nonnegative
orthant. If either case holds, nonnegativity constraints can be added to the translated
instances without changing the optimal solution sets, and possibly even the feasible
regions, so that Algorithm 2.4 can be used to try to provide an ε̄-approximate solution
to all primal feasible instances d̃γ ∈ S1(d̄, γ, δ̄) for some ε̄ ∈ (0,∞). Checking if at
least one of these cases holds can be done using extensions of Lemmas 2.1 and 2.3.
To extend these lemmas, we need the following definitions. Given approximate data
(d̄, δ̄) and a translation size γ ∈ R+, let

δ̃ = δ̄(1 + nγ),

d̄+
γ (δ̄, δ̃) ≡ (Ā− δ̄eeT, b̄+ γĀe+ δ̃e, c̄+ δ̄e),

and

d̄−γ (δ̄, δ̃) ≡ (Ā+ δ̄eeT, b̄+ γĀe− δ̃e, c̄− δ̄e).
We have the following lemmas, the proofs of which are omitted because they are

similar to the proofs of Lemmas 2.1 and 2.3.
Lemma 3.5. Feas(d̄−γ (δ̄, δ̃))∩{z : z ≥ 0} ⊆ Feas(d̃γ)∩{z : z ≥ 0} ⊆ Feas(d̄+

γ (δ̄, δ̃))

∩ {z : z ≥ 0} for all d̃γ ∈ S1(d̄, γ, δ̄).

Lemma 3.6. Given approximate data (d̄, δ̄), assume that Opt(d̄−γ (δ̄, δ̃))∩{z : z ≥
0} 6= ∅. Then, d̃γ ∈ S1(d̄, γ, δ̄) and z̃γ ∈ Opt(d̃γ) ∩ {z : z ≥ 0} imply that z̃γ ∈
Feas(d̄+

γ (δ̄, δ̃)) ∩ {z : z ≥ 0} ∩ {z : (c̄+ δ̄e)Tz ≥ k(d̄−γ (δ̄, δ̃))}.
To try to provide an ε̄-approximate solution to all primal feasible instances d̃γ ∈

S1(d̄, γ, δ̄), the algorithm first checks if d̄−γ (δ̄, δ̃) has an optimal solution in the non-

negative orthant. If this is the case, using Lemma 3.5, all translated instances d̃γ ∈
S1(d̄, γ, δ̄) are primal feasible. Furthermore, because the translation has not changed
the dual feasible regions, all such translated instances have an optimal solution. There-
fore, it is then checked, using Lemma 3.6, if the portion of the feasible region for
d̄+
γ (δ̄, δ̃), which contains all optimal solutions in the nonnegative orthant for all pri-

mal feasible instances d̃γ ∈ S1(d̄, γ, δ̄), is contained in the positive orthant. If this is

the case, all optimal solutions for all instances d̃γ ∈ S1(d̄, γ, δ̄) are contained in this
region. Therefore, it is enough to check if this region is bounded. If it is, the algorithm
can provide the infinity center of this region as an ε̄-approximate solution for any ε̄
strictly larger than the calculated radius.

If it has been determined that d̄−γ (δ̄, δ̃) does not have an optimal solution in the
nonnegative orthant, it is checked if all feasible points for all primal feasible instances
d̃γ ∈ S1(d̄, γ, δ̄) are contained in the nonnegative orthant. This is done by deciding if

the feasible region for d̄+
γ (δ̄, δ̃) is contained in the positive orthant. If this is the case,

using Lemma 3.5, all feasible points for all primal feasible instances d̃γ ∈ S1(d̄, γ, δ̄)

are contained in the feasible region of d̄+
γ (δ̄, δ̃) and, hence, in the nonnegative orthant.

Thus, it is then enough to check if the feasible region for d̄+
γ (δ̄, δ̃) is bounded. If this

is true, the algorithm can provide its infinity center as an ε̄-approximate solution for
any ε̄ strictly larger than the calculated radius.

Finally, the algorithm might not have enough data accuracy either to determine
that the actual instance is unbounded or to provide an ε̄-approximate solution, for
any ε̄ ∈ (0,∞), with the given approximate data (d̄, δ̄).

1032 SHARON FILIPOWSKI

Before we state the algorithm, we make some remarks and state two lemmas that
will be used to prove that the algorithm is data efficient when the actual instance
has an optimal solution. The instances d̄+

γ (δ̄, δ̃) and d̄−γ (δ̄, δ̃) are not contained in

S1(d̄, γ, δ̄), in contrast to d̄− and d̄+ satisfying ‖d̄ − d̄−‖ ≤ δ̄ and ‖d̄ − d̄+‖ ≤ δ̄,
when linear programs with both general inequality and nonnegativity constraints were
considered. Therefore, the algorithm will not be trying to provide an ε̄-approximate
solution to all primal feasible instances d̃γ ∈ S1(d̄, γ, δ̄) only, but instead to all primal
feasible instances in the following slightly enlarged set S2(d̄, γ, δ̄), where for an instance
d̃, a translation size γ, and a perturbation size δ,

S2(d̃, γ, δ) ≡ {(Ã+∆A2, b̃+γÃe+∆b2, c̃+∆c2) : ‖(∆A2,∆c2)‖ < δ, ‖∆b2‖ < δ(1+nγ)}.

We have the following two lemmas that will be used when proving that the al-
gorithm is data efficient when the actual instance has an optimal solution. The first
lemma shows how well S2(d̃, γ, δ) approximates S1(d̃, γ, δ) for an instance d̃, a transla-
tion size γ, and a perturbation size δ. Furthermore, assuming that the actual instance
has an optimal solution, the second lemma gives a bound on the additional precision
needed to solve the actual instance due to using the translation.

Lemma 3.7. Let γ, δ ∈ R+. Then

S1(d̃, γ, δ) ⊆ S2(d̃, γ, δ).

Furthermore, assume that δ2(1 + 2nγ) ≤ δ1 for δ1, δ2 ∈ R+. Then

S2(d̃, γ, δ2) ⊆ S1(d̃, γ, δ1).

Proof. Let (Ã + ∆A1, b̃ + γÃe + γ∆A1e + ∆b1, c̃ + ∆c1) ∈ S1(d̃, γ, δ) so that
‖(∆A1,∆b1,∆c1)‖ < δ. Because ‖∆b1 + γ∆A1e‖ < δ(1 + nγ), the first claim follows.

Let (Ã+ ∆A2, b̃+ γÃe+ ∆b2, c̃+ ∆c2) ∈ S2(d̃, γ, δ2) so that ‖(∆A2,∆c2)‖ < δ2
and ‖∆b2‖ < δ2(1+nγ). To show that (Ã+∆A2, b̃+γÃe+∆b2, c̃+∆c2) ∈ S1(d̃, γ, δ1)
for δ1 ≥ δ2(1 + 2nγ), we need to show that there exists (∆A1,∆b1,∆c1) that satisfy
both

‖(∆A1,∆b1,∆c1)‖ < δ1

and

Ã+ ∆A1 = Ã+ ∆A2,

b̃+ γÃe+ γ∆A1e+ ∆b1 = b̃+ γÃe+ ∆b2,

c̃+ ∆c1 = c̃+ ∆c2

for some δ1 ≥ δ2(1 + 2nγ). Thus we have ∆A1 = ∆A2 and ∆c1 = ∆c2. Furthermore,
we have ∆b1 = ∆b2 − γ∆A2e. Because ‖∆b2 − γ∆A2e‖ < δ2(1 + 2nγ), this is always
possible with δ1 ≥ δ2(1 + 2nγ).

Lemma 3.8. Assume it is known that the actual instance d is primal feasible
before computations begin. Furthermore, assume that γ ∈ R+ and that d has an

optimal solution. Then δpf (dγ , ε) ≥ δpf (d,ε)
1+2nγ .

Proof. If δpf (d, ε) = 0, then the result follows immediately. Therefore, let us
assume that δpf (d, ε) > 0. Using Lemma 3.3, there exists an ε-approximate solution

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1033

to all instances d̃γ ∈ S1(d, γ, δpf (d, ε)). Using Lemma 3.7, all d̃γ ∈ S2(d, γ,
δpf (d,ε)
1+2nγ)

have the same ε-approximate solution so that

δpf (dγ , ε) ≥ δpf (d, ε)

1 + 2nγ
.

The algorithm is given below.
Algorithm 3.9.

(0) The algorithm assumes that (d̄, δ̄) is given and that it is known that the actual
instance d is primal feasible before computations begin.

(1) Check if all instances d̃ satisfying ‖d̄ − d̃‖ ≤ δ̄ are dual infeasible using Theo-
rem 3.1. If so, STOP; the actual linear program is unbounded.

(2) Check if all instances d̃ satisfying ‖d̄− d̃‖ ≤ δ̄ are dual feasible using Theorem 3.2.
If not, GOTO (5).

(3) Let d̄γ = (Ā, b̄ + γĀe, c̄), where γ = 6d 1
δ̄1/102n e and where dae is the small-

est integer such that dae ≥ a. Check if Opt(d̄−γ (δ̄, δ̃)) ∩ {z : z ≥ 0} 6=
∅. If so, check if Feas(d̄+

γ (δ̄, δ̃)) ∩ {z : (c̄ + δ̄e)Tz ≥ k(d̄−γ (δ̄, δ̃))} ∩ {z :

z > 0} = Feas(d̄+
γ (δ̄, δ̃)) ∩ {z : (c̄ + δ̄e)Tz ≥ k(d̄−γ (δ̄, δ̃))}. If so, check if

rad∞(Feas(d̄+
γ (δ̄, δ̃)) ∩ {z : (c̄+ δ̄e)Tz ≥ k(d̄−γ (δ̄, δ̃))}) <∞. If so, STOP; let

z̄γ = cen∞(Feas(d̄+
γ (δ̄, δ̃))∩ {z : (c̄+ δ̄e)Tz ≥ k(d̄−γ (δ̄, δ̃))}). Then x̄ = z̄γ − γe

serves as an ε̄-approximate solution for all ε̄ > rad∞(Feas(d̄+
γ (δ̄, δ̃)) ∩ {z :

(c̄+ δ̄e)Tz ≥ k(d̄−γ (δ̄, δ̃))}).
(4) Check if Feas(d̄+

γ (δ̄, δ̃)) ∩ {z : z > 0} = Feas(d̄+
γ (δ̄, δ̃)). If so, check if

rad∞(Feas(d̄+
γ (δ̄, δ̃))) < ∞. If so, STOP; let z̄γ = cen∞(Feas(d̄+

γ (δ̄, δ̃))).
Then x̄ = z̄γ − γe serves as an ε̄-approximate solution for all ε̄ >

rad∞(Feas(d̄+
γ (δ̄, δ̃))).

(5) “Better data accuracy is needed.”

3.2. Efficiency of the algorithm. The algorithm is computationally efficient
because it relies just on linear programming (i.e., we assume that all linear programs
are solved using a polynomial-time linear program algorithm). The remainder of the
section is devoted to showing that the algorithm is data efficient when the actual
instance has an optimal solution. After the statement of Theorem 3.10, we give an
example to show that the algorithm is not data efficient when the actual instance is
unbounded.

Because of the knowledge of primal feasibility, if the actual instance has an optimal
solution, the minimum perturbation size necessary such that there does not exist an
ε-approximate solution to all primal feasible instances d̃ satisfying ‖d− d̃‖ < δ for any
δ strictly larger than this minimal perturbation size is denoted by δpf (d, ε) and can
be written as follows:

δpf (d, ε) ≡ sup{δ : there exists x̄ ∈ Rn such that ‖d− d̃‖ < δ and Feas(d̃) 6= ∅
imply that there exists x̃ ∈ Opt(d̃) satisfying ‖x̄− x̃‖ < ε}.

Also, assuming that the actual instance is unbounded, the minimum perturbation size
necessary such that not all primal feasible instances d̃ satisfying ‖d− d̃‖ < δ are un-
bounded for any δ strictly larger than this minimal perturbation size is also denoted
by δpf (d, ε) and can be written as follows:

δpf (d, ε) ≡ sup{δ : ‖d− d̃‖ < δ and Feas(d̃) 6= ∅ imply that d̃ is unbounded}.

1034 SHARON FILIPOWSKI

Note that δpf (d, ε) is independent of ε.
The data efficiency when the actual instance has an optimal solution follows from

the following theorem. As mentioned in the introduction, we give an example after
the statement of the theorem that shows that the algorithm is not data efficient when
the actual instance is unbounded. Furthermore, if the actual instance is unbounded,
the algorithm is the same as Vera’s algorithm [9], so that the knowledge of primal
feasibility is not being used.

Theorem 3.10. Assume it is known that the actual instance d is primal feasi-
ble before computations begin. There exist polynomials p6(m,n) and t3(m,n) in the
variables m and n independent of the actual instance and desired solution accuracy
such that for ε ∈ (0, 1], Algorithm 3.9 is guaranteed to provide a 2m

√
nε-approximate

solution when the actual instance has an optimal solution and when provided with
approximate data that has error bound satisfying

δ̄

‖d‖ ≤
(
δpf (d, ε)

‖d‖
)102n(

1

p6(m,n)t3(m,n)

)
.

We now give an example to show that the algorithm is not data efficient when
the actual instance is unbounded. It is similar to the example given when symmetric
linear programs were considered. Consider the following linear program and its dual:

(P) max x

−γx ≤ −1,

−x ≤ 0,

and

(D) min −y1

−γy1 − y2 = 1,

y1, y2 ≥ 0,

where 0 < γ < 1. We have that ‖d‖ = 1 and that δ
′
p(d) = δ

′
d(d) = γ. Furthermore,

we have that δpf (d, ε) = 1 for all ε ∈ (0, 1] because any primal feasible instance d̃

satisfying ‖d − d̃‖ < 1 is dual infeasible and because there exists an instance d̂ that

has an optimal solution and such that ‖d−d̂‖ = 1. However, the algorithm will require
the approximate data error bound to satisfy

δ̄ ≤ δ
′
d(d)

2
=
γ

2

to be guaranteed to stop with the answer that the actual instance is unbounded.
(The extra factor of 1/2 is needed because, when given approximate data (d̄, δ̄), the
algorithm might be considering instances that are as far as 2δ̄ away from the actual
instance.) Because γ = δ

′
d(d) can be made arbitrarily small, the algorithm is not data

efficient.
The proof of Theorem 3.10 uses the following lemmas. As in the previous sec-

tion, we assume that ‖d‖ = 1 when proving the lemmas. It is not until the proof of
Theorem 3.10 that we consider the more general case.

Assuming that the actual instance d has an optimal solution and that δpf (d, ε) > 0
for a given ε ∈ (0,∞), the following lemma will be used to bound the size of an optimal

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1035

solution to d. This bound will be used to determine a sufficient translation size such
that for given approximate data (d̄, δ̄), all optimal solutions for all primal feasible
translated instances d̃γ ∈ S2(d̄, γ, δ̄) are contained in the positive orthant.

Lemma 3.11. Assume it is known that the actual instance d is primal feasible
before computations begin. Furthermore, assume that d has an optimal solution, that
ε ∈ (0,∞), and that δpf (d, ε) > 0. There exists an x

′ ∈ Opt(d) such that

‖x′‖ ≤ 2ε‖d‖
δpf (d, ε)

− 2ε.

Proof. From the definition of δpf (d, ε), there exists an x̄ such that ‖d̃ − d‖ <
δpf (d, ε) and Feas(d̃) 6= ∅ imply that there exists an x̃ ∈ Opt(d̃) satisfying ‖x̃− x̄‖ < ε.

Because δpf (d, ε) > 0, d must have a bounded optimal solution set. As a result, for

an extreme point optimal solution x
′
of d, there exists an arbitrarily small perturbation

of the objective function that creates an instance d
′ ≡ (A, b, c

′
) that has the unique

optimal solution x
′
. (If d already has a unique optimal solution, no perturbation is

needed.) Clearly, ‖x′ − x̄‖ < ε.
We now show that x

′
satisfies

‖x′‖ ≤ 2ε‖d‖
δpf (d, ε)

− 2ε.

Assume that x
′ 6= 0. Otherwise, if x

′
= 0, the bound is satisfied. Consider the

instance d
′′

= (A
′
, b, c

′
) that is obtained by replacing A with

A
′ ≡

(
‖x′‖

‖x′‖+ 2ε

)
A.

It can be shown that

x
′′ ≡

(
‖x′‖+ 2ε

‖x′‖

)
x
′

is the unique optimal solution for d
′′
. Because ‖x′ − x′′‖ = 2ε and ‖x′ − x̄‖ < ε, we

have ‖x′′ − x̄‖ ≥ ε. Because ‖x′′ − x̄‖ ≥ ε, we have that

δpf (d, ε) ≤ ‖d′′ − d‖
≤
(

2ε

2ε+ ‖x′‖
)
‖d‖,

so that

‖x′‖ ≤ 2ε‖d‖
δpf (d, ε)

− 2ε.

This next lemma is similar to Lemma 2.10. It states that in order for an algorithm
to be able to provide an ε̄-approximate solution for any ε̄ ∈ (0,∞), it must have enough
accuracy such that all instances considered by the algorithm are dual feasible.

Lemma 3.12. Assume it is known that the actual instance d is primal feasible
before computations begin. Furthermore, assume that d has an optimal solution and
that ε ∈ (0,∞). Then

δpf (d, ε) ≤ δ′d(d).

1036 SHARON FILIPOWSKI

Proof. Assume that δpf (d, ε) > 0; otherwise, the lemma holds already. The proof

is similar to the proof of Lemma 2.10 because d̃ dual infeasible implies that the system

Ãx ≤ 0, c̃Tx > 0

is feasible.
We finally prove Theorem 3.10.
Proof of Theorem 3.10. Assume that

δ̄

‖d‖ ≤
(
δpf (d, ε)

‖d‖
)102n(

1

p6(m,n)t3(m,n)

)
,(3.1)

where p6(m,n) = 96np1(m,n), t3(m,n) = 102nt1(m,n), and p1(m,n) and t1(m,n)
are from Theorem 2.7.

It is assumed that the actual instance has an optimal solution. Using Theorem 3.2,
the algorithm is guaranteed to determine that the actual instance is dual feasible when
provided with approximate data error bound δ̄ satisfying

δ̄ ≤ δ
′
d(d)

2
.

Because δpf (d, ε) ≤ δ′d(d) (Lemma 3.12), the algorithm is guaranteed to determine that
the actual instance is dual feasible with approximate data error bound δ̄ satisfying
(3.1).

Now, assume that ‖d‖ = 1. We consider the more general case at the end of the
proof. Because δ̄ > 0 we have that δpf (d, ε) > 0 for all ε ∈ (0, 1]. As a result, we can

use Lemma 3.11 to get that ‖d− d̃‖ < δpf (d,ε)
2 and d̃ primal feasible imply that there

exists an x̃ ∈ Opt(d̃) satisfying

‖x̃‖ ≤ 8

δpf (d, ε)
.

Furthermore, we have that ‖d − d̃‖ < δpf (d, ε) and d̃ primal feasible imply that

rad∞(Opt(d̃)) < ε. Otherwise, with an arbitrarily small perturbation of the objective
function of d̃, instances can be created that have optimal solution sets that are farther

than ε apart. Therefore, ‖d − d̃‖ < δpf (d,ε)
2 and d̃ primal feasible imply that if x̃ ∈

Opt(d̃), then

‖x̃‖ ≤ 10

δpf (d, ε)
.

Using this bound and the definition of δpf (d, ε), there exists an ε-approximate solution

x̄ for all primal feasible d̃ satisfying ‖d− d̃‖ < δpf (d,ε)
2 that satisfies

‖x̄‖ ≤ 11

δpf (d, ε)
.

Finally, because

δ̄ ≤
(
δpf (d, ε)

2

)102n

,

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1037

we have that

γ = 6

⌈
1

δ̄1/102n

⌉
≥ 6

δ̄1/102n
≥ 12

δpf (d, ε)
.

As a result, Lemma 3.3 implies that d̃γ ∈ S1(d, γ,
δpf (d,ε)

2) and d̃γ primal feasible

imply that z̃γ ∈ Opt(d̃γ) satisfies

z̃γ ≥ 2

δpf (d, ε)
e ≥ 2e.

Furthermore, Lemma 3.4 implies that there exists an ε-approximate solution z̄γ for

all primal feasible instances d̃γ ∈ S1(d, γ,
δpf (d,ε)

2) satisfying

z̄γ ≥ 1

δpf (d, ε)
e ≥ e,

where e ∈ Rn is the vector of all ones.
We now show that Algorithm 3.9 is guaranteed to provide a 2m

√
nε-approximate

solution with the given approximate data error bound. Consider an instance d̃γ ∈
S1(d, γ,

δpf (d,ε)
2) and the instance d̃∗γ whose objective function vector is the same as the

objective function vector of d̃γ and whose feasible region consists of the intersection of

the feasible region for d̃γ and the nonnegative orthant (i.e., Feas(d̃∗γ) = Feas(d̃γ)∩{z :

z ≥ 0}). Because d̃γ ∈ S1(d, γ,
δpf (d,ε)

2), d̃γ primal feasible, and z̃γ ∈ Opt(d̃γ) imply

that z̃γ ≥ 2e, if d̃γ is primal feasible, d̃∗γ has the same optimal solution set as d̃γ .
Furthermore, because there exists an ε-approximate solution z̄γ satisfying z̄γ ≥ e

to all primal feasible instances d̃γ ∈ S1(d, γ,
δpf (d,ε)

2), there exists an ε-approximate

solution z̄∗γ ≥ e to all primal feasible instances d̃∗γ , where d̃γ ∈ S1(d, γ,
δpf (d,ε)

2). In
particular, z̄∗γ = z̄γ . Therefore, using Lemma 3.8, we have that

δpf (d∗γ , ε) ≥
δpf (d, ε)

2

(
1

1 + 2nγ

)
.

As a result, using Theorem 2.7, once

δ̃

‖dγ‖ =
δ̄(1 + nγ)

‖dγ‖ ≤
(

δpf (d, ε)

2‖dγ‖(1 + 2nγ)

)25n
1

p1(m,n)t1(m,n)
,(3.2)

where p1(m,n) and t1(m,n) are from Theorem 2.7, Algorithm 2.4 is guaranteed to
provide a 2m

√
nε-approximate solution z̄γ to d∗γ and hence to dγ . As a result, using

Lemma 3.4, x̄ = z̄γ − γe is guaranteed to be a 2m
√
nε-approximate solution to d.

Using some algebra and the fact that ‖dγ‖ ≤ (1 + nγ)‖d‖, we have that (3.1) implies
(3.2).

Finally, the proof that the theorem holds when ‖d‖ 6= 1 is similar to the proof of
this case in the proof of Theorem 2.7.

4. Remarks. We now make some remarks about the use of the knowledge of
primal feasibility when solving linear programs with both general inequality and non-
negativity constraints. Similar remarks hold when solving linear programs with just
general inequality constraints.

1038 SHARON FILIPOWSKI

We first discuss how the algorithm uses the knowledge of primal feasibility. Be-
cause of the knowledge of primal feasibility, the algorithm does not need to determine
that the actual instance is primal feasible before attempting to solve the instance in
question. This use of the knowledge is shown by the presence of steps (1), (3), and (5)
in Algorithm 2.4. In particular, in steps (1) and (3), the algorithm has not already
determined that all instances considered by the algorithm are primal feasible before
attempting to respond that the actual instance is unbounded or to provide an ap-
proximate solution of some accuracy. Furthermore, in step (5), the algorithm knows
that not all instances considered are primal feasible before attempting to provide an
approximate solution of some accuracy.

When using the knowledge of primal feasibility, an algorithm will be able to solve
some problem instances with less precision than what an algorithm that does not have
or use the knowledge of primal feasibility would be able to do. Also, in some cases,
problem instances that would require perfect precision to solve without the knowledge
of primal feasibility can now be solved without perfect precision with the use of the
knowledge.

For example, consider the following linear program that was discussed in section
2.2:

max −x1 − x2

x1 + x2 ≤ 0,

x1, x2 ≥ 0.

Because an arbitrarily small perturbation of the data can give an instance that is
primal infeasible, an algorithm that does not have or use the knowledge of primal
feasibility would need perfect precision just to be able to determine that the actual
instance is primal feasible before attempting to provide an approximate solution.
However, for this instance, Algorithm 2.4 is able to provide an approximate solution
in step (3) without perfect precision.

For another example, consider the linear program:

max x1 + x2

x1 ≤ 1,
−x1 ≤ −1,

x2 ≤ 1,
−x2 ≤ −1,

x1, x2 ≥ 0.

Again, an arbitrarily small perturbation of the data can give an instance that is
primal infeasible so that an algorithm that does not have or use the knowledge of
primal feasibility will need perfect precision to be able to provide an approximate
solution. However, Algorithm 2.4 is able to provide an approximate solution in step
(5) without perfect precision.

Furthermore, consider a slight variation of the previous example,

max x1 + x2

x1 ≤ 1,
−x1 ≤ −(1− ξ),

x2 ≤ 1,
−x2 ≤ −(1− ξ),

x1, x2 ≥ 0,

APPROXIMATE SOLUTIONS FOR LINEAR PROGRAMS 1039

where ξ satisfies 0 < ξ � 1. Then, an algorithm that does not have or use the
knowledge of primal feasibility will need the approximate data error bound δ̄ to satisfy
at least

δ̄ ≤ ξ

2

to be guaranteed to be able to determine that the actual instance is primal feasible
before attempting to provide an approximate solution. However, with the knowledge
of primal feasibility, Algorithm 2.4 does not need much accuracy to be able to provide
an approximate solution in step (5).

We now discuss the complexity results when the actual instance has an optimal so-
lution. In particular, we discuss Theorem 2.7. This theorem states that Algorithm 2.4
is guaranteed to provide a 2m

√
nε-approximate solution when provided with approx-

imate data that has error bound δ̄ satisfying

δ̄

‖d‖ ≤
(
δpf (d, ε)

‖d‖
)25n(

1

p1(m,n)t1(m,n)

)
for some problem instance and solution accuracy-independent polynomials p1(m,n)
and t1(m,n) in the variables m and n.

Renegar’s [5] algorithm that does not use the knowledge of primal feasibility is
guaranteed to provide an ε-approximate solution when provided with approximate
data that has error bound satisfying

δ̄

‖d‖ ≤
(
δ(d, ε)

‖d‖
)6(

1

p(m,n)

)
for some problem instance and solution accuracy-independent polynomial p(m,n) in
the variables m and n, where

δ(d, ε) ≡ sup
{
δ : there exists x̄ ∈ Rn such that ‖d− d̃‖ < δ implies that there exists

x̃ ∈ Opt(d̃) satisfying ‖x̄− x̃‖ ≤ ε
}
.

Because 25n ≥ 6 for all n ≥ 1, it first appears that the algorithm that uses the
knowledge of primal feasibility has a worse complexity result; however, this is not the
case. First, if all instances d̃ satisfying ‖d̃− d̄‖ ≤ δ̄, given the approximate data (d̄, δ̄),
are primal feasible, Algorithm 2.4 reduces to Renegar’s algorithm in steps (1) and (5).
In this case, the knowledge of primal feasibility has not been helpful in reducing the
precision necessary for an algorithm to solve the instance in question.

Furthermore, it might be the case, as in the above examples, that

δ(d, ε)� δpf (d, ε).

Therefore, it might be the case that(
δ(d, ε)

‖d‖
)6(

1

p(m,n)

)
<

(
δpf (d, ε)

‖d‖
)25n(

1

p1(m,n)t1(m,n)

)
,

so that Algorithm 2.4 is guaranteed to solve the actual with less precision. This is the
case for the instances discussed above and will clearly be the case when δpf (d, ε) > 0
while δ(d, ε) = 0.

1040 SHARON FILIPOWSKI

Acknowledgments. Consideration of primal feasibility knowledge began while
I was a Ph.D. student at Cornell University in the School of Operations Research
and Industrial Engineering under the direction of James Renegar, whom I thank
for many helpful discussions about this work. Also, most of the work on this paper
was completed while I was a faculty member in the Department of Industrial and
Manufacturing Systems Engineering at Iowa State University. Finally, I thank two
referees for carefully reading this paper and for their helpful comments.

REFERENCES

[1] S. Filipowski, On the complexity of solving feasible systems of linear inequalities specified with
approximate data, Math. Programming, 71 (1995), pp. 259–288.

[2] S. Filipowski, On the complexity of solving sparse symmetric linear programs specified with
approximate data, Math. Oper. Res., 22 (1997), pp. 769–792.

[3] R. Freund and J. Vera, Some characterizations and properties of the ‘distance to ill-
posedness’ and the condition measure of a conic linear system, Math. Programming, to
appear.

[4] J. Renegar, Some perturbation theory for linear programming, Math. Programming Ser. A,
65 (1994), pp. 73–91.

[5] J. Renegar, Incorporating condition measures into the complexity theory of linear program-
ming, SIAM J. Optim., 5 (1995), pp. 506–524.

[6] S. Smale, Some remarks on the foundations of numerical analysis, SIAM Rev., 32 (1990),
pp. 211–220.

[7] J. Vera, Ill-posedness in Mathematical Programming and Problem Solving with Approximate
Data, Ph.D. dissertation, Cornell University, Ithaca, NY, 1992.

[8] J. Vera, Ill-posedness and the complexity of deciding existence of solutions to linear programs,
SIAM J. Optim., 6 (1996), pp 549–569.

[9] J. Vera, Ill-posedness and the Computation of Solutions to Linear Programs with Approximate
Data, preprint, Department of Industrial and Systems Engineering, Catholic University of
Chile, Santiago, Chile, 1992. Available from the author at jvera@ing.puc.cl.

ON MODIFIED FACTORIZATIONS FOR LARGE-SCALE LINEARLY
CONSTRAINED OPTIMIZATION∗

NICHOLAS IAN MARK GOULD†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1041–1063

This paper is dedicated to John Dennis, Jr., as a token of my appreciation

for his unswerving support for computational mathematical programming

Abstract. We consider the algebraic issues concerning the solution of general, large-scale, lin-
early constrained nonlinear optimization problems. Particular attention is given to suitable methods
for solving the linear systems that occur at each iteration of such methods. The main issue addressed
is how to ensure that a quadratic model of the objective function is positive definite in the null-space
of the constraints while neither adversely affecting the convergence of Newton’s method nor incurring
a significant computational overhead. Numerical evidence to support the theoretical developments
is provided.

Key words. large-scale problems, linearly constrained optimization, modified matrix factoriza-
tions, second-order optimality conditions

AMS subject classifications. 65F05, 65F10, 65F15, 65F50, 65K05, 90C30

PII. S1052623495290660

1. Introduction. Newton-like line-search methods for unconstrained and lin-
early constrained optimization may be broadly divided into two categories on the
basis of how they deal with nonconvexity. Some methods wholeheartedly embrace
nonconvexity by calculating directions of negative curvature as a means of escape
from regions of nonconvexity. Others prefer to pretend that the nonconvexity is not
present by replacing the Newton model by a convex modification. Although the for-
mer approach has theoretical advantages (see, for example, [35]), the latter is often
preferred because of its simplicity.

The prototypical example of convex modification is the modified Cholesky method
of [25] for unconstrained minimization. Here the second derivatives ∇2

xxf of the
objective function f(x) are replaced by a modification B = ∇2

xxf + D whenever
∇2
xxf is insufficiently positive definite. The diagonal perturbation D is chosen so

that B is sufficiently positive definite, that is,

pTBp ≥ σpTp for some constant σ > 0 and all p.(1.1)

Most significantly, the perturbation is determined during an attempted Cholesky fac-
torization of ∇2

xxf . If ∇2
xxf is itself sufficiently positive definite, D is zero. The cost

of finding B is barely more than the cost of a Cholesky factorization, and the norm
of the resulting B has a guaranteed bound. More recently, [38] developed a similar
method with a better a priori bound, while extensions to large-scale unconstrained
and bound constrained optimization, using sparse factorizations, have been proposed
by [26], [7, Chapter 3], and [37]. A thorough survey of modified Newton methods for
unconstrained optimization is given by [9].

In this paper, we are interested in extending these ideas to linearly constrained
optimization. We shall not concern ourselves with inequality constraints but presume

∗Received by the editors August 23, 1995; accepted for publication (in revised form) November
17, 1997; published electronically September 24, 1999.

http://www.siam.org/journals/siopt/9-4/29066.html
†Atlas Centre, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, England (n.gould@

rl.ac.uk).

1041

1042 NICHOLAS IAN MARK GOULD

that these are being handled by active set or barrier methods (see, for instance, [27,
section 5.2] and [17]). Thus we aim to solve a smooth linearly constrained, nonlinear
optimization problem,

minimize
x∈<n

f(x),(1.2)

subject to m general, linearly independent, linear equations

Ax = b.(1.3)

We consider a general iteration in which we have a point x satisfying (1.3) and wish
to determine an improvement x+ p. We build a second-order model of the objective
function and pick p as the solution of the equality constrained quadratic program

minimize
p∈<n

1
2p

TBp+ pTg subject to Ap = 0.(1.4)

Here g
def
= ∇xf is the gradient of f and B is a suitable symmetric approximation to

the Hessian H
def
= ∇2

xxf . We wish to guarantee that p is bounded and thus we require
that the model problem is bounded from below. We ensure this by requiring that B
be second-order sufficient, that is, that

pTBp ≥ σpTp for some constant σ > 0
and all p satisfying Ap = 0.

(1.5)

This condition is the natural generalization of (1.1) for the constrained case. To ensure
rapid asymptotic convergence, we also require that B be equal to H whenever the
latter is itself second-order sufficient.

We shall be concerned with general, large-scale problems so we will not consider
methods based solely on dense factorizations. We presume that H and A are sparse,
and we consider sparse direct methods. So long as B is second-order sufficient, the
solution to (1.4) satisfies the sparse linear system(

B AT

A 0

)(
p
λ

)
=

(−g
0

)
,(1.6)

where λ are Lagrange multipliers. Note that the coefficient matrix,

K
def
=

(
B AT

A 0

)
,(1.7)

of (1.6) is inevitably indefinite—it must have at least m positive and m negative
eigenvalues (see [28]). Thus any matrix factorization of (1.7) must be capable of
handling indefinite matrices. To be efficient, one would normally try to exploit the
symmetry of K in the factorization. The natural generalization of the Cholesky (or
more precisely LDLT) factorization in the symmetric, indefinite case is that first
proposed by [5] and later improved by [4] and [18] in the dense case and [16] and [14]
in the sparse case. Here a symmetric matrix K is decomposed as

K = PLDLTP T ,(1.8)

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1043

where P is a permutation matrix, L is unit lower triangular, and D is block diago-
nal with blocks of size at most two. Each diagonal block corresponds to a pivoting
operation. We shall refer to the blocks as 1 by 1 and 2 by 2 pivots.

Because we are particularly concerned with the large-scale case, it is the Duff–
Reid variant that is of special interest. We note that the permutation matrices are
used extensively in the factorization of sparse matrices to keep the fill-in—that is, the
introduction of extra nonzeros in the factors—at an acceptable level. Unfortunately,
the [30] implementation, MA27, [13] of the Duff–Reid variant sometimes proves inef-
ficient when applied to matrices of the form (1.7) as the analysis phase treats the
whole diagonal of K as if it contains nonzero entries. Thus a good predicted ordering
supplied by the analyze phase is often replaced, for stability reasons, by a less satis-
factory ordering when the factorization is performed, resulting in considerable extra
work and fill-in. Ways of avoiding these difficulties, and of taking further advantage
of the zero block in K, have been suggested by [12] and form the basis for a recent
Harwell Subroutine Library code MA47 [15].

In the special case when f is separable, H will be diagonal. In particular, when
f is also strictly convex, H will be positive definite and a block elimination of H
followed by a sparse Cholesky factorization of the (negative of the) Schur complement
AH−1AT is feasible. Indeed, this approach is fundamental to many interior point
methods for linear programming (see, for example, [34], [31], [32], or [6]). However,
because such an approach is merely the restriction of a particular pivot order applied
to (1.7), and because it is less appealing whenH is not diagonal, Fourer and Mehrotra
[22] have suggested methods for solving (1.7) using more general pivot sequences for
linear programming problems, and Vanderbei and Carpenter [40] do the same for
general problems.

If B is known a priori to be second-order sufficient, as for instance would be
the case if f(x) were strictly convex, we wholeheartedly recommend the use of MA27,
MA47, or the procedure within loqo [40] to solve (1.6). When there is a chance that
B may not be second-order sufficient, alternatives to blindly solving (1.6) must be
sought. We note that it is always possible to determine a posteriori if B is second-
order sufficient, as [28] showed that B is second-order sufficient if and only if K has
precisely m negative and n positive eigenvalues. The inertia of K is trivially obtained
by summing the inertia of the pivots.

Having set the scene, we may now describe our goals. We aim

(i) to determine a matrix B = H +E so that (1.5) is satisfied and such that
the perturbation E = 0 whenever H satisfies (1.5);

(ii) to obtain E without incurring undue overheads above those normally con-
sidered acceptable when calculating the search direction;

(iii) to ensure that ‖E‖ is bounded relative to max(‖A‖, ‖H‖)—provided that
{x} remains bounded, this will ensure that B is uniformly bounded;

(iv) to use the sparsity and structure of (1.6) to derive a sparse factorization;
and

(v) to limit numerical growth to acceptable limits to ensure a stable algorithm.

In this paper, we shall show how, to a certain extent, we may achieve these aims.
The paper is organized as follows. In section 2 we describe Forsgren and Murray’s
modified factorization approach [21]. In sections 3 and 4, we describe techniques which
are particularly attractive when the systems are large and sparse, and we indicate in
section 5 how the ideas presented in this paper behave in practice, using a prototype
code.

1044 NICHOLAS IAN MARK GOULD

We shall denote the inertia of the generic symmetric matrix M as

In (M) = (m+,m−,m0),(1.9)

where m+, m−, and m0 are, respectively, the numbers of positive, negative, and zero
eigenvalues of M . The n by n identity matrix will be written as In, or I when
the dimension is clear from the context. Finally, ei will be the ith column of I.
We stress that throughout the paper, the matrix B denotes a second-order sufficient
approximation to H which will actually be H whenever the latter is itself second-
order sufficient.

2. Forsgren and Murray’s sufficient pivoting conditions. As far as we
are aware, the only serious attempt to generalize the modified Cholesky methods
for unconstrained optimization to the general, large-scale, linearly constrained case
is that by Forsgren and Murray [21]. All other methods we are aware of either are
appropriate only for small-scale calculations because they disregard problem structure
(see [19, section 11.1] or [27, section 5.1] for example) or implicitly assume that n−m
is sufficiently small that coping with dense matrices of order n−m is practicable (see,
for instance, [36]).

We say that the first n rows of K are B-rows and the remaining m rows are
A-rows. Forsgren and Murray show that, if the pivots are restricted to be of certain
types until all of the A-rows of K have been eliminated, the remaining uneliminated
(Schur-complement) matrix, S, is sufficiently positive definite if and only if B is
second-order sufficient. Until all A-rows of K have been exhausted, Forsgren and
Murray allow only the following types of pivots:

b+ pivots: strictly positive 1 by 1 pivots occurring in B-rows of K.
a− pivots: strictly negative 1 by 1 pivots occurring in A-rows of K.
ba pivots: 2 by 2 pivots with a strictly negative determinant, one of whose rows
is a B-row and the other of whose rows is an A-row of K.

Forsgren and Murray further restrict the pivot so that the absolute value of its de-
terminant is greater than a small positive constant so as to bound the elements in
L and limit any growth in S. The motivation behind this choice of pivot is simply
that if i A-rows have been eliminated, the factorized matrix has exactly i negative
eigenvalues. Thus, when all A-rows have been eliminated, the factorized matrix has
precisely m negative eigenvalues and hence any further negative eigenvalues in S can
occur only because B is not second-order sufficient.

Once S has been determined, Forsgren and Murray form a stable symmetric
indefinite factorization. If the factors reveal that S is sufficiently positive definite, the
(quasi-) Newton equations (1.6) are subsequently solved using the factorization. If S
has insufficiently many positive eigenvalues, Forsgren and Murray show how both a
direction of sufficient descent and a direction of negative curvature may be recovered
from the factors, and they form a search arc as a linear or nonlinear combination of
these two directions.

An obvious variation is, instead, to form a modified Cholesky factorization of S.
If no modification is performed, the true Hessian H must be second-order sufficient.
Otherwise, a suitable perturbation E will have been produced. In either case, the
Newton equations (1.6) are solved using the complete factorization.

The main difficulty with Forsgren and Murray’s approach is that any restriction
on the pivot order can disqualify potentially advantageous sparsity orderings. While
it is always possible to choose a pivot according to the Forsgren–Murray recipe, the

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1045

available choices all may lead to considerable fill-in. Nonetheless, we shall consider a
number of variations of this scheme.

3. Methods using ba pivots. In this section, we consider a scheme which uses a
restricted version of [21]’s pivoting rules. Specifically, we consider what happens if we
choose the first m pivots to be ba pivots. This choice of pivots is covered by Forsgren
and Murray’s analysis. We are particularly interested in these pivots because the fill-
in is easy to predict and, most important, the stability of the method is determined
entirely by A. Hence, for linearly constrained problems, the same sequence of ba
pivots may be used at each iteration.

Since we are primarily concerned with large problems, it is essential to try to
ensure that the chosen permutation P introduces as little fill-in as possible. Notice
that each ba pivot requires that we select a row and a column of A and that the
selected column of A defines the row of B used.

Without loss of generality, we describe how the first ba pivot is determined. The
same procedure then may be applied recursively to the Schur-complement of this pivot
in K to determine ba pivots 2, . . . ,m. Suppose that we consider the permutation

P T
1KP 1 =

β α bTc aTc
α 0 aTr 0

bc ar BR AT
R

ac 0 AR 0

 ,(3.1)

where α 6= 0 and β are scalars, bc and ar are (n− 1)-vectors, ac is an (m− 1)-vector,
and BR and AR are n− 1 by n− 1 and m− 1 by n− 1 matrices, respectively. Then
a simple calculation reveals that the Schur-complement of the ba pivot in P T

1KP 1 is

S1 =

(
BR AT

R

AR 0

)
− 1
α2

[
α

(
bc
ac

)
(aTr 0) + α

(
ar
0

)
(bTc aTc)− β

(
ar
0

)
(aTr 0)

]
.

(3.2)

Notice that no fill-in occurs in the zero, bottom block of S1. Furthermore, suppose
that we have picked α so that

|α| ≥ υ‖ar‖∞(3.3)

for some pivot tolerance 0 < υ ≤ 1. Then it follows from (3.2) and (3.3) that the
largest entry in the updated A can grow by a factor of at most 1 + 1/υ, while that
in the updated B can grow by at most (1 + 1/υ)2. While these factors may be large,
they do provide an upper bound on the overall growth factor after a sequence of ba
pivots. Indeed, if we perform m ba pivots, then it is easy to show that

‖S‖ ≤ (1 + ‖A−1
1 A2‖)2‖B‖,(3.4)

where A = (A1 A2)P (see [29]). Hence element growth may be controlled by
repeated use of (3.3), and if one of the modified Cholesky methods cited in the in-
troduction is subsequently employed to factorize S, the perturbation matrix E will
remain bounded in terms of the initial A and B.

As the same permutation may be used at every iteration of the nonlinear program-
ming algorithm, it is worth investing considerable effort in producing a good ordering.

1046 NICHOLAS IAN MARK GOULD

We now follow [33] by picking the ba pivot to modify the least number of coefficients
in the remaining n+m−2 order block of P T

1KP 1 as the Schur complement is formed.
Thus we aim to minimize the number of nonzeros, ns, in the matrix

α

(
bc
ac

)
(aTr 0) + α

(
ar
0

)
(bTc aTc)− β

(
ar
0

)
(aTr 0).(3.5)

There are two cases to consider.
Following [12], we call a ba pivot a tile pivot if β 6= 0 and an oxo pivot when

β = 0. We let nz(v) denote the number of nonzeros in the vector v, and no(v,w)
give the number of overlaps (the number of indices i for which both vi and wi are
nonzero) between the vectors v and w.

A simple computation reveals that if we choose an oxo pivot, the number of
nonzeros in the matrix (3.5) is

ns = 2nz(ar)[nz(ac) + nz(bc)]− no(ar, bc)2,(3.6)

while a tile pivot yields

ns ≤ 2nz(ar)[nz(ac) + nz(bc)]− no(ar, bc)2 + [nz(ar)− no(ar, bc)]2.(3.7)

(The inequality in (3.7) accounts for the possibility of exact cancellation between the
terms in (3.5).) Thus if A has rows ari , i = 1, . . . ,m, and columns acj , j = 1, . . . , n,
and B has columns bcj , j = 1, . . . , n, one possibility is to pick the ba pivot for which

|ai,j | ≥ υ max
1≤l≤n

|ai,l|(3.8)

and for which

σei,j =

 2(nz(ari)− 1)(nz(acj) + nz(bcj)− 1)− no(ari , bci)2 when bj,j = 0,
2(nz(ari)− 1)(nz(acj) + nz(bcj)− 2)

− (no(ari , bci)− 1)2 + (nz(ari)− no(ari ,hcj)− 2)2 when bj,j 6= 0
(3.9)
is smallest. However, since computing no(ari , bcj) may prove to be unacceptably
expensive, we follow [12] and overestimate (3.6) and (3.7) by assuming that, except
in the pivot rows, there are no overlaps and thus pick the pivot for which

σai,j =

{
2(nz(ari)− 1)(nz(acj) + nz(bcj)− 1) when bj,j = 0,

2(nz(ari)− 1)(nz(acj) + nz(bcj)− 2) + (nz(ari)− 1)2 when bj,j 6= 0
(3.10)
is smallest. It is relatively straightforward to compute and update the nonzero counts
required to use (3.10). Indeed, since nz(ari) and nz(acj) + nz(bcj) are, respectively,
the row and column counts for the matrix(

B
A

)
,(3.11)

the schemes described by [11, section 9.2] are appropriate.
The main disadvantage of the schemes described in this section is that by restrict-

ing the pivot order, the fill-in within the Schur complement may prove unacceptable.
This will be the case if A contains dense rows since then the Schur complement will
almost certainly be completely dense.

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1047

A possible way of alleviating this difficulty is to allow all of the pivot types
suggested by [21] (see section 2). A drawback is that by allowing b+ and a− pivots,
we may generate nonzeros (fill-ins) in the “zero” block of (1.7) and thereafter the
Markowitz costs (3.9) and (3.10) would be inappropriate. Appropriate Markowitz
costs in this case have been suggested by [12]. Preference still should be given to
pivots involving A-rows if at all possible. A more serious complication is that B will
contaminate A if these additional pivot types are allowed, and thus it may no longer
be possible to use the same pivot order for a sequence of related problems.

Even if we allow all types of pivots suggested by Forsgren and Murray, there will
certainly be cases where the Schur complement becomes unacceptably dense. In the
next section, we consider methods that aim to avoid such difficulties.

4. Modified pivoting methods. Suppose thatA containsmd rows with a large
number of nonzeros and that the remaining me ≡ m −md rows are sparse. Then it
is likely that if any of the dense A-rows is included in an early pivot, the remaining
Schur complement will substantially fill in. It therefore makes sense to avoid pivoting
on these rows until the closing stages of the elimination when the Schur complement
may be treated as a dense matrix. However, the Forsgren–Murray pivoting rules may
conspire to make this impossible.

Let us suppose that we have eliminated the sparse me rows of A using Forsgren
and Murray’s pivoting rules and that the remaining Schur complement S is relatively
sparse excepting the md A-rows. Thus, we may no longer use ba or a− pivots and are
restricted to using b pivots, that is, 1 by 1 pivots occurring in B-rows of S.

We may continue the factorization of S in two ways. First, we might pick a
favorable pivoting sequence for 1 by 1 pivots from the B-rows of S purely from a
sparsity (fill-in) point of view. Such an approach implicitly assumes that the defined
pivot sequence will be acceptable from a numerical viewpoint and is typical of the
symbolic analysis phase of the sparse factorization of positive definite matrices (see, for
example, [23] or [11]). Having determined the pivot sequence, a numerical (Cholesky
or LDLT) factorization stage proceeds either to completion or until an unacceptable
numerical pivot is encountered. In our case, we view any pivot less than a small
positive threshold as unacceptable and, slightly abusing notation, shall refer to this
pivot as a b− pivot. If a b− pivot is encountered, a readjustment of the pivot order
may allow the factorization to proceed further, but this is likely to introduce extra
fill-in and merely delays us from facing up to an unacceptable pivot.

Second, we might use a combined analysis-factorization strategy, more typical of
unsymmetric factorizations (again, see [11]), in which the pivot order is determined as
the factorization proceeds and numerically unacceptable pivots moved down the pivot
order. Ultimately, once again, if the b-rows/columns of S are insufficiently positive
definite, this process will ultimately break down since all remaining b pivots will be
b− pivots. More fill-in may be predicted with this strategy than with the last, and,
in the worst case, restrictions on the pivot order may produce an unacceptable level
of fill-in within B. Our preference is for the first (separate analysis and factorization
phases) strategy because the second strategy is likely to prove a considerable overhead
in optimization applications when many systems with the same structure are to be
solved.

Thus our remaining concern is when the pivot we wish to use, or are forced to
use, next is a b− pivot. We shall refer to this as a potential breakdown. At this stage,
we are no longer able to take Forsgren–Murray pivots. We now assume that the b−
pivot would be acceptable from the point of view of fill-in. We aim to investigate the

1048 NICHOLAS IAN MARK GOULD

consequences of attempting to use this pivot. Remember that our goal is ultimately
only to modify B if it fails to be second-order sufficient.

4.1. Implicit modifications. In this section, we consider always modifying b−
pivots, but with the knowledge that we can reverse the effect of these modifications
at a later stage.

4.1.1. Pseudo modification of b− pivots. Suppose the uneliminated Schur-
complement when we encounter potential breakdown is of the form(

β− sT

s S

)
,(4.1)

where β− < σ1 is the candidate b− pivot. Now suppose that

β+ = max(σ2, ||s||∞),(4.2)

where 0 < σ1 ≤ σ2, and let

∆β
def
= β+ − β−.(4.3)

Then if we could replace β− by β+, the latter would be an acceptable pivot. This is
precisely what we do, leaving the consequences for later. We call such a modification
of B a pseudo modification since it is not yet clear that such a modification is actually
required to guarantee that B is second-order sufficient.

We propose continuing such a strategy of replacing b− pivots with acceptable
b+ pivots until the remaining Schur complement is sufficiently small that it may be
treated by dense factorization methods. Thereafter, the Forsgren–Murray strategy
may be applied to remove the remaining dense A-rows, and a modified Cholesky
factorization may then be applied to whatever remains. Thus the resulting (modified)
Hessian matrix will be second-order sufficient. However, when replacing any b− pivots
with acceptable b+ pivots, we may have unnecessarily altered elements and must now
reverse any damage caused.

Stewart [39] suggested using pseudo modifications as an alternative to pivoting
in Gaussian elimination, and he provided a satisfactory error analysis when a single
modification is made. Such an analysis may, of course, be used recursively to cover the
scheme suggested here. He comments that this strategy may be particularly beneficial
for sparse problems, where altering the pivot sequence could lead to undesirable fill-in.

We will have formed a stable factorization of

N
def
=

(
B + ∆B AT

A 0

)
,(4.4)

where B = H+∆H, the diagonal matrix ∆B corresponds to the m− (say) modified
b− pivots, and the other diagonal matrix ∆H corresponds to those diagonals changed
using the dense modified Cholesky factorization. These later diagonal modifications
are necessary to ensure that B is second-order sufficient, while it is not clear that the
former modifications are so. Thus we investigate the consequences of removing these
modifications.

4.1.2. Countering the effects of pseudo modifications. The system we
wish to solve is (1.6), while we have a factorization of (4.4). Suppose that the ith

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1049

pseudo modification (1 ≤ i ≤ m−) occurred in column ji of H and that the modifi-
cation was ∆βji > 0. Let

∆B = V TV ,(4.5)

where V T is the n by m− matrix whose columns are vi
def
=
√

∆βjieji . Then we may
write (1.6) as (

B + ∆B − V TV AT

A 0

)(
p
λ

)
=

(−g
0

)
(4.6)

or equivalently as B + ∆B AT V T

A 0 0
V 0 Im−

 p
λ
s

 =

 −g0
0

(4.7)

for some auxiliary vector s. A standard block-decomposition of (4.7) shows that we
may determine the solution to (1.6) by solving, in order,(

B + ∆B AT

A 0

)(
q
π

)
=

(−g
0

)
,(4.8)

Gs = V q,(4.9)

and (
B + ∆B AT

A 0

)(
p
λ

)
=

(−g − V Ts
0

)
,(4.10)

where

G = Im− − (V 0)

(
B + ∆B AT

A 0

)−1(
V T

0

)
.(4.11)

Thus to solve (1.6) via the stable factorization (4.4), we also need to form and factorize
G. This factorization also reveals whether the modification ∆B is necessary. Thus
we have the following proposition.

Proposition 4.1. B is second-order sufficient if and only if G is positive defi-
nite.

Proof. The result follows from Sylvester’s law of inertia (see, e.g., [8]) by consid-
ering different block decompositions of

M =

 B + ∆B AT V T

A 0 0
V 0 Im−

 .(4.12)

Pivoting on the first two blocks ofM and using the definitions (4.4) and (4.11) reveals
that

In (M) = In (N) + In (G) ,(4.13)

1050 NICHOLAS IAN MARK GOULD

while pivoting on the last block and using the definition (1.7) gives that

In (M) = In
(
Im−

)
+ In (K) .(4.14)

But, since Im− is clearly positive definite and N is second-order sufficient,

In
(
Im−

)
= (m−, 0, 0) and In (N) = (n,m, 0).(4.15)

Thus combining (4.13)–(4.15), we see that In (K) = (n,m, 0) if and only if In (G) =
In
(
G−1

)
= (m−, 0, 0). The required result then follows since B is second-order

sufficient if and only if In (K) = (n,m, 0) (see [28]).
This result suggests that G should be factorized using a modified Cholesky fac-

torization. If no modification to G is made, B is second-order sufficient. Suppose, on
the other hand, that the ith pseudo modification involved column ji of H and that in
the subsequent modified Cholesky factorization the ith diagonal of G was increased
by ∆γi. Then this is equivalent to actually modifying B by(

∆γi
1 + ∆γi

)
viv

T
i .(4.16)

Thus modification of G gives an implicit modification of B, and the actual modifica-
tion is no larger than the pseudo modification.

We note that another possibility is to attempt a Cholesky factorization ofG but to
retain all the pseudo modifications if the factorization reveals thatG is not sufficiently
positive definite. This is equivalent to solving (4.8) and then setting p = q and λ = π.
However, instinctively we feel that it is better to remove as many pseudo modifications
as possible, and thus we prefer to use the modified Cholesky factorization and (4.8)–
(4.10).

4.1.3. The pseudo-modification algorithm. In summary, we propose the
following algorithm:

1. Perform a symbolic/numerical analysis and factorization to obtain a good
ordering for the complete numerical factorization.

(i) First, construct k2 2 by 2 ba pivots, using the strategy outlined in section 3
(this involves processing the values of A but not B). Stop once the resulting Schur-
complement reaches a specified density, i.e., the proportion of its nonzero entries
exceeds a given threshold.

(ii) Next, construct k1 1 by 1 b pivots from the remaining Schur-complement
using, for instance, the minimum degree ordering (see, for example, [23] or [11]). Stop
once the resulting Schur-complement reaches a specified density.

(iii) The remaining Schur complement will be considered to be dense.
2. Perform the complete numerical factorization.
(i) Perform k2 2 by 2 sparse eliminations, using the pivots specified in 1(i)

above.
(ii) Perform k1 1 by 1 sparse eliminations, using the pivots specified in 1(ii)

above. Modify any b− pivots encountered to ensure that they are sufficiently positive,
using the scheme of, for example, [38]. Record any pseudo modifications made.

(iii) For the remaining dense block, factorize using the scheme of [21] until all the
A-rows have been eliminated. Thereafter, use a dense modified Cholesky factorization
to eliminate the remaining B-rows.

(iv) If any pseudo modifications were made in 2(ii) above, form the matrix G.
Perform a modified Cholesky factorization of G.

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1051

3. Perform any solves, using the factors obtained in 2 above, by solving the
sequence of equations (4.8)–(4.10).

One would normally anticipate performing only a single symbolic/numerical anal-
ysis and factorization per minimization, while many complete numerical factorizations
and solves might be required. Thus, a good ordering will pay handsome dividends,
and one might be prepared to expend considerable effort in step 1.

We should stress that (3.2) indicates that the Schur-complement of the A-rows
following the elimination of the ba pivots is independent of B and thus, since A
is independent of x, need be formed only once per minimization. This is the only
numerical processing involved in the symbolic/numerical analysis and factorization
phase.

Notice that the effectiveness of such a scheme depends upon the dimension of G.
Although the number of pseudo modifications will not be known until the numerical
factorization phase, it may be possible to influence this by overriding the pivot selec-
tion outlined in section 3 to favor incorporating potentially small or negative elements
within the initial ba pivots. For instance, if a diagonal of B is known to be negative,
it may be worth trying to encourage this element to lie within a ba pivot so that it
will not be available for pseudo modification in step 1(ii).

4.1.4. Generalizations. When H is strictly positive definite, no pseudo mod-
ifications should be necessary. In other cases, it is possible that the dimension of G
might be unacceptably high. However, considering (4.1), it is clear that rather in ad-
dition to modifying the diagonal β−, we are free to modify as many nonzero elements
of s as we like without introducing extra fill in the factorization. Thus, if the diagonal
of S, in a row in which s has a nonzero element, is also small or negative, we should
modify the corresponding element of s to increase the offending diagonal. All that
we have said in this section about diagonal modifications equally applies for the more
general perturbation, but the ith column of the matrix V now contains nonzeros in
all positions for which the jith pivot column was modified.

Nonetheless, we have to recognize that there are some matrices for which this
strategy is inappropriate, as the following example shows.

Example 4.1. SupposeH = −In andA = eT , the vector of ones. Then a ba pivot
is out of the question because the resulting Schur complement would be completely
dense. But since each diagonal of H is negative, and there is no connectivity between
the diagonals, n pseudo modifications will be required. Unfortunately, G will then be
a dense n by n matrix.

Another possibility is to replace G by a simpler matrix as soon as G is found to
be indefinite. If we replaced G by G+ ∆G, it is straightforward to show that this is
equivalent to an actual modification of B by

V T
(
Im− − (Im− + ∆G)−1

)
V .(4.17)

Thus, provided that ∆G is positive semidefinite, the actual modification will again
be smaller than the pseudo modification. A simple scheme would be to replace G
by τIm− , where τ is chosen so large that τIm− − G is positive definite whenever
G is not positive definite. The advantage of this replacement is that the storage
and factorization overheads associated with G may be considerably reduced. The
disadvantages are that the size of the actual modification made may be higher than
really necessary and that it is not obvious how to choose a satisfactory value for τ .

4.2. Explicit modifications. In the previous sections, we always chose to mod-
ify b− pivots, with the knowledge that we could reverse the effect of the modification

1052 NICHOLAS IAN MARK GOULD

at a later stage. As we have seen, it may happen that a considerable number of
pseudo modifications will be made and this may be undesirable because of the space
and effort required to factorize G. In this section, we take the opposite point of view
and consider changing b− pivots only when we know it is necessary to modify them.
The intention with this alternative is thus to remove, or at least lessen, the need for
pseudo modifications.

We now assume that a b− pivot would be acceptable from the point of view of
fill-in and stability. This is tantamount to assuming that the pivot is negative and of
a reasonable size compared to the remaining entries in its row. We aim to investigate
the consequences of using this pivot. Remember that our goal remains only to modify
B if it fails to be second-order sufficient.

4.2.1. The condemned submatrix. Recall that we are supposing that we have
eliminated the sparse me rows of A using Forsgren and Murray’s pivoting rules and
that md ≡ m −me A-rows remain within S. Suppose that we have also eliminated
ne rows of B using Forsgren and Murray’s rules.

We pick a nonsingular, square submatrix, the condemned submatrix, C, of S,
which contains all the A-rows and perhaps some of the B-rows (but not the b− pivot
row) of S and has precisely md negative eigenvalues. The condemned submatrix will
be eliminated last of all and thus any B-rows included in C will not be generally
available as pivots. The aim is that when only the rows that make up C remain to
be eliminated, the uneliminated Schur complement will have precisely md negative
eigenvalues and hence K will have exactly m negative eigenvalues. The Schur com-
plement S has at least md negative eigenvalues. A suitable C may be obtained, for
instance, by picking ma− ≤ min (ne −me,md) a− followed by md −ma− ba pivots.
We shall show how such a matrix may be obtained in section 4.2.4.

A factorization of the condemned submatrix should be obtained. As the C-rows
of S will ultimately invariably be dense, a full matrix factorization is appropriate
and, because we may subsequently need to modify the factors, we recommend a QR
or LQ factorization. This of course limits the scope of the current proposal because
of the size of C which can be accommodated. We note that the dimension of C as
constructed above is 2md −ma− and hence lies between md and 2md.

4.2.2. The consequences of pivoting. With this choice of C, S is a permu-
tation of the matrix β− sT1 sT2

s1 C ST21

s2 S21 S22

 ,(4.18)

where β− < 0 is the candidate b− pivot. If we were now to pivot on C instead of β−,
we would have eliminated all m A-rows of K and, because of the choice of C, the
factorized matrix (the submatrix of K corresponding to eliminated rows) would have
exactly m negative eigenvalues. Thus B is second-order sufficient if and only if the
matrix (

β− sT2
s2 S22

)
−
(
sT1
S21

)
C−1 (s1 ST21)(4.19)

is sufficiently positive definite. In particular, if β−−sT1C−1s1 is insufficiently positive,
B is not second-order sufficient and should be modified.

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1053

With this in mind, if

β− − sT1C−1s1 < σ1,(4.20)

we modify B by replacing β− by

β+
def
= max

(
σ2 + sT1C

−1s1, ||s||
)
,(4.21)

where sT =
(
sT1 sT2

)
and, as before, 0 < σ1 ≤ σ2. Conversely, if

β− − sT1C−1s1 ≥ σ1 > 0,(4.22)

it is safe to pivot on β−. Moreover, although this implies an increase (by one) in the
number of negative eigenvalues that have been recorded, the increase is counteracted
by a corresponding reduction in the number of available negative eigenvalues in the
Schur complement C − s1s

T
1 /β−. This follows directly from the inertial identity

In
(
C − s1s

T
1 /β−

)
= In (C) + In

(
β− − sT1C−1s1

)− In (β−)(4.23)

for block decompositions of (
β− sT1
s1 C

)
(4.24)

(see, e.g., [8]). We then pivot on the possibly modified value of β− and replace C
by C − s1s

T
1 /β−—we update the matrix factorization to account for this (see [24]).

We repeat this procedure until we have eliminated the remaining S22 rows, at which
point the only noneliminated portion of K is the (updated) matrix C.

Alternatively, once it has been determined that B is not second-order sufficient,
we might modify all remaining B pivots. One possibility, in the same vein as [38],
is to insist that all diagonals are larger than the sum of the absolute values of the
(remaining) off-diagonal terms in B-rows.

For the case of Example 4.1, the explicit modification scheme considered here
would be preferable. The condemned submatrix might be made up from the last row
of H—indeed, any row of H will do—and the single A-row. Examining (4.20) for
each diagonal pivot in turn, it follows that H is not second-order sufficient, every
pivot will be modified, but no fill-in takes place.

4.2.3. Other pivot types. If the only possible pivots in B-rows are zero or
small, we may again test them one at a time to see if they might be modified and
then used as pivots. If the test reveals that the matrix is not second-order sufficient,
we may modify the tested pivot and pivot on it. But if the test is inconclusive, we
must either add a pseudo modification (see section 4.1.1) or reject the potential pivot
and pass to the next.

It may be better to consider 2 by 2 pivots,(
β11 β21

β21 β22

)
,(4.25)

arising from the B-rows of S, especially when the only possible 1 by 1 pivots are
small or zero. Then S is a permutation of the matrix

β11 β21 sT11 sT21

β21 β22 sT12 sT22

s11 s12 C S21

s21 s22 S21 S22

(4.26)

1054 NICHOLAS IAN MARK GOULD

and B is second-order sufficient only if the matrix(
β11 β21

β21 β22

)
−
(
sT11

sT12

)
C−1(s11 s12)(4.27)

is sufficiently positive definite. As before, if (4.27) is indefinite, the potential pivot
(4.25) should be modified before use. The inertial result

In

(
C − (sT11 sT12)

(
β11 β21

β21 β22

)−1(
s11

s12

))
= In (C) + In

((
β11 β21

β21 β22

)
−
(
sT11

sT12

)
C−1(s11 s12)

)
− In

(
β11 β21

β21 β22

)(4.28)

once again indicates that the updated C after the pivot inherits the correct number
of negative eigenvalues.

4.2.4. Calculating the condemned submatrix. In this section, we consider
one way in which the initial condemned submatrix, C, may be found. We should
stress that the definition of C is by no means unique.

Let the md uneliminated A-rows in the Schur complement, Sba, following the me

ba pivots, be Aba. Similarly, let the n− ne uneliminated B-rows and columns in Sba
following these ba pivots be Bba. Furthermore, let

O = {i1, i2, · · · , in−me}(4.29)

be the ordered pivot sequence for the elimination of Bba. Now define the ordered sets

P1 = {i1, i2, · · · , ine−me} and P2 = {in−me , in−ne−1, · · · , ine−me+1}(4.30)

and the ordered set of preferences

P = P1

⋃
P2.(4.31)

For example, suppose that B-rows 1, 6, and 4 were involved in ba pivots; that the
remaining b pivots were requested from rows 3, 7, 5, 8, and 2 in order (thus, O =
{3, 7, 5, 8, 2}); that the pivots from rows 3 and 7 were satisfactory; but that row 5 is
a b− pivot. Then P1 = {3, 7}, P2 = {2, 8, 5} and P = {3, 7, 2, 8, 5}.

Our intention is to find a well-conditioned, nonsingular subset, C, of the columns
of Aba by pivoting. The row and column indices of the pivots would provide satis-
factory ba pivots, if such pivots had not been disqualified on sparsity grounds, for
Sba. Moreover, the submatrix, Cba, formed by taking the rows and columns of Sba
corresponding to these 2 by 2 pivots is nonsingular and has precisely md negative
eigenvalues. If we now consider the subsets C1 = C⋂P1 and C2 = C⋂P2, and pivot
on all B-rows of Cba whose indices occur in C1, the remaining Schur-complement
still has precisely md negative eigenvalues and provides us with a suitable condemned
submatrix, C. This matrix has the correct inertia as the subblock of Cba correspond-
ing to the C1 pivots is contained within the subblock of Sba corresponding to the P1

pivots, and the latter subblock is positive definite since the first ne −me b pivots on
Sba are positive.

It remains to describe how C is calculated. We consider how the first element
is obtained, the remaining md − 1 elements following in exactly the same way. The
set C is initially empty and the matrix Ac is initialized as Aba. The columns of

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1055

Ac are considered one at a time, in the order defined by P. The nonzeros in the
current column are examined one at a time. If the entry in row i and column j is
that currently under examination and if the stability restriction (3.8) holds (where
here ai,j are the entries of Ac), column j is added to C and removed from P, and Ac

is reset to the Schur complement of Ac following a pivot on ai,j . On the other hand,
if (3.8) fails to hold, attention passes to the next nonzero in column j or, if there are
no further unexamined entries in the column, to the next column in P.

The order of the preferences P is chosen deliberately. It first encourages ba pivots
whose b+ component has already been used—the resulting a− pivot is then available
and reduces the possible dimension of C. If P is not entirely made up from P1, the
preference then encourages pivots from those B-rows which are last in the elimination
ordering—the intention here is that these are unlikely to be good pivots from a fill-in
point of view and so it is better to include them in the dense matrix C from the
outset.

A disadvantage of the preceding approach is that the order of the set P depends
on at which stage a b− pivot appears. This may be significant if more than one matrix
factorization is required as changes inB may affect P. It may, therefore, be preferable
to redefine the preference as

P = {in−me , in−me−1, · · · , i1} .(4.32)

This will have the effect that the resulting C will generally be of dimension 2md

but the advantage that the selection of C is made only once. As before, it will favor
including disadvantageous B-rows within the condemned submatrix.

5. Numerical experiments. We are currently planning to implement a code to
solve systems of the form (1.6) for the Harwell Subroutine Library. A key requirement
is that B should be a second-order sufficient modification of H. To test the efficacy
of some of the ideas presented in this paper, we report on experiments conducted with
a prototype, KKTSOL, of this code.

5.1. Implementation details. We have written a prototype implementation of
the algorithm outlined in section 4.1.3. This implicit modification algorithm divides
naturally into an analysis, a factorization, and a solve phase.

The analysis phase need be performed only once for a sequence of systems so long
as the matrix A and the sparsity structure of H are unchanged. Some numerical pro-
cessing of the matrix A is performed in the analysis phase. There are several control
parameters, in particular the pivot threshold tolerance υ (see (3.8)), the density δa
of the Schur complement of A during ba pivoting at which the remaining rows of A
may be treated as dense, and the density δb of the Schur complement of B during b
pivoting at which the remaining rows of B may be treated as dense. We choose to
switch to full-matrix code as soon as the density of the Schur complement of B during
b pivoting exceeds δb. However, experience has shown that switching to b pivoting as
soon as the density δa of the Schur complement of A during ba pivoting exceeds δa
is sometimes inappropriate since further cheap ba pivots may be possible—remember
that it helps to eliminate as many A rows as possible before the b pivoting stage. In
particular, if the matrix A is highly structured, many essentially identical ba pivots
occur and switching solely on the basis of δa may interrupt a promising sequence of
pivots. Thus, we actually choose to switch as soon as the density has exceeded its
tolerance and the Markowitz cost (3.10) next changes. This heuristic has worked well
in our tests. Default values of υ = 0.0001, δa = 0.1, and δb = 0.25 have proved quite
reliable. We will indicate the effect of δa on the algorithm in section 5.3.

1056 NICHOLAS IAN MARK GOULD

Table 5.1
Problem characteristics. Key: n = number of variables; m = number of equations; nnz A, H

= number of nonzeros in A and H(x); -eval = number of negative eigenvalues of reduced Hessian;
nullity = nullity of K; convex? = is the Hessian H(x) positive definite?

Problem n m nnz A nnz H -eval nullity convex?
AUG2DCQP 3280 1600 6400 3280 0 0 yes
AUG2DQP 3280 1600 6400 3120 0 0 yes
AUG3DCQP 3873 1000 6546 3873 0 0 yes
AUG3DQP 3873 1000 6546 2673 0 0 yes
BLOCKQP1 2006 1001 9006 1005 1000 0 no
BLOCKQP2 2006 1001 9006 1005 1 0 no
BLOCKQP3 2006 1001 9006 1005 900 1 no
GOULDQP2 699 349 1047 697 0 0 yes
GOULDQP3 699 349 1047 1395 0 0 yes
HAGER2 2001 1000 3000 3001 0 0 yes
KSIP 1021 1001 21002 20 0 0 yes
MINC44 1113 1032 1203 0 0 0 yes
MOSARQP1 1500 600 3530 945 0 0 yes
NCVXQP1 1000 500 1498 3984 438 0 no
NCVXQP2 1000 500 1498 3984 320 0 no
NCVXQP3 1000 500 1498 3984 163 0 no
NCVXQP4 1000 250 749 3984 610 0 no
NCVXQP5 1000 250 749 3984 428 0 no
NCVXQP6 1000 250 749 3984 224 0 no
NCVXQP7 1000 750 2247 3984 250 0 no
NCVXQP8 1000 750 2247 3984 192 0 no
NCVXQP9 1000 750 2247 3984 127 0 no
QPCBOEI1 726 351 3827 384 0 0 yes
QPCBOEI2 305 166 1358 143 0 0 yes
QPCSTAIR 614 356 4003 467 0 0 yes
QPNBOEI1 726 351 3827 384 30 0 no
QPNBOEI2 305 166 1358 143 12 0 no
QPNSTAIR 614 356 4003 467 13 0 no
SOSQP1 2000 1001 4000 1000 0 0 no
UBH1 909 600 2400 303 0 0 yes

During the factorization phase, once a b pivot for which β < σ1 has been detected,
any b pivot which is smaller than the sum of absolute values of the off-diagonal terms
in its column is pseudo modified. The pseudo modification is chosen to satisfy (4.2),
where σ1 = 10−8 and σ2 = 1. The rows of A and H which are left over following
the sparse ba and b pivoting steps, along with the matrix G, are treated as dense
matrices. The highest appropriate levels of BLAS (see, for instance, [10]) are used to
perform the dense operations wherever possible.

In addition, we have also implemented the explicit modification scheme suggested
in section 4.2. This differs from the implicit modification scheme described above
in two respects. First, the ordering of the b pivots may be altered to provide a
nonsingular condemned matrix, if it is needed. We have implemented the method
described in section 4.2.4 using the preference (4.32). Second, during the b phase
of the factorization, b+ pivots are used so long as no b− pivot is detected. If a b−
pivot appears, the condemned matrix is formed and factorized, and the resulting QR
decomposition is used to see if this pivot is acceptable or if it should be modified.
Subsequent b− pivots are treated in the same way, except that now the factors of the
condemned matrix are obtained from its predecessor by updating. Slightly modified
LAPACK routines (see [1]) are used to compute and update the QR factors.

All our tests were performed on an IBM RISC System/6000 3BT workstation

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1057

Table 5.2
Dependence on the allowed density of A. Key: δa = density of updated A at which remaining

rows are treated as dense (no dense means that no dense rows of A are allowed); fill-in A, H, dense
= fill-in within A, H, and the final dense block; dense rows A, H = number of rows of A and H
which are treated as dense; dense rows G = number of pseudo modifications made (dimension of
G); # mod = number of diagonals of H actually modified; anal., fact., solve = times for analyze,
factorize, and solve (cpu seconds).

AUG3DQP:

Fill-in Dense rows # Time
δa A H dense A H G mod anal. fact. solve

0.01 1043 16231 348195 777 57 0 0 .33 3.93 .05
0.05 3161 49458 144991 297 241 0 0 .60 2.30 .03
0.1 3860 67921 171991 198 388 0 0 .71 2.92 .04
0.2 4333 87143 180901 130 471 0 0 .80 3.07 .04
0.5 4773 109644 223446 73 595 0 0 .97 4.22 .04
1.0 5058 138324 245350 47 653 0 0 1.09 5.01 .04

no dense 5806 331483 245350 0 700 0 0 3.99 4.57 .05

QPNBOEI1:

Fill-in Dense rows # Time
δa A H dense A H G mod anal. fact. solve

0.01 0 3816 73920 347 3 34 34 .02 .84 .02
0.05 4 3844 43365 250 13 31 33 .02 .40 .01
0.1 4 5229 21115 147 25 33 33 .04 .17 .01
0.2 4 5877 13203 98 38 26 33 .04 .11 .00
0.5 4 6577 9180 63 51 21 36 .04 .08 .00
1.0 16 6574 10296 46 78 19 38 .05 .08 .00

no dense 153 71225 70500 0 375 0 32 .92 .77 .01

with 64 megabytes of RAM; the codes are all double-precision Fortran-77, compiled
under xlf with -O optimization, and IBM library BLAS are used.

5.2. Test examples. We considered all of the larger quadratic programming
examples in the current CUTE test set (see [3]), except that we excluded those which
are minor variants (namely BLOCKQP4, BLOCKQP5, HAGER4, MOSARQP2, and SOSQP2).
The characteristics of this test set are described in Table 5.1. All general inequality
constraints were converted to equations by the addition of slack variables. To simulate
a typical early iteration of a barrier function method, a small value (one-tenth) was
added to each diagonal entry of the given Hessian. For each test, the given matrix
was factorized and modified if necessary. A right-hand side was then generated so
that the required solution is a vector of ones.

5.3. Results. We first illustrate the effect of δa, the density of the Schur com-
plement of A during ba pivoting at which the remaining rows of A may be treated
as dense, on the performance of our algorithm. We consider two examples, AUG3DQP
and QPNBOEI1, from our test set; the first is strictly convex while the reduced Hes-
sian of the second has a few negative eigenvalues. The behavior on these examples is
representative of the whole set.

In Table 5.2 we give our results on runs which used the explicit modification algo-
rithm; similar results were observed for the implicit modification scheme. Examining
the times taken during the analyze and factorize stages, we see that it is important not
to let δa be too large, as the remaining Schur complement of K is then too dense. On
the other hand, skipping pivoting on rows ofA when δa is too small is also undesirable
since the dimension of the resulting dense matrix is then large. Thus a compromise is
necessary and we have found, empirically, that a density of around 10% is reasonable.

1058 NICHOLAS IAN MARK GOULD

Table 5.3
Performance of MA27 and MA47 (default settings). Key: fill-in = fill-in during factorization;

anal., fact., solve = times for analyze, factorize, and solve (cpu seconds).

MA27 MA47

Problem fill-in anal. fact. solve fill-in anal. fact. solve
AUG2DCQP 11038 .09 .09 .01 36179 .21 .13 .04
AUG2DQP 11198 .09 .09 .01 36339 .21 .13 .03
AUG3DCQP 10797 .11 .16 .01 50401 .25 .25 .04
AUG3DQP 11997 .10 .16 .01 51601 .25 .25 .04
BLOCKQP1 2015 1.26 .05 .00 16989 1.97 .09 .02
BLOCKQP2 2015 1.27 .06 .00 16989 1.97 .09 .02
BLOCKQP3 2015 1.27 .06 .01 16982 1.97 .08 .02
GOULDQP2 1749 .01 .01 .01 2927 .03 .02 .01
GOULDQP3 2787 .02 .02 .01 3357 .32 .03 .01
HAGER2 9 .04 .03 .01 6004 .07 .04 .02
KSIP 3029 .13 .13 .01 17860 1.94 .12 .02
MINC44 2241 .01 .01 .00 1548 .03 .02 .00
MOSARQP1 6466 .04 .07 .00 29104 .11 .10 .01
NCVXQP1 12539 .13 1.01 .02 273646 1.87 30.26 .06
NCVXQP2 12539 .12 1.01 .02 241150 1.83 29.00 .06
NCVXQP3 12539 .13 .98 .02 272372 1.83 31.53 .06
NCVXQP4 8461 .07 .45 .01 110796 .43 4.00 .02
NCVXQP5 8461 .07 .45 .01 104070 .42 3.53 .03
NCVXQP6 8461 .07 .44 .01 108867 .43 3.69 .02
NCVXQP7 15913 .20 2.60 .02 404465 2.84 61.43 .08
NCVXQP8 15913 .19 2.61 .03 419779 2.89 77.55 .09
NCVXQP9 15913 .20 2.57 .03 406633 2.84 68.19 .09
QPCBOEI1 3886 .08 .03 .00 13333 .16 .05 .00
QPCBOEI2 941 .01 .01 .00 4421 .03 .02 .00
QPCSTAIR 3318 .05 .05 .00 12444 .14 .08 .01
QPNBOEI1 3886 .08 .04 .00 13333 .15 .06 .01
QPNBOEI2 941 .01 .02 .00 4421 .03 .02 .00
QPNSTAIR 3318 .05 .05 .00 12444 .14 .08 .01
SOSQP1 5003 .16 .04 .00 3001 1.25 .06 .01
UBH1 2109 .02 .01 .00 3915 .05 .02 .01

As a yardstick, all of the test examples were factorized using the Harwell codes
MA27 and MA47, using default settings. Of course, these codes make no effort to modify
H to produce a second-order sufficient B; these results are included to indicate the
sort of times we consider acceptable for a good factorization and thus the sort of
times that we should be aiming for in our modified factorization. The results are
given in Table 5.3. We note that although MA47 was especially designed to cope with
augmented systems of the form (1.6), it is often less efficient than the general purpose
method MA27. In its defense, we sometimes observed that MA47 obtained accurate
solutions to (1.6) while its older sister failed to do so; the NCVXQP problems are cases
in point.

In Table 5.4, we report on the performance of the implicit modification option
from our prototype code, KKTSOL, on the test set. For these and subsequent runs,
we restrict the total number of dense rows of A and B to be at most 350, although
this means that the target densities δa or δb may be exceeded. We have found that
although dense matrices are processed using high-performance BLAS, this restriction
often has a beneficial effect on execution times. A value of roughly 350 has been
observed empirically to give a good compromise between increased dense storage and
the advantages of direct addressing of data.

We make two observations. First, KKTSOL performs well in many cases, at least in

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1059

Table 5.4
Performance of the implicit modification variant of KKTSOL. Key: fill-in A, H, dense = fill-in

within A, H, and the final dense block; dense rows A, H = number of rows of A and H which are
treated as dense; dense rows G = number of pseudo modifications made (dimension of G); # mod
= number of diagonals of H actually modified; anal., fact., solve = times for analyze, factorize, and
solve (cpu seconds).

Fill-in Dense rows # Time
Problem A H dense A H G mod anal. fact. solve
AUG2DCQP 5369 42539 61425 168 182 0 0 .31 .58 .02
AUG2DQP 5369 42539 61425 168 182 0 0 .31 .58 .01
AUG3DCQP 3860 116416 61425 198 152 0 0 .55 1.36 .03
AUG3DQP 3860 116416 61425 198 152 0 0 .55 1.36 .03
BLOCKQP1 0 10998 507528 1 8 998 1003 1.16 16.29 .06
BLOCKQP2 0 10998 45 1 8 0 5 1.17 .04 .00
BLOCKQP3 0 10998 412686 1 8 899 904 1.17 12.46 .06
GOULDQP2 348 1862 253 0 22 0 0 .03 .01 .00
GOULDQP3 348 3479 703 0 37 0 0 .05 .01 .00
HAGER2 0 990 66 0 11 0 0 .06 .01 .00
KSIP 0 190 210 0 20 0 0 .32 .04 .00
MINC44 0 187 253 19 3 0 0 .01 .01 .00
MOSARQP1 0 11703 23005 0 214 0 0 .13 .06 .01
NCVXQP1 1378 13940 208981 73 277 296 515 .64 2.85 .03
NCVXQP2 1378 13940 203841 73 277 288 507 .64 2.78 .02
NCVXQP3 1378 13940 145530 73 277 189 400 .66 1.84 .02
NCVXQP4 288 8730 345696 49 301 481 771 .26 5.37 .03
NCVXQP5 288 8730 278631 49 301 396 682 .27 4.09 .03
NCVXQP6 288 8730 194376 49 301 273 556 .27 2.68 .03
NCVXQP7 2535 16182 80200 75 219 106 259 .90 .86 .02
NCVXQP8 2535 16182 76636 75 219 97 252 .89 .84 .01
NCVXQP9 2535 16182 76245 75 219 96 237 .89 .82 .02
QPCBOEI1 4 5229 14878 147 25 0 0 .03 .08 .00
QPCBOEI2 0 1349 6903 110 7 0 0 .01 .02 .00
QPCSTAIR 687 10021 23653 186 31 0 0 .07 .17 .00
QPNBOEI1 4 5229 21115 147 25 33 33 .04 .17 .01
QPNBOEI2 0 1349 8515 110 7 13 13 .01 .04 .00
QPNSTAIR 687 10021 28441 186 31 21 21 .06 .26 .01
SOSQP1 0 997 10 1 3 0 0 .12 .01 .00
UBH1 1288 5066 9316 97 39 0 0 .06 .03 .00

comparison with MA47. Clearly, restricting the pivot order has some detrimental effect
on the fill-in. This is often compensated by our not requiring further pivoting during
the factorization, to correct for an inappropriate pivot sequence from the analysis
phase, which sometimes hampers MA47.

Second, for the nonconvex problems, a large number of pseudo modifications is
required, but many of these later turn into actual modifications. This is especially
noticeable for the BLOCK and NCVXQP problems. For many of these problems, signifi-
cantly more actual modifications are needed than are strictly required to counter the
negative eigenvalues in the reduced Hessian, but this is difficult to avoid without hav-
ing good approximations to their related eigenvectors. BLOCKQP1 and BLOCKQP3 are
generalizations of Example 4.1, and, as predicted, the implicit modification scheme is
slow precisely because G is large.

In Table 5.5, we consider the performance of the explicit modification variant on
the test set. We first note that the alteration of the b pivot order sometimes has a
slightly detrimental effect on the analysis times, but this is not significant. However,
the main differences are observed on the BLOCK and QPN examples. For the former, the
explicit modification scheme clearly helps. Rather than requiring the factorization of

1060 NICHOLAS IAN MARK GOULD

Table 5.5
Performance of the explicit modification variant of KKTSOL. Key: fill-in A, H, dense = fill-in

within A, H, and the final dense block; dense rows A, H = number of rows of A and H which are
treated as dense; # mod = number of diagonals of H actually modified; anal., fact., solve = times
for analyze, factorize, and solve (cpu seconds).

Dense
Fill-in rows # Time

Problem A H dense A H mod anal. fact. solve
AUG2DCQP 5369 56098 61425 168 182 0 .75 .89 .02
AUG2DQP 5369 56098 61425 168 182 0 .76 .89 .02
AUG3DCQP 3860 145843 61425 198 152 0 1.93 2.19 .03
AUG3DQP 3860 145843 61425 198 152 0 1.94 2.14 .04
BLOCKQP1 0 10998 45 1 8 1003 1.17 .04 .00
BLOCKQP2 0 10998 45 1 8 5 1.17 .02 .01
BLOCKQP3 0 10998 45 1 8 904 1.17 .04 .01
GOULDQP2 348 1862 253 0 22 0 .03 .00 .01
GOULDQP3 348 3479 703 0 37 0 .04 .01 .00
HAGER2 0 990 66 0 11 0 .05 .01 .00
KSIP 0 190 210 0 20 0 .32 .03 .00
MINC44 0 162 741 19 19 0 .02 .00 .00
MOSARQP1 0 11703 23005 0 214 0 .12 .07 .00
NCVXQP1 1378 13940 61425 73 277 515 .66 3.93 .01
NCVXQP2 1378 13940 61425 73 277 507 .65 3.87 .01
NCVXQP3 1378 13940 61425 73 277 397 .66 3.91 .01
NCVXQP4 288 8730 61425 49 301 769 .28 3.16 .01
NCVXQP5 288 8730 61425 49 301 682 .27 3.14 .01
NCVXQP6 288 8730 61425 49 301 554 .28 3.13 .01
NCVXQP7 2535 16182 43365 75 219 259 .91 1.70 .01
NCVXQP8 2535 16182 43365 75 219 251 .91 1.70 .00
NCVXQP9 2535 16182 43365 75 219 237 .91 1.70 .01
QPCBOEI1 4 4040 43365 147 147 0 .17 .31 .01
QPCBOEI2 0 861 24310 110 110 0 .04 .11 .00
QPCSTAIR 687 1465 61425 186 164 0 .36 .33 .01
QPNBOEI1 4 4040 43365 147 147 41 .18 17.93 .01
QPNBOEI2 0 861 24310 110 110 24 .05 4.06 .00
QPNSTAIR 687 1465 61425 186 164 81 .36 22.02 .01
SOSQP1 0 997 10 1 3 0 .12 .01 .00
UBH1 1288 5041 18915 97 97 0 .10 .06 .00

a large matrix G, the factorization and update of a trivial (2 by 2) condemned matrix
is performed. For the QPNBOEI1 and QPNSTAIR examples, the roles are reversed.
The condemned matrices are now large (of orders 292 and 372, respectively) and the
updates quite inefficient. The only difference between the QPC and QPN examples is
that the former are (strictly) convex. Thus, the differences in factorization times in
Table 5.5 for these examples are purely because the QPN examples form and update
their condemned submatrices, while the QPC examples do not need to.

Thus, we see that both the implicit and explicit modification schemes have their
advantages and disadvantages. In many cases, these methods are able to compete with
the nonmodification methods, and of course the proposals here have extra function-
ality. However, there are clearly some instances where there is a significant overhead
caused by the restriction on the allowable pivots. Thus we must conclude that, so far,
we have been only partially successful in fulfilling our stated aims.

6. Conclusions and further comments. In this paper we have shown that a
number of modified factorization methods for linearly constrained optimization cal-
culations may be derived, and we have indicated that these techniques hold some

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1061

promise for large-scale computations. Our next task is to complete our code for the
Harwell Subroutine Library. Because this code is of general interest, we intend to
release a version, KKTSOL, into the public domain. Our ultimate goal is to provide
implementations of barrier function-based methods for solving general linearly con-
strained nonlinear optimization problems with the Harwell Subroutine Library.

An outstanding theoretical question remains. It is relatively straightforward to
obtain an upper bound on the (possible) perturbation E made to H. Thus so long as
x remains bounded and f has a continuous Hessian, B will remain bounded. How-
ever, to use the factorization with confidence within a general linearly constrained
optimization algorithm, one also needs to ensure that B is uniformly second-order
sufficient, i.e., the constant σ in (1.5) is independent of the iteration. We have been
unable to provide such a bound for the methods suggested here, nor do we believe that
it is likely to be easy. This is in contrast to the method of [21], where such a bound is
obtained. As we have already mentioned, the difficulty with the Forsgren–Murray ap-
proach for sparse problems is that the required pivots may all prove unacceptable from
a sparsity viewpoint. It remains an open question as to whether there is a satisfactory
method for sparse problems from both the theoretical and practical perspectives.

We have purposely not attempted to derive directions of sufficient negative cur-
vature for such problems (see, for example, [21], [20], and the references contained
therein), although algorithms which use them offer stronger convergence guarantees—
specifically, convergence to points for which second-order necessary optimality condi-
tions hold. We intend to investigate this possibility for large-scale problems in future.

Acknowledgments. This paper is the successor to the technical report by Arioli
et al. [2]. The author is extremely grateful to Mario Arioli, Tony Chan, Iain Duff,
Jacek Gondzio, Phil Gill, John Reid, and Bobby Schnabel for stimulating discussions
on much of the material contained here, and to four anonymous referees for a number
of helpful suggestions. He would also like to thank CERFACS for the environment
and facilities which made much of this research possible.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, 1995.

[2] M. Arioli, T. F. Chan, I. S. Duff, N. I. M. Gould, and J. K. Reid, Computing a Search Di-
rection for Large-Scale Linearly Constrained Nonlinear Optimization Calculations, Tech.
Rep. RAL-93-066, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 1993.

[3] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint, CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[4] J. R. Bunch and L. C. Kaufman, Some stable methods for calculating inertia and solving
symmetric linear equations, Math. Comp., 31 (1977), pp. 163–179.

[5] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric indefinite systems of
linear equations, SIAM J. Numer. Anal., 8 (1971), pp. 639–655.

[6] T. J. Carpenter, I. J. Lustig, J. M. Mulvey, and D. F. Shanno, Higher-order predictor-
corrector interior point methods with application to quadratic objectives, SIAM J. Optim.,
3 (1993), pp. 696–725.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT: A Fortran Package for Large-
Scale Nonlinear Optimization (Release A), Springer Ser. Comput. Math. 17, Springer-
Verlag, Heidelberg, Berlin, New York, 1992.

[8] R. W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl., 8 (1974),
pp. 189–211.

[9] J. E. Dennis and R. B. Schnabel, A view of unconstrained optimization, in Handbook of
Operations Research and Management Science, vol. 1. Optimization, G. L. Nemhauser,
A. H. G. Rinnooy Kan, and M. J. Todd, eds., North–Holland, Amsterdam, 1989, pp. 1–72.

1062 NICHOLAS IAN MARK GOULD

[10] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Solving Linear
Systems on Vector and Shared Memory Computers, SIAM, Philadelphia, PA, 1991.

[11] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse matrices, Oxford
University Press, Oxford, UK, 1986.

[12] I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner, The factorization of
sparse symmetric indefinite matrices, IMA J. Numer. Anal., 11 (1991), pp. 181–204.

[13] I. S. Duff and J. K. Reid, MA27 : A Set of Fortran Subroutines for Solving Sparse Symmetric
Sets of Linear Equations, Report R-10533, AERE Harwell Laboratory, Harwell, UK, 1982.

[14] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[15] I. S. Duff and J. K. Reid, Exploiting zeros on the diagonal in the direct solution of indefinite
sparse symmetric systems, ACM Trans. Math. Software, 22 (1996), pp. 227–257.

[16] I. S. Duff, J. K. Reid, N. Munksgaard, and H. B. Neilsen, Direct solution of sets of
linear equations whose matrix is sparse, symmetric and indefinite, J. Inst. Math. Appl.,
23 (1979), pp. 235–250.

[17] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, John Wiley, Chicester, New York, 1968; reprinted as Classics
Appl. Math. 4, SIAM, Philadelphia, PA, 1990.

[18] R. Fletcher, Factorizing symmetric indefinite matrices, Linear Algebra Appl., 14 (1976),
pp. 257–272.

[19] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley, Chicester, New York,
1987.

[20] A. Forsgren, P. E. Gill, and W. Murray, Computing modified Newton directions using a
partial Cholesky factorization, SIAM J. Sci. Comput., 16 (1995), pp. 139–150.

[21] A. L. Forsgren and W. Murray, Newton methods for large-scale linear equality-constrained
minimization, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 560–587.

[22] R. Fourer and S. Mehrotra, Solving symmetrical indefinite systems in an interior-point
method for linear programming, Math. Programming, 62 (1993), pp. 15–39.

[23] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[24] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix
factorizations, Math. Comp., 28 (1974), pp. 505–535.

[25] P. E. Gill and W. Murray, Newton-type methods for unconstrained and linearly constrained
optimization, Math. Programming, 7 (1974), pp. 311–350.

[26] P. E. Gill, W. Murray, D. B. Ponceléon, and M. A. Saunders, Preconditioners for indefi-
nite systems arising in optimization, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 292–311.

[27] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, Lon-
don, New York, 1981.

[28] N. I. M. Gould, On practical conditions for the existence and uniqueness of solutions to the
general equality quadratic-programming problem, Math. Programming, 32 (1985), pp. 90–
99.

[29] N. I. M. Gould, Constructing Appropriate Models for Large-Scale, Linearly-Constrained, Non-
convex, Nonlinear, Optimization Algorithms, Tech. Rep. RAL-TR 95-037, Rutherford Ap-
pleton Laboratory, Chilton, Oxfordshire, England, 1995.

[30] Harwell Subroutine Library, A Catalogue of Subroutines (Release 10), Advanced Comput-
ing Department, Harwell Laboratory, Harwell, UK, 1990.

[31] I. J. Lustig, R. E. Marsten, and D. F. Shanno, Computational experience with a primal-
dual interior point method for linear programming, Linear Algebra Appl., 152 (1991),
pp. 191–222.

[32] I. J. Lustig, R. E. Marsten, and D. F. Shanno, On implementing Mehrotra’s predictor-
corrector interior-point method for linear programming, SIAM J. Optim., 2 (1992), pp. 435–
449.

[33] H. M. Markowitz, The elimination form of the inverse and its application to linear program-
ming, Management Sci., 3 (1957), pp. 255–269.

[34] S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM J. Optim.,
2 (1992), pp. 575–601.

[35] J. J. Moré and D. C. Sorensen, On the use of directions of negative curvature in a modified
Newton method, Math. Programming, 16 (1979), pp. 1–20.

[36] B. A. Murtagh and M. A. Saunders, Large-scale linearly constrained optimization, Math.
Programming, 14 (1978), pp. 41–72.

[37] T. Schlick, Modified Cholesky factorizations for sparse preconditioners, SIAM J. Sci. Comput.,
14 (1993), pp. 424–445.

MODIFIED FACTORIZATIONS FOR CONSTRAINED OPTIMIZATION 1063

[38] R. B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J. Sci. Statist.
Comput., 11 (1991), pp. 1136–1158.

[39] G. W. Stewart, Modifying pivot elements in gaussian elimination, Math. Comp., 28 (1967),
pp. 537–542.

[40] R. J. Vanderbei and T. J. Carpenter, Symmetrical indefinite systems for interior point
methods, Math. Programming, 58 (1993), pp. 1–32.

A TRUST REGION METHOD FOR PARABOLIC BOUNDARY
CONTROL PROBLEMS∗

C. T. KELLEY† AND E. W. SACHS‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1064–1081

To our good friend John Dennis on his 60th birthday

Abstract. In this paper we develop a trust region algorithm for constrained parabolic boundary
control problems. For the computation of a trust region step we propose an iterative scheme which
is a projected form of the Steihaug trust region conjugate gradient method. To ensure the good local
convergence properties in the terminal phase, a smoothing step at each iteration is added. This step
and the projection require the modification of the standard trust region algorithm and its convergence
proof. The algorithm has sup-norm convergence in the terminal phase and L2 convergence in the
global phase. The results are illustrated for a parabolic boundary control problem.

Key words. trust region methods, inexact Newton methods, optimal control

AMS subject classifications. 49K20, 65F10, 49M15, 65J15, 65K10

PII. S1052623496308965

1. Introduction. In this paper we show how methods that combine conjugate
gradient (CG) iteration and trust region globalization for optimization problems sub-
ject to simple bounds can be applied in an infinite dimensional setting to parabolic
optimal control problems. This paper addresses the global convergence questions left
open by our previous work [11], [13], [14] on fast multilevel algorithms for local conver-
gence by showing how trust region CG algorithms can solve the coarse mesh problems
needed to initialize the multilevel method in an efficient and mesh-independent way.
The algorithm uses the postsmoothing step from [14] and [11] to improve the perfor-
mance of the iteration.

For unconstrained problems, our approach differs from [19] and [20] only in that
after a step and trust region radius have been accepted, a smoothing iteration like
those in [11] and [14] is attempted. Unlike our previous work, however, an Armijo [1]
line search is added to the smoothing step to ensure decrease in the objective function.
This new form of the smoothing step is a scaled gradient projection [2] algorithm. The
local theory from [11] and [14] implies that full smoothing steps are taken near the
solution.

The effect of this in the infinite dimensional case is to allow one to make sup-norm
error estimates in the terminal phase of the iteration [11], [14]. In the constrained
case, we differ from the algorithm in [8] in more ways. We use an L2 trust region and
solve unconstrained trust region problems using the reduced Hessian at the current
point to build the quadratic model. The reason for this is to make the trust region
problem as easy to solve as possible and to eliminate the need to explicitly compute

∗Received by the editors September 9, 1996; accepted for publication (in revised form) May 6,
1998; published electronically September 24, 1999.

http://www.siam.org/journals/siopt/9-4/30896.html
†Department of Mathematics and Center for Research in Scientific Computation, North Carolina

State University, Box 8205, Raleigh, NC 27695-8205 (Tim Kelley@ncsu.edu). The research of this
author was supported by National Science Foundation grants DMS-9321938 and DMS-9700569 and
North Atlantic Treaty Organization grant CRG 920067. Computing was partially supported by an
allocation of time from the North Carolina Supercomputing Center.
‡FB IV—Mathematik and Graduiertenkolleg Mathematische Optimierung, Universität Trier,

54296 Trier, Germany (sachs@uni-trier.de). The research of this author was supported by North
Atlantic Treaty Organization grant CRG 920067.

1064

TRUST REGION METHODS FOR CONTROL 1065

a generalized Cauchy point. We update the active set after the trust region step has
been computed with a scaled projected gradient step (similar to [8]). The scaling
serves the purpose of becoming an inexact implementation of the algorithm in [11]
and [14] when full steps are taken. We then obtain fast local convergence in the
L∞-norm (not two-step, as in the more general case [15], because our constraints are
simple bounds). Our local convergence theory does not depend on identification of the
active set in finitely many iterations but instead applies the measure-theoretic ideas in
[14]. Hence, our trust region algorithm becomes an inexact projected Newton method
in the terminal phase of the iteration with local convergence properties covered by
the theory developed in [3], [11], and [14].

We consider the problem of minimizing

f(u) =
1

2

∫ 1

0

(y(u;T, x)− z(x))2 dx+
α

2

∫ T

0

u2(t) dt,(1.1)

where α > 0 is given and y(t, x) = y(u; t, x) is the solution to the nonlinear parabolic
problem

yt(t, x) = yxx(t, x), 0 < x < 1, 0 < t < T,
y(0, x) = y0(t), 0 < x < 1,
yx(t, 0) = 0, yx(t, 1) = g(y(t, 1)) + u(t), 0 < t < T.

(1.2)

In (1.1)–(1.2) u is constrained to be in the set

U = {u ∈ L∞([0, T]) |umin(t) ≤ u(t) ≤ umax(t), for a.e. t ∈ [0, T]}(1.3)

for fixed umin, umax ∈ L∞([0, T]) and the nonlinear function g is assumed to satisfy

g ∈ C2(R), g′, g′′ ∈ L∞(R).(1.4)

See [23] for examples of applications.
The gradient of f in L2([0, T]) is

(∇f(u))(t) = αu(t) + d(t, 1),(1.5)

where d(t, x) is the solution of the adjoint problem

−dt(t, x) = dxx(t, x), 0 < x < 1, 0 < t < T,
d(T, x) = y(T, x)− z(x), 0 < x < 1,
dx(t, 0) = 0, dx(t, 1) = g′(y(t, 1))d(t, 1), 0 < t < T.

(1.6)

The map u→ d(t, 1) is completely continuous as a map on C[0, T] and as a map from
Lq[0, T], 2 ≤ q ≤ ∞, to C[0, T] [18]. The fact that the mapping from the control to
the gradient is the sum of a multiple of the identity and a completely continuous map
is essential for the convergence analysis in this paper because the compactness of the
map u→ d(t, 1) ensures that the performance of the CG iteration is independent of the
discretization. This is consistent with results on linear equations and CG (see [9] and
[22]). Another benefit of this compactness is that the reduced Hessian of f is a compact
perturbation of a constant multiple of the identity and hence no preconditioning is
needed for fast convergence. However, as the regularization parameter α > 0 becomes
small, the performance of CG will deteriorate, even near an optimal point.

The work in this paper is restricted to one space dimension because we use the
regularity results from [18], which are valid only in one dimension. However, more

1066 C. T. KELLEY AND E. W. SACHS

general equations, say, with linear convection terms or nonlinear convection terms
that are sufficiently smooth, are covered by the theory of this paper.

We base our methods on the work in [7], [8], and [19] (where umax = +∞ and
umin = −∞ for unconstrained problems). These methods solve the trust region
problem by searching along the piecewise linear path having the CG iterates as nodes,
terminating either on the trust region boundary, with an inexact Newton step, or with
a direction of negative curvature.

We close this section with some notation and definitions. Let (·, ·) denote the
inner product in L2 or the Euclidean inner product in any finite dimensional space.
We denote the L2-norm by ‖ · ‖2 and the L∞-norm by ‖ · ‖∞.

We let P be the L2 projection onto U defined for any measurable u on [0, T] and
almost every t ∈ [0, T] as

(Pu)(t) =

 umin(t) if u(t) ≤ umin(t),
u(t) if umin(t) < u(t) < umax(t),
umax(t) if u(t) ≥ umax(t).

(1.7)

We define

F (u)(t) = u(t)− P(u(t)−∇f(u)(t)).(1.8)

The nonsmooth nonlinear equation F (u) = 0 is a necessary condition for stationarity
[2].

The map K0, given by

K0(u) = −α−1d(t, 1) = u− α−1∇f(u),(1.9)

is a completely continuous map from Lq[0, T]→ C[0, T] for any 1 ≤ q ≤ ∞ [11], [14].

For u ∈ U , we define the active set for u as

A(u) = {t |u(t) = umax, K0(u)(t) ≥ umax(t)}

∪ {t |u(t) = umin, K0(u)(t) ≤ umin(t)}
(1.10)

and the inactive I(u) set as [0, T] \ A(u). It is clear that for any λ > 0

u(t) = P(u(t)− λ∇f(u)(t)) for all t ∈ A(u).(1.11)

2. Algorithms. All the algorithms are based on the trust region CG method in
[19] and the general convergence analysis in [21]. The trust region problem is solved
approximately by using a piecewise linear path whose nodes are the CG iterates. This
approximate solution of the trust region problem is used in a standard way [10], [19],
[17] to test for sufficient decrease and adjust the trust region radius. We incorporate
the trust region CG method into the inexact projected Newton approach of [11] to
give a superlinearly convergent algorithm.

2.1. Inexact projected Newton algorithm. To specify the algorithm we
must define projections that correspond to the active and inactive set. For any mea-
surable S ⊂ [0, T] we define the multiplication operator PS by

PSu(t) = χS(t)u(t),(2.1)

TRUST REGION METHODS FOR CONTROL 1067

where χS is the characteristic function of S. In particular, if u ∈ U and A and I are
approximations to A(u) and I(u), we will use

PAw(t) = χA(t)w(t) and PIw(t) = χI(t)w(t).(2.2)

We follow [14] and [11] and approximate the active set by

A = Aε(u) = {t |u(t) = umax, K0(u)(t) ≥ umax(t) + ε}

∪ {t |u(t) = umin, K0(u)(t) ≤ umin(t)− ε}
(2.3)

and let

I = Iε(u) = [0, T] \ Aε(u).

The parameter ε > 0 may be adjusted as the iteration progresses to give local super-
linear convergence [11], [14].

Note that for all ε > 0 we have

Aε(u) ⊂ A(u)

and hence

u(t) = P(u(t)− λ∇f(u)(t)) for all λ > 0 and t ∈ Aε(u).(2.4)

In the constrained case, the necessary conditions for optimality can be expressed
as a nondifferentiable compact fixed point problem

u = K(u),(2.5)

where

K(u) = P(K0(u)).

Recall from section 1 that the map K0 (and hence K) is a compact map from Lq[0, T]
to C[0, T] for any 1 ≤ q ≤ ∞. In that sense K is a smoother. We will use that
property to (1) improve the global convergence properties of our proposed algorithm
and (2) provide a uniform norm local convergence theory as in [14] and [11].

We define the reduced Hessian R(uc) at uc by

R(uc) = PA + PI∇2f(uc)PI(2.6)

with I = Iε(u).
The inexact projected Newton algorithms from [11] and [14] have several stages.

We describe the one from [11] here in terms of the transition from a current approxi-
mation uc to a new approximation u+. The understanding here is that the parameter
ε in the approximation to the active set Aε(uc) and the forcing term η in the inexact
Newton process change as the iteration progresses.

Algorithm 2.1. pnstep(uc, u+, f, εc, ηc)
1. Identification: Given uc and εc set I = Iε(uc).
2. Error Reduction: Find s ∈ RangePI which satisfies

‖R(uc)s+ PI∇f(uc)‖2 < ηc‖PI∇f(uc)‖2.(2.7)

Set

u1/2 = P(uc + s)

to reduce the error in L2.

1068 C. T. KELLEY AND E. W. SACHS

3. Postsmoothing: Set u+ = K(u1/2) to recover convergence C[0, T].

The effectiveness of the postsmoothing step depends on the regularization pa-
rameter α. As α is reduced so is the radius of the ball about a solution u∗ for which
Algorithm pnstep produces an improved approximation to the solution. Our global
strategy must take this into account.

In the context of this paper, in which global convergence is the issue, Algo-
rithm pnstep presents two problems. First, the smoothing step is a scaled gradient
projection step and may lead to dramatic increases in the objective function when uc
is far from the solution. We remedy this by adding an Armijo line search to this phase
of the algorithm but do not demand f(u+) < f(u1/2), which may never be possible,
but only that f(u+) < f(uc) by a certain small amount. The results in [11] and [14]
ensure that if uc is sufficiently near the solution, then the full smoothing step will be
accepted and hence the fast local convergence (the precise speed of convergence de-
pends on the choice of forcing term η) will not be affected by the line search. Second,
there is no guarantee that the reduced Hessian will be positive definite. We address
this problem with an inexact trust region algorithm that will exploit any negative
curvature direction that it finds.

As is standard we use the measure of nonstationarity

σ(u) = ‖u− P(u−∇f(u))‖2 = ‖F (u)‖2.(2.8)

This is used not only to decide on termination on the nonlinear iteration but also, as
it was used in [14] and [11], to construct the tolerance for the linear inner iteration
and to construct the approximate active and inactive sets.

For example, a locally convergent algorithm using Algorithm pnstep is the fol-
lowing.

Algorithm 2.2. pnlocal(u, f, ε0, η0, σ0)

1. If σ(u) ≤ σ0, terminate the iteration.
2. ε = min(ε0, σ(u)1/2), η = min(η0, σ(u)1/2).
3. Take an inexact step pnstep(u, u+, f, ε, η).
4. u = u+. Go to step 1.

The values of η and ε in step 2 will ensure superlinear convergence with q-order
5/4 [11], [14]. There is nothing special about the exponent 1/2 used to define ε and
η. These concrete formulae are used only for an illustration.

Under standard assumptions [14], [11] Algorithm pnlocal will produce iterates
that converge locally q-superlinearly (in the L∞-norm) to a minimizer. q-linear con-
vergence can be obtained if the formula for η in step 2 is replaced by η = η0 and η0 is
sufficiently small. The purpose of this paper is to develop a trust region globalization
for this algorithm that preserves the L∞-norm local convergence in the terminal phase
while converging globally in L2.

2.2. Solution of the trust region problem. We use a standard solver form
[19] for our unconstrained trust region subproblems. The inputs to Algorithm trcg,
which approximately solves the trust region problem, are the current point u, the
objective f , a preconditioner M (which we will set to I), the forcing term η, the
current trust region radius ∆, and a limit on the number of iterations kmax. The
output is the approximate solution of the trust region problem d. We formulate the
algorithm using the preconditioned CG framework from [12].

We will assume for the present that gradients are computed exactly and that

TRUST REGION METHODS FOR CONTROL 1069

Hessian-vector product ∇2f(u)w is approximated by either a forward difference

D2
hf(u : w) =

0, w = 0,

∇f(u+ h‖u‖2w/‖w‖2)−∇f(u)

h‖u‖2/‖w‖2 , w, u 6= 0,

∇f(hw/‖w‖2)−∇f(0)

h/‖w‖2 , u = 0, w 6= 0,

(2.9)

or a centered difference

D2
hf(u : w) =

0, w = 0,

∇f(u+ h‖u‖2w/‖w‖2)−∇f(u− h‖u‖2w/‖w‖2)

2h‖u‖2/‖w‖2 , w, u 6= 0,

∇f(hw/‖w‖2)−∇f(−hw/‖w‖2)

2h/‖w‖2 , u = 0, w 6= 0.

(2.10)

We found that the additional accuracy in the centered difference gradient gave
much better descent directions and was worth the expense. One reason for this may
be that D2

hf(u : w) is nonlinear in w. Using this as the approximation to the Hessian-
vector product in the CG iteration is equivalent to applying that algorithm to a matrix
that is a difference approximation of ∇2f based on the Krylov subspace basis [12].
This approximating matrix, while accurate up to the truncation error of the difference
scheme, will not, in general, be symmetric. A more accurate difference will reduce
the effects of that loss of symmetry.

We present the algorithm of [19] for approximate solution of the trust region
problem

min
‖d‖2≤∆

(g, d) + .5(d,Bd).

Algorithm 2.3. trcg(d, u, g, B,M, η,∆, kmax)
1. r = −g, ρ0 = ‖r‖22, k = 1, d = 0
2. Do While

√
ρk−1 > η‖g‖2 and k < kmax

(a) z = Mr
(b) τk−1 = (z, r)
(c) if k = 1 then β = 0 and p = z

else
β = τk−1/τk−2, p = z + βp

(d) w = Bp
If (p, w) ≤ 0 then
Find τ such that ‖d+ τp‖2 = ∆
d = d+ τp; return

(e) α = τk−1/(p, w)
(f) r = r − αw
(g) ρk = (r, r)

(h) d̂ = d+ αp

(i) If ‖d̂‖2 > ∆ then
Find τ such that ‖d+ τp‖2 = ∆
d = d+ τp; return

(j) d = d̂; k = k + 1

1070 C. T. KELLEY AND E. W. SACHS

Trust region algorithms for bound constrained problems have been analyzed in
considerable generality in [7]. A concrete algorithm, proposed in [8], follows a piece-
wise linear path in a search for a generalized Cauchy point, freezes the active set at
that point, and then solves the trust region problem approximately on the current ac-
tive set. This process is important for the theory in [7] not only because it guarantees
Cauchy decrease but also for the proof of superlinear convergence after the active set
has been identified.

In the problems considered here, where there is a continuum of constraints, it
is not clear how to use the method of [8] because the active set, being uncountable,
will never be fully identified, and the construction of a path on which to search for
a Cauchy point would lead to infinitely many knots to test. Instead we solve an
unconstrained trust region problem for a reduced quadratic model and project the
solution of that problem onto the active set.

Our approach to minimization of the reduced quadratic model also differs from
that in [8]. In that paper, and in the convergence analysis in [7], the fact that all norms
in finite dimension are equivalent was used to justify l∞ trust region bounds. We use
the standard L2 trust region and therefore do not include the constraints explicitly
in the trust region. We then use a smoothing step to deal with the nonequivalence of
norms and recover fast uniform convergence in the terminal phase of the iteration.

Given uc ∈ U and ε we consider the reduced quadratic model

mc(u) = f(uc) + (PI∇f(uc), u− uc) + (u− uc,PIR(uc)PI(u− uc))/2.(2.11)

In (2.11), the reduced Hessian R is given by (2.6). Note that the action of R(u) on
a function can easily be computed by differences. This is a somewhat nonstandard
model in that PI∇f(u) is used in the first order part of (2.11) rather than ∇f(u). If,
however, u is the minimizer of the quadratic model in the trust region, then

PI(u− uc) = u− uc
and hence u is also the minimizer of

f(uc) + (PI∇f(uc), u− uc) + (u− uc,R(uc)(u− uc))/2.
Hence, using the projection of R(uc) onto the inactive set has only the effect of
restricting the trust region step to the inactive set.

The reasons for this are that this model performed better in our numerical ex-
periments and also makes a smoother transition to a fast local algorithm that can be
analyzed with the ideas from [11] and [14]. The nonstandard quadratic term presents
no problems; however, the linear term must be accounted for in the analysis. As we
shall show next, this is easy to do because our algorithm is a dog leg.

As we shall see, the analysis of the global convergence is not affected by the linear
term because, in view of (2.4), the trust region direction produced by our model is,
as is the case with other models, simply the projected gradient direction if the trust
region radius is small enough. To see this note that if the trust region radius is
sufficiently small the solution of the trust region subproblem is

u = P(uc − λPI∇f(uc))

for some λ > 0. However, since ε > 0, we must have

P(uc − λPA∇f(uc)) = 0(2.12)

TRUST REGION METHODS FOR CONTROL 1071

and therefore

u = P(uc − λ∇f(uc)),

a projected gradient step.

Algorithm boxtr returns a trial point ut by using Algorithm trcg for the reduced
quadratic model.

Algorithm 2.4. boxtr(d, uc, ut, g,M, ε, η,∆, kmax)

1. Compute I = Iε(uc).
2. Find the direction d by calling

trcg(d, uc,PI∇f(uc),R(uc),M, η,∆, kmax).
3. ut = P(uc + d).

Having computed the trial point, one must decide whether to accept the new
point or to change the trust region radius. Both decisions are based on a comparison
of the actual reduction

ared = f(ut)− f(uc)(2.13)

to a predicted reduction based on the reduced quadratic model. Here

pred = ((ut − uc),PI∇f(uc)) + ((ut − uc),R(uc)(ut − uc))/2.(2.14)

In a typical trust region algorithm, the step is accepted if

ared

pred
≥ µ1,(2.15)

the trust region radius is reduced (∆→ ω1∆, ω1 < 1) if

ared

pred
< µ2,(2.16)

and the trust region radius is increased (∆→ ω2∆, ω2 > 1) if

ared

pred
≥ µ3.(2.17)

Here µ1 ≤ µ2 < µ3 < 1. For example, in [8], µ1 = µ2 = .25 and µ3 = .75. We
must add other conditions to our trust region management scheme to account for the
possibility that ared > 0, i.e., the quadratic model is not reduced, which may happen
because of our particular choice of model if the trust region radius is too large. For
technical reasons, we test for sufficient decrease in the function before accepting the
trust region–step combination. We require that for some µ0 ∈ (0, µ1)

f(ut)− f(uc) ≤ −µ0σ(uc)‖uc − P(uc − λ̂cPI∇f(uc))‖2,(2.18)

where

λ̂c = min

(
∆

‖PI∇f(uc)‖2 , 1
)
.(2.19)

1072 C. T. KELLEY AND E. W. SACHS

2.3. Termination. No algorithm that depends on a measurement of decrease
like ared is reliable if the decreases in the function are smaller than the accuracy with
which the function is computed. Once we have resolved a local minimum to that
point, our view is that the iteration has succeeded.

Hence we terminate the algorithm if either σ(u) < τg or

|ared| < τf .(2.20)

Here τg and τf are small tolerances. We test for (2.20) every time the trust region
radius is changed, and if (2.20) holds at any point during an iteration, we terminate
and accept the previous iteration. The stopping criterion (2.20) is an algorithmic
detail and is used only in the implementation, not the analysis.

2.4. The complete algorithm. The notation is that uc is the current iteration.
On exit from the trust region phase of the algorithm, we obtain u1/2 and pass that
intermediate iterate to the smoother to produce u+. It is possible that f(u+) >
f(u1/2); however, we do not permit f(u+) > f(uc) and we use a line search to ensure
that

f(u+)− f(u1/2) < −µ4ared = µ4(f(uc)− f(u1/2))

for some µ4 ∈ (0, 1). µ4 is yet another trust region parameter. The line search reduces
the smoothing step by a factor of α if the full step fails and then by a constant factor
of β ∈ (0, 1).

In the interest of clarity, we do not make the trust region algorithmic parameters,
µ0, µ1, µ2, µ3, µ4, ω1, ω2, kmax, the preconditioner M (which is the identity for us),
and the initial trust region radius ∆ formal arguments to the algorithm. The trust
region radius is limited to a maximum value ∆max.

The inputs are u ∈ U , the bounds, and the function f .
Algorithm 2.5. trmin(u, f, umax, umin)
1. Initialize ∆, k = 1.
2. Test for termination

if σ(u) < τg or
if k > 1 and |ared| < τf terminate successfully.

3. Fix η and ε for this iterate. Set uc = u, rflag = 0.
4. Find a new trial point ut using Algorithm boxtr.
5. Set ρ = ared/pred.

(a) if ρ < µ1 or (2.18) does not hold, then ∆ = ω1∆; rflag = 1, go to
step 4.

(b) if µ1 ≤ ρ < µ2, ∆ = ω1∆, u1/2 = ut
(c) if ρ ≥ µ2 and ∆ = ∆max, u1/2 = ut
(d) if µ2 ≤ ρ < µ3, or ρ ≥ µ3 and rflag = 1, u1/2 = ut
(e) if ρ ≥ µ3 and rflag = 0, ∆ = min(∆max, ω2∆), go to step 4

6. (a) Find the smallest integer m ≥ 0 such that

f(P(u1/2 − ξmα−1∇f(u1/2)))− f(u1/2) < −µ4ared,

where ξ0 = 1, ξ1 = α and ξm = βξm−1 for m ≥ 2, then postsmooth, i.e.,
set

u+ = P(u1/2 − ξmα−1∇f(u1/2)).

(b) u = u+; k = k + 1; go to step 2.

TRUST REGION METHODS FOR CONTROL 1073

The flag rflag is used to avoid an infinite loop of increasing and decreasing the
trust region radius.

In the context of a globally convergent algorithm, attention must be paid to the
postsmoothing step 6(a). The line search prevents divergence in the early phase of
the iteration when the approximate solutions are not accurate.

3. Convergence results. In this section we derive global convergence results
for Algorithm trmin. Recall that our notation is that uc (resp., uk) is the current
(resp., kth) iteration. On exit from the trust region phase of the algorithm, we obtain
ut (resp., uk+1/2) and pass that intermediate iterate to the smoother to produce u+

(resp., uk+1).

3.1. Global convergence. Given uc ∈ H and the quadratic model function
mc from (2.11) we must first show that the trust region radius can be bounded from
below.

Our assumptions are as follows.
Assumption 3.1.
1. f is twice continuously differentiable in U .
2. There is r > 0 such that for all u ∈ U and z ∈ L2[0, T]

‖z‖22/r ≤ |(z,R(u)z)| ≤ r‖z‖22
and ‖∇2f(u)‖2 ≤ r.

The second assumption is a sort of second order sufficiency condition as it is
common in the convergence analysis of higher order methods. The finite difference
approximation (2.10) satisfies this assumption for h sufficiently small, if the assump-
tion holds for the original Hessian R.

In this section we will use some notation from [2]. For u ∈ U define

u(λ) = P(u− λ∇f(u)).(3.1)

We begin with the lower bound for the gradient projection step from [2].
Theorem 3.1. Let Assumption 3.1 hold and let µ ∈ (0, 1). Then there is λmax

such that for any 0 < λ ≤ λmax and u ∈ U ,

f(u)− f(u(λ)) ≥ µ

λ
‖u− u(λ)‖22.(3.2)

We will also use a lemma from convex analysis. We state this as a special case of
a result from [21].

Lemma 3.2. Let λ > 0, u ∈ U , and f be differentiable. Then

‖u− u(λ)‖2 is an increasing function of λ,

λ−1‖u− u(λ)‖2 is a decreasing function of λ, and

(∇f(u), u− u(λ)) ≥ ‖u− u(λ)‖22/λ.

(3.3)

From Theorem 3.1 we compute a lower bound on the trust region radius.
Theorem 3.3. Let Assumption 3.1 hold. Let A be computed from (1.10) with

ε > 0. Then there is C > 0 such that on exit from step 5 of Algorithm trmin

∆ ≥ ∆min = C‖PI∇f(uc)‖2.(3.4)

1074 C. T. KELLEY AND E. W. SACHS

Proof. The idea of the proof is to show that Algorithm trmin will, in the worst
case of a small trust region radius, take steps of the form

s = P(uc − λPI∇f(uc))− uc = P(uc − λ∇f(uc))− uc.
The second equality follows from ε > 0 (see (2.12)). Hence, the algorithm will therefore
behave like the gradient projection algorithm [2], since by (1.11) PAs = 0. In view of
this, we can use known properties of the gradient projection algorithm to bound the
trust region radius from below.

Algorithm boxtr will return a trial point of the form

ut = P(uc − PIλ∇f(uc))

if no CG iterations are needed (i.e., the minimizer of the mc in the direction PI∇f(uc)
is outside the trust region or if∇f(uc) is a direction of negative curvature for PIR(uc)).
In the former case,

α0 = ‖PI∇f(uc)‖22/(PI∇f(uc),PIR(uc)PI∇f(uc)) > 0

satisfies

α0‖PI∇f(uc)‖2 ≥ ∆.(3.5)

In this case

ut = uc(λt) = P(uc − λtPI∇f(uc)) = P(uc − λt∇f(uc)),(3.6)

where λt ≤ α0 is such that

λt = ∆/‖PI∇f(uc)‖2.(3.7)

By Assumption 3.1, |α0| ≥ 1/r. Hence, if ∆ < ‖PI∇f(uc)‖2/r, then ∆ <
‖PI∇f(uc)‖2α0. Since (3.5) holds, ut will be given by (3.6), (3.7) holds, and λt =
∆/‖PI∇f(uc)‖2 < 1/r ≤ 1.

Now if we set µ = µ1 in Theorem 3.1 and

∆ < ‖PI∇f(uc)‖2 min(λmax, 1/r),(3.8)

then the above remarks, Theorem 3.1, and Lemma 3.2 imply that

ared ≤ −µ1

λt
‖uc − uc(λt)‖22 ≤ −µ1‖uc − uc(λt)‖2σ(uc).(3.9)

Since, by (3.7) and (2.19),

λt = ∆/‖PI∇f(uc)‖2 ≥ λ̂c = min

(
∆

‖PI∇f(uc)‖2 , 1
)
,

we obtain from Lemma 3.2

‖uc − uc(λt)‖2 ≥ ‖uc − uc(λ̂c)‖2.
Therefore, since 0 < µ0 < µ1, from (3.9) we obtain

ared ≤ −µ0σ(uc)‖uc − uc(λ̂c)‖2,

TRUST REGION METHODS FOR CONTROL 1075

which is (2.18).
We summarize the analysis so far. We have shown that if (3.8) holds, then

ut = uc(λt) for some λt and (2.18) holds.
We now show how the upper bound (3.8) on ∆ can be reduced to imply that

ared/pred ≥ µ3. Assume that (3.8) holds. By Lemma 3.2 and the fact that ut−uc =
PI(ut − uc) we have

(PI∇f(uc), ut − uc) = (∇f(uc), ut − uc) ≤ −‖uc − ut‖22/λt
and hence by the definition (2.14) of pred

pred = mc(ut)− f(uc) = ((ut − uc),PI∇f(uc)) + ((ut − uc),PIR(uc)PI(ut − uc))/2,
we have

pred ≤ (PI∇f(uc), ut − uc) + r‖uc − ut‖22/2

≤ (r/2− 1/λt)‖uc − ut‖22.
(3.10)

Note that

|ared− pred| = |f(ut)−mc(ut)| ≤ r‖uc − ut‖22
and

|pred| ≥ |r/2− 1/λt|‖uc − ut‖22.
Since ‖ut − uc‖2 ≤ ∆ we have∣∣∣∣aredpred

− 1

∣∣∣∣ =

∣∣∣∣ared− predpred

∣∣∣∣ ≤ r‖uc − ut‖22
|r/2− 1/λt|‖uc − ut‖22

=
r

1/λt − r/2 ≤
r

‖PI∇f(uc)‖2/∆− r/2 .
(3.11)

Hence, if

∆ ≤ ‖PI∇f(uc)‖2/(r/2 + r/(1− µ3)),

then

ared

pred
≥ 1−

∣∣∣∣aredpred
− 1

∣∣∣∣ ≥ 1− r

‖PI∇f(uc)‖2/∆− r/2 ≥ µ3.

Thus, if the trust region radius ever satisfies

∆ ≤ min
(‖PI∇f(uc)‖2 min(λmax, 1/r), ‖PI∇f(uc)‖2(r/2 + r/(1− µ3))−1

)
/ω2,

where ω2 > 1 is the factor by which the trust region radius will be increased if
ared
pred ≥ µ3, then all acceptance tests will be passed and an increase will be attempted.

Hence, on exit from step 5, (3.4) will hold with

C = min(λmax, 1/r, (r/2 + r/(1− µ3))−1)/ω2,

which completes the proof.

1076 C. T. KELLEY AND E. W. SACHS

Our main global convergence result is as follows.
Theorem 3.4. Let Assumption 3.1 hold and let uk be the sequence produced by

Algorithm trmin. Then

lim
k→∞

σ(uk) = 0.

Proof. Step 6 of Algorithm trmin, (2.13), and (2.18) yield

f(uk+1)− f(uk) = f(uk+1)− f(uk+ 1
2
) + f(uk+ 1

2
)− f(uk)

≤ (1− µ4)(f(uk+ 1
2
)− f(uk))

≤ −(1− µ4)µ0σ(uk)‖uk − uk(λ̂k)‖2

with λ̂k defined by (2.19). The boundedness from below of f on U implies

lim
k→∞

σ(uk)‖uk − uk(λ̂k)‖2 = 0.

Since λ̂k ≤ 1 by (2.19), Lemma 3.2 yields

lim
k→∞

‖uk − uk(λ̂k)‖2 = 0.

Theorem 3.3 implies that either λ̂k = 1 or

λ̂k =
∆k

‖PI∇f(uk)‖2 ≥ C.

Therefore, with C1 = min(1, C), Lemma 3.2 implies that

‖uk − uk(λ̂k)‖22 ≥ ‖uk − uk(C1)‖22 ≥ C2
1σ(uk)2,

completing the proof.

3.2. Local convergence. In [14] we gave the conditions under which Algorithm
pnlocal converges locally q-superlinearly to a solution u∗. This will imply fast local
convergence if the iteration has a limit point that is a local minimum that satisfies
the assumptions that we will outline in section 3.2.1.

To begin, note that if ut (in the language of Algorithm trmin) is sufficiently near
a fixed point of K in the L2-norm, then a full smoothing step (i.e., m = 0) in step 6(a)
of Algorithm trmin will be taken and then u+ will be near u∗ in the L∞ sense. Hence
once uk is L2 near to u∗, uk+1 will be close in the L∞ sense and then the active and
inactive sets will be accurately approximated. This will be important for the local
convergence result as it was in [11] and [14].

In particular, the reduced Hessians will converge to the reduced Hessian at the
solution. Therefore, using the methods in [19], if uk+1 is sufficiently near u∗ in the
L∞-norm, then the approximate reduced Hessian is symmetric and positive definite
and the trust region radius will increase if necessary so that both u∗ and the minimizer
of the local quadratic model are in the trust region. This fact allows us to apply the
techniques in [11] and [14] to prove local convergence and estimate convergence rates.

TRUST REGION METHODS FOR CONTROL 1077

3.2.1. Assumptions for superlinear convergence. We begin by reviewing
the assumptions required for superlinear convergence of inexact projected Newton
methods from [14]. We will express those assumptions in the less general language
of the present paper. The assumptions were motivated by the functional analytic
structure of the control problem and from geometric ideas in [14]. For example,
Assumption 3.2 is motivated by the fact that the Hessian is a perturbation of the
αI by an integral operator with a kernel that is continuously dependent on u in the
L∞-norm. Assumption 3.3 says that the active and inactive sets vary with ε in a
controlled way. Geometrically, the meaning is that as u(t) approaches umax or umin
it does so in a nontangential way. This is essential for identification of the active
set that is rapid enough to obtain superlinear convergence. See Figure 4.1 for an
illustration of this nontangential behavior.

If u∗ is a local minimizer that satisfies Assumptions 3.2 and 3.3 and the inexact
projected Newton point is in the trust region, and the current iterate is sufficiently
near u∗ (in the L2 sense), then the iteration will converge to u∗ at a rate determined
by the sequences {εn} and {ηn}.

The first assumption is the minimal regularity needed for any projected Newton
method to converge rapidly.

Assumption 3.2. There is a solution u∗ to (1.1)–(1.2) subject to u ∈ U such
that f is twice Lipschitz continuously Fréchet differentiable at u∗ in any Lq[0, T] for
1 ≤ q ≤ ∞ and in C[0, T] and K0 is Lipschitz continuous as a map from L2[0, T] to
C[0, T]. There are εmax, ρmax,M > 0 such that for all ε ∈ (0, εmax) and all u such
that ‖u − u∗‖∞ < ρmax the approximate reduced Hessian computed using (2.6) is
nonsingular. Moreover,

‖K′0(u)‖ ≤M,(3.12)

where the norm in (3.12) is any of L(Lq, C[0, T]), 2 ≤ q ≤ ∞, or L(C[0, T]) and

‖R(u)‖L2 , ‖R(u)−1‖L2 ≤M.

The other assumption is related to a nondegeneracy assumption on the optimal
control and a generalization of the fact that for finite dimensional problems the active
set is identified in finitely many steps.

We define sets

I+ = {t |F (u)(t) = ∇f(u)(t)} ∩ I and I− = {t |F (u)(t) 6= ∇f(u)(t)} ∩ I.(3.13)

Clearly [0, T] = I+ ∪ I− ∪ A.
Assumption 3.3. There is ν > 0 such that umin(t)+ν ≤ umax(t) for all t ∈ [0, T].

Let A be given by (2.3) and let p ∈ (0, 1) be given. Then there are εmax, ρmax,M > 0
such that for all ε ∈ (0, εmax) and all u = K(v) such that ‖v − u∗‖2 < ρmax

‖PA(u− u∗)‖2 ≤Mε‖u− u∗‖∞,(3.14)

m(I−) ≤Mε,(3.15)

and

‖u− P(u−∇f(u))‖∞/M ≤ ‖u− u∗‖∞ ≤M‖u− P(u−∇f(u))‖∞.(3.16)

1078 C. T. KELLEY AND E. W. SACHS

In Assumption 3.3, m denotes Lebesgue measure.
On these assumptions we have the following local convergence result. The proof

is, on the assumptions made above, a variation of those in [11] and [14], using the
local theory in [19] to argue that the inexact Newton point is inside the trust region.

Theorem 3.5. Let Assumptions 3.1, 3.2, and 3.3 hold. Let M > 0 and p ∈ (0, 1)
be given. Then if u− is sufficiently near u∗ in L2, uc = K(u−),

ηc, εc ≤Mσ(uc)
p,(3.17)

and ut and u+ are given by Algorithm trmin, then st = ut − uc satisfies (2.7) (i.e., a
full inexact Newton step is taken),

‖ut − u∗‖2 = O(‖uc − u∗‖1+p
∞),

and

‖u+ − u∗‖∞ = O(‖uc − u∗‖1+p
∞).

4. Numerical example. All the results reported in this section were obtained
on a Sun Ultra-1 running Sun Fortran f77 version 4.0 and Solaris 5.5.1.

Our numerical results are based on the problem posed by (1.1), (1.2), (1.3), (1.5),
and (1.6). We set

g(y) = y4/(100 + y4/10), T = 1, z(x) = 1, and α = .01.

We report results for both the constrained and the unconstrained problems. Our
constraints are given by

umin(t) = 0 and umax(t) = .1 + 4t.

Our initial iterate was u0 = 0 for both cases.
In our numerical examples we discretized in space with piecewise linear finite

elements as we did for the multilevel results reported in [14], and we integrated in
time with the DAE solver DASPK (used in DASSL mode) [4], [5], [6], [16]. The
accuracy parameters for DASPK were rtol = atol = δ2

x/10. With these parameters
the numerical Hessian-vector products were accurate enough to observe superlinear
convergence in the terminal phase of the iteration.

We summarize the algorithmic parameters in Table 4.1.
The radius of the trust region was initialized to ∆max = 5. Following [14] we

limited the time step in DASPK to the spatial mesh width δx.
The solutions for the unconstrained (left) and constrained (right) problems, both

with δx = 1/639, are plotted in Figure 4.1. From the plot of the constrained minimizer
on the right, one can see that both the upper and the lower bound constraints are
attained on different parts of [0, T].

TRUST REGION METHODS FOR CONTROL 1079

Table 4.1
Parameters and tolerances.

{µj}0≤j≤3 TR parameters , (2.18), (2.15)–(3.11) 10−4, 10−4, .25, .75
See steps 5(a)–5(e) in trmin

∆max, ω1, ω2 TR parameters 5, .5, 2
See steps 5(a), 5(c), 5(e) in trmin

µ4, β Postsmoothing parameters .9999, .01
See step 6(a) in trmin

ε Active set approximation, (2.3) min(σ(u).75, .001)
η Forcing term, (2.7) .1 min(σ(u).95, .1)
δx Spatial mesh width 1/639
τg , τf Termination tolerances, (2.20) δ2

x/10, 10−5δ2
x

h Increment for FD Hessian, (2.10) δ.67
x

0 0.5 1
−0.5

0

0.5

1

1.5

Unconstrained
0 0.5 1

0

0.5

1

1.5

2

Constrained

Fig. 4.1. Minimizers, δx = 1/639.

For all computations we tabulate the iteration counter k; the value of the objective
f(uk); the actual reduction (for k ≥ 1); the norm of the projected gradient; σ(uk);
the number of CG iterations required ik (for k ≥ 1); and the radius ∆ of the trust
region. For the constrained problem we also tabulate PA, the fraction of points that
are in the approximate active set. ik = 0 means that the steepest descent or gradient
projection step either went beyond the trust region boundary or satisfied the inexact
Newton condition.

The iterations for both the unconstrained problem, reported in Table 4.2, and
the constrained problem, summarized in Table 4.3, terminated when σ(u) < τg. Full
smoothing steps were taken for all but the first iteration in the unconstrained problem.
For the constrained problem, which is harder, a full smoothing step was taken only
for the final iterate, when local superlinear convergence sets in. Observations of full
smoothing steps for smaller values of α would require a finer spatial mesh and smaller
values of rtol and atol than the DAE solver would permit in our environment.

1080 C. T. KELLEY AND E. W. SACHS

Table 4.2
Unconstrained problem, δx = 1/639.

k f(uk) ared σ(uk) ik ∆
0 5.00e–01 0.00e+00 1.00e+00 0 5.00e+00
1 6.44e–03 –4.93e–01 5.33e–03 1 5.00e+00
2 6.20e–03 –3.71e–04 1.75e–02 12 5.00e+00
3 6.08e–03 –1.38e–04 5.17e–03 1 5.00e+00
4 6.07e–03 –1.19e–05 4.74e–04 1 5.00e+00
5 6.07e–03 –9.95e–08 5.37e–06 7 5.00e+00
6 6.07e–03 –3.31e–11 8.62e–09 17 5.00e+00

Table 4.3
Constrained problem, δx = 1/639.

k f(uk) ared σ(uk) ik ∆ PA
0 5.00e–01 0.00e+00 9.26e–01 0 5.00e+00 0.00
1 8.89e–03 –4.86e–01 2.52e–02 1 5.00e+00 0.30
2 7.36e–03 –1.29e–03 5.48e–03 7 5.00e+00 0.08
3 7.26e–03 –6.92e–05 2.76e–03 0 5.26e–02 0.41
4 7.17e–03 –8.24e–05 2.60e–04 3 1.05e–01 0.49
5 7.17e–03 –1.46e–06 3.80e–05 3 1.05e–01 0.50
6 7.17e–03 –1.35e–09 8.88e–06 4 1.05e–01 0.50
7 7.17e–03 –6.98e–11 1.69e–08 4 1.05e–01 0.50

REFERENCES

[1] L. Armijo, Minimization of functions having Lipschitz-continuous first partial derivatives,
Pacific J. Math., 16 (1966), pp. 1–3.

[2] D. P. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method, IEEE Trans.
Automat. Control, 21 (1976), pp. 174–184.

[3] D. P. Bertsekas, Projected Newton methods for optimization problems with simple constraints,
SIAM J. Control Optim., 20 (1982), pp. 221–246.

[4] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, Classics Appl. Math. 14, SIAM, Philadel-
phia, 1995.

[5] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Using Krylov methods in the solution of
large-scale differential-algebraic systems, SIAM J. Sci. Comput., 15 (1994), pp. 1467–1488.

[6] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Consistent initial condition calculation
for differential-algebraic systems, SIAM J. Sci. Comput., 19 (1998), pp. 1495–1512.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Global convergence of a class of trust
region algorithms for optimization problems with simple bounds, SIAM J. Numer. Anal.,
25 (1988), pp. 433–460.

[8] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Testing a class of methods for solving
minimization problems with simple bounds on the variables, Math. Comp., 50 (1988),
pp. 399–430.

[9] J. W. Daniel, The Approximate Minimization of Functionals, Prentice–Hall, Englewood Cliffs,
NJ, 1971.

[10] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Classics Appl. Math. 16, SIAM, Philadelphia, 1996.

[11] C. T. Kelley, Identification of the support of nonsmoothness, in Large Scale Optimization:
State of the Art, W. W. Hager, D. W. Hearn, and P. Pardalos, eds., Kluwer Academic
Publishers B.V., Boston, 1994, pp. 192–205.

[12] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers Appl. Math.
16, SIAM, Philadelphia, 1995.

[13] C. T. Kelley and E. W. Sachs, Fast algorithms for compact fixed point problems with inexact
function evaluations, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 725–742.

TRUST REGION METHODS FOR CONTROL 1081

[14] C. T. Kelley and E. W. Sachs, Multilevel algorithms for constrained compact fixed point
problems, SIAM J. Sci. Comput., 15 (1994), pp. 645–667.

[15] J. Nocedal and M. L. Overton, Projected Hessian updating algorithms for nonlinearly con-
strained optimization, SIAM J. Numer. Anal., 22 (1985), pp. 821–850.

[16] L. R. Petzold, A description of DASSL: A differential/algebraic system solver, in Scientific
Computing, R. S. Stepleman et al., eds., North–Holland, Amsterdam, The Netherlands,
1983, pp. 65–68.

[17] M. J. D. Powell, Convergence properties of a class of minimization algorithms, in Nonlinear
Programming 2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic
Press, New York, 1975, pp. 1–27.

[18] E. Sachs, A parabolic control problem with a boundary condition of the Stefan-Boltzmann type,
Z. Angew. Math. Mech., 58 (1978), pp. 443–449.

[19] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[20] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, London, 1981, pp. 57–88.

[21] Ph. L. Toint, Global convergence of a class of trust-region methods for nonconvex minimiza-
tion in Hilbert space, IMA J. Numer. Anal., 8 (1988), pp. 231–252.

[22] R. Winther, A Numerical Galerkin Method for a Parabolic Problem, Ph.D. thesis, Cornell
University, Ithaca, New York, 1977.

[23] J. P. Yvon, Controle optimal d’un four industriel, Tech. report 22, INRIA, Le Chesnay, France,
1973.

PATTERN SEARCH ALGORITHMS FOR
BOUND CONSTRAINED MINIMIZATION∗

ROBERT MICHAEL LEWIS† AND VIRGINIA TORCZON‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1082–1099

To John Dennis, on his 60th birthday

Abstract. We present a convergence theory for pattern search methods for solving bound
constrained nonlinear programs. The analysis relies on the abstract structure of pattern search
methods and an understanding of how the pattern interacts with the bound constraints. This analysis
makes it possible to develop pattern search methods for bound constrained problems while only
slightly restricting the flexibility present in pattern search methods for unconstrained problems.
We prove global convergence despite the fact that pattern search methods do not have explicit
information concerning the gradient and its projection onto the feasible region and consequently are
unable to enforce explicitly a notion of sufficient feasible decrease.

Key words. bound constrained optimization, convergence analysis, pattern search methods,
direct search methods, globalization strategies, alternating variable search, axial relaxation, local
variation, coordinate search, evolutionary operation, multidirectional search

AMS subject classifications. 49M30, 65K05

PII. S1052623496300507

1. Introduction. This paper extends the class of pattern search methods for
unconstrained minimization, considered in [16], to bound constrained problems:

minimize f(x)
subject to ` ≤ x ≤ u,(1.1)

where f : Rn → R, `, x, u ∈ Rn, and ` < u. We allow the possibility that some
of the variables are unbounded either above or below by permitting `j , uj = ±∞,
j = 1, . . . , n.

Our convergence analysis is guided by that for pattern search methods for un-
constrained problems [16]. We can guarantee that if the objective f is continuously
differentiable, then a subsequence of the iterates produced by a pattern search method
for problems with bound constraints converges to a stationary point of problem (1.1).
By a stationary point of problem (1.1) we mean a feasible point x that satisfies the
first-order necessary condition for optimality: for all feasible z, (∇f(x) , z − x) ≥ 0.
Equivalently, x is a Karush–Kuhn–Tucker point for problem (1.1). As in the case of
unconstrained minimization, pattern search methods for bound constrained problems
accomplish this without an explicit representation of the gradient or the directional
derivative. In particular, we prove global convergence in the bound constrained case

∗Received by the editors March 13, 1996; accepted for publication (in revised form) January 12,
1998; published electronically September 24, 1999.

http://www.siam.org/journals/siopt/9-4/30050.html
†Institute for Computer Applications in Science and Engineering, Mail Stop 132C, NASA Langley

Research Center, Hampton, VA 23681-2199 (buckaroo@icase.edu). This research was supported by
the National Aeronautics and Space Administration under NASA contract NAS1-19480.
‡Department of Computer Science, College of William & Mary, Williamsburg, VA 23187–8795

(va@cs.wm.edu). This research was supported by Air Force Office of Scientific Research grant
F49620–95–1–0210, Sandia National Laboratories, Lawrence Livermore RFQ LC-2683, the National
Aeronautics and Space Administration under NASA contract NAS1-19480 while the author was in
residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA
Langley Research Center, Hampton, VA, and by the Center for Research on Parallel Computation
through NSF Cooperative Agreement 9120008.

1082

PATTERN SEARCH ALGORITHMS FOR BOUND CONSTRAINTS 1083

even though pattern search methods do not have explicit information concerning the
gradient and its projection onto the feasible region and consequently do not explicitly
enforce a notion of sufficient feasible decrease.

In (1.1), near the boundary of the feasible region, the proximity of the boundary
restricts the set of descent directions along which we can search and remain feasible
for a sufficiently long distance. In projected gradient methods, one circumvents this
inconvenience by combining knowledge about the local behavior of the objective f ,
namely, the gradient, with the global structure of the feasible region by conducting
searches along the projected gradient path. In the case of pattern search methods,
we do not have recourse to this strategy; nonetheless, we can specify the pattern so
that it contains a sufficiently rich set of directions to ensure that we need not take too
short a step to obtain a new iterate that produces decrease in f and is also feasible.

So far as we know, ours is the first convergence analysis for pattern search meth-
ods for bound constrained minimization. However, the observation that forms the
basis of our analysis—the utility of having a sufficiently large subset of the pattern
oriented along the coordinate directions in order to handle the bounds—is not new.
For instance, in [10], Keefer notes that the pattern associated with the method of
Hooke and Jeeves [9] is well suited for coping with bounds and proposes the Simpat
algorithm, which combines the use of the Nelder–Mead simplex algorithm [12] in the
interior of the feasible region with the use of the Hooke and Jeeves pattern search
algorithm near the boundary.

The general specification of pattern search methods for bound constrained mini-
mization gives us broad latitude in designing such algorithms. Moreover, as we shall
discuss, classical pattern search methods for unconstrained minimization—such as
coordinate search with fixed step sizes and the original pattern search of Hooke and
Jeeves—can be generalized without modification to the bound constrained case. We
also will show that not all pattern search methods for unconstrained minimization
immediately generalize to bound constrained problems: in section 2 we present a
counterexample that defeats G.E.P. Box’s method of evolutionary operation using
two-level factorial designs [1, 3, 14] and show how the convergence theory guides us
to a remedy that uses composite designs [2], instead of the simpler factorial or frac-
tional factorial designs. The multidirectional search algorithm of Dennis and Torczon
[7, 15] also requires us to augment the pattern used for the algorithm; again we find a
straightforward extension, but one that reveals much about the interesting behavior
of the simplices which characterize that method.

2. Motivation. Before giving the technical specification of pattern search meth-
ods for bound constrained minimization, we consider an example that illustrates what
is needed for the generalization and how the bound constrained algorithms work. Con-
sider the following simple linear problem:

minimize f(x) = −(x1 + 2x2)
subject to 0 ≤ x1 ≤ 1,

x2 ≤ 0.

The solution of this problem is x∗ = (1, 0)T . Let us consider an iteration of the
pattern search method of evolutionary operation applied to this problem starting at
the initial iterate x0 = (0, 0)T .

The usual pattern is typically a factorial design comprising the points NW, NE,
SW, and SE indicated by the open circles in Figure 2.1. We see that the values of f
at the points NW and NE are lower than that at x0. If there were no constraints, as

1084 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

Ω

r
x0

bNW bNE

b
SW

b
SE

�
�
�
�
��
−∇f(x0)

HH
HH

HY

HHHHHHHHHHHHHHHHHHHHj

f(x) < f(x0)

f(x) > f(x0)

Fig. 2.1. The pattern for factorial design in the unconstrained case.

depicted in Figure 2.1, the algorithm could choose either of these points as the next
iterate; most implementations would choose NE since it produces the greater decrease
in f .

In the unconstrained case, pattern search methods work much like line-search
quasi-Newton methods. Pattern search methods include sufficient search directions
to guarantee that if the current iterate is not a stationary point, then at least one of the
search directions is a descent direction. Moreover, one can prove that as the iterations
progress, these “good” search directions cannot become increasingly orthogonal to the
steepest descent direction. In the situation depicted above, for instance, regardless
of the direction of −∇f(x0), one of the four directions from x0 to the corners of the
square the pattern defines must make an angle of 45◦ or less with −∇f(x0). Finally,
the way the pattern is rescaled implements a form of backtracking that is the final
piece needed to guarantee convergence.

Now consider what happens in our simple example when we take into account the
constraints. We will consider only feasible points in the pattern, in order to ensure
that the algorithm produces only feasible iterates. In Figure 2.2 we see that the only
feasible point is SE. Unfortunately, this step will produce increase in f . We cannot
remedy this by moving the pattern closer to x0—backtracking along the directions
from x0 to the points in the pattern—since the only feasible points that will ensue lie
along the line segment from x0 to SE, and on this line segment f is larger than f(x0).
Consequently, evolutionary operation will never move from x0.

The problem is that while there are feasible directions of descent emanating from
x0, our pattern is not oriented in such a way as to capture any of this information
from its feasible point SE. The pattern associated with evolutionary operation is not
compatible with the geometry of the feasible region. A moment’s reflection reveals
that the problem is that the pattern does not allow us to move parallel to the bounds.

This problem goes away if, for instance, we augment the pattern using the idea of
composite design [2] (as opposed to factorial design). An example of such a design is
shown in Figure 2.3. We now have a feasible step along the active constraint x2 ≤ 0
that will produce descent.

This simple example captures the essential idea for the generalization of pattern
search methods to bound constrained minimization. We restrict our attention to

PATTERN SEARCH ALGORITHMS FOR BOUND CONSTRAINTS 1085

Ω
x0

r
x0

bNW bNE

b
SW

b
SE

r x∗�
�
�
�
��
−∇fx0)

HH
HH

HY

HHHHHHHHHHHHHHHHHHHHj

f(x) < f(x0)

f(x) > f(x0)

Fig. 2.2. An illustration of what can go wrong with factorial design in the bound constrained case.

Ω
x0

r
x0

bNW bNE

b
SW

b
SE

r x∗bE
bN

b
S

b
W

�
�
�
�
��
−∇fx0)

HH
HH

HY

HHHHHHHHHHHHHHHHHHHHj

f(x) < f(x0)

f(x) > f(x0)

Fig. 2.3. An illustration of how the problem can be circumvented using a composite design.

patterns that reflect the geometry of the feasible region by including enough directions
oriented along the coordinate axes so that we can move parallel and perpendicular to
the boundary of the feasible region. We can then guarantee global convergence to a
Karush–Kuhn–Tucker point.

Notation. We denote by R, Q, Z, and N the sets of real, rational, integer, and
natural numbers, respectively.

Unless otherwise noted, norms are assumed to be the Euclidean norm. The fea-
sible region for problem (1.1) we denote by Ω:

Ω = { x ∈ Rn | ` ≤ x ≤ u } .

The projection onto Ω we denote by P . If for scalar t we define

pj(t) =

 `j if t < `j ,
t if `j ≤ t ≤ uj ,
uj if t > uj ,

1086 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

then the projection of x = (x1, . . . , xn)T is given by

P (x) =

n∑
j=1

pj(xj)ej ,

where {ej}, j = 1, . . . , n, are the standard basis vectors. On those few occasions where
we must denote components of subscripted vectors, we use the following notation: qk,j
denotes the jth component of the vector qk.

We will denote by g(x) the gradient ∇f(x) of the objective. Finally, let

LΩ(y) = { x ∈ Ω | f(x) ≤ f(y) } .
3. Pattern search methods. We begin by defining the general pattern search

method for the bound constrained problem (1.1); it differs from that for unconstrained
problems [16] in only a few particulars, which we summarize in section 3.5.

3.1. The pattern. As with pattern search methods for unconstrained problems,
to define a pattern we need two components: a basis matrix and a generating matrix.

The basis matrix is a nonsingular matrix B ∈ Rn×n.
The generating matrix is a matrix Ck ∈ Zn×p, where p > 2n. We partition the

generating matrix into components

Ck = [Mk −Mk Lk] = [Γk Lk].(3.1)

We require that Mk ∈ M ⊂ Zn×n, where M is a finite set of nonsingular matrices,
and that Lk ∈ Zn×(p−2n) and contains at least one column, a column of zeros.

A pattern Pk is then defined by the columns of the matrix Pk = BCk. For con-
venience, we use the partition of the generating matrix Ck given in (3.1) to partition
Pk as follows:

Pk = BCk = [BMk −BMk BLk] = [BΓk BLk].

We also require the matrix BMk to be diagonal:

BMk = diag(dik), i = 1, . . . , n.(3.2)

This condition, absent in the case of unconstrained minimization, is needed in order to
ensure that we can find feasible points in the pattern that will also produce decrease in
the objective. As we shall see, this condition is not especially restrictive and is satisfied
by all of the commonly encountered pattern search algorithms or straightforward
variants of them.

At iteration k, given ∆k ∈ R with ∆k > 0, we define a trial step to be a vector of
the form sik = ∆kBc

i
k for some i ∈ {1, . . . , p}, where cik denotes the ith column of Ck

(i.e., Ck = [c1k · · · c pk]). We call a trial step sik feasible if (xk + sik) ∈ Ω. At iteration k,
a trial point is any point of the form xik = xk + sik, where xk is the current iterate.

3.2. The bound constrained exploratory moves. Pattern search methods
proceed by conducting a series of exploratory moves about the current iterate xk to
choose a new iterate xk+1 = xk + sk for some feasible step sk determined during the
course of the exploratory moves. The hypotheses listed in Figure 3.1 on the result of
the bound constrained exploratory moves allow a broad choice of exploratory moves
while ensuring the properties required to prove convergence. By abuse of notation, if
A is a matrix, y ∈ A means that the vector y is a column of A.

PATTERN SEARCH ALGORITHMS FOR BOUND CONSTRAINTS 1087

1. sk ∈ ∆kPk ≡ ∆kBCk ≡ ∆k [BΓk BLk].
2. (xk + sk) ∈ Ω.
3. If min { f(xk + y) | y ∈ ∆kBΓk, xk + y ∈ Ω } < f(xk),

then f(xk + sk) < f(xk).

Fig. 3.1. Hypotheses on the result of the bound constrained exploratory moves.

Let x0 ∈ Ω and ∆0 > 0 be given.
For k = 0, 1, . . . ,

a. compute f(xk).
b. determine a step sk using a bound constrained exploratory moves algorithm.
c. if f(xk + sk) < f(xk), then xk+1 = xk + sk. Otherwise xk+1 = xk.
d. update Ck and ∆k.

Fig. 3.2. The generalized pattern search method for bound constrained problems.

Let τ ∈ Q, τ > 1, and {w0, w1, . . . , wL} ⊂ Z, w0 < 0, and wi ≥ 0, i = 1, . . . , L. Let
θ = τw0 and λk ∈ Λ = {τw1 , . . . , τwL}.

a. If f(xk + sk) ≥ f(xk), then ∆k+1 = θ∆k.
b. If f(xk + sk) < f(xk), then ∆k+1 = λk∆k.

Fig. 3.3. Rules for updating ∆k.

3.3. The generalized pattern search method. Figure 3.2 states the gener-
alized pattern search method for minimization with bound constraints. To define a
particular pattern search method, we must specify the basis matrix B, the generating
matrix Ck, the bound constrained exploratory moves to be used to produce a feasible
step sk, and the algorithms for updating Ck and ∆k.

3.4. The updates. Figure 3.3 specifies the rules for updating ∆k. The aim of
the update of ∆k is to force a strict reduction in f . An iteration with f(xk + sk) <
f(xk) is successful; otherwise, the iteration is unsuccessful. Note that to accept a step
we require only simple, as opposed to sufficient, decrease.

The conditions on θ and Λ ensure that 0 < θ < 1 and λi ≥ 1 for all λi ∈ Λ. Thus,
if an iteration is successful it may be possible to increase the step length parameter
∆k, but ∆k is not allowed to decrease.

3.5. Differences between pattern search methods for unconstrained and
bound constrained minimization. There are only two additional restrictions re-
quired of pattern search methods to ensure convergence for the bound constrained
case.

First note that as we have defined them, pattern search methods for bound con-
strained minimization are feasible point methods; the search begins with a point that
satisfies the bounds and maintains feasibility throughout the search. This can be seen
in Figure 3.2, where we require x0 ∈ Ω. This requirement also appears in the hypothe-
ses on the result of the bound constrained exploratory moves given in Figure 3.1: if
simple decrease on the function value at the current iterate can be found among any
of the feasible trial steps contained in the columns of ∆kBΓk, then the exploratory
moves must produce a feasible step sk that also gives simple decrease on the function

1088 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

value at the current iterate.
The second, and more interesting, restriction is that the core pattern BMk must be

defined by a diagonal matrix. Because the columns of the pattern matrix determine
the directions of the steps that may be considered, we need to ensure that if we
are not at a constrained stationary point, we have at least one feasible direction of
descent. Moreover, we need a feasible direction of descent along which we will remain
feasible for a sufficiently long distance to avoid taking too short a step. This is a
crucial point since we do not enforce any notion of sufficient decrease. Practically, we
must ensure that we have directions that allow us to move parallel to the constraints.
Requiring BMk to be a diagonal matrix is sufficient, and as we saw in section 2, such
a requirement is unavoidable.

We note an equivalence between pattern search methods for bound constrained
problems and an exact penalization approach to problem (1.1). Applying a pattern
search method for problem (1.1) produces exactly the same iterates as applying such
an algorithm to the unconstrained problem

minimize F (x),

where

F (x) =

{
f(x) if x ∈ Ω,
∞ otherwise.

In fact, this is one classical approach used with direct search methods to ensure
that the iterates produced remain feasible (see, for instance, [10, 12, 13]). In the
case of pattern search methods this formulation is not simply a conceptual approach;
pattern search methods are directly applicable to this exact penalty function since
they do not rely on derivatives. However, as we demonstrated in section 2, this exact
penalization approach cannot be applied with an arbitrary pattern search method for
unconstrained minimization; we require that BMk be diagonal.

3.6. Results from the unconstrained theory. We recall the following results
from [16], to which we refer the reader for the proofs. The first result indicates one
sense in which ∆k regulates step length.

Lemma 3.1 (Lemma 3.1 from [16]). There exists a constant ζ∗ > 0, independent
of k, such that for any trial step sik 6= 0 produced by a generalized pattern search
method (Figure 3.2), we have ‖ sik ‖ ≥ ζ∗∆k.

The next result is key to the convergence of pattern search methods. It states that
the iterates produced by a pattern search method have a rigid algebraic structure.

Theorem 3.2 (Theorem 3.2 from [16]). Any iterate xN produced by a generalized
pattern search method (Figure 3.2) can be expressed in the following form:

xN = x0 +
(
βrLBα−rUB

)
∆0B

N−1∑
k=0

zk,(3.3)

where
• x0 is the initial guess;
• β/α ≡ τ , with α, β ∈ N and relatively prime, and τ is as defined in the rules

for updating ∆k given in Figure 3.3;
• rLB and rUB are integers depending on N ;
• ∆0 is the initial choice for the step length control parameter;

PATTERN SEARCH ALGORITHMS FOR BOUND CONSTRAINTS 1089

• B is the basis matrix; and
• zk ∈ Zn, k = 0, . . . , N − 1.

The last result we recollect says, in conjunction with Lemma 3.1, that if we bound
the size of the elements of the generating matrix (which is a reasonable thing to do),
then ∆k completely regulates the size of the steps a pattern search method takes.
This result is a direct consequence of the fact that sik = ∆kBc

i
k.

Lemma 3.3 (Lemma 3.6 from [16]). If there exists a constant C > 0 such that for
all k, C > ‖cik‖, for all i = 1, . . . , p, then there exists a constant ψ∗ > 0, independent
of k, such that for any trial step sik produced by a generalized pattern search method
(Figure 3.2) we have ∆k ≥ ψ∗‖sik‖.

4. Convergence theory. We now present the first-order constrained stationary
point convergence theory for pattern search methods for bound constrained problems.
We begin by defining, for feasible x, the quantity

q(x) = P (x− g(x))− x.

In the bound constrained theory the quantity q(x) plays the role of g(x) in the un-
constrained theory, giving us a continuous measure of how close we are to constrained
stationarity, as in the theory for methods based explicitly on derivatives (e.g., [5, 6, 8]).
The following proposition summarizes two results concerning q that we will shortly
need, particularly the fact that x is a constrained stationary point for (1.1) if and
only if q(x) = 0. While stated for the particular domain Ω, the proposition holds for
any closed convex domain. The results are classical; see section 2 of [8], for instance.

Proposition 4.1. Let x ∈ Ω. Then

‖ q(x) ‖ ≤ ‖ g(x) ‖,

and x is a stationary point for problem (1.1) if and only if q(x) = 0.
We can now state the first convergence result for the general pattern search

method for bound constrained minimization. Henceforth we will assume that LΩ(x0)
is compact and that f is continuously differentiable on an open neighborhood D of
LΩ(x0).

Theorem 4.2. Let LΩ(x0) be compact and suppose f is continuously differen-
tiable on an open neighborhood D of LΩ(x0). Let {xk} be the sequence of iterates
produced by a generalized pattern search method for bound constrained minimization
(Figure 3.2). Then

lim inf
k→+∞

‖ q(xk) ‖ = 0 .

The proof of this theorem is given in section 5.1, after we have established the
necessary intermediate results.

We can strengthen the result given in Theorem 4.2 in the same way that we do
in the unconstrained case [16]. First, we require the columns of the generating matrix
Ck to remain bounded in norm, i.e., that there exists a constant C > 0 such that for
all k, C > ‖cik‖, for all i = 1, . . . , p. Second, we replace the original hypotheses on the
result of the bound constrained exploratory moves with a stronger version, given in
Figure 4.1. Third, we require that limk→+∞∆k = 0. All the algorithms described in
section 6, except multidirectional search, satisfy this third condition because of the
customary choice of Λ = {1} ≡ {τ0}. However, it is not necessary to force the steps
to be nonincreasing.

1090 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

1. sk ∈ ∆kPk ≡ ∆kBCk ≡ ∆k [BΓk BLk].
2. (xk + sk) ∈ Ω.
3. If min { f(xk + y) | y ∈ ∆kBΓk, xk + y ∈ Ω } < f(xk),

then f(xk + sk) ≤ min { f(xk + y) | y ∈ ∆kBΓk, xk + y ∈ Ω }.

Fig. 4.1. Strong hypotheses on the result of the bound constrained exploratory moves.

Theorem 4.3. Let LΩ(x0) be compact and suppose f is continuously differen-
tiable on an open neighborhood D of LΩ(x0). In addition, assume that the columns
of the generating matrices are uniformly bounded in norm, that limk→+∞∆k = 0,
and that the generalized pattern search method for bound constrained minimization
(Figure 3.2) enforces the strong hypotheses on the result of the bound constrained ex-
ploratory moves (Figure 4.1). Then, for the sequence of iterates {xk} produced by the
generalized pattern search method for bound constrained minimization,

lim
k→+∞

‖q(xk)‖ = 0 .

The proof will be found in section 5.2.

5. Proof of Theorems 4.2 and 4.3. Throughout this section, xk will refer to
an iterate produced by a pattern search algorithm for bound constrained minimization.
By design, xk is feasible, i.e., xk ∈ Ω. Given an iterate xk, let gk = g(xk) and
qk = q(xk). Let B(x, δ) be the ball with center x and radius δ, and let ω denote the
following modulus of continuity of g(x): given x ∈ LΩ(x0) and ε > 0,

ω(x, ε) = sup { δ > 0 | B(x, δ) ⊂ D and ‖ g(y)− g(x) ‖ < ε for all y ∈ B(x, δ) } .
We begin with an elementary proposition concerning descent directions.
Proposition 5.1. Let s ∈ Rn and x ∈ LΩ(x0). Assume, too, that g(x) 6= 0 and

g(x)T s ≤ −ε‖ s ‖. Then, if ‖ s ‖ < ω(x, ε2),

f(x+ s)− f(x) ≤ −ε
2
‖ s ‖.

Proof. If ‖ s ‖ < ω(x, ε2), then the closed line segment [x, x + s] from x to x + s
is contained in D, where f is continuously differentiable. We may thus apply the
mean-value theorem; we have, for some y on the line segment between x and x+ s,

f(x+ s)− f(x) = g(x)T s+ (g(y)− g(x))
T
s

≤ −ε‖ s ‖+ ‖ g(y)− g(x) ‖‖ s ‖.
If ‖ s ‖ < ω(x, ε2), then ‖ g(y)− g(x) ‖ ≤ ε

2 and the result follows.
It is in the proof of the next result that the bound constrained and the un-

constrained cases differ most. The proof of Proposition 5.2 implicitly relies on the
fact that in the bound constrained case, the directions in the pattern defined by the
columns of BMk are coordinate directions and thus are oriented normal and tangent
to the faces of the feasible region. That this is not merely convenient is clear from
the example given in section 2.

Proposition 5.2. Suppose that qk 6= 0. Then there exists a νk > 0 such that
if ∆k < νk, then there is a trial step sik defined by a column of ∆kBΓk for which
(xk + sik) ∈ Ω and

gTk s
i
k ≤ −n−

1
2 ‖ qk ‖‖ sik ‖.

PATTERN SEARCH ALGORITHMS FOR BOUND CONSTRAINTS 1091

Proof. We restrict our attention to the steps defined by the columns of ∆kBΓk; by
hypothesis, ∆kBΓk ≡ ∆kB[Mk −Mk] = ∆k[diag(dik) − diag(dik)] (see (3.2)). Choose
an index m for which

| qk,m | = ‖ qk ‖∞ ≥ n− 1
2 ‖ qk ‖,(5.1)

where qk,m is the mth component of qk. Note that it is also the case that

| gk,m | ≥ | qk,m |(5.2)

and sign(gk,m) = sign(qk,m).
Let sik = − sign(gk,m)∆k | dmk | em; this vector will be among the columns of

∆kBΓk. Since xk + qk = P (xk − gk) is feasible, we have ` ≤ xk + qk ≤ u and
thus

`m ≤ xk,m + qk,m ≤ um.

It follows that if ∆k | dmk | ≤ | qk,m |, then the trial point xik = xk + sik will be feasible.
Moreover, from (5.1) and (5.2),

gTk s
i
k = − sign(gk,m)∆k | dmk | gk,m = −‖ sik ‖ | gk,m | ≤ −n−

1
2 ‖ sik ‖‖ qk ‖.

Defining νk = ‖ qk ‖∞/ | dmk | then does the trick.
Proposition 5.3. Given any η > 0, there exists δ > 0, independent of k, such

that if ∆k < δ and ‖ qk ‖ > η, the pattern search method for bound constrained
minimization (Figure 3.2) will find an acceptable step sk, i.e., f(xk+sk) < f(xk) and
(xk + sk) ∈ Ω.

If, in addition, the columns of the generating matrix remain bounded in norm and
we enforce the strong hypotheses on the result of the bound constrained exploratory
moves (Figure 4.1), then, given any η > 0, there exist δ > 0 and σ > 0, independent
of k, such that if ∆k < δ and ‖ qk ‖ > η, then

f(xk+1) ≤ f(xk)− σ‖ qk ‖‖ sk ‖.

Proof. Since g(x) is uniformly continuous on LΩ(x0) and LΩ(x0) is a compact
subset of the open set D, there exists ω∗ > 0 such that

ω
(
xk, n

− 1
2 η
)
≥ ω∗

for all k for which ‖ qk ‖ > η.
Next, choose d∗ > 0 such that dik ≤ d∗ for all i and k. This we can do because

the set {dik} is finite (see (3.2) and the conditions on Mk given in section 3.1). Let

ν∗ =
n−

1
2 η

d∗
;

then

ν∗ =
n−

1
2 η

d∗
≤ n−

1
2 ‖ qk ‖
d∗

≤ ‖ qk ‖∞
d∗

≤ νk

for all k for which ‖ qk ‖ > η, where νk is as in Proposition 5.2.

1092 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

Finally, let

δ = min (ν∗, ω∗/d∗) .

Now suppose ‖ qk ‖ > η and ∆k < δ. Since ∆k < νk, Proposition 5.2 assures us of
the existence of a step sik defined by a column of ∆kBΓk such that (xk + sik) ∈ Ω and

gTk s
i
k ≤ −n−

1
2 ‖ qk ‖‖ sik ‖.

At the same time, we also have

‖ sik ‖ ≤ ∆kd
∗ ≤ ω∗ ≤ ω

(
xk, n

− 1
2 ‖ qk ‖

)
.

So, by Proposition 5.1,

f(xk + sik)− f(xk) ≤ −1

2
n−

1
2 ‖ qk ‖‖ sik ‖.

Thus, when ∆k < δ, f(xik) ≡ f(xk+sik) < f(xk) for at least one feasible sik ∈ ∆kBΓk.
The hypotheses on the result of the bound constrained exploratory moves guarantee
that if

min { f(xk + y) | y ∈ ∆kBΓk, xk + y ∈ Ω } < f(xk),

then f(xk+sk) < f(xk) and (xk+sk) ∈ Ω. This proves the first part of the proposition.
If, in addition, we enforce the strong hypotheses on the result of the bound con-

strained exploratory moves, then we actually have

f(xk+1)− f(xk) ≤ −1

2
n−

1
2 ‖ qk ‖‖ sik ‖.

Lemma 3.1 then ensures that

f(xk+1) ≤ f(xk)− 1

2
n−

1
2 ζ∗∆k‖ qk ‖.

Applying Lemma 3.3, we arrive at

f(xk+1) ≤ f(xk)− σ‖ qk ‖‖ sk ‖,

where σ = 1
2n
− 1

2 ζ∗ψ∗.
Corollary 5.4. If lim infk→+∞ ‖ qk ‖ 6= 0, then there exists a constant

∆∗ > 0 such that for all k, ∆k > ∆∗.
Proof. By hypothesis, there exists K and η > 0 such that for all k > K, ‖ qk ‖ > η.

By Proposition 5.3, we can find δ such that if k > K and ∆k < δ, then we
will find an acceptable step. In view of the rules for updating ∆k given in Fig-
ure 3.3, we are assured that for all k > K, ∆k > θδ. We may then take ∆∗ =
min{∆0, . . . ,∆K , θδ}.

The next theorem combines the strict algebraic structure of the iterates with
the simple decrease condition of the generalized pattern search algorithm for bound
constrained problems (Figure 3.2), along with the rules for updating ∆k (Figure 3.3),
to give us a useful fact about the limiting behavior of ∆k.

Theorem 5.5. Assume that LΩ(x0) is compact. Then lim infk→+∞∆k = 0.

PATTERN SEARCH ALGORITHMS FOR BOUND CONSTRAINTS 1093

Proof. The proof is like that of Theorem 3.3 in [16]. Suppose 0 < ∆LB ≤ ∆k for
all k. Using the rules for updating ∆k found in Figure 3.3, it is possible to write ∆k

as ∆k = τ rk∆0, where rk ∈ Z.
The hypothesis that ∆LB ≤ ∆k for all k means that the sequence {τ rk} is bounded

away from zero. Meanwhile, we also know that the sequence {∆k} is bounded above
because all the iterates xk must lie inside the set LΩ(x0) = {x ∈ Ω : f(x) ≤ f(x0)}
and the latter set is compact; Lemma 3.1 then guarantees an upper bound ∆UB for
{∆k}. This, in turn, means that the sequence {τ rk} is bounded above. Consequently,
the sequence {τ rk} is a finite set. Equivalently, the sequence {rk} is bounded above
and below.

Next we recall the exact identity of the quantities rLB and rUB in Theorem 3.2;
the details are found in the proof of Theorem 3.3 in [16]. At iteration N we have

rLB = min
0≤k<N

{rk}, rUB = max
0≤k<N

{rk}.

If, in the matter at hand, we let

rLB = min
0≤k<+∞

{rk}, rUB = max
0≤k<+∞

{rk},(5.3)

then (3.3) holds for the bounds given in (5.3), and we see that for all k, xk lies in the
translated integer lattice G generated by x0 and the columns of βrLBα−rUB∆0B.

The intersection of the compact set LΩ(x0) with the lattice G is finite. Thus,
there must exist at least one point x∗ in the lattice for which xk = x∗ for infinitely
many k.

We now appeal to the simple decrease condition (c) in Figure 3.2, which guaran-
tees that an iterate cannot be revisited infinitely many times since we accept a new
step sk if and only if f(xk) > f(xk + sk) and (xk + sk) ∈ Ω. Thus there exists an N
such that for all k ≥ N , xk = x∗, which implies that f(xk) = f(xk + sk).

We now appeal to the rules for updating ∆k (Figure 3.3, part (a)) to see that
∆k → 0, thus leading to a contradiction.

5.1. Proof of Theorem 4.2. The proof is like that of Theorem 3.5 in [16].
Suppose that lim infk→+∞ ‖ q(xk) ‖ 6= 0. Then Corollary 5.4 tells us that there exists
∆∗ > 0 such that for all k, ∆k ≥ ∆∗. But this contradicts Theorem 5.5.

5.2. Proof of Theorem 4.3. The proof, also by contradiction, follows that of
Theorem 3.7 in [16]. Suppose lim supk→+∞ ‖ q(xk) ‖ 6= 0. Let ε > 0 be such that
there exists a subsequence ‖ q(xmi) ‖ ≥ ε. Since

lim inf
k→+∞

‖ q(xk) ‖ = 0,

given any 0 < η < ε, there exists an associated subsequence li such that

‖ q(xk) ‖ > η for mi ≤ k < li, ‖ q(xli) ‖ < η.

Since ∆k → 0, we can appeal to Proposition 5.3 to obtain for mi ≤ k < li, i sufficiently
large,

f(xk)− f(xk+1) ≥ σ‖ q(xk) ‖‖ sk ‖ ≥ ση‖ sk ‖,
where σ > 0. Then the telescoping sum,

(f(xmi)− f(xmi+1)) + (f(xmi+1)− f(xmi+2)) + · · ·+ (f(xli−1)− f(xli))

≥
li∑

k=mi

ση‖ sk ‖,

1094 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

gives us

f(xmi)− f(xli) ≥ ∑li
k=mi

ση‖ sk ‖ ≥ c′‖ xmi − xli ‖.

Since f is bounded below, f(xmi) − f(xli) → 0 as i → +∞, so ‖ xmi − xli ‖ → 0
as i → +∞. Then, because q is uniformly continuous, ‖ q(xmi) − q(xli) ‖ < η for i
sufficiently large. However,

‖ q(xmi) ‖ ≤ ‖ q(xmi)− q(xli) ‖+ ‖ q(xli) ‖ ≤ 2η.(5.4)

Since (5.4) must hold for any η, 0 < η < ε, we have a contradiction (e.g., try η = ε
4).

6. Examples of pattern search methods for bound constrained mini-
mization. A section of [16] is devoted to showing that each of the following four
algorithms are pattern search methods for unconstrained minimization:

• coordinate search with fixed step lengths,
• evolutionary operation using two-level factorial designs [1, 3, 14],
• the original pattern search method of Hooke and Jeeves [9], and
• the multidirectional search algorithm of Dennis and Torczon [7, 15].

In this section we will discuss how these algorithms may be extended to bound con-
strained problems. We shall see that coordinate search and the pattern search method
of Hooke and Jeeves extend without modification to the bound constrained case. Con-
versely, in the case of multidirectional search, we must require the initial basis matrix
to be a diagonal matrix (in the unconstrained case, we can allow any nonsingular
basis matrix); in addition, we must augment the columns of the generating matrix
to ensure a sufficient set of search directions. In the case of evolutionary operation,
we also must augment the columns of the generating matrix, which we do using a
classical variant of factorial designs [2].

The difference between pattern search methods for unconstrained problems and
bound constrained problems lies in the two additional conditions discussed in sec-
tion 3.5. First, pattern search methods for bound constrained problems must start
with a feasible iterate and choose feasible trial steps. Second, the core pattern BMk

must be defined by a diagonal matrix.
We assume that we begin with a feasible iterate; by design, pattern search meth-

ods for bound constrained problems thereafter accept only feasible iterates. Thus, the
only thing we need to check is that the core pattern BMk is defined by a diagonal
matrix.

It is this latter condition that causes us to restrict the admissible choice of the
basis matrix in multidirectional search and then augment the columns of the generat-
ing matrix. Moreover, G.E.P. Box’s method of evolutionary operation using two-level
factorial designs does not satisfy this diagonality condition; in section 2 we presented
a simple counterexample that showed how evolutionary operation can fail as a conse-
quence in the bound constrained case.

6.1. Coordinate search and the pattern search method of Hooke and
Jeeves. Coordinate search and the pattern search method of Hooke and Jeeves ex-
tend to bound constrained problems without change. In both cases the basis matrix
B is typically chosen to be a diagonal matrix: either the identity or a matrix whose
entries reflect the relative scaling of the variables. Furthermore, the first 3n columns
of Ck, which are fixed for all iterations k of both algorithms, are composed of all
possible combinations of {−1, 0, 1}. In [16] these columns are organized so that the

PATTERN SEARCH ALGORITHMS FOR BOUND CONSTRAINTS 1095

first 2n consist of the identity matrix I and its negative −I. In terms of our formal-
ism, then, Mk = I for all iterations k. It follows that BMk is a diagonal matrix, as
required.

6.2. Evolutionary operation using factorial design. In section 2 a simple
example sufficed to show that evolutionary operation cannot be used for bound con-
strained minimization without alteration. In terms of our formalism, the problem is
the following: For the evolutionary operation algorithm using factorial designs, the
basis matrix B is usually selected to be the identity or a diagonal matrix chosen so
that the entries along the diagonal represent the relative scaling among the variables.
However, this convention is not sufficient to ensure that BMk is a diagonal matrix.
The problem lies with the generating matrix C = [M −M L]. (The generating ma-
trix C is fixed across all iterations of evolutionary operation.) The generating matrix
contains in its columns all possible combinations of {−1, 1} to which is appended a
column of zeros. Clearly, no subset of n columns of C can be chosen to form a diagonal
matrix M .

As noted in section 2, one remedy would be to use a composite design [2]. An
example of such a design that satisfies the requirements of the bound constrained
global convergence theory would be to choose M to be the diagonal matrix with
entries of 2 along the diagonal. These 2n columns augment the original pattern of
factorial design. This was illustrated in Figure 2.3.

6.3. Multidirectional search. The reader should be forewarned that our de-
scription and discussion of multidirectional search take a point of view that is osten-
sibly at odds with the formalism of section 3.1. The generating matrix Γ is viewed
as fixed; typically Γ = [M −M] ≡ [I −I]. The basis matrix, on the other hand, is
viewed as varying from iteration to iteration so that Bk corresponds to the edges in
the current simplex that are adjacent to the current iterate xk. This is the reverse of
the discussion in section 3.1, where B is fixed and Γk varies. However, the former view
of multidirectional search is not incompatible with the formalism of pattern search
methods, as noted in [16], and as we shall have reason to discuss here.

The extension of multidirectional search to problems with bound constraints re-
quires us to restrict the choice of a starting simplex and to augment the columns of
the generating matrix.

The first restriction is minor and is usually satisfied by the customary choices
made in practice. In multidirectional search, the columns of B0 are formed from the
edges of an initial simplex adjacent to the initial iterate x0, which is one of the n+ 1
vertices of the simplex. In the case of bound constraints, we restrict the starting
simplex to be a right-angled simplex; i.e., the vertices of the simplex are x0 and the
points x0+αiei, where αi ∈ R and i = 1, . . . , n. Because of this choice, B0 = diag(αi).
Since M ≡ I, the product B0M is a diagonal matrix.

However, even if the initial simplex is restricted to be a right-angled simplex so
that B0M is diagonal, there is no guarantee that in subsequent iterations BkM will be
diagonal. To understand why this is so, and how this may be corrected by augmenting
the columns of the generating matrix, we need to discuss how multidirectional search
fits within the formalism of pattern search methods. These details are absent from
[16], so we present them here.

At iteration k, the basis matrix is

Bk =
[
b1k · · · bnk

]
=
[
(v1
k − v0

k) · · · (vnk − v0
k)
]
,

1096 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

where vik, i = 0, . . . , n, are the vertices of the simplex associated with multidirectional
search at this iteration. Define

Ti =

{
I, i = 0,

− (I − eieTi −∑n
m=1 eie

T
m

)
, i = 1, . . . , n.

Now consider what happens in the next iteration. If the iteration is unsuccessful, then
v0
k+1 = v0

k and the new basis for the pattern, which is determined by the edges of the
simplex emanating from v0

k+1, is

Bk+1 = Bk = BkT0.

If, on the other hand, the iteration is successful, then v0
k+1 = v0

k − (vjk − v0
k) for some

j ∈ {1, . . . , n}, and the new basis will be the set of vectors

bik+1 =

{
bjk if i = j,

−bik + bjk otherwise.

In this case,

Bk+1 = BkTj .

Thus, in general,

Bk+1 = BkTjk+1
,(6.1)

and so

Bk = Bk−1Tjk = Bk−2Tjk−1
Tjk = · · · = B0

k∏
i=1

Tji .(6.2)

Our next goal is to simplify this relation further.
First note that

T`ei =

{
e` if i = `,

e` − ei if i 6= `.
(6.3)

Let E(i, `) denote the elementary permutation matrix that swaps the ith and `th
columns when acting on matrices from the right; we have

E(i, `) = I − eieTi − e`eT` + e`e
T
i + eie

T
` .

Using (6.3), we find that if i 6= `, then

T`E(i, `) = T` + eie
T
i − eieT`(6.4)

and

(Ti (−T`)) ei = e`.(6.5)

Meanwhile, a short calculation shows that for i, ` = 1, . . . , n,

TiT` = I − e`eT` −
n∑

m=1

e`e
T
m − eieTi + δi`eie

T
` + δi`

n∑
m=1

eie
T
m + eie

T
` ,

PATTERN SEARCH ALGORITHMS FOR BOUND CONSTRAINTS 1097

where δi` is the Kronecker delta. If i = `, this reduces to

TiTi = I,(6.6)

and if i 6= `, using (6.4) we obtain

TiT` = I − e`eT` −
n∑

m=1

e`e
T
m − eieTi + eie

T
`

= −T` − eieTi + eie
T
` = −T`E(i, `).(6.7)

From (6.6) and (6.7) we obtain the rule

TiT` =

{
I if i = `,

−T`E(i, `) otherwise.
(6.8)

We can then use (6.8) to reduce (6.2) to

Bk = ±B0T`kΠk

for some T`k and permutation matrix Πk.
This relationship reveals several things. The first is that it reconciles the usual

description of multidirectional search with the formal abstract definition of a pattern
search method; the pattern matrix is given by

BkC = ±B0TjkΠk[I −I 0] = B0[Tjk − Tjk 0]Πk ≡ BCk.(6.9)

That is, we may interpret multidirectional search in terms of a fixed basis B and a
changing generating matrix Ck.

We can also see that while BΓ0 will be diagonal, this diagonality may be lost
in subsequent iterations. However, the form of the generic pattern from the un-
constrained algorithm suggests one way to circumvent this problem in the bound
constrained case. This remedy will, moreover, preserve the geometric interpretation
of the pattern in multidirectional search in terms of a simplex.

First, if we ignore the permutation in (6.9), which affects only column ordering,
the pattern at iteration k in the unconstrained case is given by

BkC ≡ BCk = B0[Tjk − Tjk 0].

Suppose we augment the columns of C to include all the Ti:

C = [−T0 −T1 · · · −Tn 0].

At any iteration k, up to a column permutation, the basis matrix is the matrix
Bk = ±BTjk , jk ∈ {0, . . . , n}. When we then form the pattern Pk = ∆kBkC, we
have

Pk = ∆kBkC = ∆kB[±TjkT0 ±TjkT1 · · · ±TjkTn 0] ≡ ∆kBCk.

Now note that (6.5) means that for jk 6= l, the jkth column of −TjkT` is the `th basis
vector. Consequently, we are guaranteed that by a permutation of the columns of Ck,

Ck = [I −I Lk] ≡ [Γ Lk],

1098 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

where Lk changes at each iteration, but Γ does not. Since we require the initial simplex
to be a right-angled simplex, we may then be assured that BΓ = [diag(αi) −diag(αi)],
as required.

Moreover, this augmentation of C and the search through its columns can be
implemented in a way that preserves the relationship of the pattern to the moving
simplex that characterizes multidirectional search. This is possible because the ma-
trices Ti, i = 0, . . . , n, capture how the basis changes in association with a change
of simplex. This is the gist of (6.1). The implications for any implementation of
this modification to multidirectional search to handle bound constraints will appear
elsewhere.

7. Conclusion. We have presented a reasonable extension of pattern search
methods for unconstrained minimization to bound constrained problems. The ex-
tension is supported by a global convergence theory as strong as that for the uncon-
strained case. The generalization imposes few additional requirements, and as we have
seen in section 6, the classical pattern search methods for unconstrained minimization
or straightforward variants thereof carry over to the bound constrained case.

One issue we have not discussed is that of identifying active constraints, as in
[4, 5]. One would wish to show that if the sequence {xk} converges to a nondegenerate
stationary point x∗, then in a finite number of iterations the iterates xk land on the
constraints active at x∗ and remain thereafter on those constraints.

There are three difficulties in proving such a result for pattern search methods for
bound constrained minimization. The first is minor. If the iterates xk are to identify
the active constraints for a stationary point on the boundary of the feasible region,
we must ensure that the lattice manifest in Theorem 3.2 actually allows iterates to
land on the boundary. This requires additional but straightforward conditions on
such quantities as x0, τ,∆0, and the pattern matrices Pk (see, for instance, [17]). A
related but more subtle difficulty is that the relative sizes of the steps in the core
pattern and the remaining points in the pattern must obey certain relations in order
to ensure that the algorithm does not take a purely interior approach to a point on
the boundary. This rules out, for instance, certain of the composite designs suggested
by Box and Wilson [2].

The most serious obstacle is showing that ultimately the iterates will land on
the active constraints and remain there. For algorithms such as those considered
in [4, 5], this is not a problem because the explicit use of the gradient impels the
iterates to do this in the neighborhood of a nondegenerate stationary point. However,
pattern search methods do not have this information. On the other hand, the kinship
of pattern search methods and gradient projection methods makes us hopeful that
ultimately we will be able to prove that pattern search methods also identify the
active constraints in a finite number of iterations.

One can also extend pattern search methods to linearly constrained minimization
[11]. The specification of pattern search methods for handling general linear inequal-
ities is more involved, and the analysis is lengthier and more complicated. For bound
constrained problems the analysis is enormously simplified because of the straightfor-
ward geometry of the feasible region and the fact that we know the explicit form of
the projected gradient.

Acknowledgments. We wish to thank Margaret Wright for her helpful com-
ments, particularly her suggestion that we include an introductory example that pro-
vides some intuition about how these methods work. We also wish to thank Chen
Xin for catching an error in an earlier version of the paper.

PATTERN SEARCH ALGORITHMS FOR BOUND CONSTRAINTS 1099

REFERENCES

[1] G. E. P. Box, Evolutionary operation: A method for increasing industrial productivity, Appl.
Statist., 6 (1957), pp. 81–101.

[2] G. E. P. Box and K. B. Wilson, On the experimental attainment of optimum conditions, J.
Roy. Statist. Soc. Ser. B, XIII (1951), pp. 1–45.

[3] M. J. Box, D. Davies, and W. H. Swann, Non-Linear Optimization Techniques, ICI Mono-
graph 5, Oliver & Boyd, Edinburgh, Scotland, 1969.

[4] J. V. Burke and J. J. Moré, On the identification of active constraints, SIAM J. Numer.
Anal., 25 (1988), pp. 1197–1211.

[5] P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained problems,
Math. Programming, 39 (1987), pp. 93–116.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Global convergence of a class of trust
region algorithms for optimization with simple bounds, SIAM J. Numer. Anal., 25 (1988),
pp. 433–460.

[7] J. E. Dennis, Jr. and V. Torczon, Direct search methods on parallel machines, SIAM J.
Optim., 1 (1991), pp. 448–474.

[8] J. C. Dunn, Global and asymptotic convergence rate estimates for a class of projected gradient
processes, SIAM J. Control Optim., 19 (1981), pp. 368–400.

[9] R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems, J.
Assoc. Comput. Mach., 8 (1961), pp. 212–229.

[10] D. L. Keefer, Simpat: Self-bounding direct search method for optimization, Indust. Engrg.
Chem. Process Design Develop., 12 (1973), pp. 92–99.

[11] R. M. Lewis and V. J. Torczon, Pattern search methods for linearly constrained minimiza-
tion, SIAM J. Optim., to appear.

[12] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J., 7
(1965), pp. 308–313.

[13] W. Spendley, G. R. Hext, and F. R. Himsworth, Sequential application of simplex designs
in optimisation and evolutionary operation, Technometrics, 4 (1962), pp. 441–461.

[14] W. H. Swann, Direct search methods, in Numerical Methods for Unconstrained Optimization,
W. Murray, ed., Academic Press, London, New York, 1972, pp. 13–28.

[15] V. Torczon, Multi-Directional Search: A Direct Search Algorithm for Parallel Machines,
Ph.D. thesis, Department of Mathematical Sciences, Rice University, Houston, TX, 1989;
available as Tech. report 90-07, Department of Computational and Applied Mathematics,
Rice University, Houston, TX.

[16] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),
pp. 1–25.

[17] M. W. Trosset and V. Torczon, Numerical Optimization Using Computer Experiments,
ICASE Report No. 97-38, Institute for Computer Applications in Science and Engineering,
NASA Langley Research Center, Hampton, VA, 1997.

NEWTON’S METHOD FOR LARGE BOUND-CONSTRAINED
OPTIMIZATION PROBLEMS∗

CHIH-JEN LIN† AND JORGE J. MORÉ‡

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1100–1127

To John Dennis on the occasion of his 60th birthday.

Abstract. We analyze a trust region version of Newton’s method for bound-constrained prob-
lems. Our approach relies on the geometry of the feasible set, not on the particular representation
in terms of constraints. The convergence theory holds for linearly constrained problems and yields
global and superlinear convergence without assuming either strict complementarity or linear inde-
pendence of the active constraints. We also show that the convergence theory leads to an efficient
implementation for large bound-constrained problems.

Key words. bound-constrained optimization, preconditioned conjugate gradients, projected
gradients, strict complementarity

AMS subject classifications. 65F10, 90C06, 90C30

PII. S1052623498345075

1. Introduction. We analyze a trust region version of Newton’s method for the
optimization problem

min {f(x) : x ∈ Ω} ,(1.1)

where f : Rn → R is a continuously differentiable mapping on the bound-constrained
set

Ω = {x ∈ Rn : l ≤ x ≤ u}.(1.2)

Our analysis relies on the geometry of Ω and applies, without change, to the case
where Ω is the linearly constrained set

Ω = {x ∈ Rn : li ≤ 〈ci, x〉 ≤ ui, i ∈ I}.(1.3)

The convergence theory yields results that are independent of the representation of
Ω in terms of constraints; in particular, we assume neither strict complementarity
(nonzero multipliers) nor linear independence of the active constraints.

Our main interest is in algorithms for large optimization problems. Thus the
convergence theory that we develop emphasizes algorithms that use iterative tech-
niques to solve the trust region subproblem while retaining superlinear convergence
of the trust region method. We show, in particular, how the convergence theory leads
to an efficient implementation of Newton’s method when the feasible set Ω is the
bound-constrained set (1.2).

∗Received by the editors September 23, 1998; accepted for publication (in revised form) May 21,
1999; published electronically September 24, 1999. This work was supported by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under contract W-31-109-Eng-38.

http://www.siam.org/journals/siopt/9-4/34507.html
†Department of Computer Science and Information Engineering, National Taiwan University,

Taipei 106, Taiwan (cjlin@csie.ntu.edu.tw). The work of this author was supported in part by
National Science Council of Taiwan grant NSC-88-2213-E-002-097 and National Science Foundation
grant CCR-9321550.
‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

(more@mcs.anl.gov).

1100

LARGE BOUND-CONSTRAINED OPTIMIZATION 1101

Our development of a convergence theory for Newton’s method yields three main
results. We first establish global convergence to a stationary point; that is, if {xk}
is the sequence generated by the trust region method, then every limit point of the
sequence is a stationary point for problem (1.1). We then establish the identification
properties of the algorithm by showing that if {xk} converges to some x∗, then there
is an integer k0 such that xk lands in the face exposed by −∇f(x∗) for all k ≥ k0.
Finally, we establish the local convergence properties of the algorithm. The main
result shows that if a strong second-order sufficiency condition holds at a limit point
x∗ of the trust region iterates, then the whole sequence {xk} converges to x∗ at a
superlinear rate.

Global and superlinear convergence for linearly constrained problems has been es-
tablished, in almost all cases, under the assumption of strict complementarity. More-
over, the algorithms that have been analyzed usually require the exact solution of
systems of linear equations. See, for example, [2, 22, 33, 18] for algorithms that use
ε-active constraints, [23, 20] for active set methods, [13, 25, 12, 21] for trust region
methods, and [9, 16, 11, 10] for interior-point methods. In recent work Heinkenschloss,
Ulbrich, and Ulbrich [24] analyzed an interior-point method without assuming strict
complementarity, but they proved only local convergence.

Lescrenier [25] and Facchinei and Lucidi [19] were the first to analyze algorithms
for bound-constrained problems that are superlinearly convergent without assuming
strict complementarity. Lescrenier analyzes the trust region method of Conn, Gould,
and Toint [13]. Facchinei and Lucidi analyze a line search algorithm based on a
differentiable exact penalty function that, unlike the algorithms for bound-constrained
problems that we have reviewed, generates iterates that need not be feasible.

We analyze a trust region method for the linearly constrained optimization prob-
lem (1.3) based on the convergence theory of Moré [27] and Burke, Moré, and Toraldo
[7]. The analysis relies on the geometric approach of Burke and Moré [6] for general
linearly constrained problems. We use projected searches [30] during the subspace
minimization phase, and thus we are able to add many constraints during this phase.
We show that global and superlinear convergence hold even if strict complementarity
fails for the general linearly constrained optimization problem (1.3).

The convergence theory for trust region methods presented in section 2 depends
on the definition of the Cauchy step sCk . The main result in this section shows that
global convergence to a stationary point is guaranteed if the step sk in the trust region
method achieves a fraction of the reduction achieved by the Cauchy step.

The standard development of identification properties for an optimization algo-
rithm shows that the active set settles down if the iterates converge to a stationary
point x∗. This approach is not possible if strict complementarity does not hold at
x∗. In section 3 we show that the sequence generated by the trust region method is
trapped by the face exposed by −∇f(x∗); section 3 provides a precise definition of
the face of a convex set exposed by a vector. If strict complementarity holds at x∗,
this result implies that the active set settles down.

In section 3 we also explore the concept of strict complementarity and its relation-
ship to the concept of an exposed face. In this paper we use the term nondegenerate
stationary point x∗ if strict complementarity holds at x∗ or, equivalently, if x∗ is in
the relative interior of the face exposed by −∇f(x∗).

Section 4 defines the projected searches that are used to explore the current face
of the feasible set. Projected searches are an important ingredient of the optimization
algorithm because they allow wider latitude in the choice of the next iterate. In

1102 CHIH-JEN LIN AND JORGE J. MORÉ

particular, the active constraints are allowed to change arbitrarily while requiring
only the approximate solution of a linear system.

Section 5 contains the major convergence results for the trust region Newton’s
method. We show that if a strong second-order sufficiency condition holds at a limit
point x∗ of the trust region iterates, then the whole sequence {xk} converges to x∗.
Previous results assumed strict complementarity and that the problem was bound-
constrained. We also show that if the sequence {xk} converges to x∗, then the rate of
convergence is at least superlinear.

Section 6 briefly outlines the implementation of TRON (version 1.0), a trust re-
gion Newton method for bound-constrained problems. Interesting features of this
implementation include the use of projected searches and a preconditioned conjugate
gradient method to determine the minor iterates and the use of a limited-memory
preconditioner. We use the incomplete Cholesky factorization icfs of Lin and Moré
[26] as a preconditioner since this factorization does not require the choice of a drop
tolerance, and the amount of storage can be specified in advance.

Section 7 presents the results of a comparison between TRON and the LANCELOT

[14] and L-BFGS-B [36] codes. These results show that on the problems described in this
section, TRON is generally more efficient, in terms of computing time, than LANCELOT

and L-BFGS-B. Caution must be exercised in drawing conclusions from these results
since, as noted in section 7, there are many differences between TRON and LANCELOT.

2. Trust region methods. In this section we present a trust region method for
the solution of optimization problems subject to linear constraints, but we emphasize
the case where Ω is the bound-constrained set (1.2). The algorithm that we present
was proposed by Moré [27] as a modification of the algorithm of Toint [35]. The
development in this section follows Moré [27] and Burke, Moré, and Toraldo [7].

At each iteration of a trust region method there is an approximation xk ∈ Ω
to the solution, a bound ∆k, and a model ψk : Rn → R of the possible reduction
f(xk + w)− f(xk) for ‖w‖ ≤ ∆k. We assume that the model ψk is the quadratic

ψk(w) = 〈∇f(xk), w〉+ 1
2 〈w,Bkw〉

for some symmetric matrix Bk. The matrix Bk is arbitrary for many of the results,
but the rate of convergence results usually requires that Bk be the Hessian matrix
∇2f(xk). Of course, it is possible to choose Bk = 0, and then the model is linear.

The description of the algorithm in terms of the quadratic ψk is appropriate when
we are interested in the step sk. However, we also use the quadratic

qk(x) = ψk(x− xk) = 〈∇f(xk), x− xk〉+ 1
2 〈x− xk, Bk(x− xk)〉

to describe the algorithm in terms of the iterates xk.
The iterate xk and the bound ∆k are updated according to rules that are standard

in trust region methods for unconstrained minimization. Given a step sk such that
xk + sk ∈ Ω and ψk(sk) < 0, these rules depend on the ratio

ρk =
f(xk + sk)− f(xk)

ψk(sk)
(2.1)

of the actual reduction in the function to the predicted reduction in the model. Since
the step sk is chosen so that ψk(sk) < 0, a step with ρk > 0 yields a reduction in the
function. Given η0 > 0, the iterate xk is updated by setting

xk+1 =

{
xk + sk if ρk > η0,
xk if ρk ≤ η0.

(2.2)

LARGE BOUND-CONSTRAINED OPTIMIZATION 1103

Any step sk with ρk > η0 is successful ; otherwise the step in unsuccessful. Under
suitable conditions, all steps (iterations) are eventually successful.

Updating rules for ∆k depends on positive constants η1 and η2 with η1 < η2 < 1,
while the rate at which ∆k is updated depends on positive constants σ1, σ2, and σ3

such that σ1 < σ2 < 1 < σ3. The trust region bound ∆k is updated by setting

∆k+1 ∈ [σ1 min{‖sk‖,∆k}, σ2∆k] if ρk ≤ η1,
∆k+1 ∈ [σ1∆k, σ3∆k] if ρk ∈ (η1, η2),
∆k+1 ∈ [∆k, σ3∆k] if ρk ≥ η2.

(2.3)

Similar rules are used in most modern trust region methods.
We choose a step sk that gives as much reduction in the model ψk as the Cauchy

step sCk generated by the gradient projection method applied to the subproblem

min {ψk(w) : xk + w ∈ Ω, ‖w‖ ≤ ∆k} .

The Cauchy step sCk is of the form sk(αk), where the function sk : R 7→ Rn is defined
by

sk(α) = P [xk − α∇f(xk)]− xk,

where P : Rn 7→ Ω is the projection into the feasible set Ω. If Ω is the bound-
constrained set (1.2), then the projection can be computed with at most 2n compar-
isons by

P (x) = mid (l, x, u) ,

where mid(·) is the componentwise median (middle) of the three vectors in the ar-
gument. The trust region method that we describe can be implemented efficiently if
there is an efficient algorithm for computing the projection P .

The scalar αk that determines the Cauchy step sCk is chosen so that sk(αk) pro-
duces a sufficient reduction. We require that

ψk(sk(αk)) ≤ µ0 〈∇f(xk), sk(αk)〉 , ‖sk(αk)‖ ≤ µ1∆k,(2.4)

for positive constants µ0 and µ1 such that µ0 <
1
2 . We also require that there are

positive constants γ1, γ2, and γ3 such that

αk ∈ [γ1, γ3] or αk ∈ [γ2α̃k, γ3],

where α̃k > 0 satisfies

ψk(sk(α̃k)) ≥ (1− µ0) 〈∇f(xk), sk(α̃k)〉 or ‖sk(α̃k)‖ ≥ µ1∆k.

The requirements on the Cauchy step sCk can be satisfied [27, 7] with a finite number
of evaluations of ψk. For additional details, see section 6.

We have described the requirements on the Cauchy step sCk in terms of the
quadratic ψk, but we could also use qk. In particular,

qk(xk + sCk) ≤ qk(xk) + µ0

〈∇qk(xk), sCk
〉

is the sufficient reduction condition (2.4).

1104 CHIH-JEN LIN AND JORGE J. MORÉ

Given the Cauchy step sCk , we require that the step sk satisfy

ψk(sk) ≤ µ0ψk(sCk), ‖sk‖ ≤ µ1∆k, xk + sk ∈ Ω.(2.5)

This requirement is quite natural and can always be satisfied by choosing sk = sCk .
However, this choice is likely to lead to slow convergence, because the method would
then reduce to a version of steepest descent. In the next section we explore other
choices that lead to superlinear and quadratic convergence.

Algorithm 2.1 summarizes the computations required to implement the trust re-
gion method. We assume that f : Rn 7→ R is continuously differentiable on Ω and
that ∆0 > 0 has been specified.

algorithm 2.1 (Trust region method).

For k = 0, . . . ,

Compute the model ψk.
Compute the Cauchy step sCk .
Compute a step sk that satisfies (2.5).
Compute the ratio ρk and update xk by (2.2).
Update ∆k according to (2.3).

Burke, Moré, and Toraldo [7] analyzed the trust region method of Algorithm 2.1
in terms of the Cauchy point

xCk ≡ P [xk + αk∇f(xk)] = xk + sCk .

Convergence results depend on a bound on the predicted decrease for the quadratic
ψk. This bound is based on the inequality

− 〈∇f(xk), sCk
〉 ≥ κ0

[‖xCk − xk‖
αk

]
min

{
∆k,

1

‖Bk‖
[‖xCk − xk‖

αk

]}
,(2.6)

where κ0 is a positive constant. This bound was obtained by Moré [27]. Other bounds
obtained for problems with bound constraints and, more generally, convex constraints
[13, 35, 12] do not yield the same information because they are not expressed in terms
of the Cauchy point.

The choice of sCk is an important ingredient in the trust region method. Our
choice of sCk is simple and can be implemented efficiently provided there is an efficient
algorithm for computing the projection P . For other choices, see [13, 35, 12].

Many of the convergence results in Burke, Moré, and Toraldo [7] are expressed in
terms of the projected gradient

∇Ωf(x) ≡ PT (x) [−∇f(x)] = argmin{‖v +∇f(x)‖ : v ∈ T (x)},

where the tangent cone T (x) is the closure of the cone of all feasible directions at
x ∈ Ω, and Ω is a general convex set. The term projected gradient is not entirely
appropriate. Indeed, since

min {〈∇f(x), v〉 : v ∈ T (x), ‖v‖ ≤ 1} = −‖∇Ωf(x)‖,(2.7)

it might be more appropriate to call ∇Ωf(x) the projected steepest descent direction.
The optimality property (2.7) follows from the properties of the projection on convex
cones; Calamai and Moré [8] provide a direct proof of (2.7).

LARGE BOUND-CONSTRAINED OPTIMIZATION 1105

The projected gradient should not be confused with the reduced gradient. When Ω
is the bound-constrained set (1.2), the reduced gradient is the vector with components
∂if(x) if li < xi < ui, while for the projected gradient

−[∇Ωf(x)]i =

 ∂if(x) if xi ∈ (li, ui),
min{∂if(x), 0} if xi = li,
max{∂if(x), 0} if xi = ui

(2.8)

if li < ui, with [∇Ωf(x)]i = 0 in the exceptional case where li = ui. The appearance
of the minus sign in this expression for the projected gradient is only a minor nuisance
because in our work we need only an expression for ‖∇Ωf(x)‖.

The projected gradient ∇Ωf can be used to characterize stationary points because
if Ω is a convex set, then x ∈ Ω is a stationary point of problem (1.1) if and only if
∇Ωf(x) = 0. In general, ∇Ωf is discontinuous, but as proved by Calamai and Moré
[8], if f : Rn → R is continuously differentiable on Ω, then the mapping x 7→ ‖∇Ωf(x)‖
is lower semicontinuous on Ω. This property implies that if {xk} is a sequence in Ω
that converges to x∗, and if {∇Ωf(xk)} converges to zero, then x∗ is a stationary point
of problem (1.1). In section 3 we show that the continuity properties of the projected
gradient are closely associated with the behavior of the optimization algorithm.

Theorem 2.1. Let f : Rn 7→ R be continuously differentiable on a closed, convex
set Ω, and let {xk} be the sequence generated by the trust region method. Assume that
{Bk} is uniformly bounded. If x∗ is a limit point of {xk}, then there is a subsequence
{xki} of successful steps that converges to x∗ with

lim
i→∞

‖∇Ωf(xCki)‖ = 0.(2.9)

Moreover, {xCki} also converges to x∗, and thus x∗ is a stationary point for problem
(1.1).

This result is due to Burke, Moré, and Toraldo [7, Theorem 5.5]. Similar conver-
gence results for bound-constrained and linearly constrained optimization algorithms
assert that every limit point of the algorithm is stationary, but they do not yield
any information on the projected gradient; in sections 3 and 5 we show that (2.9) in
Theorem 2.1 plays an important role in the convergence analysis. For a sampling of
recent convergence results, see [12, 18, 9, 16, 20, 33].

3. Exposing constraints. Identification properties are an important compo-
nent of the convergence analysis of an algorithm for linearly constrained problems.
We show that if x∗ is a stationary point and Ω is the polyhedral set (1.3), then the
iterates {xk} generated by the trust region method tend to lie in the face exposed by
the direction −∇f(x∗).

The notion of an exposed face arises in convex analysis, where the face of a convex
set Ω exposed by the vector d ∈ Rn is

E[d] ≡ argmax {x ∈ Ω : 〈d, x〉} .
A short computation shows that when Ω = [l, u] is the bound-constrained set (1.2)
and d = −∇f(x∗), then

E [−∇f(x∗)] = {x ∈ [l, u] : xi = li if ∂if(x∗) > 0 and xi = ui if ∂if(x∗) < 0}
is the face of (1.2) exposed by the direction −∇f(x∗). A similar expression holds if Ω
is the polyhedral set defined by (1.3). If x∗ is a stationary point of the optimization

1106 CHIH-JEN LIN AND JORGE J. MORÉ

problem (1.1), then there are Lagrange multipliers such that

∇f(x∗) =
∑

i∈A(x∗)

λ∗i ci,

where λ∗i is unrestricted in sign if li = ui, but

λ∗i ≥ 0 if 〈ci, x∗〉 = li, λ∗i ≤ 0 if 〈ci, x∗〉 = ui,

and A(x) is the set of active constraints at x ∈ Ω defined by

A(x) = {i ∈ I : 〈ci, x〉 ∈ {li, ui}}.

Since this definition of the active set does not distinguish between lower and upper
bounds, we avoid this problem by interpreting the inclusion A(x) ⊂ A(y) to mean

Al(x) ⊂ Al(y), Au(x) ⊂ Au(y),

where

Al(x) = {i ∈ I : 〈ci, x〉 = li}, Au(x) = {i ∈ I : 〈ci, x〉 = ui}.

With this interpretation, if 〈ci, x〉 = li and A(x) ⊂ A(y), then 〈ci, y〉 = li. For most
results we need to know only that 〈ci, x〉 ∈ {li, ui}, and then the first definition of the
active set is suitable.

The face exposed by −∇f(x∗) is determined by the nonzero multipliers. Indeed,
a computation based on the definition of a face shows that

E [−∇f(x∗)] = {x ∈ Ω : 〈ci, x〉 = li if λ∗i > 0 and 〈ci, x〉 = ui if λ∗i < 0}.(3.1)

Note that this expression for E [−∇f(x∗)] is valid for any choice of Lagrange multi-
pliers.

Burke and Moré [6] provide additional information on exposed faces. In particular,
they note that for Ω convex, x∗ is a stationary point for the optimization problem
(1.1) if and only if x∗ ∈ E [−∇f(x∗)].

Dunn [17] defines x∗ to be a nondegenerate stationary point if −∇f(x∗) lies in
the relative interior of the normal cone

N(x∗) = {u ∈ Rn : 〈u, y − x∗〉 ≤ 0, y ∈ Ω} .

Burke and Moré [6] relate nondegeneracy to the geometry of E [−∇f(x∗)] by proving
that x∗ is nondegenerate if and only if x∗ lies in the relative interior of the face
E [−∇f(x∗)]. These two definitions rely only on the geometry of Ω. If Ω is expressed
in terms of constraints, then nondegeneracy can be shown [5] to be equivalent to the
existence of a set of nonzero Lagrange multipliers. Thus, a stationary point x∗ is
nondegenerate as defined by Dunn [17] if and only if strict complementarity holds at
x∗. We can also show [6, Theorem 5.3] that

x ∈ E [−∇f(x∗)] ⇐⇒ A(x∗) ⊂ A(x)(3.2)

whenever x∗ is nondegenerate. Thus, for nondegenerate problems, landing in the face
E [−∇f(x∗)] can be described in terms of active sets.

LARGE BOUND-CONSTRAINED OPTIMIZATION 1107

−∇f(x∗)

Fig. 3.1. The exposed face E [−∇f(x∗)] for a degenerate problem.

Figure 3.1 illustrates some of the properties of exposed faces. In this case x∗ is in
the relative boundary of the face, so this problem is degenerate. Note that in this case
(3.2) fails because A(x∗) may not be a subset of A(x) for x ∈ E [−∇f(x∗)]. Finally,
note that x− y is orthogonal to ∇f(x∗) whenever x and y are in E [−∇f(x∗)]. This
last observation holds for any convex set Ω because the mapping x 7→ 〈∇f(x∗), x〉 is
constant on E [−∇f(x∗)].

For nondegenerate problems we can show that eventually all iterates land in the
relative interior of E [−∇f(x∗)]. For degenerate problems this is not possible, but we
can show that eventually all iterates land in E [−∇f(x∗)]. We first prove a technical
result that shows that if {xk} is any sequence that converges to a stationary point
x∗, and xk lands in E [−∇f(x∗)], then xCk remains in E [−∇f(x∗)]. We need the
following result of Burke and Moré [6, Theorem 4.2].

Theorem 3.1. Let f : Rn 7→ R be continuously differentiable on the polyhedral
set Ω, and let {xk} be any sequence in Ω that converges to a stationary point x∗. Then

lim
k→+∞

‖∇Ωf(xk)‖ = 0

if and only if there is an index k0 with xk ∈ E [−∇f(x∗)] for k ≥ k0.
Theorem 3.1 is of interest because it provides a means to show that iterates land

in the exposed face E [−∇f(x∗)]. Note that in this result {xk} can be any sequence
in Ω. We now show that if xk lands in E [−∇f(x∗)], then xCk remains in E [−∇f(x∗)].

Theorem 3.2. Let f : Rn 7→ R be continuously differentiable on the polyhedral
set Ω, and let {xk} be any sequence that converges to a stationary point x∗. If xk is
in E [−∇f(x∗)] for k ≥ k0, then

P [xk − αk∇f(xk)] ∈ E [−∇f(x∗)]

for k sufficiently large.
Proof. The proof relies on Theorem 3.1 of Burke and Moré [6], which shows that

for any sequence {dk} in Rn that converges to d∗

E[dk] ⊂ E[d∗](3.3)

for all k sufficiently large. If N(x) is the normal cone at x ∈ Ω, the definition of the
projection operator implies that

xk − αk∇f(xk)− P [xk − αk∇f(xk)] ∈ N(P [xk − αk∇f(xk)]).

1108 CHIH-JEN LIN AND JORGE J. MORÉ

The definition of the exposed face shows that x ∈ E[d] if and only if d ∈ N(x), and
thus

P [xk − αk∇f(xk)] ∈ E[−αk∇f(xk) + xk − P [xk − αk∇f(xk)]] = E[dk],(3.4)

where we have defined the sequence {dk} by

dk = −∇f(xk) +
xk − P [xk − αk∇f(xk)]

αk
.

We now claim that ∥∥∥∥P [xk − αk∇f(xk)]− xk
αk

∥∥∥∥ ≤ ‖∇Ωf(xk)‖.(3.5)

If we accept this claim, we can complete the proof by noting that, since {xk} converges
to x∗ and xk ∈ E [−∇f(x∗)], Theorem 3.1 and inequality (3.5) show that the sequence
{dk} converges to −∇f(x∗). Hence, (3.3) and (3.4) imply that P [xk − αk∇f(xk)]
belongs to E [−∇f(x∗)] for all k sufficiently large.

The proof of (3.5) requires two inequalities. First note that the optimality prop-
erty (2.7) of the projected gradient ∇Ωf implies that

−〈∇f(x), v〉 ≤ ‖∇Ωf(x)‖ ‖v‖,

for any feasible direction v at x. In particular,

−〈∇f(x), s(α)〉 ≤ ‖∇Ωf(x)‖ ‖s(α)‖,

where we have defined s(α) = P [x − α∇f(x)] − x. Next, note that the definition of
the projection operator, 〈P (x)− x, y − P (x)〉 ≥ 0 for any y ∈ Ω, implies that

−〈∇f(x), s(α)〉 ≥ ‖s(α)‖2
α

.

The last two displayed inequalities imply (3.5) as desired.
We want to show that all iterates eventually stay in the exposed face E [−∇f(x∗)].

Theorems 2.1 and 3.1 show that if the sequence {xk} converges to x∗, then xCk lands
in E [−∇f(x∗)] for some subsequence of successful iterates. We now restrict the step
sk so that the next iterate does not leave E [−∇f(x∗)]. The following result makes
use of the observation that

x ∈ E [−∇f(x∗)], A(x) ⊂ A(y) =⇒ y ∈ E [−∇f(x∗)].

This observation follows directly from the expression (3.1) for E [−∇f(x∗)].
Theorem 3.3. Let f : Rn 7→ R be continuously differentiable on the polyhedral

set Ω, and let {xk} be the sequence generated by the trust region method. Assume that
{Bk} is uniformly bounded and that the step sk satisfies

A(xCk) ⊂ A(xk + sk), k ≥ 0.(3.6)

If {xk} converges to x∗, then there is an index k0 such that

xk ∈ E [−∇f(x∗)], xk + sk ∈ E [−∇f(x∗)], k ≥ k0.

LARGE BOUND-CONSTRAINED OPTIMIZATION 1109

Proof. Theorem 2.1 shows that there is a sequence K of successful iterates such
that if k ∈ K, then {xCk } converges to x∗ and {∇Ωf(xCk)} converges to zero. Hence,
Theorem 3.1 shows that

xCk ∈ E [−∇f(x∗)], k ∈ K.

Since every iterate in K is successful, assumption (3.6) implies that xk+1 = xk + sk
belongs to E [−∇f(x∗)]. In particular, there is an index k0 such that xk0 belongs to
E [−∇f(x∗)]. We now show that xk belongs to E [−∇f(x∗)] for all k ≥ k0.

Assume that xk belongs to E [−∇f(x∗)] for some k ≥ k0. Theorem 3.2 shows
that xCk ∈ E [−∇f(x∗)]. Hence, assumption (3.6) on the step yields that xk + sk is
in E [−∇f(x∗)]. If xk+1 = xk, then xk+1 clearly belongs to E [−∇f(x∗)], while if
xk+1 = xk + sk, then we also have xk+1 in E [−∇f(x∗)]. Hence, in all cases xk+1

belongs to E [−∇f(x∗)].
We have shown that xk ∈ E [−∇f(x∗)] for all k ≥ k0. Hence, Theorem 3.2 shows

that xCk ∈ E [−∇f(x∗)], and thus assumption (3.6) on the step yields that xk + sk is
in E [−∇f(x∗)].

4. Projected searches. The convergence theory of the trust region Newton
method depends on generating the step sk so that conditions (2.5) and (3.6) are
satisfied. We determine sk by computing m+1 minor iterates xk,1, . . . , xk,m+1, where
xk,1 = xCk . We require that

xk,j ∈ Ω, A(xCk) ⊂ A(xk,j), ‖xk,j − xk‖ ≤ µ1∆k,(4.1)

and that the decrease condition

qk(xk,j+1) ≤ qk(xk,j), 1 ≤ j ≤ m,(4.2)

be satisfied. If the step is defined by sk = xk,m+1 − xk, then (2.5) and (3.6) are
satisfied. Also note that there is no loss in generality in fixing m independent of the
iteration; this imposes only an upper bound on the number of minor iterates because
we can set xk,j+1 = xk,j .

We can compute minor iterates that satisfy (4.1) and (4.2) by computing a descent
direction for the subproblem

min {qk(xk,j + w) : 〈ci, w〉 = 0, i ∈ A(xk,j)} .(4.3)

Given a descent direction wk,j with 〈ci, wk,j〉 = 0 for i ∈ A(xk,j), we examine qk
in the ray xk,j + βwk,j , with β ≥ 0, and use a line search to choose βk,j so that
qk is minimized. The minor iterate xk,j+1 = xk,j + βk,jwk,j may not be acceptable
either because xk,j+1 is not feasible or because xk,j+1 does not satisfy the trust region
constraint ‖xk,j+1 − xk‖ ≤ ∆k. Thus, if necessary, we modify βk,j so that both
constraints are satisfied.

Instead of using a line search to determine xk,j+1, we can use a projected search
along the path defined by P [xk,j + βwk,j]. The advantage of this approach is that
we would be able to add several constraints at once. For a line search we normally
require a decrease of qk on the line segment [xk,j , xk,j+1], but for a projected search
we need only require a decrease at xk,j+1 with respect to the base point xk,j . We
require that

qk(xk,j+1) ≤ qk(xk,j) + µ0 min {〈∇qk(xk,j), xk,j+1 − xk,j〉, 0} .(4.4)

1110 CHIH-JEN LIN AND JORGE J. MORÉ

xk,1

xk,2

wk,2

Fig. 4.1. The minor iterates for a projected search.

In most cases we require only (4.2), but for rate of convergence results we need (4.4).
For additional details on projected searches, see Moré and Toraldo [30, section 4].

Figure 4.1 illustrates the projected search when Ω is the bound-constrained set
(1.2). In this figure the iterate xk,2 has been computed and a direction wk,2 is de-
termined that is orthogonal to the active constraint normals. If a line search is used,
the search would be restricted to points in the ray xk,2 +βwk,2 that lie in the feasible
region. With a projected search, the search would continue along the piecewise linear
path P [xk,2 + βwk,2]. In either case, we require only that xk,3 satisfy the decrease
condition (4.4).

When Ω is the bound-constrained set (1.2), Lescrenier [25] determines the step sk
by computing minor iterates, but he requires that the line segment αxk,j+1+(1−α)xk,j
be feasible for α ∈ [0, 1] and that

qk(xk,j+1) ≤ qk(αxk,j+1 + (1− α)xk,j), α ∈ [0, 1].(4.5)

This requirement can be satisfied if a line search is used to choose the minor iter-
ates, but it rules out the projected searches that we have proposed. Also note that
assumption (4.5) on the minor iterates is stronger than (4.2). This observation can
be verified by proving that if φ : R 7→ R is a quadratic on [0, 1] with φ′(0) < 0, and
φ(1) ≤ φ(α) for α in [0, 1], then

φ(1) ≤ φ(0) + 1
2φ
′(0) ≤ φ(0) + µφ′(0)

for any µ ∈ [0, 1
2].

5. Convergence results. We have been analyzing the trust region method un-
der the assumption that {Bk} is uniformly bounded. We now consider a trust region
version of Newton’s method so that Bk is the Hessian matrix ∇2f(xk). The as-
sumption that {Bk} is uniformly bounded is then satisfied if Ω is bounded or, more
generally, if ∇2f is bounded on the level set

L(x0) ≡ {x ∈ Ω : f(x) ≤ f(x0)} .

We also assume that Ω is the polyhedral set (1.3).
The local convergence analysis for the trust region version of Newton’s method

requires that we assume that some subsequence of the iterates {xk} generated by

LARGE BOUND-CONSTRAINED OPTIMIZATION 1111

the trust region method converges to a stationary point x∗ that satisfies a regularity
condition. We assume that the Hessian matrix ∇2f(x∗) is positive definite on the
subspace

S(x∗) = aff{E [−∇f(x∗)]− x∗},(5.1)

where aff{S} denotes the affine hull of the set S. Thus, we require that the Hessian
matrix be positive definite on the smallest subspace that contains E [−∇f(x∗)]− x∗.
In the convergence analysis we use this regularity condition in the equivalent form〈

v,∇2f(x∗)v
〉 ≥ κ‖v‖2, v ∈ S(x∗), κ > 0.(5.2)

The strong second-order sufficiency condition (5.2) is equivalent to the standard
second-order sufficiency condition if x∗ is nondegenerate, but it is stronger than the
standard second-order sufficiency condition for degenerate problems.

The strong second-order condition (5.2) is satisfied if ∇2f(x∗) is positive definite
on the subspace

{v ∈ Rn : 〈cj , v〉 = 0, j ∈ B(x∗)} ,(5.3)

where B(x∗) is the set of strictly binding constraints

B(x∗) = {i ∈ I : λ∗i > 0 if 〈ci, x∗〉 = li and λ∗i < 0 if 〈ci, x∗〉 = ui}.

Gay [23], Lescrenier [25], and Robinson [32] use this condition in their work. A
disadvantage of working with (5.3) is that B(x∗) depends on the representation of Ω
and the choice of multipliers. On the other hand, (5.2) depends only on the geometry
of Ω.

Burke and Moré [6] provide additional information on the regularity condition
(5.2). In particular, they present an example where (5.2) holds but the Hessian
matrix is not positive definite on (5.3).

The strong second-order sufficiency condition simplifies considerably when Ω is
the bound-constrained set (1.2). In this case (5.2) requires that ∇2f(x∗) be positive
definite on the subspace

S(x∗) = {w ∈ Rn : wi = 0, i ∈ B(x∗)}

of vectors orthogonal to the strictly binding constraints

B(x∗) = {i ∈ A(x∗) : ∂if(x∗) 6= 0} .

Theorem 5.1. Let f : Rn 7→ R be twice continuously differentiable on the
polyhedral set Ω, and let {xk} be the sequence generated by the trust region Newton
method. Assume that ∇2f is bounded on the level set L(x0) and that the step sk
satisfies (3.6). If {xk} has a limit point x∗ that satisfies the strong second-order
sufficiency condition (5.2), then {xk} converges to x∗.

Proof. We first claim that (5.2) implies that x∗ is an isolated limit point of {xk}.
This claim follows by noting that (5.2) implies that x∗ is an isolated stationary point,
and that every limit point of {xk} is stationary.

The proof is by contradiction. If we assume that {xk} does not converge to x∗,
then Lemma 4.10 of Moré and Sorensen [29] shows that when x∗ is an isolated limit

1112 CHIH-JEN LIN AND JORGE J. MORÉ

point of {xk}, there is a subsequence K such that {xk} converges to x∗ for k ∈ K,
and an ε > 0 with

‖xk+1 − xk‖ ≥ ε, k ∈ K.

In particular, ‖sk‖ ≥ ε for k ∈ K. We now prove that if the sequence {wk} is defined
by

wk =
sk
‖sk‖ , k ∈ K,

then any limit point w∗ is a feasible direction at x∗. Note that ‖sk‖ ≥ ε implies that
xk + τwk belongs to Ω for τ in [0, ε], and hence x∗ + τw∗ also belongs to Ω. This
shows that w∗ is a feasible direction at x∗.

We now show that 〈∇f(x∗), w∗〉 = 0. Note that requirements (2.4), (2.5), and
(2.6) on sk show that if the iteration is successful, then

f(xk)− f(xk+1) ≥ η0µ0κ0

[‖xCk − xk‖
αk

]
min

{
∆k,

1

‖∇2f(xk)‖
[‖xCk − xk‖

αk

]}
.(5.4)

Our assumptions guarantee that the Hessian matrices∇2f(xk) are bounded, and since
‖sk‖ ≤ µ1∆k, and ‖sk‖ ≥ ε for k ∈ K, the trust region bounds ∆k are bounded away
from zero. Hence, inequality (5.4) implies that

lim
k∈K,k→∞

‖xCk − xk‖
αk

= 0.

Moreover, since {αk} is bounded above, {‖xCk −xk‖} also converges to zero for k ∈ K.
Hence, Lemma 5.1 in Burke, Moré, and Toraldo [7] implies that

lim
k∈K,k→∞

∥∥∇Ωf(xCk)
∥∥ = 0.

Theorem 3.1 now shows that xCk is in E [−∇f(x∗)] for k ∈ K, and thus assumption
(3.6) on the step sk implies that xk + sk belongs to E [−∇f(x∗)] for k ∈ K. In
particular,

〈∇f(x∗), (xk + sk − x∗)〉 = 0, k ∈ K.

A computation using ‖sk‖ ≥ ε now shows that 〈∇f(x∗), w∗〉 = 0.
We have shown that w∗ is a feasible direction at x∗ with 〈∇f(x∗), w∗〉 = 0. Thus,

w∗ belongs to S(x∗), and
〈
w∗,∇2f(x∗)w∗

〉
> 0. On the other hand, ψk(sk) ≤ 0

implies that

1
2‖sk‖

〈
wk,∇2f(xk)wk

〉 ≤ −〈∇f(xk), wk〉 .

Since {xk} converges to x∗, {wk} converges to w∗, and ‖sk‖ ≥ ε for k ∈ K, this
inequality implies that

0 < 1
2ε
〈
w∗,∇2f(x∗)w∗

〉 ≤ −〈∇f(x∗), w∗〉 = 0.

This contradiction proves the result.

LARGE BOUND-CONSTRAINED OPTIMIZATION 1113

Theorems 5.1 improves on previous convergence results for linearly constrained
optimization algorithms because it does not assume strict complementarity. For recent
convergence results, see [19, 12, 18, 9, 16, 20, 33].

Rate of convergence results depend on showing that eventually the trust region
bound is not active. These results require additional assumptions on the step sk. We
assume that the minor iterates satisfy (4.1) and the decrease condition (4.4). We
now estimate the decrease of the quadratic qk if the minor iterates satisfy (4.4). The
following result appears in Moré [28], but for completeness we provide the proof.

Lemma 5.2. Assume that φ : R 7→ R is twice differentiable on [0, 1] and that
φ′′(α) ≥ ε on [0, 1] for some ε > 0. If

φ(1) ≤ φ(0) + µφ′(0)(5.5)

for some µ ∈ (0, 1), then

φ(0)− φ(1) ≥ µ

2(1− µ)
ε.

Proof. The mean value theorem shows that

φ(1) = φ(0) + φ′(0) + 1
2φ
′′(θ)

for some θ ∈ (0, 1), and thus (5.5) implies that 1
2φ
′′(θ) ≤ (1− µ)(−φ′(0)). Hence,

φ(0)− φ(1) ≥ µ(−φ′(0)) ≥ µ

2(1− µ)
φ′′(θ) ≥ µ

2(1− µ)
ε,

as desired.
If we assume that the sequence {xk} converges to x∗, then Theorem 3.3 guarantees

that all iterates belong to E [−∇f(x∗)], and hence (4.1) shows that all the minor
iterates also belong to E [−∇f(x∗)]. Now define

φ(α) = qk (αxk,j+1 + (1− α)xk,j)

and note that the decrease condition (4.4) guarantees that

qk(xk,j+1) ≤ qk(xk,j) + µ0〈∇qk(xk,j), xk,j+1 − xk,j〉,

and thus (5.5) holds. Hence, if we assume that the strong second-order condition (5.2)
holds, then Lemma 5.2 implies that there is a κ0 > 0 such that

qk(xk,j)− qk(xk,j+1) ≥ κ0‖xk,j+1 − xk,j‖2.(5.6)

We need this estimate for our next result.
Theorem 5.3. Let f : Rn 7→ R be twice continuously differentiable on the polyhe-

dral set Ω, and let {xk} be the sequence generated by the trust region Newton method.
Assume that {xk} converges to a solution x∗ of (1.1) that satisfies the regularity con-
dition (5.2). If the minor iterates satisfy (4.1) and (4.4), then there is an index k0

such that all steps sk with k ≥ k0 are successful and the trust region bound ∆k is
bounded away from zero.

Proof. In the proof we bound |ρk − 1|, where ρk is defined by (2.1), and we show
that the bounds converge to zero; the rules for updating ∆k then show that all steps

1114 CHIH-JEN LIN AND JORGE J. MORÉ

sk are ultimately successful and that ∆k is bounded away from zero. We begin by
noting that

ρk − 1 =
f(xk + sk)− f(xk)− ψk(sk)

ψk(sk)
.(5.7)

The denominator of (5.7) is estimated by noting that (5.6) implies that the decrease
generated by sk satisfies

−ψk(sk) = qk(xk)− qk(xk + sk) ≥ κ0

m∑
j=0

‖xk,j+1 − xk,j‖2

≥ κ0 max
0≤j≤m

{‖xk,j+1 − xk,j‖2
}
.

On the other hand,

‖sk‖ ≤
m∑
j=0

‖xk,j+1 − xk,j‖ ≤ (m+ 1) max
0≤j≤m

{‖xk,j+1 − xk,j‖} .

Hence, −ψk(sk) ≥ κ1‖sk‖2 for κ1 = κ0/(m+ 1)2. We estimate the numerator of (5.7)
by noting that the mean value theorem implies that

|f(xk + sk)− f(xk)− ψk(sk)| ≤ σk‖sk‖2,

where

σk = sup
0≤θ≤1

{‖∇2f(xk + θsk)−∇2f(xk)‖} .
These estimates show that |ρk − 1| ≤ σk/κ0, so that our result will be established if
we show that {σk} converges to zero.

Since {xk} converges to x∗, the sequence {σk} converges to zero if {sk} converges
to zero. Theorem 3.3 shows that xk and xk + sk belong to E [−∇f(x∗)], and thus the
definition (5.1) implies that sk ∈ S(x∗). In particular, sk = PS(x∗)sk, where PS(x∗) is
the orthogonal projection onto S(x∗). Since ψk(sk) ≤ 0,

1
2

〈
sk,∇2f(xk)sk

〉 ≤ −〈∇f(xk), sk〉 ,

and thus sk = PS(x∗)sk and the regularity condition (5.2) imply that there is a ν0 > 0
with

‖sk‖ ≤ ν0‖PS(x∗)∇f(xk)‖.

The gradient ∇f(x∗) is orthogonal to S(x∗) because 〈∇f(x∗), x〉 = 〈∇f(x∗), x∗〉
whenever x is in E [−∇f(x∗)], and since {xk} converges to x∗, this implies that
{PS(x∗)∇f(xk)} converges to zero. Thus, the previous estimate shows that {sk} con-
verges to zero, as desired.

Lescrenier [25] proved an analogous result, but he assumed that the feasible
set was bound constrained, that the quadratic was decreasing on the line segment
[xk,j , xk,j+1], and that the minor iterates satisfied (4.5). In particular, his result
did not cover projected searches. Our assumptions in Theorem 5.3 are considerably
weaker.

LARGE BOUND-CONSTRAINED OPTIMIZATION 1115

When the iterate xk is far from the solution, the step sk is usually determined
because the trust region bound ‖xk,j−xk‖ ≤ µ1∆k is encountered during the compu-
tation of xk,j+1. However, as we converge, Theorem 5.3 shows that the trust region
does not interfere with the computation of the step, so we are free to reduce qk further
by searching the feasible set.

We propose to compute the step sk by computing minor iterates xk,j that satisfy
(4.1) and the decrease condition (4.4). For each minor iterate xk,j let the columns of
Zk,j form an orthonormal basis for the subspace

Vk,j = {w ∈ Rn : 〈ci, w〉 = 0, i ∈ A(xk,j)} .
Given xk,j , we find an approximate minimizer of qk on xk,j + Vk,j . We require that
if xk,m+1 is the final iterate generated according to (4.1) and (4.4), then the step
sk = xk,m+1 − xk satisfies∥∥ZTk,m[∇f(xk) +∇2f(xk)sk]

∥∥ ≤ ξk ∥∥ZTk,m∇f(xk)
∥∥ , xk + sk ∈ Ω.(5.8)

We motivate these requirements by noting that if Ψk,m(v) = qk (xk,m + Zk,mv), then

∇Ψk,m(v) = ZTk,m[∇f(xk) +∇2f(xk)(xk,m − xk + Zk,mv)],

where we have set xk,0 = xk. Thus, the first condition in (5.8) is equivalent to finding
vk,m such that

‖∇Ψk,m(vk,m)‖ ≤ ξk
∥∥ZTk,m∇f(xk)

∥∥ ,
and setting sk = xk,m − xk + Zk,mvk,m. In particular, xk,m+1 = xk,m + Zk,mvk,m is
a minimizer of qk on xk,m + Vk,m if we choose ξk = 0.

At first sight it is not clear that we can always find a step that satisfies (5.8) since
satisfying the first condition in (5.8) may violate the second condition. The simplest
method of generating minor iterates xk,j that guarantees (5.8) is to set xk,j+1 to the
minimizer of qk on xk,j + Vk,j . With this choice sk = xk,j+1 − xk satisfies the first
condition in (5.8). If xk + sk lies in Ω for this choice of xk,j+1, then we are done.
Otherwise, we can set xk,j+1 to any point in Ω that satisfies (4.4) and such that
A(xk,j+1) has at least one more active variable. This choice guarantees that, after
computing at most n minor iterates, we reach a minor iterate with all variables active,
and then (5.8) is trivially satisfied.

The procedure that we have outlined generates iterates xk,j that satisfy (4.1) and
(4.4) with A(xk,j) ⊂ A(xk,j+1). The step sk = xk,m+1 − xk satisfies (5.8), where
Zk,m is defined by xk,m. Geometrically this procedure searches for an approximate
minimizer in the face defined by the active set A(xk,j), terminating if the approximate
minimizer is on the relative interior of this face; otherwise, the search continues on
the lower dimensional face defined by A(xk,j+1).

We have already noted that the step sk is usually determined because the trust
region bound ‖xk,j − xk‖ ≤ µ1∆k is encountered during the computation of xk,j+1.
Thus, we need only assume that the step sk satisfies (5.8) if ‖sk‖ ≤ µ∗∆k for some
µ∗ < µ1.

Rate of convergence results when strict complementarity holds depend on the
result that A(xk) = A(x∗) for all k sufficiently large. This result fails without strict
complementarity. In this case the proof relies on showing that

V (x) ≡ {w ∈ Rn : 〈ci, w〉 = 0, i ∈ A(x)} ⊂ S(x∗), x ∈ E [−∇f(x∗)].(5.9)

1116 CHIH-JEN LIN AND JORGE J. MORÉ

The subspace V (x) is the largest subspace contained in the tangent cone T (x).
For the rate of convergence results we assume that the sequence {xk} generated

by the trust region Newton method converges to x∗. Theorems 3.2 and 3.3 show that
xk and xCk eventually land in E [−∇f(x∗)] for all k ≥ k0. Since (4.1) guarantees that
A(xCk) is a subset of A(xk,j) for any minor iterate xk,j , we also have that xk,j is in
E [−∇f(x∗)]. In particular, xk,m ∈ E [−∇f(x∗)]. We shall need this result in the
proof.

Theorem 5.4. Let f : Rn 7→ R be twice continuously differentiable on the
polyhedral set Ω, and let {xk} be the sequence generated by the trust region Newton
method. Assume that {xk} converges to a solution x∗ of (1.1) that satisfies the strong
second-order sufficiency condition (5.2). If the step sk is calculated by the algorithm
outlined above, and (5.8) holds whenever ‖sk‖ ≤ µ∗∆k for some µ∗ < µ1, then {xk}
converges Q-linearly to x∗ when ξ∗ is sufficiently small, where

ξ∗ = lim sup
k→+∞

ξk.

The rate of convergence is Q-superlinear when ξ∗ = 0.
Proof. We first prove that (5.9) holds. The proof begins by noting that expression

(3.1) for E [−∇f(x∗)] shows that if λ∗i are Lagrange multipliers, then

{i : λ∗i 6= 0} ⊂ A(x), x ∈ E [−∇f(x∗)].

Hence, if w ∈ V (x), then 〈∇f(x∗), w〉 = 0. Since any w ∈ V (x) is a feasible direction,
we also have that x+ αw for all α sufficiently small. Hence, 〈∇f(x∗), w〉 = 0 implies
that x+ αw belongs to E [−∇f(x∗)]. Moreover, since x ∈ E [−∇f(x∗)] and S(x∗) is
a subspace,

αw = ([x+ αw − x∗]− [x− x∗]) ∈ S(x∗).

Hence, w ∈ S(x∗) as desired, and thus (5.9) holds.
We proved (5.9) for any x ∈ E [−∇f(x∗)] because this result sheds light on the

geometry behind the rate of convergence results, but for this proof we need only show
that

Vk,m ⊂ S(x∗).(5.10)

Since we have already noted that xk,m ∈ E [−∇f(x∗)], (5.9) implies that (5.10) holds.
We analyze the convergence rate in terms of the projection Pk = Zk,mZ

T
k,m onto

the subspace Vk,m. Note, in particular, that since Vk,m is a subspace of S(x∗), an
orthogonal basis for Vk,m can be extended to a basis for S(x∗), and thus

‖Pkw‖ ≤ ‖PS(x∗)w‖, w ∈ Rn.(5.11)

The main estimate needed for the rate of convergence result is obtained by noting
that

‖Pk∇f(xk+1)‖ ≤ ∥∥Pk[∇f(xk+1)−∇f(xk)−∇2f(xk)sk]
∥∥

+
∥∥Pk[∇f(xk) +∇2f(xk)sk]

∥∥ ,
assumption (5.8) on the step, and standard bounds yield that

‖Pk∇f(xk+1)‖ ≤ εk‖sk‖+ ξk ‖Pk∇f(xk)‖(5.12)

LARGE BOUND-CONSTRAINED OPTIMIZATION 1117

for some sequence {εk} converging to zero. Also note that the argument at the end
of Theorem 5.3 shows that there is a constant ν0 with

‖sk‖ ≤ ν0‖PS(x∗)∇f(xk)‖.(5.13)

If we make use of this estimate and (5.11) in (5.12) we obtain that

lim sup
k→+∞

‖Pk∇f(xk+1)‖
‖PS(x∗)∇f(xk)‖ ≤ lim sup

k→+∞
ξk.(5.14)

We complete the proof by estimating ‖Pk∇f(xk+1)‖ and ‖PS(x∗)∇f(xk)‖. We first
show that

‖Pk∇f(xk+1)‖ ≥ (ν1 − εk)‖xk+1 − x∗‖(5.15)

for some sequence {εk} converging to zero.
The proof of (5.15) requires some preliminary results. We first show that xk+1−x∗

is in Vk,m for all k sufficiently large. This follows from the definition of Vk,m because
A(xk,m) ⊂ A(xk+1) and A(xk,m) ⊂ A(x∗). We also need to show that Pk∇f(x∗) = 0.
This result follows because, as noted at the end of Theorem 5.3, ∇f(x∗) is orthogonal
to S(x∗), and since Vk,m is a subspace of S(x∗), we must also have ∇f(x∗) orthogonal
to Vk,m. In particular, Pk∇f(x∗) = 0. The last result that we need for the proof of
(5.15) is that

‖Pk∇2f(x∗)Pkv‖ ≥ κ‖v‖, v ∈ Vk,m.(5.16)

To prove this result, note that if v ∈ Vk,m, then Pkv = v, and in view of (5.10), Pkv
is in E [−∇f(x∗)]. Hence, the regularity assumption (5.2) shows that (5.16) holds.

We now have all the ingredients to prove (5.15). Since Pk∇f(x∗) = 0,

Pk∇f(xk+1) = Pk∇2f(x∗)(xk+1−x∗)+Pk[∇f(xk+1)−∇f(x∗)−∇2f(x∗)(xk+1−x∗)],

and thus estimates of the last term show that∥∥Pk∇2f(x∗)(xk+1 − x∗)
∥∥ ≤ ‖Pk∇f(xk+1)‖+ εk‖xk+1 − x∗‖,

where {εk} converges to zero. Since xk+1 − x∗ is in Vk,m for all k sufficiently large,
(5.16) shows that

‖Pk∇2f(x∗)Pk(xk+1 − x∗)‖ ≥ κ‖xk+1 − x∗‖.

The last two inequalities show that (5.15) holds with ν1 = κ.
We estimate ‖PS(x∗)∇f(xk)‖ by proving that

‖PS(x∗)∇f(xk)‖ ≤ (ν2 + εk)‖xk − x∗‖(5.17)

for some sequence {εk} converging to zero. Since PS(x∗)∇f(x∗) = 0,

PS(x∗)∇f(xk) = PS(x∗)∇2f(x∗)(xk−x∗)+PS(x∗)[∇f(xk)−∇f(x∗)−∇2f(x∗)(xk−x∗)],

and thus standard estimates of the last term show that

‖PS(x∗)∇f(xk)‖ ≤ ∥∥PS(x∗)∇2f(x∗)(xk − x∗)
∥∥+ εk‖xk − x∗‖,

1118 CHIH-JEN LIN AND JORGE J. MORÉ

where {εk} converges to zero. Since PS(x∗)(xk − x∗) = xk − x∗, we obtain that

‖PS(x∗)∇f(xk)‖ ≤ ν2 ‖xk − x∗‖+ εk ‖xk − x∗‖ , ν2 = ‖PS(x∗)∇2f(x∗)PS(x∗)‖,

where {εk} converges to zero. This proves (5.17).
Linear and superlinear convergence rates are obtained by noting that (5.14), to-

gether with estimates (5.15) and (5.17), show that

lim sup
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖ ≤

(
ν2

ν1

)
lim sup
k→+∞

ξk =

(
ν2

ν1

)
ξ∗.

Linear convergence takes place if ν2ξ
∗ < ν1, and superlinear convergence holds if

ξ∗ = 0.
A modification of the proof of Theorem 5.4 shows linear convergence for any

ξ∗ < 1 if the vectors xk − x∗ lie in a fixed subspace V of S(x∗) for all k sufficiently
large. This result holds when x∗ is nondegenerate (strict complementarity holds at
x∗) since in this case xk − x∗ belongs to V (xk) = S(x∗) for all k sufficiently large.

There are several interesting variations on Theorem 5.4. Note, in particular, that
the minor iterate xk,m enters into the proof via the subspace Vk,m and that the proof
holds if Pk is a projection into any subspace of S(x∗) that contains xk+1 − x∗. Thus
we could have set Pk to the projection into V (xk+1) and eliminated xk,m from the
analysis. We did not make this simplification because with our choice of Pk the minor
iterate xk,m+1 is an approximate minimizer of qk on xk,m + Vk,m.

Lescrenier [25] and Facchinei and Lucidi [19] proved rate of convergence results
without assuming strict complementarity, but the analysis was restricted to bound-
constrained problems. Other convergence results for bound-constrained and linearly
constrained optimization algorithms require strict complementarity. For recent con-
vergence results, see [12, 18, 9, 16, 20, 33].

We can also show that quadratic convergence holds in Theorem 5.4 if we assume
that ∇2f satisfies a Lipschitz condition at x∗ and if

ξk ≤ κ0 ‖Pk∇f(xk)‖ , k ≥ 0,

for a positive constant κ0. With these assumptions we can follow the proof of Theorem
5.4. The main difference is that the inequality (5.12) can be replaced by

‖Pk∇f(xk+1)‖ ≤ κ‖sk‖2 + ξk ‖Pk∇f(xk)‖ ,

where κ is the Lipschitz constant, and thus (5.11) and (5.13) yield that

lim sup
k→+∞

‖Pk∇f(xk+1)‖
‖PS(x∗)∇f(xk)‖2 ≤ κν

2
0 + κ0.

The result now follows from estimates (5.15) and (5.17).

6. Implementation issues. We now provide a brief outline of the implemen-
tation issues for a trust region Newton method for bound-constrained problems. We
concentrate on discussing our choices for the trust region bound ∆k, the Cauchy step,
and the subspace step.

For the initial ∆0 we used ‖∇f(x0)‖. This choice is appropriate in many cases,
but more sophisticated choices are possible. We update the trust region bound ∆k

as outlined in section 2. We choose η0 = 10−3 in the algorithm (2.2) to update the

LARGE BOUND-CONSTRAINED OPTIMIZATION 1119

current iterate; η1 = 0.25, η2 = 0.75 as the constants that determine when to increase
or decrease the trust region ∆k; and σ1 = 0.25, σ2 = 0.5, and σ3 = 4.0 as the constants
that govern the update of ∆k in (2.3).

Given a step sk, we attempt to choose ∆k+1 as α∗k‖sk‖, where α∗k is the minimum
of a quadratic that interpolates the function α 7→ f(xk + αsk). In other words, we
consider the quadratic φ such that

φ(0) = f(xk), φ′(0) = 〈∇f(xk), sk〉, φ(1) = f(xk+1)

and determine α∗k as the minimum of this quadratic. If φ does not have a minimum, we
set α∗k = +∞. We choose ∆k+1 as α∗k‖sk‖ if it falls in the desired interval; otherwise
we set ∆k+1 to the closest endpoint.

The Cauchy step sCk is chosen by an iterative scheme that is guaranteed to ter-
minate in a finite number of steps. Recall that the Cauchy step sCk is of the form
sk(αk), where the function sk : R 7→ Rn is defined by

sk(α) = P [xk − α∇f(xk)]− xk
and αk satisfies the conditions specified in section 2. The simplest scheme is to set

α
(0)
k to a constant and then generate a sequence {α(l)

k } of trial values by decreasing
the trial values by a constant factor until the sufficient decrease condition (2.4) is

satisfied. We use a more sophisticated scheme. Given α
(0)
k , we generate a sequence

{α(l)
k } of trial values. The sequence can be either increasing or decreasing, but in all

cases we require that

α
(l+1)
k ∈

[
β1α

(l)
k , β2α

(l)
k

]
,

where β1 ≤ β2 < 1 for a decreasing sequence and 1 < β1 ≤ β2 for an increasing
sequence. The decision to generate an increasing sequence or a decreasing sequence

depends of the initial α
(0)
k . If the initial α

(0)
k fails to satisfy the sufficient decrease

condition (2.4), we decrease the trial values until (2.4) fails, and we set αk to the last

trial value that satisfies (2.4). If the initial α
(0)
k satisfies (2.4), we increase the trial

values until (2.4) fails, and we set αk to the last trial value that satisfies (2.4).

We use α
(0)
k = 1 on the first iteration, but on all other iterations we use αk−1.

We use µ0 = 10−2 and µ1 = 1.0 in the sufficient decrease condition (2.4).
The minor iterates generated in the trust region method are required to satisfy

conditions (4.1) and (4.4). We generate the step between the minor iterates along the
lines specified in section 4 but specialized to the case of bound constraints. Specifically,
we compute the step from the trust region subproblem

min {q(x+ w) : wi = 0, i ∈ A(x), ‖Dw‖ ≤ ∆} ,
where D is a scaling matrix. If i1, . . . , im are the indices of the free variables, and the
matrix Z is defined as the matrix in Rn×m whose kth column is the ikth column of
the identity matrix in Rn×n, then this subproblem is equivalent to

min{qF (v) : ‖DZv‖ ≤ ∆},
where qF is the quadratic in the free variables defined by

qF (v) ≡ q(x+ Zv)− q(x) = 1
2v
TAv + rT v.

1120 CHIH-JEN LIN AND JORGE J. MORÉ

The matrix A and the vector r are, respectively, the reduced Hessian matrix of q and
reduced gradient of qF at x with respect to the free variables.

Given a descent direction w for this subproblem, a projected line search guarantees
that we can determine β > 0 such that the next iterate x+ = P [x + βw] satisfies
conditions (4.1) and (4.4). The conditions in (4.1) are satisfied for any β > 0 provided
D has a condition number that is bounded independent of the iterate. We use µ0 =
10−2 in the sufficient decrease condition (4.4).

We generate the descent direction w with a preconditioned conjugate gradient
method as suggested by Steihaug [34]. The conjugate gradient iterates are generated
until the trust region is violated, a negative curvature direction is generated, or the
convergence condition (5.8) is satisfied. As noted in section 5, this condition can be
satisfied by choosing the minor iterates so that A(xk,j) ⊂ A(xk,j+1). For additional
details, see the discussion in Lin and Moré [26].

In our algorithms we choose D from an incomplete Cholesky factorization. From
a theoretical viewpoint, the choice of D is not important, but the numerical results
are strongly dependent on the choice of D. We use the incomplete Cholesky factor-
ization icfs of Lin and Moré [26]. The icfs incomplete Cholesky factorization does not
require the choice of a drop tolerance. Moreover, the amount of storage used by the
factorization can be specified in advance as p · n, where p is set by the user and n is
the number of variables. In our numerical results we use p = 5.

7. Computational experiments. We now compare the performance of an im-
plementation TRON (version 1.0) of the trust region method outlined in section 6 with
the LANCELOT [14] and L-BFGS-B [36] codes. All computational experiments were done
with the -O optimization compiler option on a Sun UltraSPARC2 workstation with
1,024 MB RAM.

LANCELOT implements Newton’s method with a trust region strategy but differs
from TRON in significant issues. In particular, LANCELOT does not use projected
searches, and the default is a banded preconditioner. The L-BFGS-B code is a limited-
memory variable metric method. An advantage of L-BFGS-B is that only the gradient is
required, while Newton codes require an approximation to the Hessian matrix. On the
other hand, for sparse problems the Hessian matrix can usually be obtained efficiently
with differences of gradients if the sparsity pattern of the Hessian matrix is provided.

Our first set of computational results uses a set of bound-constrained problems
from the CUTE collection [3]. We used the select tool to choose problems representa-
tive of problems that arise in applications and where the number of variables n could
be changed. Since we are interested in large problems, we refined this selection by
considering only problems where the number of variables was at least 5, 000. These
requirements lead to a list of nine problems, with some of the problems having more
than one version.

Table 7.1 presents the results obtained when LANCELOT and L-BFGS-B are used with
the default options. For LANCELOT, exact second derivatives and a preconditioned
conjugate gradient method with a banded preconditioner were used; all other default
options are shown in Table 5 of [15]. In Table 7.1 we used the LANCELOT termination
test

‖P [x−∇f(x)]− x‖∞ ≤ 10−5,(7.1)

where P is the projection into the feasible set (1.2).
The first column in Table 7.1 is the name of the test problem, and the second

column is the number of variables n. For TRON and LANCELOT we record the number

LARGE BOUND-CONSTRAINED OPTIMIZATION 1121

Table 7.1
Performance on the CUTE problems: default options.

TRON LANCELOT L-BFGS-B
Problem n nh nf ncg time nh nf ncg time nfg time
BDEXP 5000 11 11 10 1.43 10 11 12 1.19 15 0.60
CVXBQP1 10000 2 2 0 0.24 1 2 1 0.81 2 0.08
JNLBRNG1 15625 26 26 33 15.22 24 25 2029 165.42 999 198.75
JNLBRNG2 15625 16 16 27 9.21 14 15 898 74.16 577 105.18
JNLBRNGA 15625 23 23 29 12.46 21 22 1584 117.64 332 54.56
JNLBRNGB 15625 10 10 15 5.29 8 9 419 30.71 999 160.32
MCCORMCK 10000 6 7 6 1.46 4 5 4 1.10 15 1.76
NCVXBQP1 10000 2 2 0 0.24 4 5 0 3.01 2 0.08
NCVXBQP2 10000 10 10 10 1.44 6 7 84 3.35 178 6.85
NCVXBQP3 10000 10 10 10 1.39 6 7 163 2.96 388 14.87
NOBNDTOR 14884 38 38 71 22.03 36 37 1386 123.66 213 36.38
NONSCOMP 10000 9 9 8 1.44 8 9 8 1.45 51 4.24
OBSTCLAE 15625 27 27 51 14.48 5 6 7452 821.46 660 116.18
OBSTCLAL 15625 25 25 39 12.64 24 25 604 43.64 156 24.51
OBSTCLBL 15625 20 20 42 12.81 18 19 2088 199.04 272 49.28
OBSTCLBM 15625 8 8 15 5.41 5 6 1378 152.87 146 25.90
OBSTCLBU 15625 21 21 33 11.85 19 20 621 56.68 194 33.94
TORSION1 14884 39 39 64 19.85 37 38 1148 86.08 224 35.36
TORSION2 14884 19 19 43 11.10 14 15 2063 173.28 521 91.56
TORSION3 14884 20 20 26 9.06 19 20 332 21.13 76 10.66
TORSION4 14884 18 18 27 8.98 14 15 653 34.99 417 65.78
TORSION5 14884 11 11 12 4.67 9 10 93 5.74 40 5.06
TORSION6 14884 15 15 18 7.07 8 9 151 8.54 362 53.99
TORSIONA 14884 39 39 64 21.45 37 38 1147 98.23 205 37.38
TORSIONB 14884 24 24 50 14.54 15 16 1982 186.69 371 70.13
TORSIONC 14884 20 20 26 9.80 19 20 332 24.65 89 13.97
TORSIOND 14884 18 18 26 9.70 14 15 634 39.70 409 69.59
TORSIONE 14884 11 11 12 5.06 9 10 93 6.55 38 5.44
TORSIONF 14884 15 15 19 7.71 7 8 154 9.36 341 56.83

of Hessian evaluations nh, function evaluations nf, and conjugate gradient iterations
ncg. For L-BFGS-B we record only the number of function and gradient evaluations nfg
because L-BFGS-B always evaluates the function and gradient at the same time. The
execution time (in seconds) is reported in the time column. In these results, all three
codes obtained the same optimal function value at the final iterate.

A general observation on the results in Table 7.1 is that the number of function
evaluations for TRON and LANCELOT is at most one more than the number of Hessian
evaluations. Thus, for these problems all the iterations of the Newton codes are
successful. We conclude that these problems do not fully test TRON or LANCELOT.

In analyzing computational results we do not discuss problems where L-BFGS-B

requires less than 50 function and gradient evaluations. In general, we feel that if
a limited-memory variable metric algorithm converges in less than 50 function and
gradient evaluations on a problem with 10, 000 variables, then the starting point is
exceptionally good.

An important observation on the results in Table 7.1 is that on these problems
TRON requires less time than L-BFGS-B. These results support the conclusion that
TRON is preferable to L-BFGS-B if the Hessian matrix can be obtained explicitly. We
also expect TRON to outperform L-BFGS-B for sparse problems if the sparsity pattern
of the Hessian matrix is provided because with this information the Hessian matrix

1122 CHIH-JEN LIN AND JORGE J. MORÉ

can be obtained efficiently from differences of gradients.

The results in Table 7.1 also show that on these problems TRON requires less
time than LANCELOT and requires significantly fewer conjugate gradient iterations
than LANCELOT. Reducing the number of conjugate gradient iterations is important
because this number is likely to increase as the number of variables increases. We note
that since for these problems the cost of the conjugate gradient iterations is significant,
fewer conjugate gradient iterations translates into smaller computing times.

Another observation made on the results of Table 7.1 is that LANCELOT usually
requires fewer major iterations than TRON. Differences in the number of major itera-
tions are due, in part, to the choice of Cauchy point and the use of projected searches.
These algorithmic choices in TRON tend to add many constraints, and on some of these
problems, they lead to a larger number of major iterations. We also note that a de-
tailed examination of the output shows that even when both codes require the same
number of iterations, the algorithms visit different faces of the feasible set.

As a minor point, note that TRON almost always requires the same number of
function and Hessian evaluations. This is an algorithmic decision since we always
evaluate the gradient and Hessian at successful iterates. On the other hand, if an
iterate satisfies the termination criteria (7.1), LANCELOT returns without evaluating
the Hessian matrix at the final iterate.

The number of conjugate gradient iterations in LANCELOT can usually be reduced
by using other preconditioners instead of the default banded preconditioner. Other
preconditioners, however, usually require more memory and more floating point op-
erations per conjugate gradient iteration.

In Table 7.2 we present the results of using LANCELOT with Munksgaard’s ma31
preconditioner [31], which is an incomplete Cholesky factorization with a drop toler-
ance. A disadvantage of using the ma31 preconditioner with LANCELOT is that the
memory requirements are unpredictable. The user is asked to allocate a given amount
of memory, and if this amount is not sufficient, then an error message is issued. On
the other hand, the incomplete Cholesky factorization icfs used in TRON does not
require the choice of a drop tolerance, and the amount of storage can be specified
in advance. For the results presented in this section icfs uses 5n additional (double
precision) words. For a comparison of ma31 with icfs, see Lin and Moré [26].

Comparison of the LANCELOT results in Table 7.1 with those in Table 7.2 show
that in all cases the number of function evaluations and the number of Hessian eval-
uations for both preconditioners are identical and that the main difference is the
number of conjugate gradient iterations. Also note that, with the exception of prob-
lems OBSTCLBL and OBSTCLBM, the number of conjugate gradient iterations and
the time required to solve the problems with LANCELOT decreased when the ma31 pre-
conditioner was used. Overall, these results show that for these problems the ma31
preconditioner is preferable in LANCELOT.

The results in Table 7.2 show that TRON requires fewer conjugate gradient iter-
ations and, on most problems, less time than LANCELOT with the ma31 preconditioner.
Also note that there were five problems (OBSTCLAE, OBSTCLBL,
OBSTCLBM, TORSION2, and TORSIONB) where LANCELOT required more than
1, 000 conjugate gradient iterations, and note that on these problems the reductions
in time over the default preconditioner were not substantial. For these problems the
differences in conjugate gradient iterations are due not to the use of different pre-
conditioners but to the methods used by TRON and LANCELOT to compute the minor
iterates. LANCELOT uses a line search, and thus only one constraint is added at each

LARGE BOUND-CONSTRAINED OPTIMIZATION 1123

Table 7.2
Performance on the CUTE problems: LANCELOT with ma31.

TRON LANCELOT (ma31)
Problem n nh nf ncg time nh nf ncg time
BDEXP 5000 11 11 10 1.43 10 11 10 1.32
CVXBQP1 10000 2 2 0 0.24 1 2 1 0.80
JNLBRNG1 15625 26 26 33 15.22 24 25 179 28.69
JNLBRNG2 15625 16 16 27 9.21 14 15 70 13.09
JNLBRNGA 15625 23 23 29 12.46 21 22 166 24.29
JNLBRNGB 15625 10 10 15 5.29 8 9 46 7.56
MCCORMCK 10000 6 7 6 1.46 4 5 4 1.41
NCVXBQP1 10000 2 2 0 0.24 4 5 0 3.03
NCVXBQP2 10000 10 10 10 1.44 7 8 93 3.34
NCVXBQP3 10000 10 10 10 1.39 6 7 124 2.61
NOBNDTOR 14884 38 38 71 22.03 36 37 176 36.61
NONSCOMP 10000 9 9 8 1.44 8 9 8 1.66
OBSTCLAE 15625 27 27 51 14.48 2 3 7154 809.04
OBSTCLAL 15625 25 25 39 12.64 24 25 79 15.62
OBSTCLBL 15625 20 20 42 12.81 22 21 2346 307.67
OBSTCLBM 15625 8 8 15 5.41 5 6 1554 213.38
OBSTCLBU 15625 21 21 33 11.85 19 20 165 22.72
TORSION1 14884 39 39 64 19.85 37 38 159 27.97
TORSION2 14884 19 19 43 11.10 14 15 1592 143.66
TORSION3 14884 20 20 26 9.06 19 20 52 9.02
TORSION4 14884 18 18 27 8.98 14 15 438 25.91
TORSION5 14884 11 11 12 4.67 9 10 14 2.99
TORSION6 14884 15 15 18 7.07 8 9 116 7.46
TORSIONA 14884 39 39 64 21.45 37 38 175 31.80
TORSIONB 14884 24 24 50 14.54 15 16 1606 153.55
TORSIONC 14884 20 20 26 9.80 19 20 52 9.76
TORSIOND 14884 18 18 26 9.70 14 15 445 29.13
TORSIONE 14884 11 11 12 5.06 9 10 13 3.27
TORSIONF 14884 15 15 19 7.71 7 8 107 7.46

minor iteration. As a result many minor iterates can be generated, and determining
a minor iterate almost certainly requires at least one conjugate gradient iteration.
For these five problems LANCELOT generated, respectively, 7,155, 1,710, 1,184, 1,533,
and 1,541 minor iterates. TRON, on the other hand, uses a projected search and thus
is able to add many constraints at each minor iteration. For these problems TRON

generated 27, 26, 10, 19, and 24 minor iterates.

These results support the conclusion that TRON tends to require significantly fewer
minor iterations than LANCELOT. Moreover, the use of projected searches is the major
reason for TRON requiring a small number of minor iterates.

General conclusions cannot be drawn from these results because, as already noted,
this problem set does not fully test these algorithms. Our numerical results are
also affected by nonalgorithmic differences between TRON and LANCELOT. We have
already noted that these codes differ in the amount of memory required, but TRON and
LANCELOT differ in other ways. For example, LANCELOT uses the partial separability
structure, while TRON uses only the sparsity structure.

We also compared TRON with L-BFGS-B on a test set from the MINPACK-2 collection
of large-scale problems [1]. The MINPACK-2 problems defined by Table 7.3 are finite-
dimensional approximations of an infinite-dimensional variational problem defined
over a grid with nx and ny grid points in each coordinate direction. The column

1124 CHIH-JEN LIN AND JORGE J. MORÉ

Table 7.3
Parameters for the MINPACK-2 test problems.

Problem n nx ny λ l u
EPT1 10000 200 50 1.0d0 default default
EPT2 10000 200 50 5.0d0 default default
EPT3 10000 200 50 10.0d0 default default
PJB1 10000 100 100 0.1d0 default 1.0d2
PJB2 10000 100 100 0.5d0 default 1.0d2
PJB3 10000 100 100 0.9d0 default 1.0d2
MSA1 10000 200 50 0.0d0 -0.4d0 0.4d0
MSA2 10000 200 50 0.0d0 -0.2d0 0.2d0
MSA3 10000 200 50 0.0d0 -0.1d0 0.1d0
SSC1 10000 100 100 5.0d0 1.0d-1 1.0d0
SSC2 10000 100 100 5.0d0 1.0d-2 1.0d0
SSC3 10000 100 100 5.0d0 1.0d-3 1.0d0
SSC4 10000 100 100 5.0d0 1.0d-4 1.0d0
DGL2 10000 50 50 2.0d0 -1.0d20 1.0d20

labeled λ in Table 7.3 defines the value of a parameter associated with the problem,
while the last two columns define the lower and upper bounds on the variables. For
these results we used the termination test

‖∇Ωf(x)‖2 ≤ 10−5‖∇f(x0)‖2,(7.2)

where ∇Ωf is the projected gradient (2.8). This termination test is generally prefer-
able to (7.1) because (7.2) is invariant to changes in the scale of f .

The number of grid points nx and ny and the parameter λ can be modified easily in
the MINPACK-2 problems, thereby providing a convenient means for generating difficult
problems. In general, the problems become more difficult as the ratio ny/nx deviates
from unity. We have restricted the testing to problems where this ratio lies in the
interval [0.25, 1], which leads to relatively easy problems. In some cases, the choice
of λ and of lower and upper bounds also affects the performance of optimization
algorithms.

In the first two problems in Table 7.4 we examine the behavior of TRON and
L-BFGS-B as λ changes. For problem EPT (elastic-plastic torsion) the parameter λ is
the force constant, and for this problem the number of active constraints increases
as λ increases. The results in Table 7.4 show that EPT becomes easier to solve
as λ increases. This finding is reasonable because the EPT problem tends to be
increasingly linear as λ increases. The results for problem PJB (pressure in a journal
bearing) show that this problem becomes increasingly harder to solve as λ approaches
unity. For this problem λ is the eccentricity of the journal bearing, so this result is
reasonable.

In problems MSA and SSC we examine the behavior of TRON and L-BFGS-B as the
lower and upper bounds l and u change. The results of this testing were somewhat
disappointing because for these problems there does not seem to be a strong correla-
tion between the choice of bounds and the number of iterations. The most dramatic
change in performance occurs for L-BFGS-B and the MSA problem. Note, on the other
hand, that the performance of TRON is relatively insensitive to the choice of bounds.

Problem GL2 is unconstrained but is included in these results because it is a hard
problem for algorithms that do not use second-order information. The reason seems
to be that the GL2 problem has a saddle point that attracts L-BFGS-B.

LARGE BOUND-CONSTRAINED OPTIMIZATION 1125

Table 7.4
Performance on the MINPACK-2 problems with n = 10, 000.

TRON L-BFGS-B
Problem nh nf ncg time nfg time
EPT1 30 30 96 9.38 466 35.17
EPT2 31 31 61 7.69 445 27.81
EPT3 21 21 31 4.06 229 10.66
PJB1 22 22 42 5.92 717 49.25
PJB2 13 13 29 3.38 542 31.29
PJB3 7 7 17 1.76 2765 150.91
MSA1 27 48 94 19.06 776 65.35
MSA2 16 22 65 10.47 613 50.50
MSA3 19 19 48 9.89 487 39.79
SSC1 5 5 23 3.28 347 36.32
SSC2 6 6 25 4.11 345 36.83
SSC3 6 6 26 3.96 377 40.26
SSC4 6 6 26 3.99 293 30.91
GL2 8 8 364 34.73 3521 372.89

The most striking feature of the results in Table 7.4 is that TRON requires far fewer
function and gradient evaluations than L-BFGS-B and that this translates into smaller
computing times. This advantage is likely to increase as the number of variables
increases because the number of iterations in a Newton method tends to grow slowly,
while the number of iterations in limited-memory variable metric methods tends to
grow rapidly as the number of variables increases. See, for example, the results of
Bouaricha, Moré, and Wu [4].

Acknowledgments. The implementation of the Newton code benefited from
the work of Ali Bouaricha and Zhijun Wu on the unconstrained version of the code.
We thank Gail Pieper for her careful reading of the manuscript. We also thank the
referees and the associate editor, Nick Gould, for their comments. One of the referees
provided an extremely detailed and helpful report that led to improvements in the
amount of detail and explanations in the paper.

REFERENCES

[1] B. M. Averick, R. G. Carter, J. J. Moré, and G.-L. Xue, The MINPACK-2 test prob-
lem collection, Preprint MCS-P153-0694, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, 1992.

[2] D. P. Bertsekas, Projected Newton methods for optimization problems with simple constraints,
SIAM J. Control Optim., 20 (1982), pp. 221–246.

[3] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint, CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[4] A. Bouaricha, J. J. Moré, and Z. Wu, Preconditioning Newton’s Method, Preprint
ANL/MCS-P715-0598, Argonne National Laboratory, Argonne, IL, 1998.

[5] J. V. Burke and J. J. Moré, On the identification of active constraints, SIAM J. Numer.
Anal., 25 (1988), pp. 1197–1211.

[6] J. V. Burke and J. J. Moré, Exposing constraints, SIAM J. Optim., 4 (1994), pp. 573–595.
[7] J. V. Burke, J. J. Moré, and G. Toraldo, Convergence properties of trust region methods

for linear and convex constraints, Math. Programming, 47 (1990), pp. 305–336.
[8] P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained problems,

Math. Programming, 39 (1987), pp. 93–116.
[9] T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization

subject to bounds, SIAM J. Optim., 6 (1996), pp. 418–445.

1126 CHIH-JEN LIN AND JORGE J. MORÉ

[10] T. F. Coleman and Y. Li, A Trust Region and Affine Scaling Interior Point Method for
Nonconvex Minimization with Linear Inequality Constraints, Technical Report TR97-1642,
Cornell University, Ithaca, NY, 1997.

[11] T. F. Coleman and Y. Li, Combining trust region and affine scaling for linearly constrained
nonconvex minimization, in Advances in Nonlinear Programming, Y. Yuan, ed., Kluwer
Academic Publishers, Norwell, MA, 1998, pp. 219–250.

[12] A. R. Conn, N. I. M. Gould, A. Sartenaer, and P. L. Toint, Global convergence of a class
of trust region algorithms for optimization using inexact projections on convex constraints,
SIAM J. Optim., 3 (1993), pp. 164–221.

[13] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Global convergence of a class of trust
region algorithms for optimization with simple bounds, SIAM J. Numer. Anal., 25 (1988),
pp. 433–460; correction in SIAM J. Numer. Anal., 26 (1989), pp. 764–767.

[14] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT, Springer Ser. Comput. Math.,
Springer, New York, 1992.

[15] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Numerical experiments with the LANCELOT
package (Release A) for large-scale nonlinear optimization, Math. Programming, 73 (1996),
pp. 73–110.

[16] J. E. Dennis and L. N. Vicente, Trust-region interior-point algorithms for minimization
problems with simple bounds, in Applied Mathematics and Parallel Computing, Festschrift
for Klaus Ritter, H. Fisher, B. Riedmüller, and S. Schäffler, eds., Physica, Heidelberg,
1996, pp. 97–107.

[17] J. C. Dunn, On the convergence of projected gradient processes to singular critical points, J.
Optim. Theory Appl., 55 (1987), pp. 203–216.

[18] F. Facchinei, J. Júdice, and J. Soares, An active set Newton’s algorithm for large-scale
nonlinear programs with box constraints, SIAM J. Optim., 8 (1998), pp. 158–186.

[19] F. Facchinei and S. Lucidi, A Class of Methods for Optimization Problems with Simple
Bounds, Technical Report R.336, IASI-CNR, Rome, Italy, 1992.

[20] A. Forsgren and W. Murray, Newton methods for large-scale linear inequality-constrained
minimization, SIAM J. Optim., 7 (1997), pp. 162–176.

[21] A. Friedlander, J. M. Mart́ınez, and S. A. Santos, A new trust region algorithm for bound
constrained minimization, Appl. Math. Optim., 30 (1994), pp. 235–266.

[22] E. M. Gafni and D. P. Bertsekas, Two-metric projection methods for constrained optimiza-
tion, SIAM J. Control Optim., 22 (1984), pp. 936–964.

[23] D. M. Gay, A trust region approach to linearly constrained optimization, in Numerical Analysis,
D. F. Griffiths, ed., Lecture Notes in Math. 1066, Springer, New York, 1984, pp. 72–105.

[24] M. Heinkenschloss, M. Ulbrich, and S. Ulbrich, Superlinear and Quadratic Convergence of
Affine-Scaling Interior-Point Newton Methods for Problems with Simple Bounds without
Strict Complementarity Assumption, Technical Report TR97-30, Rice University, Houston,
TX, 1997; Math. Programming, to appear.

[25] M. Lescrenier, Convergence of trust region algorithms for optimization with bounds when
strict complementarity does not hold, SIAM J. Numer. Anal., 28 (1991), pp. 476–495.

[26] C.-J. Lin and J. J. Moré, Incomplete Cholesky factorizations with limited memory, SIAM J.
Sci. Comput., 21 (1999), pp. 24–45.

[27] J. J. Moré, Trust regions and projected gradients, in Systems Modelling and Optimization,
M. Iri and K. Yajima, eds., Lecture Notes in Control and Inform. Sci. 113, Springer, New
York, 1988, pp. 1–13.

[28] J. J. Moré, Global methods for nonlinear complementarity problems, Math. Oper. Res., 21
(1996), pp. 589–614.

[29] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,
4 (1983), pp. 553–572.

[30] J. J. Moré and G. Toraldo, On the solution of large quadratic programming problems with
bound constraints, SIAM J. Optim., 1 (1991), pp. 93–113.

[31] N. Munksgaard, Solving sparse symmetric sets of linear equations by preconditioned conjugate
gradients, ACM Trans. Math. Software, 6 (1980), pp. 206–219.

[32] S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43–62.
[33] A. Schwartz and E. Polak, Family of projected descent methods for optimization problems

with simple bounds, J. Optim. Theory Appl., 92 (1997), pp. 1–31.

LARGE BOUND-CONSTRAINED OPTIMIZATION 1127

[34] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[35] Ph. L. Toint, Global convergence of a class of trust region methods for nonconvex minimization
in Hilbert space, IMA J. Numer. Anal., 8 (1988), pp. 231–252.

[36] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization, ACM Trans. Math. Softw., 23 (1997), pp. 550–560.

POLYHEDRAL BOUNDARY PROJECTION∗

O. L. MANGASARIAN†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1128–1134

With best wishes to a friend, colleague, and major contributor to mathematical
programming: John Dennis, on the occasion of his 60th birthday.

Abstract. We consider the problem of projecting a point in a polyhedral set onto the boundary
of the set using an arbitrary norm for the projection. Two types of polyhedral sets, one defined
by a convex combination of k points in Rn and the second by the intersection of m closed half-
spaces in Rn, lead to disparate optimization problems for finding such a projection. The first case
leads to a mathematical program with a linear objective function and constraints that are linear
inequalities except for a single nonconvex cylindrical constraint. Interestingly, for the 1-norm, this
nonconvex problem can be solved by solving 2n linear programs. The second polyhedral set leads to a
much simpler problem of determining the minimum of m easily evaluated numbers. These disparate
mathematical complexities parallel known ones for the related problem of finding the largest ball,
with radius measured by an arbitrary norm, that can be inscribed in the polyhedral set. For a
polyhedral set of the first type this problem is NP-hard for the 2-norm and the ∞-norm [R. M.
Freund and J. B. Orlin, Math. Programming, 33 (1985), pp. 139–145] and solvable by a single linear
program for the 1-norm [P. Gritzmann and V. Klee, Math. Programming, 59 (1993), pp. 163–213],
while for the second type this problem leads to a single linear program even for a general norm
[P. Gritzmann and V. Klee, Discrete Comput. Geom., 7 (1992), pp. 255–280].

Key words. polyhedral set, boundary projection, largest inscribed ball

AMS subject classifications. 15A39, 90C05, 90C30

PII. S1052623497329245

1. Introduction. We consider a polytope in the n-dimensional real space Rn

defined as a convex combination of k points and represented as follows:

S := {y | y = Bz, z ≥ 0, eT z = 1},(1.1)

where B is an n×k real matrix and e is a vector of ones. Given a point s ∈ S we want
to find a projection p onto the boundary bd(S) of S using an arbitrary norm on Rn.1

Similar problems arise in data envelopment analysis (DEA) [2], where the distance to
the boundary is an efficiency measure of a decision making unit (DMU) represented
by that point. Each DMU is represented by an n-dimensional column of B and each of
the n dimensions measures components required or products generated by that DMU.
The set of efficient points for the DMUs is that part of the boundary of the convex
hull of S that cannot be improved on by any other DMU consuming less or equal
amounts of components or generating more or equal amounts of products. Projecting
a DMU onto the boundary of S gives an indication of how close to an efficient point
that DMU is. We will show in section 2, by using an arbitrary-norm projection onto a
hyperplane [9], that this is basically a nonconvex problem. However, the problem can
be reduced (Theorem 2.2) to a mathematical program with a linear objective function

∗Received by the editors October 27, 1997; accepted for publication (in revised form) July 3,
1998; published electronically September 24, 1999. This work was supported by National Science
Foundation grant CCR-9322479 and Air Force Office of Scientific Research grant F49620-97-1-0326
as Mathematical Programming Technical Report 97-10, October 1997.

http://www.siam.org/journals/siopt/9-4/32924.html
†Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison,

WI 53706 (olvi@cs.wisc.edu).
1The boundary projection problem for the set S using the 1-norm was suggested to the author

by Holger Scheel of Dortmund University.

1128

POLYHEDRAL BOUNDARY PROJECTION 1129

and linear constraints except for a single nonlinear equality constraint. The nonlinear
constraint restricts a solution to the surface of a cylinder determined by the dual norm
to that used in measuring the distance to the boundary of S. If the 1-norm is used to
measure the distance, then because its dual is the∞-norm, remaining on the∞-norm
cylinder and solving the problem can be achieved by solving 2n linear programs. A
related problem to the boundary projection problem is that of determining the largest
ball in Rn, with radius measured by an arbitrary norm, that is contained in S. This is
a problem that has been studied by a number of authors [3, 4, 6, 7], and it is NP-hard
except for the 1-norm which can be solved by a single linear program [7, Theorem
3.3]. By using our polyhedral boundary projection result we formulate this problem
as a maxmin problem (Theorem 2.4); an upper bound obtained by interchanging the
max and min, however, is twice as large as the upper bound of Gritzmann and Klee
[6, (1.3)]. (See corollaries 2.5 and 2.6.)

In contrast to the nonconvex problems arising from the boundary projection and
largest-inscribed-ball problems associated with a polyhedral set described by (1.1),
the corresponding optimization problems are much simpler when the polyhedral set
is described as the intersection of m closed half-spaces as follows:

T := {x | Ax ≥ b},(1.2)

where A is an m × n real matrix and b is a vector in Rm. The largest-inscribed-ball
problem in T was studied in [6, 7]. In section 3 we cite these results and state that
for any norm on Rn the projection problem reduces to the rather trivial problem of
finding the minimum of m easily calculated numbers, while the largest ball problem
for any norm can be solved by a single linear program.

Section 4 gives a brief summary and conclusion.
We note that given a polytope set in the form of (1.1) it is not easy to derive

the equivalent form (1.2) for that specific set; for example, the 1-norm unit ball has
2n vertices but 2n faces. Going backward from (1.2) to (1.1) is also difficult—for
example, the ∞-norm unit ball has 2n faces but 2n vertices—and may not even be
possible because T may be unbounded. In fact, by Motzkin’s polyhedral decomposi-
tion theorem [5, Theorem 1] the polyhedral set T is equivalent to the algebraic sum
of a convex combination of points in Rn (a set similar to S) plus a convex polyhedral
cone, neither of which is easy to find.

1.1. Notation and background. All vectors will be column vectors unless
transposed to a row vector by a superscript T . The scalar product of two vectors x
and y in the n-dimensional real space Rn will be denoted by xT y. For a mathematical
program minx∈X f(x), where f : Rn −→ R, the notation arg minx∈X f(x) will
denote the set of solutions of the mathematical program minx∈X f(x). For x ∈ Rn
and p ∈ [1,∞), the norm ‖x‖p will denote the p-norm (

∑n
i=1 |xi|p)

1
p and ‖x‖∞ will

denote max1≤i≤n |xi|. For an m×n matrix A, Ai will denote row i of A and A·j will
denote column j of A. The identity matrix in a real space of arbitrary dimension will
be denoted by I, while a column vector of ones of arbitrary dimension will be denoted
by e, and a column vector of arbitrary dimension with zeros in every row except one
in row i will be denoted by ei. The symbol := will denote a definition.

A boundary point of a set X ⊆ Rn is any point in Rn such that any open set
containing the point contains points in X and points not in X. The closed set of
all boundary points of X, denoted by bd(X), is contained in X if and only if X
is closed. Hence the closed polyhedral sets S and T contain their boundaries. By
a projection of a point s ∈ Rn onto a closed set X ⊆ Rn we mean an element of

1130 O. L. MANGASARIAN

P := arg minx∈X ‖x− s‖, where ‖ · ‖ is some specified norm on Rn. Because P may
not be a singleton as a consequence of the nonconvexity of X or the norm being the
1-norm or∞-norm, we shall mean by “projection of s onto X” any element of P , and
similarly for “its projection.” For a general norm ‖ · ‖ on Rn, the dual norm ‖ · ‖′ on
Rn and the resulting Cauchy–Schwarz inequality are

‖y‖′ := max
‖x‖=1

yTx, ±yTx ≤ |yTx| ≤ ‖y‖′‖x‖.(1.3)

For p, q ∈ [1,∞], 1
p + 1

q = 1, the p-norm and q-norm are dual norms.
We need, in Theorem 2.2 below, an explicit form for a projection of an arbitrary

point onto a given hyperplane using a general norm. Gritzmann and Klee [6, Proof
of (1.14)] give the distance between a point and its projection on the hyperplane but
do not give a projection explicitly. For later use we state the following result.

Proposition 1.1 (see [9], arbitrary-norm projection onto a hyperplane). Let
q ∈ Rn be any point in Rn not on the hyperplane:

P := {x | wTx = γ}, 0 6= w ∈ Rn, γ ∈ R.(1.4)

A projection p(q) ∈ P using a general norm ‖ · ‖ on Rn is given by

p(q) = q − wT q − γ
‖w‖′ r(w),(1.5)

where ‖ · ‖′ is the dual norm to ‖ · ‖ and

r(w) ∈ arg max
‖y‖=1

wT y.(1.6)

Consequently, the distance between q and its projection p(q) is given by

‖q − p(q)‖ =
|wT q − γ|
‖w‖′ .(1.7)

Explicit expressions for the 1-norm, 2-norm, and∞-norm for (1.5)–(1.7) are given
in [9, Corollaries 2.3–2.5].

2. Boundary projection and largest ball for polytope S. We begin with
the problem of finding a projection of a point s ∈ S onto the boundary bd(S) of S
for an arbitrary norm on Rn. For that purpose we need to characterize the set S̄ of
points not in S by means of a separating hyperplane argument as follows.

Lemma 2.1 (characterization of the complement of S). The set of points S̄ in
Rn not in S can be characterized as follows:

S̄ = {p | (p, y, ζ) ∈ R2n+1, BT y + eζ ≥ 0, pT y + ζ < 0, ‖ y ‖′= 1},(2.1)

where ‖ · ‖′ is the dual of an arbitrary norm ‖ · ‖ on Rn and pT y + ζ = 0 is a
supporting hyperplane of S separating S from a point in S̄.

Proof. By the strict separation theorem for convex sets [8, Theorem 3.2.6], p ∈ S̄
if and only if there exists a hyperplane in Rn: {x | vTx+ ξ = 0} for some v 6= 0 and
ξ ∈ R, which strictly separates p from S; that is,

vT p+ ξ < 0, vTBz + ξ ≥ 0 ∀z ≥ 0, eT z = 1

POLYHEDRAL BOUNDARY PROJECTION 1131

or, equivalently, pT v + ξ < 0 and BT v + eξ ≥ 0. Hence

S̄ = {p | (p, v, ξ) ∈ R2n+1, BT v + eξ ≥ 0, pT v + ξ < 0}.
Since v cannot equal zero in the definition of the last set, it follows on normalization
by dividing by ‖ v ‖′ and defining y := v/ ‖ v ‖′ and ζ := ξ/ ‖ v ‖′ that (2.1)
holds.

By using this lemma and Proposition 1.1 we are able now to state a mathematical
program that characterizes the boundary projection problem.

Theorem 2.2 (boundary projection p(s) for s ∈ S). The distance between s ∈ S
and its projection p(s) onto the boundary bd(S) of S using a general norm ‖ · ‖ on
Rn can be determined as follows:

‖s− p(s)‖ = min
y,ζ
{sT y + ζ |BT y + eζ ≥ 0, ‖y‖′ = 1} (a)

= min
‖y‖′=1

{
sT y − min

1≤j≤k
yTB·j

}
. (b)

(2.2)

Furthermore, if (ȳ, ζ̄) is a solution of (2.2(a)), then a projection p(s) of s onto the
boundary bd(S) of S is given by

p(s) = s− (sT ȳ + ζ̄)r(ȳ), where r(ȳ) ∈ arg max
‖y‖=1

ȳT y.(2.3)

Proof. Denote the feasible region of (2.2(a)) as

Z = {(y, ζ) | (y, ζ) ∈ Rn+1, BT y + eζ ≥ 0, ‖y‖′ = 1}.(2.4)

The equality of (2.2(a)) and (2.2(b)) is obvious once we define

ζ := − min
1≤j≤k

yTB·j .(2.5)

Since the objective function of (2.2(b)) is piecewise-linear convex and hence continu-
ous, it attains a minimum on the compact unit sphere at some ȳ. The corresponding
ζ̄ computed by (2.5) gives an optimal solution (ȳ, ζ̄) to (2.2(a)).

We now show that this minimum gives the distance between s ∈ S and its projec-
tion onto the boundary of S. For each p ∈ S̄ there exists, by Lemma 2.1, (y, ζ) ∈ Rn+1

such that (y, ζ) ∈ Z and such that p lies in the open half-space {q | qT y + ζ < 0}
and such that S lies in the complementary closed half-space {q | qT y + ζ ≥ 0}. Since
‖y‖′ = 1 for (y, ζ) ∈ Z it follows by Proposition 1.1 that the distance between s and
its projection onto the hyperplane {q | qT y+ ζ = 0} separating points in S and p̄ ∈ S̄
is sT y + ζ. Furthermore, the minimum sT ȳ + ζ̄ of sT y + ζ over all (y, ζ) ∈ Z is the
desired distance between s and its projection onto the boundary bd(S) of S because
of the following. Since sT ȳ + ζ̄ is the distance from s to a projection of s onto a
closest separating hyperplane that separates S from a point in its complement S̄, any
such projection is also a projection of s onto its boundary. This is because it lies on
a separating hyperplane and hence cannot lie in the interior of S; if it were not in S,
a point on the line segment joining the projection to s would intersect the boundary
of S closer to s and the separating hyperplane at this boundary point would have a
closer projection to s contradicting the minimality of sT ȳ+ ζ̄. Also, a projection p(s)
of S onto the boundary bd(S) of S is given by a projection of s onto the hyperplane
{q | qT ȳ + ζ̄ = 0}, which again by Proposition 1.1 is given by (2.3).

1132 O. L. MANGASARIAN

For the 2-norm and the ∞-norm the boundary projection problem (2.2) is NP-
hard (see [7, Theorem 5.1], taking s to be the origin). However, for the 1-norm it can
be solved in polynomial time by solving 2n linear programs as follows.

Corollary 2.3. For the case of ‖ · ‖ = ‖ · ‖1, the mathematical program (2.2)
can be solved by solving the following 2n linear programs:

‖s− p(s)‖1 = min
i=1,...,n,σ=±1

Piσ, where

Piσ := min
y,ζ
{sT y + ζ | BT y + eζ ≥ 0, −e ≤ y ≤ e, yi = σ}.(2.6)

Any (ȳ, ζ̄) determined by solving (2.6) can be used in (2.3) to determine a projection
p(s) onto the boundary bd(S) of S using the 1-norm.

We turn our attention to the problem of finding the radius, measured by an
arbitrary norm, of the largest ball in Rn that is contained in S. By using Theorem
2.2 and maximizing over all s in S we can formulate this problem as follows.

Theorem 2.4 (largest ball inscribed in S). The radius ρ of the largest ball,
measured by an arbitrary norm ‖ · ‖ on Rn, that can be inscribed in S is given by

ρ = ‖s̄− p(s̄)‖ = max
s∈S

min
y,ζ
{sT y + ζ |BT y + eζ ≥ 0, ‖y‖′ = 1}.(2.7)

Proof. The distance function ‖s − p(s)‖ of (2.2) is an upper semicontinuous
function of s on S [1, p. 115, Theorem 1]. Since S is compact it follows that the upper
semicontinuous distance function ‖s− p(s)‖ on S attains its maximum on S.

Problem (2.7) is a difficult problem to solve for a general norm. Freund and Orlin
[4] have shown that this is an NP-hard problem for the 2-norm and the∞-norm, while
Gritzmann and Klee [7, Theorem 3.3] have shown that for the 1-norm the problem
can be formulated as a single linear program. For a general norm problem, (2.7) is
a minmax problem over the product of two sets, one of which is nonconvex. The
nonconvexity of the set Z = {(y, ζ) | (y, ζ) ∈ Rn+1, BT y + eζ ≥ 0, ‖y‖′ = 1}
precludes the use of a minmax theorem to switch the maxmin to a minmax, which
would simplify the problem. However, since the minmax is an upper bound to the
maxmin, which is the case here because the various minima and maxima exist, we
obtain the following corollary to the above theorem by using the minmax as an upper
bound to the maxmin and then simplifying the resulting expression.

Corollary 2.5 (upper bound for largest inscribed ball). An upper bound on
the radius ρ of the largest ball, measured by an arbitrary norm ‖ · ‖ on Rn, that can
be inscribed in S is given by

ρ = ‖s̄− p(s̄)‖ ≤ min
‖y‖′=1

(
max

1≤j≤k
yTB.j − min

1≤j≤k
yTB.j

)
.(2.8)

Proof. The minmax upper bound to the maxmin of (2.7) is given by

ρ = ‖s̄− p(s̄)‖ ≤ min
y,ζ

{
max

s=Bz, eT z=1, z≥0
{sT y + ζ} | BT y + eζ ≥ 0, ‖y‖′ = 1

}
.(2.9)

On noting that for a fixed y, yT s = yTBz is maximized over s ∈ S or equivalently
over z ≥ 0, eT z = 1, by taking yTBz equal to max1≤j≤k yTB.j , and noting that

ζ = max
1≤j≤k

−yTB.j = − min
1≤j≤k

yTB.j ,

POLYHEDRAL BOUNDARY PROJECTION 1133

we find that the desired upper bound (2.8) follows from (2.9).
Todd [10] gave a geometric interpretation of the upper bound (2.8) that can cut

it by a factor of 2 as follows. He noted that for a fixed y ∈ Rn such that ‖y‖′ = 1,
the term in the parentheses of (2.8), e.g., by Proposition 1.1, gives the width of a slab
parallel to the hyperplane yTx = 0 and containing the set S. Hence the minimum,
over all y such that ‖y‖′ = 1, of such slab widths bounds the diameter of the largest
ball that can be inscribed in S, and hence the upper bound (2.8) can be cut by a
factor of 2 as stated in the following corollary. This result is a special case of (1.3) in
Gritzmann and Klee [6], which states that the inner n-radius is bounded above by the
outer 1-radius. The bound is tight for symmetric convex bodies and is always within
a factor of about

√
n [6].

Corollary 2.6 (improved upper bound for largest inscribed ball).

ρ = ‖s̄− p(s̄)‖ ≤ 1

2
min
‖y‖′=1

(
max

1≤j≤k
yTB.j − min

1≤j≤k
yTB.j

)
.(2.10)

In contrast to these rather nontrivial problems for the boundary projection and
largest radius problems for a polyhedral set characterized by (1.1), we turn to the
considerably simpler corresponding problems for a polyhedral set characterized by
(1.2).

3. Boundary projection and largest ball for polyhedral set T . We con-
sider in this section the polyhedral set T defined by (1.2) and state results parallel
to Theorems 2.2 and 2.4. The analysis below is essentially contained in [3] for the
2-norm and in [6], but the argument is very simple from our earlier considerations.
For a given point s ∈ T , the distance between s and an arbitrary-norm projection
of s onto any of the hyperplane Aix = bi, i = 1, . . . ,m, defining T , is given by the
proof of (1.14) of [6] or Proposition 1.1. Hence the closest point to s on the boundary
bd(T) of T is given by the closest of these projections to s, which is the first boundary
point that an expanding ball around s would touch. This leads then to the following
straightforward result.

Theorem 3.1 (boundary projection p(s) for s ∈ T). The distance between s ∈ T
and its projection p(s) onto the boundary bd(T) of T using a general norm ‖ · ‖ on
Rn is given by

‖s− p(s)‖ = min
i=1,...,m

Ais− bi
‖Ai‖′ .(3.1)

A projection p(s) of p onto boundary bd(T) is given by

p(s) = s− Aīs− bī
‖Aī‖′

y(Aī),(3.2)

where ‖ · ‖′ is the dual norm to ‖ · ‖ and

y(Aī) ∈ arg max
‖y‖=1

Aīy,(3.3)

and ī is any index that solves (3.1).
It is interesting to contrast the simplicity of finding a minimum of m numbers

specified by (3.1) in order to determine the distance between s ∈ T and its projection
p(s) onto the boundary bd(T) of T with the nonconvex program (2.2) required for
the corresponding problem for the set S.

1134 O. L. MANGASARIAN

Using the above result we can recover the linear program of Gritzmann and Klee
[6, (1.14)] for the problem of determining the largest ball in Rn, with radius measured
by an arbitrary norm ‖ · ‖, that is contained in T . For the 2-norm a different linear
programming formulation is given by Eaves and Freund [3, p. 143].

Theorem 3.2 (largest ball inscribed in T). The radius ρ of the largest ball,
measured by an arbitrary norm ‖ · ‖ on Rn, that can be inscribed in T is given by

ρ = ‖s̄− p(s̄)‖ = sup
ρ,s
{ρ | Ais− ‖Ai‖′ρ ≥ bi, i = 1, . . . ,m},(3.4)

where ‖ · ‖′ denotes the dual norm to ‖ · ‖ on Rn.

4. Summary and conclusion. We have formulated the problem of projecting a
point in a polytope, defined by a convex combination of points in Rn, onto its bound-
ary, as a mathematical program that has linear constraints and objective function
and one nonconvex cylindrical constraint. For the 1-norm this problem can be solved
by solving 2n linear programs. When the set is given as the intersection of a number
of closed half-spaces, the projection problem is a straightforward problem of finding
the minimum of m numbers where m is the number of half-spaces defining the set.
We have also related our boundary-projection problem to the largest-inscribed-ball
problem considered by others [3, 4, 6, 7]. For the case of intersecting half-spaces, this
problem can be solved by a single linear program. For the other case of a polyhedral
set defined as a convex combination of given points, the problem is formulated as
a maxmin problem of a bilinear function on the product of two sets, one of which
contains a convex cylindrical constraint. Again, for the 1-norm, this problem can
be solved by linear programming while for other norms it is NP-hard. It is interest-
ing to note the disparate difficulty of the problems depending on the polyhedral set
characterization.

Acknowledgments. I am indebted to M. J. Todd for many important sugges-
tions for revising this paper and to two referees for constructive criticisms that made
me aware of the vast world of computational geometry.

REFERENCES

[1] C. Berge, Topological Spaces, McMillan, New York, 1963.
[2] A. Charnes, W. Cooper, A. Y. Lewin, and L. M. Seiford, eds., Data Envelopment Analysis,

Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.
[3] B. C. Eaves and R. M. Freund, Optimal scaling of balls and polyhedra, Math. Programming,

23 (1982), pp. 138–147.
[4] R. M. Freund and J. B. Orlin, On the complexity of four polyhedral set containment problems,

Math. Programming, 33 (1985), pp. 139–145.
[5] A. J. Goldman and A. W. Tucker, Polyhedral convex cones, in Linear Inequalities and Re-

lated Systems, H. W. Kuhn and A. W. Tucker, eds., Princeton University Press, Princeton,
NJ, 1956, pp. 19–40.

[6] P. Gritzmann and V. Klee, Inner and outer j-radii of convex bodies in finite-dimensional
normed spaces, Discrete Comput. Geom., 7 (1992), pp. 255–280.

[7] P. Gritzmann and V. Klee, Computational complexity of inner and outer j-radii of polytopes
in finite-dimensional normed spaces, Math. Programming, 59 (1993), pp. 163–213.

[8] O. L. Mangasarian, Nonlinear Programming, McGraw–Hill, New York, 1969; reprint: Classics
in Applied Mathematics 10, SIAM, Philadelphia, PA, 1994.

[9] O. L. Mangasarian, Arbitrary-norm separating plane, Oper. Res. Lett., 24 (1999), pp. 15–23.
[10] M. J. Todd, Private communication, July 1998.

A REVISED MODIFIED CHOLESKY
FACTORIZATION ALGORITHM∗

ROBERT B. SCHNABEL† AND ELIZABETH ESKOW†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1135–1148

Dedicated to John Dennis on his 60th birthday, in appreciation for his wonderful

contributions to the science and the people of nonlinear optimization

Abstract. A modified Cholesky factorization algorithm introduced originally by Gill and Mur-
ray and refined by Gill, Murray, and Wright is used extensively in optimization algorithms. Since
its introduction in 1990, a different modified Cholesky factorization of Schnabel and Eskow has also
gained widespread usage. Compared with the Gill–Murray–Wright algorithm, the Schnabel–Eskow
algorithm has a smaller a priori bound on the perturbation, added to ensure positive definiteness,
and some computational advantages, especially for large problems. Users of the Schnabel–Eskow
algorithm, however, have reported cases from two different contexts where it makes a far larger
modification to the original matrix than is necessary and than is made by the Gill–Murray–Wright
method. This paper reports on a simple modification to the Schnabel–Eskow algorithm that appears
to correct all the known computational difficulties with the method, without harming its theoretical
properties or its computational behavior in any other cases. In new computational tests, the modifi-
cations to the original matrix made by the new algorithm appear virtually always to be smaller than
those made by the Gill–Murray–Wright algorithm, sometimes by significant amounts. The perturbed
matrix is allowed to be more ill-conditioned with the new algorithm, but this seems to be appropriate
in the known contexts where the underlying problem is ill-conditioned.

Key words. Cholesky factorization, optimization, nonpositive definite

AMS subject classifications. 65F30, 65K10, 15A23

PII. S105262349833266X

1. Introduction. Modified Cholesky factorizations are widely used in optimiza-
tion. A numerically stable modified Cholesky factorization algorithm was introduced
by Gill and Murray in 1974 [9]. Given a symmetric, not necessarily positive definite
matrix A ∈ Rn×n, a modified Cholesky factorization calculates a Cholesky (i.e., LLT

or LDLT) factorization of a positive definite matrix A + E in a way that attempts
to satisfy four goals: (1) If A is safely positive definite, E is 0; (2) if A is indefinite,
‖E‖∞ is not much greater than the magnitude of the most negative eigenvalue of
A, λ1(A); (3) A + E is reasonably well-conditioned; (4) the cost of the factorization
is only a small multiple of n2 operations more than the O(n3) cost of the standard
Cholesky factorization.

The factorization of Gill and Murray was subsequently refined by Gill, Murray,
and Wright [10] (hereinafter referred to as GMW81). This version has been widely
used in optimization methods since its inception. More recently, Schnabel and Es-
kow [12] introduced a factorization (hereinafter referred to as SE90) that is based on
different techniques. Both factorizations choose E to be diagonal. Both satisfy prop-
erties 1, 3, and 4 mentioned above; they differ in how closely they satisfy property
2. The SE90 factorization has a significantly smaller a priori bound on ‖E‖, where
in this paper ‖E‖ is always the infinity norm, and in computational tests it appears

∗Received by the editors January 19, 1998; accepted for publication (in revised form) February
2, 1999; published electronically September 24, 1999. This work was supported by Air Force Office
of Scientific Research grant F49620-97-1-0164, Army Research Office contract DAAH04-94-G-0228,
and NSF grant CDA-9502956.

http://www.siam.org/journals/siopt/9-4/33266.html
†Department of Computer Science, University of Colorado at Boulder, Campus Box 430, Boulder,

CO 80309-0430 (bobby@cs.colorado.edu, eskow@cs.colorado.edu).

1135

1136 ROBERT B. SCHNABEL AND ELIZABETH ESKOW

that ‖E‖ is smaller for the SE90 factorization than the GMW81 factorization in most
cases as well. In practice, both factorizations appear to be very satisfactory for use
in optimization algorithms and both are now widely used.

While the overall computational experience with the SE90 factorization since its
introduction appears to have been quite good, a few instances have arisen where its
performance has been poor. The SE90 paper [12] contained one example where the
amount that is added to A, while within the theoretical bounds, is far larger than the
magnitude of λ1(A) and also far larger than the amount added by the GMW81 factor-
ization. In the first years following the publication of the SE90 algorithm, Wolfgang
Hartmann of SAS Institute made us aware of another problem with similar behavior.
More recently, David Gay, Michael Overton, and Margaret Wright encountered a class
of problems, arising in primal-dual interior methods for constrained optimization [8],
where the SE90 factorization again sometimes added far too much while the GMW81
factorization performed well.

All the known examples where the SE90 factorization adds too much (i.e., the
ratio of ‖E‖ to the magnitude of the most negative eigenvalue of A is greater than,
say, 5) turn out to be matrices A that are the sum of a large positive semidefinite
matrix B and a much smaller (in norm) indefinite matrix C. In these cases, one wants
‖E‖ to be of order ‖C‖, but instead the SE90 algorithm sometimes produces ‖E‖ of
order ‖B‖. In the experience of Gay, Overton, and Wright, this introduced difficulties
in the constrained optimization algorithm using the SE90 factorization that were not
experienced when using the GMW81 factorization.

This paper introduces a simple modification to the SE90 modified Cholesky fac-
torization that remedies these difficulties without harming its computational perfor-
mance in any other known cases. The modification is to tighten slightly the condition
under which the algorithm switches from phase 1 (standard Cholesky factorization)
to phase 2, thereby making it slightly more likely to stay in phase 1 at a given itera-
tion of the factorization. The theoretical effect of this change is to increase the upper
bound on ‖E‖ by a factor of at most 1.1. The modification resolves all the problem
cases for the SE90 factorization of which we are aware.

Section 2 contains brief background on the modified Cholesky factorization, in-
cluding the methods of GMW81 and SE90. This section is not intended to be a com-
prehensive reference; for more background on the modified Cholesky factorization or
its use in optimization, see [10, 12] or Dennis and Schnabel [7]. Section 3 motivates
the change in the SE90 example that this paper introduces, using the problematic
example from [12]. In section 4 we present the complete new algorithm; several other
very minor changes related to the main change and to badly conditioned problems
are included. Section 5 briefly presents the theoretical results for the new method. In
section 6 we summarize the results of computational tests of the new algorithm, and
the methods of GMW81 and SE90, on the problems of Gay, Overton, and Wright, on
a problem of Hartmann, and on the random test problems that were used in [12] to
assess the behavior of the factorizations. Fortran code for the revised factorization
will be available from the authors.

2. Brief background on modified Cholesky factorizations. The modified
Cholesky procedures of GMW81 and SE90, like the standard Cholesky factorization,
can be viewed as recursive procedures. At the beginning of stage j, an (n− j + 1)×
(n− j + 1) submatrix Aj remains to be factored (with A1 = A). We assume that Aj

REVISED MODIFIED CHOLESKY FACTORIZATION ALGORITHM 1137

has the form

Aj =

[
αj aTj
aj Âj

]
,(2.1)

where αj ∈ R is the current jth diagonal element and is called the pivot, aj is the

current vector of elements in column j below the diagonal, and Âj ∈ R(n−j)×(n−j).
The modified Cholesky factorization chooses a nonnegative amount δj to add to αj
and then calculates Ljj =

√
αj + δj , Lij = (aj)i/Ljj , i = j + 1, . . . , n, and

Aj+1 = Âj −
aja

T
j

αj + δj
.(2.2)

The challenge in the modified Cholesky factorization is choosing each δj . The
algorithm must guarantee that each δj = 0 if A turns out to be safely positive definite.
It also must employ some form of lookahead so that if A is not positive definite, δj is
chosen to be an appropriate positive quantity beginning at a sufficiently early iteration
of the factorization. This is not trivial; for example, waiting to set δj > 0 until αj
first becomes negative and then adding amounts δj > −αj is not satisfactory, as it
usually will result in ‖E‖ much greater than |λ1|(A).

The GMW81 algorithm chooses each δj to be the smallest nonnegative number
for which

0 ≤ ‖aj‖
2
∞

αj + δj
≤ β2(2.3)

(with a minimum of δj = −2αj if αj < 0), where β is an a priori bound selected to
minimize a worst-case bound on ‖E‖ and also to ensure that E = 0 if A is safely
positive definite. The result, with ε denoting machine precision, is

β2 = max{γ, ξ/
√
n2 − 1, ε}, where γ = maxi|Aii| and ξ = maxj<i|Aij |.(2.4)

The requirement that β2 ≥ γ guarantees E = 0 if A is positive definite. The overall
a priori bound on ‖E‖GMW depends on the largest element in brackets in (2.4); the
smallest upper bound is

n2γ + 2(n− 1)ξ,(2.5)

which is achieved when β2 = ξ/
√
n2 − 1.

The SE90 method is divided into two phases. The first phase consists of a normal
Cholesky factorization in which the factors are overwritten on A. Step j of phase 1
is allowed to proceed only if αj is positive and the smallest diagonal of the remaining
submatrix at the next step, i.e., at step j + 1, is “safely” positive, using the following
test. Let the vector ζ be defined as

ζi = Aii −A2
ij/αj , i > j.(2.6)

SE90 completes step j of the standard Cholesky algorithm only if

miniζi ≥ τγ, where τ = ε
1
3 ,(2.7)

and otherwise switches to phase 2. Note that the components of ζ would be the
diagonal elements of Aj+1 if step j of the unmodified Cholesky procedure were to be

1138 ROBERT B. SCHNABEL AND ELIZABETH ESKOW

completed; see (2.2). Satisfaction of (2.7) thus guarantees that all diagonal elements
of Aj+1 are positive so that there is no test of positivity of αj for j > 1.

Let K1 denote the number of steps completed during phase 1 so that δi = 0 for
i = 1, . . . ,K1. If K1 = n, A is positive definite and the algorithm terminates. If
K1 < n, let

γ̂ = maxK1<i|Aii| and ξ̂ = maxK1<i,j<i|Aij |.(2.8)

It is shown in SE90 that the test (2.7) for termination of phase 1 guarantees that

γ̂ ≤ γ and ξ̂ ≤ γ + ξ.(2.9)

If K1 < n− 2, then for j = K1 + 1, . . . , n− 2, the value of δj is

δj = max{0,−αj + max{‖aj‖1, τγ}δj−1}.(2.10)

This choice of δj causes the Gerschgorin intervals of the principal submatrices Aj to
contract at each iteration and leads to the following bound:

‖E‖SE ≤ G+
2τ

1− τ (G+ γ),(2.11)

where

G ≤ (n− (k + 1))(γ + ξ) if K1 > 0 and G ≤ γ + (n− 1)ξ if K1 = 0.(2.12)

The elements δn−1 and δn are chosen in a special way that depends on the eigen-
values of the final 2× 2 submatrix and still causes (2.12) to be satisfied.

The fact that the bound on ‖E‖ is linear in n for the SE90 factorization (2.11)
and (2.12) and quadratic in n for GMW81 factorization (2.5) is a key distinction
between the methods. In practice, however, both methods usually achieve ‖E‖ far
smaller than these bounds, and ‖E‖ is often within a factor of 2 of −λ1(A) when
λ1 < 0. In comparative tests in [12], the value of ‖E‖ for the SE90 factorization is
almost always smaller than for GMW81, although the performance of both methods is
quite good. The performance of both algorithms is greatly aided by diagonal pivoting
strategies employed at each iteration, which do not affect the theoretical properties.
The additional cost of both factorizations is at most a small integer multiple of n2

operations, which is negligible in comparison to the cost of the Cholesky factorization.

Recently, Cheng and Higham [2] have proposed a third type of modified Cholesky
factorization, based upon the bounded Bunch–Kaufman pivoting strategy [1]. This
factorization differs fundamentally from GMW81 and SE90 in that it adds a nondi-
agonal matrix to A by computing the symmetric indefinite factorization LBLT of a
symmetric permutation of A, where L is unit lower triangular and B is block diagonal
with 1 × 1 or 2 × 2 blocks, and then perturbing B. This approach can be shown to
perform well when the condition number of L is not too large. However, as Cheng
and Higham state, the bound on ‖E‖ is weak if the condition number of LLT is large,
and the worst-case upper bound is exponential in n. It is too early to assess whether
this version of the modified Cholesky factorization will have a significant impact in
the optimization community.

REVISED MODIFIED CHOLESKY FACTORIZATION ALGORITHM 1139

3. Motivating example for change to SE90 algorithm. All of the known
matrices for which ‖E‖SE is inordinately large appear to be of the form A = B +C,
where B is a large positive semidefinite matrix (i.e., B = B1B

T
1 for some B1 ∈

Rn×m, m < n) and C is an indefinite or negative definite matrix with ‖C‖ � ‖B‖.
(Any symmetric indefinite matrix whose largest positive eigenvalue is much larger
in magnitude than its most negative eigenvalue can be written in this form.) The
potential for a modified Cholesky factorization to have difficulty on matrices of this
type is clear: if phase 2 begins at or before step m (the rank of B), then the size of δj
is, according to (2.10), likely to be proportional to ‖B‖ and therefore large. If, on the
other hand, phase 2 begins after step m, δj is likely to be proportional to ‖C‖, which
is, by assumption, much smaller than ‖B‖. Of course, the structure of A, including
the value of m, is not known to the algorithm.

The example in [12] showing where that algorithm has difficulty,

A =

1, 890.3 −1, 705.6 −315.8 3, 000.3
−1, 705.6 1, 538.3 284.9 −2, 706.6
−315.8 284.9 52.5 −501.2
3, 000.3 −2, 706.6 −501.2 4, 760.8

 ,(3.1)

is of this form with m = 1. Its eigenvalues are 8,242.9, −0.248, −0.343, and −0.378.
After permuting the largest diagonal element to the (1,1) position, the values of ζ
computed from (2.6) are −0.265, −0.451, and −0.517, so that condition (2.7) fails
and the algorithm switches immediately to phase 2 with K1 = 0. Using (2.10), δ1 =
1,049.4 is added to the first diagonal, and this is the ultimate value of ‖E‖. The large
value of δ1 occurs because the calculation of δ1 is based upon the Gerschgorin bounds
for the large (in magnitude) matrix A.

In contrast, with the GMW81 algorithm we have α1 = β2 = 4, 760.8 and ‖a1‖∞ =
3, 000.3. Thus, inequality (2.3) is satisfied with δ1 = 0, so that no modification is made
to the (1,1) diagonal. At the second iteration the algorithm adds 1.033 to the diagonal,
which turns out to be its maximum element of E for this problem. This small value
of δ2 results because it is based upon the elements of A2, and ‖A2‖ � ‖A‖.

To avoid modifying too soon, the remedy for the SE90 algorithm is to relax
condition (2.7), the test for continuing phase 1, to allow phase 1 to continue even
if Aj+1 will have some small negative diagonal elements. In particular, we show in
section 5 that if phase 1 continues when there is a suitably positive pivot and

miniζi ≥ −µγ, where 0 < µ ≤ 1(3.2)

and ζ is defined by (2.6), then the bounds (2.11) on element growth in phase 1 are only
slightly worse; see Theorem 5.1. The advantage of using (3.2) rather than (2.7) is that
deferring modification may lead to a smaller ‖E‖ because the principal submatrix of
the later iteration may have smaller elements.

If the test (3.2) is used on example (3.1) with µ = 0.1 (or with any µ > 1.1×10−4),
the first step of the unmodified Cholesky is allowed to proceed, so that δ1 = 0 and

A2 =

 −0.451 −0.041 0.124
−0.041 −0.265 0.061

0.124 0.061 −0.517

 .(3.3)

Since all diagonal elements of A2 are negative, K1 = 1 and the procedure switches to
phase 2, giving E2,2 = 0.3666, E3,3 = E4,4 = 0.6649. That is, the ratio ‖E‖/(−λ1(A))
is a very acceptable 1.76, as opposed to a poor 2,778 for the SE90 algorithm (and 2.73
for the GMW81 algorithm).

1140 ROBERT B. SCHNABEL AND ELIZABETH ESKOW

4. The complete revised factorization algorithm. A complete pseudocode
description of our revised modified Cholesky factorization is given in Algorithm 4.1.
The key change from the SE90 algorithm is the one discussed in section 3: the looka-
head condition under which the algorithm switches from phase 1 to phase 2 is changed
from min{(Aj+1)ii} ≤ τγ for some small positive τ (2.7) to min{(Aj+1)ii} ≤ −µγ for
some µ ≤ 1 (3.2). Our implementation uses µ = 0.1.

Several changes have been made to the algorithm in addition to checking (3.2) as
part of continuing in phase 1:

1. Since we now allow small negative diagonal elements in Aj in phase 1, we
must check that the pivot is positive. The test we insert to proceed with step j of
phase 1 is that the pivot element αj (the maximum diagonal element of Aj) must
satisfy

αj ≥ τ̄ γ, where τ̄ = ε
2
3 .(4.1)

This requirement ensures not only that the pivot is positive but also that the new
algorithm retains a (mainly theoretically useful) bound on the condition number of L
analogous to that for the SE90 algorithm.

2. At step j of phase 1, even if (4.1) is satisfied a branch is made to phase 2 if

mini>jAii < −µαj ,(4.2)

where µ is the quantity from (3.2). Note that because (3.2) was satisfied at the
previous step of phase 1, it must be true that mini>jAii ≥ −µγ. When (4.2) holds,
the remaining submatrix Aj tends to have at least one negative eigenvalue that is
comparable in magnitude to the other eigenvalues of Aj . In this case, the test (4.2)
leads to an earlier termination of phase 1. Practical experience suggests that this
leads to a smaller ‖E‖; this is illustrated in section 6.

3. A reduced lower bound, τ̄ γ, is imposed on the modified diagonal Ajj + δj ,
where τ̄ is defined in (4.1). (In the SE90 algorithm, this lower bound is the larger
value τγ.) This change leads to two differences between the new algorithm and SE90
when applied to badly conditioned “barely indefinite” matrices for which |λ1| � ‖A‖:
‖E‖ tends to be smaller with the new algorithm—only slightly larger than −λ1; but

the condition number of the modified matrix tends to be larger—roughly 1/τ̄ = ε−
2
3

rather than ε−
1
3 as in SE90. We expect that trading a larger condition number for

a smaller modification often will be desirable—for example, when the Hessian at the
solution is ill-conditioned and the reduced bound allows quadratic convergence to be
retained.

4. Special logic is needed to treat the case when K1 = n− 1. (With SE90, step
n− 1 proceeds only if step n can also be completed, so that this case does not occur.)

The only portions of our code for the modified Cholesky factorization that are not
reflected in Algorithm 4.1 are brief special cases to deal with matrices of dimension
one and zero matrices.

Algorithm 4.1. Revised modified Cholesky decomposition algorithm.
GivenA ∈ <n×n symmetric (stored in lower triangle) and τ, τ̄ , µ (e.g., τ = (macheps)

1
3 ,

τ̄ = (macheps)
2
3 , µ = 0.1), find factorization LLT of A+ E, E ≥ 0

REVISED MODIFIED CHOLESKY FACTORIZATION ALGORITHM 1141

phaseone := true
γ := max1≤i≤n{|Aii|}
j := 1

(*Phase one, A potentially positive definite*)
While j ≤ n and phaseone = true do
if maxj≤i≤n{Aii} < τ̄γ or minj≤i≤n{Aii} < −µ(maxj≤i≤n{Aii})

then phaseone := false (*go to phase two*)
else

(*Pivot on maximum diagonal of remaining submatrix*)
i := index of maxj≤i≤n{Aii}
if i 6= j, switch rows and columns of i and j of A

if minj+1≤i≤n{Aii −A2
ij/Ajj} < −µγ

then phaseone := false (*go to phase two*)
else (*perform jth iteration of factorization*)

Ljj =
√
Ajj (*Ljj overwrites Ajj*)

For i := j + 1 to n do
Lij := Aij/Ljj (*Lij overwrites Aij*)
For k := j + 1 to i do

Aik = Aik − LijLkj
j := j + 1

(*end phase one*)

(*Phase two, A not positive definite*)
if phaseone = false and j = n, then

δ (* = Enn*) := −Ann + max{τ(−Ann)/(1− τ), τ̄γ}
Ann := Ann + δ
Lnn =

√
Ann

if phaseone = false and j < n, then
k := j − 1 (*k = number of iterations performed in phase one*)
(* Calculate lower Gerschgorin bounds of Ak+1*)

For i := k + 1 to n do
gi := Aii −

∑i−1
j=k+1 |Aij | −

∑n
j=i+1 |Aji|

(*Modified Cholesky Decomposition*)
For j := k + 1 to n− 2 do

(*Pivot on maximum lower Gerschgorin bound estimate*)
i := index of maxj≤i≤n{gi}
if i 6= j, switch rows and columns of i and j of A

(*Calculate Ejj and add to diagonal*)
normj :=

∑n
i=j+1 |Aij |

δ(∗ = Enn∗) := max{0,−Ajj + max{normj, τ̄γ}, δprev}
if δ > 0, then

Ajj := Ajj + δ
δprev := δ (* δprev will contain ‖E‖∞*)

(*Update Gerschgorin bound estimates*)
if Ajj 6= normj, then

temp := 1− normj/Ajj

1142 ROBERT B. SCHNABEL AND ELIZABETH ESKOW

for i := j + 1 to n do
gi := gi + |Aij | ∗ temp

(*Perform jth iteration of factorization*)
same code as in phase one

(*Final 2× 2 submatrix*)

λlo, λhi := eigenvalues of

[
An−1,n−1 An,n−1

An,n−1 An,n

]
δ := max{0,−λlo + max{τ(λhi − λlo)/(1− τ), τ̄γ}, δprev}
if δ > 0, then

An−1,n−1 := An−1,n−1 + δ
An,n := An,n + δ
δprev := δ

Ln−1,n−1 :=
√
An−1,n−1 (*overwrites An−1,n−1*)

Ln,n−1 := An,n−1/Ln−1,n−1 (*overwrites An,n−1*)
Ln,n := (An,n − L2

n,n−1)1/2 (*overwrites An,n*)
(*End phase two*)

5. Upper bound on ‖E‖. A key property of the SE90 factorization is the
bound (2.7) on ‖E‖. In this section we show that the relaxed lookahead strategy of
the revised factorization causes only a small growth in this bound. In particular, the
term (γ+ξ) in (2.8) increases to (1+µ)γ+ξ. (Recall that µ ≤ 1; in our implementation
µ = 0.1.) Thus the bound grows by at most (1 + µ) and is still linear in n.

There are two main components in the proof of the bound on ‖E‖ in SE90. One
is the proof [12, Lemma 5.1.1 and Theorem 5.1.2] that each δj in phase 2 is less
than the magnitude of the most negative Gerschgorin bound of the matrix Aj when
the algorithm enters phase 2. This result is unaffected by the changes in our revised
algorithm. The second main component of the proof is the bound on the growth in the
elements of A during phase 1 [12, Theorem 5.2.1]. This result and proof are modified
in a minor way by the new lookahead strategy. For completeness, we include the new
statement and proof of this result below. The only new portions are the various terms
µγ below, all of which are absent for the results in [12] about that algorithm. Note
that Theorems 5.1 and 5.2 are true independent of whether pivoting is used at all or
what pivoting strategy is used.

Theorem 5.1. Let A ∈ Rn×n and let γ = max{|Aii|, 1 ≤ i ≤ n}, ξ = max{|Aij |,
1 ≤ i < j ≤ n}. Suppose we perform the standard Cholesky decomposition as described
in phase 1 of Algorithm 4.1 for k ≥ 1 iterations, yielding the principal submatrix
Ak+1 ∈ R(n−k)×(n−k) (whose elements are denoted (Ak+1)ij , k + 1 ≤ i, j ≤ n), and

let γ̂ = max{|(Ak+1)ii|, k + 1 ≤ i ≤ n} and ξ̂ = max{|(Ak+1)ij |, k + 1 ≤ i < j ≤ n}.
If (Ak+1)ii ≥ −µγ, k + 1 ≤ i ≤ n for some µ ≤ 1, then γ̂ ≤ γ and ξ̂ ≤ ξ + (1 + µ)γ.

Proof. Let A = [BC
CT

F], where B ∈ Rk×k, C ∈ R(n−k)×k, F ∈ R(n−k)×(n−k).
After k iterations of the Cholesky factorization, the first k columns of the Cholesky

factor L have been determined; denote them by [L̄M], where L̄ ∈ Rk×k is triangular

and M ∈ R(n−k)×k. Then

B = L̄L̄T , C = ML̄T , F = MMT +Ak+1.(5.1)

Let mT
i denote the ith row of M . From (5.1), Fii = ‖mT

i ‖22 + (Ak+1)ii, k+ 1 ≤ i ≤ n,

REVISED MODIFIED CHOLESKY FACTORIZATION ALGORITHM 1143

so that from Fii ≤ γ and (Ak+1)ii ≥ −µγ,

‖mT
i ‖22 ≤ (1 + µ)γ.(5.2)

Thus for any off-diagonal element of Ak+1, (5.1), (5.2), and the definition of ξ imply

|(Ak+1)ij | ≤ |Fij − (mT
i)(mT

j)T | ≤ ξ + (1 + µ)γ,(5.3)

which shows that ξ̂ ≤ ξ+ (1 +µ)γ. For all the diagonal elements of Ak+1, (Ak+1)ii ≥
−µγ, µ ≤ 1, (5.1), and the definition of γ imply

−µγ ≤ (Ak+1)ii ≤ Fii ≤ γ,(5.4)

which shows that γ̂ ≤ γ and completes the proof.
The only other change in the revised algorithm that could affect the bound on

‖E‖ is the use of τ̄ where SE90 uses τ . Since τ̄ < τ , this affects the statement of the
main result but not the bound on ‖E‖. The new growth bound is given below; it is
a minor modification of Theorem 5.3.2 of [12].

Theorem 5.2. Let A, γ, and ξ be defined as in Theorem 5.1 and suppose the
modified Cholesky factorization Algorithm 4.1 is applied to A, resulting in the factor-
ization LLT of A + E. If A is positive definite and at each iteration L2

jj ≥ τ̄ γ, then
E = 0. Otherwise, E is a nonnegative diagonal matrix with

‖E‖ ≤ Gersch +
2τ

1− τ (Gersch + γ),(5.5)

where Gersch is the maximum of the negative of the lower Gerschgorin bounds { gi }
of Ak+1 that are calculated at the start of phase 2. If k = 0, then Gersch ≤ γ+(n−1)ξ;
otherwise

Gersch ≤ (n− (k + 1))((1 + µ)γ + ξ).(5.6)

6. Computational results. We have tested our revised factorization method,
and the GMW81 and SE90 methods, on the problems where the SE90 method had
difficulties as well as on the broad test set from [12] and a modification of one of these
problem sets designed to be especially difficult for our methods for reasons described
below. This section summarizes and analyzes the computational results.

As mentioned in section 1, the modifications to the SE90 algorithm were moti-
vated in a large part by the matrices sent to us by Gay, Overton, and Wright. These
matrices are condensed primal-dual matrices used in barrier methods for constrained
optimization. The 33 matrices sent to us were from problems in which the overall
optimization method using the SE90 factorization performed worse than the same op-
timization method using other modified Cholesky factorizations, including GMW81.
For each problem, Gay, Overton, and Wright attempted to locate the first optimiza-
tion iteration where the algorithm using SE90 took a poorer step than the algorithm
using other modified Cholesky factorizations, and they sent the Hessian matrix from
this iteration. It turned out that for two-thirds of these matrices, the SE90 algorithm
was adding more than GMW81, by as much as a factor of 102 to 107 in eight cases.
The problems are quite small, with all but two having dimension between 6 and 15
and the remaining two having dimension 26 and 55.

Table 6.1 summarizes the performance of the GMW81 and SE90 algorithms, and
our new Algorithm 4.1, on these 33 problems. The first column encodes the problem

1144 ROBERT B. SCHNABEL AND ELIZABETH ESKOW

Table 6.1
Performance of existing and new methods on indefinite Hessian matrices.

Problem ‖E‖/(−λ1(A)) Log10 Cond’n number of A+ E
GMW81 SE90 Revised SE90 GMW81 SE90 Revised SE90

A6 1 1.36 3.57e+02 1.08 5 1 9
A6 2 4.84 1.18 1.18 3 5 7
A6 3 4.84 1.19 1.20 4 5 6
A6 4 2.50 1.27 1.27 5 5 8
A6 5 2.34 6.50 1.44 5 3 9
A6 6 1.69 2.94 1.20 8 5 10
A6 7 1.95 4.61 1.33 12 5 10
A6 8 1.95 6.61 1.13 8 5 10
A6 9 1.95 47.22 1.12 8 5 10
A6 10 5.88 5.39e+06 1.07 8 1 11
A6 11 2.33 7.25e+06 1.64 8 1 7
A6 12 4.84 1.19 1.20 4 5 6
A6 13 2.18 1.32 1.32 2 5 6
A6 14 4.84 1.19 1.20 4 5 6
A6 15 5.18 1.09 1.09 2 5 5
A6 16 2.18 1.32 1.32 2 5 6
A6 17 1.52 1.24 1.24 2 5 6
A13 1 2.25 8.93e+03 1.18 10 5 10
A13 2 2.59 1.50e+04 1.31 8 5 10
A15 1 2.42 2.54e+07 1.89 9 5 11
A15 2 2.37 3.89e+05 1.44 9 3 10
A15 3 1.95 2.18 1.50 6 5 10
B6 1 4.90 52.41 1.77 3 1 8
B6 2 4.49 45.86 2.31 2 1 7
B7 1 1.66 3.45 1.06 2 2 2
B7 2 1.93 11.00 1.30 2 1 7
B7 3 1.96 6.99 1.22 2 1 6
B7 4 1.92 5.32 1.18 2 1 6
B8 1 4.16 871.2 1.27 12 5 10
B13 1 0 27.14 (abs) 0 9 5 9
B13 2 1.76 7.84 1.29 7 5 10
B26 1 9.83 2.23 2.36 1 3 7
B55 1 3.50 1.71 1.71 1 5 6

as follows: the set (A is the initial set sent to us, B a second, later set sent to us
after we had made some but not all of the modifications reported in this paper), the
dimension, and the sequence number within this set and dimension. The second,
third, and fourth columns report the ratio of ‖E‖/(−λ1(A)) for each factorization.
(For problem B13 1, which is positive definite, these columns contain ‖E‖ instead.)
The last three columns report the integer part of the base 10 log of the l2 condition
number of A+ E.

The results show that the new algorithm produces a reasonable value of ‖E‖ in
all cases. The ratio ‖E‖/(−λ1(A)) is less than 2.4 for all 33 problems, less than 2 for
31 of the 33, and less than 1.4 for 24 of the 33 problems. The value of ‖E‖ is smaller
than that produced by the GMW81 algorithm on all 33 problems except the positive
definite matrix, where both produce E = 0. The values of ‖E‖/(−λ1(A)) produced
by GMW81 are generally in the range of 2 to 5 for these problems. It is not clear,
however, that this larger value makes the GMW81 algorithm any less effective in an
optimization context. The value of ‖E‖/(−λ1(A)) for the new algorithm is essentially
the same as for SE90 in 10 of the 33 cases and is lower in the other 23.

REVISED MODIFIED CHOLESKY FACTORIZATION ALGORITHM 1145

The results also show that the condition numbers of A+E produced by the new
algorithm are considerably higher than for the SE90 algorithm, with 13 of the 33 as
high as 109 to 1011. As discussed in section 4, this stems directly from the reduction in
the minimum allowable value of (Ajj+δj) from (macheps)1/3γ to (macheps)2/3γ. This
reduction, however, allows the algorithm to produce values of ‖E‖ hardly larger than
−λ1(A) on indefinite problems where −λ1(A) is very small compared to ‖A‖. The
condition numbers produced by the GMW81 algorithm are almost always smaller than
those produced by the new algorithm, although the two largest condition numbers
produced by GMW81 on this test set, both roughly 1012, exceed the largest condition
numbers produced by the new algorithm. It should be noted that the original matrices
in these problems are themselves extremely ill-conditioned, and it is important for the
modified Cholesky to retain this property.

The change in performance of the new algorithm versus the SE90 algorithm on
these problems is directly related to the new algorithm’s ability to defer adding to
the diagonal until a later iteration of the factorization. The new algorithm begins
adding to the diagonal at the same iteration as SE90 in 10 cases (all where SE90
already performed satisfactorily) and later in the remaining 23 cases. In eight cases it
begins adding only one iteration later, but even this can lead to ‖E‖ being orders of
magnitude smaller, as was shown by the example in section 3. In some cases the new
algorithm begins adding 7 to 10 iterations later than SE90 on problems of dimension
no greater than 15. GMW81 and the new algorithm are very similar when they
begin adding to the diagonal: they begin at the same iteration in 21 of the 33 cases,
with GMW81 beginning earlier in seven of the remaining 12 and later in the other
five. The test (4.2) has an impact on five of these 33 problems (A6 3, A6 10, A6 12,
A6 14, and B8 1), reducing ‖E‖/(−λ1(A)) from between 2 and 3.4 to 1.3 or less
while also reducing the condition number of A+E by about one order of magnitude
in comparison to the new algorithm without (4.2).

We had received one other report of difficulties in using the SE90 algorithm, from
Hartmann concerning problems arising in ridge regression. In the example sent to us
by Hartmann, n = 6 and the matrix

14.8253 −6.4243 7.8746 −1.2498 10.2733 10.2733
−6.4243 15.1024 −1.1155 −0.2761 −8.2117 −8.2117

7.8746 −1.1155 51.8519 −23.3482 12.5902 12.5902
−1.2498 −0.2761 −23.3482 22.7967 −9.8958 −9.8958
10.2733 −8.2117 12.5902 −9.8958 21.0656 21.0656
10.2733 −8.2117 12.5902 −9.8958 21.0656 21.0656

(6.1)

is positive semidefinite with one zero eigenvalue and five positive eigenvalues ranging
from 5 to 82. The positive semidefinite case can be considered a limiting case of
the class of problems that motivated our revision. The SE90 algorithm adds 7.50 to
the diagonal at iterations 3 through 6, which is undesirable. The GMW81 algorithm
adds 1.67 × 10−14 at iteration 6 and produces a condition number of 4.9 × 1015 for
A + E, whereas our new algorithm adds 1.90 × 10−9 at iteration 6 and produces a
condition number of 8.7 × 1010. Both seem reasonable; the higher value of δ6 and
lower condition number from the new algorithm, compared to GMW81, stem directly
from our tolerance on the lowest allowable value of (Ajj + δj) discussed in section 4.

We also reran all the test problems reported in [12]. These consist of 120 randomly
generated problems, 10 each of dimension 25, 50, and 75 for each of four eigenvalue
ranges: −1 to 1, −10−4 to −1, −1 to 104 and one negative eigenvalue, and −1 to 104

and three negative eigenvalues.

1146 ROBERT B. SCHNABEL AND ELIZABETH ESKOW

The behavior of the new algorithm on the first two sets of problems (eigenvalue
ranges [−1,1] and [−10−4, −1]) is identical to the SE90 algorithm for all problems.
As reported in [12], for both of these classes of matrices the SE90 algorithm (and the
new algorithm) produce values of ‖E‖/(−λ1(A)) quite close to 1 and considerably
lower than the GMW81 algorithm (by one to two orders of magnitude) while also
producing much smaller condition numbers than the GMW81 algorithm (by about
six orders of magnitude).

The behavior of the factorization algorithms on the sets with eigenvalue range −1
to 104 are very similar to the behavior on the Gay–Overton–Wright problems that
helped motivate this paper, since their characteristics are very similar. Indeed, the
example in section 3, given in [12], came from the [−1, 104] set with n = 25 and
three negative eigenvalues and was the only bad case for the SE90 algorithm of the
120 test problems in that paper. In this paper, we include the results for the one
negative eigenvalue set with n = 75 (Figures 6(a) and 6(b)), as they are typical but
more marked than the n = 25 and 50 results. We also include a new set with n =
75, eigenvalue range −1 to 104, and nine negative eigenvalues (Figures 6(c)–(e)), as it
is a more extreme example of the problems with the SE90 algorithm than the three
negative eigenvalue sets.

The results of these two test sets again show that the values of ‖E‖/(−λ1(A))
produced by the new algorithm are very good, generally about 1.5 for the first set
and 2 for the second. The values produced by the GMW81 algorithm are slightly
higher but also very good. The values produced by the SE90 algorithm on the second
set are very high (between 70 and 200) in four of the cases; for the first set they
are satisfactory but the new algorithm is better. As with some of the Gay–Overton–
Wright problems, the condition numbers produced by the new algorithm in these cases
are around 1010, while for the GMW81 algorithm they are around 105.

In summary, these results indicate that the modifications introduced in this paper
have removed the known difficulties with the SE90 algorithm. The new algorithm pro-
duces values of ‖E‖/(−λ1(A)) in the range 1 to 2.5 for all test matrices considered, in-
cluding all that are problematic for the SE90 algorithm. The values of ‖E‖/(−λ1(A))
are virtually always lower than those produced by the GMW81 algorithm, sometimes
considerably so. The modifications result in condition numbers of A + E of order
(macheps)−2/3 in cases when A is barely indefinite (0 < −λ1(A)� ‖A‖). The matri-
ces produced by the GMW81 algorithm generally are better conditioned than those
produced by the new algorithm in these cases, although the highest condition num-
bers produced by the GMW81 algorithm are higher than for the new algorithm. The
new algorithm, like SE90, produces very well conditioned matrices in the other types
of test cases.

In our opinion, these test results indicate good performance for both the GMW81
algorithm and the new algorithm. Which is used in an optimization context may
depend upon the context or upon factors other than those considered in this paper.
For example, SE90 has proved useful for large-scale codes, including multifrontal
approaches, where one does not want to process the full matrix A at once [4]. Here
the fact that GMW81 requires a preprocessing step that requires all of A (to compute
ξ, which is not used in SE90 or the new algorithm) is the critical difference. (Pivoting
is not used in these implementations; recall that this does not weaken the theoretical
properties of our algorithm.) In a different context, the SE90 algorithm has led to
very good performance when used as a preconditioner in conjugate gradient codes in
the LANCELOT software package [3]; it has also been used in this manner by [11].

REVISED MODIFIED CHOLESKY FACTORIZATION ALGORITHM 1147

0 2 4 6 8 10
0

50

100

150

200
n = 75, eig. range [1,10000], 9 neg. eigs

(|
|E

||)
 /

(la
m

bd
a(

1)
 o

f A
)

matrix

2 4 6 8 10
0

2

4

6

8

10
n = 75, eig. range [1,10000], 9 neg. eigs

(|
|E

||)
 /

(la
m

bd
a(

1)
 o

f A
)

matrix

0 2 4 6 8 10
10

0

10
5

10
10

10
15

n = 75, eig. range [1,10000], 9 neg. eigs
C

on
di

tio
n

nu
m

be
r

of
 (

A
+

E
)

matrix

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5
n = 75, eig. range [1,10000]

(|
|E

||)
 /

(la
m

bd
a(

1)
 o

f A
)

matrix
0 2 4 6 8 10

10
4

10
6

10
8

10
10

10
12

n = 75, eig. range [1,10000]

C
on

di
tio

n
nu

m
be

r
of

 (
A

+
E

)

matrix(a)

(c)

(e)

(b)

(d)

Fig. 6. (a), (b): Performance of existing and new methods on 10 matrices, each containing
one negative eigenvalue. (c)–(e): Performance of existing and new methods on 10 matrices, each
containing nine negative eigenvalues. Methods: GMW81 , SE90 −−−, revised SE90 + + +.

Additionally, it has proved to be useful in ensuring that the Winget factors within
element-by-element preconditioners are definite [6], and it has been implemented in a
block version of the factorization [5]. Finally, the results of this paper show that the
new algorithm may be a useful way to obtain rough estimates of −λ1(A) in cases where
this is useful, for example, in some trust region methods. For general optimization
applications, both factorizations are likely to continue to be used; the lower a priori

1148 ROBERT B. SCHNABEL AND ELIZABETH ESKOW

bound on ‖E‖ for GMW81 and the new algorithm may not be a determining factor
since the results of [12] and this section continue to show that both algorithms reliably
produce values of ‖E‖ that are far lower than these bounds in practice. If our test
problems are a good indication, however, the apparently greater robustness of our new
method in not producing poor values of ‖E‖ or excessively high condition numbers
of A+ E may be an asset.

Acknowledgments. We thank David Gay, Michael Overton, and Margaret
Wright for alerting us to the difficulties of our original modified Cholesky algorithm
on their problems from primal-dual methods and for supplying sample test problems.
We also thank Margaret Wright for many helpful, detailed suggestions regarding the
presentation of this paper.

REFERENCES

[1] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate symmetric indefinite linear equation
solvers, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 513–561.

[2] S. H. Cheng and N. J. Higham, A modified Cholesky algorithm based on a symmetric indefinite
factorization, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 1097–1110.

[3] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Numerical experiments with the LANCELOT
package (Release A) for large-scale nonlinear optimization, Math. Programming, 73 (1996),
pp. 73–110.

[4] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT: A Fortran Package for Large-
scale Nonlinear Optimization (Release A), Springer Ser. Comput. Math. 17, Springer-
Verlag, Berlin, 1992.

[5] M. J. Daydé, A Block Version of the Eskow-Schnabel Modified Cholesky Factorization, Rapport
Technique ENSEEIHT-IRIT RT/APO/95/8, 1995.

[6] M. J. Daydé, J.-Y. L’Excellent, and N. I. M. Gould, Element-by-element precondition-
ers for large partially separable optimization problems, SIAM J. Sci. Comput., 18 (1997),
pp. 1767–1787.

[7] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice–Hall, Englewood Cliffs, NJ, 1983; reprinted as Classics
Appl. Math. 16, SIAM, Philadelphia, PA, 1996.

[8] D. M. Gay, M. L. Overton, and M. H. Wright, A primal-dual interior point method for
nonconvex nonlinear programming, in Advances in Nonlinear Prgramming, Y. Yuan, ed.,
Kluwer Academic Publishers, Dordrecht, the Netherlands, 1998, pp. 31–36.

[9] P. E. Gill and W. Murray, Newton-type methods for unconstrained and linearly constrained
optimization, Math. Programming, 28 (1974), pp. 311–350.

[10] P. E. Gill, W. Murray, and M. H.Wright, Practical Optimization, Academic Press, London,
1981.

[11] T. Schlick Modified Cholesky factorizations for sparse preconditioners, SIAM J. Sci. Comput.,
14, (1993), pp. 424–445.

[12] R. B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J. Sci. Statist.
Comput., 11 (1990), pp. 1136–1158.

PARALLEL ADAPTIVE GMRES IMPLEMENTATIONS FOR
HOMOTOPY METHODS∗

MARIA SOSONKINA† , DONALD C. S. ALLISON‡ , AND LAYNE T. WATSON§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1149–1158

To our good friend John Dennis in celebration of his 60th birthday.

Abstract. The success of probability-one homotopy methods in solving large-scale optimization
problems and nonlinear systems of equations on parallel architectures may be significantly enhanced
by the accurate parallel solution of large sparse nonsymmetric linear systems. Iterative solution
techniques, such as GMRES(k), favor parallel implementations. However, their straightforward par-
allelization usually leads to a poor parallel performance because of global communication incurred
by processors. One variation of GMRES(k) considered here is to adapt the restart value k for any
given problem and use Householder reflections in the orthogonalization phase, coupled with graph-
based matrix partitioning, to achieve high accuracy and reduce the communication overhead. This
particular GMRES implementation is tailored to the uniquely stringent requirements imposed on a
linear system solver by probability-one homotopy algorithms: occasionally unusually high accuracy,
ability to adapt to problems of widely varying difficulty, and parallelism.

Key words. globally convergent, GMRES method, Krylov subspace methods, nonsymmetric
linear systems, probability-one homotopy, sparse matrix

AMS subject classifications. 65F10, 65F50, 65H10

PII. S1052623497329671

1. Introduction. For numerous highly nonlinear realistic applications, probabil-
ity-one homotopy methods are a primary solution choice, and are robust and accurate.
Other nonlinear analysis methods, such as quasi-Newton methods, often fail when-
ever a good initial estimate of the solution to a given problem is hard to obtain. On
the other hand, probability-one homotopy methods converge to a solution from an
arbitrary starting point (outside of a set of measure zero). These methods have been
successfully applied to solve Brouwer fixed point problems, zero finding problems,
polynomial systems of equations, optimization problems, discretizations of nonlinear
two-point boundary value problems based on shooting, finite differences, collocation,
and finite elements [23], [24]. However, the global convergence together with robust-
ness and accuracy of homotopy methods often results in a rather costly computational
process. Sparse linear algebra for homotopy methods was addressed first in [25] and
[26] and later in [1], [9], [13], [16], and elsewhere.

There are subtle, but fundamental, differences between continuation, homotopy
methods, and probability-one homotopy methods. These differences have a major
impact on the philosophy and construction of numerical algorithms. Suffice it to state
that these differences are discussed in the literature (e.g., [12]) and that this paper

∗Received by the editors November 6, 1997; accepted for publication (in revised form) January
28, 1999; published electronically September 24, 1999. The work of the first and third authors was
supported in part by Department of Energy grant DE-FG05-88ER25068/A004, National Aeronautics
and Space Administration grant NAG-1-1562, Air Force Office of Scientific Research grants F49620-
96-1-0089 and F49620-96-1-0104, and National Science Foundation grant DMS-9625968.

http://www.siam.org/journals/siopt/9-4/32967.html
†Department of Computer Science, University of Minnesota, 320 Heller Hall, 10 University Drive,

Duluth, MN 55812 (masha@d.umn.edu).
‡Department of Computer Science, Virginia Polytechnic Institute and State University, Blacks-

burg, VA 24061 (allison@cs.vt.edu).
§Departments of Computer Science and Mathematics, Virginia Polytechnic Institute and State

University, Blacksburg, VA 24061 (ltw@cayuga.cs.vt.edu).

1149

1150 MARIA SOSONKINA, DONALD C. S. ALLISON, AND LAYNE T. WATSON

concerns what are technically known as globally convergent probability-one homotopy
algorithms.

Growing computer capability is a major reason for homotopy algorithms becom-
ing an affordable alternative to other less robust methods. The benefits of parallel
architectures for homotopy methods have been shown in [2]. Despite the serial nature
of curve tracking, the burden of computation in homotopy methods is in the numeri-
cal linear algebra and user-defined function evaluations [8], which can be carried out
in parallel. For large-scale problems, the cost of the serial work may be negligible
in comparison with linear system solving (and user-written function evaluation). As
concluded in [3], a high degree of parallelism in the linear system solutions contributes
much to the overall parallel performance of homotopy methods.

Besides parallelism, the linear system solver in the inner loop of any curve tracking
algorithm has to robustly handle linear systems with widely varying characteristics.
Jacobian matrices can have significant qualitative differences along a homotopy zero
curve, varying between straight sections of the curve and around sharp turning points,
and also varying as the homotopy map moves through different physical regimes (e.g.,
as a fluid flow changes from inviscid to viscous or as the transistor properties change in
a circuit). An iterative linear system solver in the inner loop cannot, even occasionally,
fail to converge, as this may cause the entire curve tracking process to abort. This
robustness requirement is addressed here by using an adaptive variant of GMRES(k)
[20].

Another somewhat unique requirement from probability-one homotopy algorithms
is the occasional need for very high accuracy (near machine precision for residuals)
at some points along the homotopy zero curve γ, at least as compared to the ac-
curacy required in the context of a PDE solution, a quasi-Newton iteration for a
nonlinear system, or a nonlinear optimization step. This high accuracy requirement
seems unavoidable, is well documented [16], [23], [24], and is absolutely crucial for
certain classes of problems like analog DC circuit simulation [16] and postbuckling
stability analysis of structures that exhibit snap-back and snap-through phenomena
[20]. This accuracy requirement is addressed by using Householder reflections in the
orthogonalization phase of GMRES(k). Note that there is no correlation between the
step size in arc length along γ, the accuracy with which γ is computed, and the accu-
racy with which linear systems arising from the curve tracking algorithm are solved.
For instance, γ might be computed very accurately with large steps and crude linear
system solutions. Alternatively, very small steps and highly accurate linear system
solutions might be required for even a crude approximation of γ.

Thus in the context of probability-one homotopy methods, an efficient parallel
implementation of a linear system solver has to satisfy the requirements established
for a sequential linear solver—robustness and high accuracy in the solution. To meet
these requirements, a particular variation of the popular linear system solution tool
GMRES [18] is proposed in this paper. This variation [20] uses an adaptive strategy to
deal with varying difficulties of linear systems, which are to be solved by a homotopy
method, and Householder reflections to achieve high accuracy. It turns out that the
use of Householder reflections, coupled with graph-based matrix partitioning, also
improves the parallel performance of GMRES(k).

Section 2 gives a description of the adaptive GMRES(k) algorithm. Its parallel
implementations using Householder reflections and graph-based matrix partitioning
are discussed in section 3, along with numerical results. Section 4 contains conclusions.

PARALLEL ADAPTIVE GMRES 1151

2. GMRES(k) algorithm. The GMRES algorithm [18] is used to solve a linear
system Ax = b with an n × n nonsymmetric invertible coefficient matrix A. Similar
to the classical conjugate gradient method, GMRES produces approximate solutions
xj which are characterized by a minimization property over the Krylov subspaces
K(j, A, r0) ≡ span{r0, Ar0, A

2r0, . . . , A
(j−1)r0}, where r0 = b − Ax0 and j is the

iteration number. However, unlike the conjugate gradient algorithm, the work and
memory required by GMRES grow proportionately to the iteration number since
GMRES needs all j vectors to construct an orthonormal basis for K(j, A, r0). This
basis is often called an Arnoldi basis, since it is implemented by the Arnoldi procedure
(see, e.g., [17]).

In practice, a restarted version GMRES(k) is used, where the algorithm is restarted
every k iterations. GMRES(k) takes xk as the initial guess for the next cycle of k it-
erations and continues until the residual norm is small enough. The disadvantage
of the restarted version is that it may stagnate and never reach the solution. The
essence of the adaptive GMRES strategy proposed in [20] is to adapt the parameter
k to the problem, in the same way a variable order ODE algorithm tunes the order k.
With modern programming languages, which provide pointers and dynamic memory
management, dealing with the variable storage requirements implied by varying k is
not difficult.

If k in GMRES(k) is not sufficiently large, GMRES(k) can stagnate. A test of
stagnation developed in [7] detects an insufficient residual norm reduction in the
restart number k of steps by estimating the GMRES behavior on a particular linear
system. Specifically, GMRES(k) is declared to have stagnated and the iteration is
aborted if, at the rate of progress over the last restart cycle of steps, the residual
norm tolerance cannot be met in some large multiple (bgv) of the remaining number
of steps allowed (itmax is a bound on the number of steps permitted). Slow progress of
GMRES(k), which indicates that an increase in the restart value k may be beneficial
[21], can be detected with a similar test. The near-stagnation test uses a different,
smaller multiple (smv) of the remaining allowed number of steps. If near-stagnation
occurs, the restart value k is incremented by some value m and the same restart cycle
continues. Such incrementing is used, whenever needed, if the restart value k is less
than some maximum value kmax. When the maximum value for k is reached, adaptive
GMRES(k) proceeds as GMRES(kmax). The values of the parameters smv, bgv, and
m are established experimentally and can remain unchanged for most problems.

The convergence of GMRES may also be seriously affected by roundoff error,
which is especially noticeable when a high accuracy solution is required. The orthogo-
nalization phase of GMRES is susceptible to numerical instability. Let Q be a matrix
whose columns are obtained by orthogonalizing the columns of a matrix M, and define
the error matrix E = QTQ − I. The error matrices EMGS , EHR using the modified
Gram–Schmidt and Householder reflection methods, respectively, to construct Q from
M satisfy

‖EMGS‖2 ∼ u cond(M), ‖EHR‖2 ∼ u,

where u is the machine unit roundoff [5]. Clearly the orthogonalization with House-
holder reflections is more robust. An implementation of GMRES(k) using Householder
reflections and its block version are given in [22]. It has been shown theoretically [22]
that the implementation of GMRES using Householder reflections is about twice as
expensive as when modified Gram–Schmidt is used. However, the Householder reflec-
tion method produces a more accurate orthogonalization of the Krylov sub-
space basis when the basis vectors are nearly linearly dependent and the modified

1152 MARIA SOSONKINA, DONALD C. S. ALLISON, AND LAYNE T. WATSON

Gram–Schmidt method fails to orthogonalize the basis vectors; this can result in fewer
GMRES iterations compensating for the higher cost per iteration using Householder
reflections. Let ej be the jth standard basis vector and all norms the 2-norm. Pseu-
docode for an adaptive version of GMRES(k) with orthogonalization via Householder
reflections implemented as in [7] and [22] is given in Figure 1. Call this algorithm
AGMRES(k).

The rounding error of a sparse matrix-vector multiplication depends only on the
nonzero entries in each row of the sparse matrix, so the error tolerance xtol is pro-
portional to the average number of nonzeros per row avnz = (number of nonzeros
in A)/n. Since GMRES convergence is normally measured by reduction in the initial
residual norm, the convergence tolerance is tol = max{‖r0‖, ‖b‖}xtol.

A possible symptom of AGMRES(k) going astray is an increase in the residual
norm between restarts (the residual norm is computed by direct evaluation at each
restart). If the residual norm on the previous restart is actually smaller than the
current residual norm, then AGMRES(k) terminates. The solution is considered ac-
ceptable if ‖r‖ < tol2/3, although this loss of accuracy may cause the client algorithm
(the outer algorithm requiring solutions to linear systems) to work harder or fail. A
robust client algorithm can deal gracefully with a loss of accuracy in the linear system
solutions. If ‖r‖ >= tol2/3, AGMRES(k) is deemed to have failed. In this latter case,
the continuation of GMRES(k) would typically result in reaching a limit on the num-
ber of iterations allowed and a possible repetition of ‖rold‖ < ‖r‖ in later restarts.
AGMRES(k) may exceed an iteration limit when it is affected by roundoff errors in
the case of a (nearly) singular GMRES least-squares problem. The condition num-
ber of the GMRES least-squares problem is monitored by the incremental condition
estimate [6] as in [7]. AGMRES(k) aborts when the estimated condition number is
greater than 1/(50u).

3. Parallel implementations. In parallel environments, the choice of the or-
thogonalization process for the Krylov subspace basis vectors depends not only on the
accuracy of the process but also on the amount and type of global communication it
incurs. For some orthogonalization procedures, only one of the two requirements is
satisfied. For example, in serial implementations of the GMRES method, the modi-
fied version of the Gram–Schmidt process is often used as being sufficiently accurate
for a number of problems. However, in parallel GMRES implementations, other or-
thogonalization procedures are preferable since the modified Gram–Schmidt process
exhibits a large communication overhead (see, e.g., [15]). Better efficiency is achieved
with the classical Gram–Schmidt, but it is unstable. A compromise between the accu-
racy and communication overhead resulted in the development of parallel GMRES(k)
variations with a non-Arnoldi basis that undergoes orthogonalization only at the end
of a restart cycle (see, e.g., [4], [11]). At this point, an equivalent to the Arnoldi basis
is recovered as the matrix Q in the QR factorization of the non-Arnoldi basis. The
QR factorization is performed in parallel by a point or block version of Householder
reflections [19] that have a high degree of parallelism and avoid all-to-all communica-
tions. Under the requirement of high accuracy, the errors associated with performing
GMRES(k) iterations in a nonorthogonal basis are not acceptable. However, an effi-
cient parallel implementation of Householder reflections can be employed successfully
in a parallel version of the GMRES(k) algorithm, in which Householder reflections are
used to compute the Arnoldi basis.

PARALLEL ADAPTIVE GMRES 1153

choose x, itmax, kmax,m;

r : = b−Ax; itno : = 0; cnmax : = 1/(50u);

xtol : = max{100.0, 1.01avnz}u; tol : = max{‖r‖, ‖b‖}xtol;
while ‖r‖ > tol do

begin

rold : = r;

determine P1r = ±‖r‖e1
where the Householder transformation matrix P1 is defined in [17];

k1 = 1; k2 = k;

L1: for j : = k1 step 1 until k2 do

begin

itno : = itno+ 1;

v : = Pj · · ·P1AP1 · · ·Pjej ;
determine Pj+1 such that Pj+1v has zero components

after the (j + 1)st;

update ‖r‖ as described in [18];

estimate condition number cond(AVj) of GMRES least squares

problem via the incremental condition number ICN as in [6];

if ICN > cnmax then abort;

if ‖r‖ <= tol then goto L2

end

test : = k2 × log [tol/‖r‖]
/

log
[
‖r‖/

(
(1.0 + 10u) ‖rold‖

)]
;

if k2
<
= kmax−m and test >= smv × (itmax− itno) then

k1 : = k2 + 1; k2 : = k2 +m;

goto L1

end if

L2: e1 : = (1, 0, . . . , 0)T ; k : = k2;

solve min
y

∥∥ ‖r‖e1 − H̄jy∥∥ for yj where H̄j is described in [18];

q : =
(yj

0

)
; x : = x+ P1 . . . Pjq; r : = b−Ax;

if ‖r‖ <= tol then exit;

if ‖rold‖ < ‖r‖ then

if ‖r‖ < tol2/3 then

exit

else

abort

end if

end if

test : = k × log [tol/‖r‖]
/

log
[
‖r‖/

(
(1.0 + 10u) ‖rold‖

)]
;

if test >= bgv × (itmax− itno) then

abort

end if

end

FIG. 1. Adaptive GMRES (k).

1154 MARIA SOSONKINA, DONALD C. S. ALLISON, AND LAYNE T. WATSON

if (proc = 1) then s : = j else s : = 0 end if
determine Hs+1 such that Hs+1vloc ≡ wloc has zeros

after the (s+ 1)st component;
if (proc = 1) then

send wloc(s+ 1) to right;
else

receive w from left;
determine G1 such that wloc(1) = 0; update w;
if (proc 6= p) send w to right;

end if

Fig. 2. Parallel Householder reflection generation.

Here, an implementation of the Householder reflection orthogonalization in
GMRES(k) proposed in [22] is adapted to work in parallel. The parallel version em-
ploys an algorithm developed in [19] for generating and applying Householder reflec-
tions. This algorithm avoids dot-products and all-to-all communications. The degree
of parallelism equal to the number of processors in parallel Householder reflection
generation is achieved by letting each processor create its local portion of the House-
holder reflection vector independently. After that, local Householder reflection vectors
are assembled into a global Householder reflection vector using Givens rotations. The
approach taken in [19] assumes a fixed ring of processors, in which the communication
always starts from a fixed (first) processor.

Pseudocode for the algorithm generating Householder reflections (called HG) at
the jth GMRES(k) iteration on the processor proc (in a ring of p processors) is given
in Figure 2. Before applying a Householder reflection, a sequence of Givens rotations
has to be applied. Thus, Householder reflection application can be viewed as the
Householder reflection generation process reversed with respect to the order of using
Givens rotations and Householder reflections.

In Figure 2, H and G denote the Householder transformation matrix and the
Givens rotation matrix (as given in [17]), respectively; vloc denotes a portion of the
Krylov subspace vector Ajr0 located on a processor; p, left, and right are the proces-
sors with the highest rank, with the proc−1 rank, and the proc+1 rank, respectively.
It is also assumed that the first processor has the jth row of the input matrix.

However, the design presented in Figure 2 admits only a special case of the matrix
row distribution: assignment of a block of contiguous rows to each processor (call it
block-striped partitioning), which is rarely advantageous for an arbitrary unstructured
matrix. For large unstructured matrices graph-theoretical heuristics exist to produce
partitioning (call it graph-based) that minimizes the communication to computation
ratio of the distributed matrix-vector multiply. In the current implementation, a graph
partitioning algorithm from the MeTiS package [14] is used and the parallel version of
the matrix-vector multiply is performed as in [15]. The matrix-vector multiplication
requires that the components of all vectors be distributed in accordance with the cor-
responding matrix rows and allows overlapping of computation and communication.
To use the algorithms in Figure 2, the redistribution of a vector requires O(p2) com-
munications at each GMRES(k) iteration, which is highly impractical and reduces the
efficiency gained by the distributed matrix-vector product. Thus, it is beneficial to
develop an extension (call it MHG) of the algorithms in Figure 2, which accepts an
arbitrary row distribution among processors (Figure 3). The key idea of this exten-
sion is to allow a flexible ring in performing Givens rotations. The flexible ring is the

PARALLEL ADAPTIVE GMRES 1155

if (j = 1) then
s : = 1;

else
if (proc has (j − 1)st row) then s : = s+ 1;

end if
determine Hs such that Hsvloc ≡ wloc has zeros

after the sth component;
if (proc has jth row) then

ring end : = left;
send wloc(s+ 1) and ring end to right;

else
receive w and ring end from left;
determine Gs such that wloc(s) = 0; update w;
if (proc 6= ring end) then send w to right;

end if

Fig. 3. Modified parallel Householder reflection generation.

ring of processors in which the communication may start from an arbitrary processor
that (in a given graph-based partitioning) holds the first component of the vector x.
In practice, each processor in the flexible ring determines the current ring start by
consulting the global mapping array mpart, each entry of which is a processor number
indexed by a matrix row number (where the row numbering refers to the original
matrix before partitioning) located on that processor.

Usually, the subspace dimension is much smaller than the matrix dimension and
the graph partitioning algorithm produces a balanced workload by assigning an almost
equal number of rows to each processor. Thus, the case when the index s within vloc
becomes equal to the size of a local partition (size of vloc) occurs rarely for large
matrices, unless the number of processors is very large.

3.1. Experimental results. To compare the Householder reflections restricted
to the block-striped partitioning with the proposed extension for the graph-based
partitioning, GMRES was instrumented to collect the timing information relevant
only to the parallel Householder reflection generation and application. The time spent
in HG and MHG for generating and applying a global Householder reflection vector
is independent of the type of partitioning and thus presents a good measure of the
relative computational complexity of these two implementations.

The test problem is derived from a commercial circuit design at AT&T Bell Lab-
oratories. Analog circuit simulation requires the calculation of DC operating points,
which are solutions of large sparse nonlinear systems of equations. For realistic tran-
sistor models these nonlinear systems are fiercely nonlinear, causing the best damped
Newton algorithms to frequently fail. Probability-one homotopy methods have been
successful on such problems, but the homotopy zero curves are long and have ex-
tremely sharp turning points. The import of this is that near machine precision is
required for linear system solutions, at least near the turning points. The results in
Figure 4 are for a typical Jacobian matrix near a turning point on the homotopy zero
curve, extracted from a production run at AT&T.

The specific circuit problem (bgatt) is described in detail in [16]. Here only the
nonzero pattern of the corresponding matrix is presented in Figure 4. To get more
meaningful CPU times for just one linear system solve, the actual Jacobian matrix

1156 MARIA SOSONKINA, DONALD C. S. ALLISON, AND LAYNE T. WATSON

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Fig. 4. Nonzero pattern of the circuit matrix (left), and construction of a larger matrix (right).

Table 1
Total and matrix-vector multiplication parallel times for GMRES(15) with MHG and HG or-

thogonalizations.

4 5 15 16 25 32 66 95
MHG Tp 1.76 1.67 1.54 1.44 1.86 2.09 3.93 5.47

TMV 0.37 0.39 0.23 0.11 0.20 0.07 0.29 0.35
np 0 4 6 0 8 0 14 12

Comm 0 16 46 0 64 0 210 183
HG Tp 1.81 1.64 1.52 1.52 1.94 2.19 4.13 5.90

TMV 0.37 0.34 0.17 0.11 0.26 0.07 0.50 0.70
np 0 2 2 0 2 0 2 2

Comm 0 8 24 0 48 0 130 188

(n = 125 with 782 nonzeros) was scaled 96 times; i.e., 96 replicas of the problem were
assembled in an N × N matrix, where N = 96 × 125 as shown in Figure 4 for five
replicas.

MHG and HG generated the first Householder vector in 0.26s and 0.25s, respec-
tively, whereas MHG was slightly faster (0.23s and 0.25s, respectively) than HG in
applying a Householder reflection. (The times quoted here are the averaged parallel
times over three experiments performed on eight processors of an Intel Paragon. The
code was instrumented and compiled with the debug option, inflating the times, which
should not be compared to the times in Table 1 from optimized code.) Thus, the pro-
posed MHG implementation exhibits performance comparable to HG and outperforms
HG in some instances.

For the given test problem, two restart cycles of GMRES(15) were executed to
determine the dependence of the overall parallel time on the type of partitioning (and
thus on HG and MHG) with an increase in the number of processors. Table 1 shows
the averaged results over three experiments for 4, 5, 15, 16, 25, 32, 66, and 95 pro-

PARALLEL ADAPTIVE GMRES 1157

cessors, where Tp denotes the overall parallel time for GMRES(15), TMV denotes the
maximum parallel time for matrix-vector multiplication, np is the maximum number
of neighboring processors, and Comm is the total number of communication channels
among processors. (Note that MeTiS [14] is finding a minimum edge-cut, which min-
imizes neither the number of neighbors nor the number of communication channels.
Apparently a minimum edge-cut does produce better (load balanced) partitions, re-
sulting in better overall parallel times.) For the times observed in three experiments,
the largest standard deviation was 0.02. All times are in seconds. The results show
that (1) whenever graph-based partitioning produces partitions characterized by fast
matrix-vector multiplication, the total parallel time is also small since MHG preserves
the benefits of the graph-partitioning (cf. the columns for 25, 32, 66, and 95 proces-
sors); (2) whenever the TMV values are the same (columns for 16, 32 processors) or
similar the total parallel time with MHG is better due to more balanced partitions re-
sulting from graph partitioning; (3) only when block-striped partitioning is obviously
superior (columns for 5 and 15 processors) is the total parallel time with HG smaller
than that with MHG; (4) as the number of processors increases, the difference in to-
tal times between MHG and HG is largely due to the difference in the matrix-vector
multiply times TMV . For 95 processors there is a factor-of-2 difference in TMV . Since
for very large problems the overall homotopy zero curve tracking time is dominated
by the matrix-vector multiply time in the linear system solver, the superiority of the
graph-based MHG method is likely to be even greater with increasing problem size.

4. Conclusions. Probability-one homotopy algorithms for large (sparse) non-
linear systems of equations impose two atypical requirements on the iterative linear
system solver used in the inner curve tracking loop: high accuracy (near machine pre-
cision for residuals) and the ability to deal gracefully with problems of widely vary-
ing difficulty. The adaptive GMRES(k) based on Householder reflections proposed
here meets both these criteria. The proposed parallel implementation of adaptive
GMRES(k) takes advantage of an efficient distributed matrix-vector multiplication,
and the Householder reflection orthogonalization that avoids all-to-all communications
has a high degree of parallelism. The modification proposed here extends the parallel
Householder reflection orthogonalization from accepting a block-striped partitioning
of rows to a general graph-based partitioning. Using the extended parallel imple-
mentation of Householder reflections preserves the advantage gained from applying
graph-theoretical heuristics to partition a problem into subdomains. This advantage
can be substantial for large problems and high degrees of parallelism and is likely to
only improve as both of these factors increase.

REFERENCES

[1] E. L. Allgower, C.-S. Chien, and K. Georg, Large sparse continuation problems, J. Comput.
Appl. Math., 26 (1989), pp. 3–21.

[2] D. C. S. Allison, A. Chakraborty, and L. T. Watson, Granularity issues for solving poly-
nomial systems via globally convergent algorithms on a hypercube, J. Supercomputing, 3
(1989), pp. 5–20.

[3] D. C. S. Allison, K. M. Irani, C. J. Ribbens, and L. T. Watson, High-dimensional homotopy
curve tracking on a shared-memory multiprocessor, J. Supercomputing, 5 (1992), pp. 347–
366.

[4] Z. Bai, D. Hu, and L. Reichel, A Newton basis GMRES implementation, IMA J. Numer.
Anal., 4 (1994), pp. 563–581.

[5] Å. Björck, Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7
(1967), pp. 1–21.

1158 MARIA SOSONKINA, DONALD C. S. ALLISON, AND LAYNE T. WATSON

[6] C. H. Bischof and P. T. P. Tang, Robust Incremental Condition Estimation, Tech. Re-
port CS-91-133, LAPACK Working Note 33, Computer Science Department, University of
Tennessee, Knoxville, TN, 1991.

[7] P. N. Brown and H. F. Walker, GMRES on (nearly) singular systems, SIAM J. Matrix
Anal. Appl., 18 (1997), pp. 37–51.

[8] A. Chakraborty, D. C. S. Allison, C. J. Ribbens, and L. T. Watson, The parallel complex-
ity of embedding algorithms for the solution of nonlinear equations, IEEE Trans. Parallel
Distrib. Systems, 4 (1993), pp. 458–465.

[9] C.-S. Chien, Z.-L. Weng, and C.-L. Shen, Lanczos-type methods for continuation problems,
Numer. Linear Algebra Appl., 4 (1997), pp. 23–41.

[10] I. Duff, R. G. Grimes, and J. G. Lewis, Users’ Guide for the Harwell-Boeing Sparse Matrix
Collection (Release I), Tech. Report TR/PA/92/86, CERFACS, France, 1992.

[11] J. Erthel, A parallel GMRES for general sparse matrices, Electron. Trans. Numer. Anal., 3
(1995), pp. 160–176.

[12] Y. Ge, L. T. Watson, E. G. Collins, Jr., and D. S. Bernstein, Probability-one homotopy
algorithms for full and reduced order H2/H∞ controller synthesis, Optimal Control Appl.
Methods, 17 (1996), pp. 187–208.

[13] K. M. Irani, M. P. Kamat, C. J. Ribbens, H. F. Walker, and L. T. Watson, Experiments
with conjugate gradient algorithms for homotopy curve tracking, SIAM J. Optim., 1 (1991),
pp. 222–251.

[14] G. Karypis and V. Kumar, MeTiS: Unstructured Graph Partitioning and Sparse Matrix
Ordering System, User’s Guide—Version 2.0, Department of Computer Science, University
of Minnesota, Minneapolis, MN, 1995.

[15] G.-C. Lo and Y. Saad, Iterative Solution of General Sparse Linear Systems on Clusters of
Workstations, Tech. Report, UMSI 96/117, Supercomputer Institute, University of Min-
nesota, Minneapolis, MN, August 1996.

[16] W. D. McQuain, R. C. Melville, C. J. Ribbens, and L. T. Watson, Preconditioned iterative
methods for sparse linear algebra problems arising in circuit simulation, Comput. Math.
Appl., 27 (1994), pp. 25–45.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.
[18] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual method for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[19] R. B. Sidje, Alternatives for parallel Krylov subspace basis computation, Numer. Linear Alge-

bra Appl., 4 (1997), pp. 305–331.
[20] M. Sosonkina, L. T. Watson, R. K. Kapania, and H. F. Walker, A new adaptive GMRES

algorithm for achieving high accuracy, Numer. Linear Algebra Appl., 5 (1998), pp. 275–297.
[21] H. A. van der Vorst and C. Vuik, The superlinear convergence behaviour of GMRES, J.

Comput. Appl. Math., 48 (1993), pp. 327–341.
[22] H. F. Walker, Implementation of the GMRES method using Householder transformations,

SIAM J. Sci. Statist. Comput., 9 (1988), pp. 152–163.
[23] L. T. Watson, Globally convergent homotopy algorithms for nonlinear systems of equations,

Nonlinear Dynam., 1 (1990), pp. 143–191.
[24] L. T. Watson, Globally convergent homotopy methods: A tutorial, Appl. Math. Comput., 31

(1989), pp. 369–396.
[25] L. T. Watson, Numerical linear algebra aspects of globally convergent homotopy methods,

SIAM Rev., 28 (1986), pp. 529–545.
[26] L. T. Watson, S. C. Billups, and A. P. Morgan, Algorithm 652: HOMPACK: A suite of

codes for globally convergent homotopy algorithms, ACM Trans. Math. Software, 13 (1987),
pp. 281–310.

MODIFIED CHOLESKY FACTORIZATIONS IN INTERIOR-POINT
ALGORITHMS FOR LINEAR PROGRAMMING∗

STEPHEN J. WRIGHT†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1159–1191

To John Dennis, with appreciation, on the occasion of his 60th birthday.

Abstract. We investigate a modified Cholesky algorithm typical of those used in most interior-
point codes for linear programming. Cholesky-based interior-point codes are popular for three reasons:
their implementation requires only minimal changes to standard sparse Cholesky algorithms (allowing
us to take full advantage of software written by specialists in that area); they tend to be more
efficient than competing approaches that use alternative factorizations; and they perform robustly
on most practical problems, yielding good interior-point steps even when the coefficient matrix of
the main linear system to be solved for the step components is ill conditioned. We investigate this
surprisingly robust performance by using analytical tools from matrix perturbation theory and error
analysis, illustrating our results with computational experiments. Finally, we point out the potential
limitations of this approach.

Key words. interior-point algorithms and software, Cholesky factorization, matrix perturba-
tions, error analysis

AMS subject classifications. 65F05, 65G05, 90C05

PII. S1052623496304712

1. Introduction. Most interior-point codes for linear programming share a com-
mon feature: their major computational operation at each iteration—solution of a
large system of linear equations with a symmetric positive definite coefficient matrix—
is performed by a direct sparse Cholesky algorithm. In this algorithm, row and column
orderings are determined a priori by well-known heuristics (minimum degree, mini-
mum local fill, nested dissection) that are based solely on the sparsity pattern and
not on the numerical values of the nonzero elements. The ordering phase is followed
by a symbolic factorization phase in which the nonzero structure of the Cholesky
factor is determined and storage is allocated. Finally, a numerical factorization phase
fills in the numerical values of the lower triangular Cholesky factor. In interior-point
codes, the first two phases usually are performed just once, during either the first
interior-point iteration or computation of a starting point.

In the interior-point context, the unadorned Cholesky algorithm can run into
difficulties because of extreme ill conditioning. Some diagonal pivots encountered
during the numerical factorization phase can be zero or negative, causing the stan-
dard Cholesky procedure to break down. Instead of crashing, most codes modify the
Cholesky procedure so that it skips the unacceptable pivots or replaces them with
workable values. For instance, the offending pivot element is sometimes replaced by
a huge number, as in LIPSOL [20] and PCx [3]. In other codes, such as IPMOS [19],
the pivot is replaced by a moderate number, but the corresponding right-hand-side

∗Received by the editors June 4, 1996; accepted for publication (in revised form) November 14,
1998; published electronically September 24, 1999. This work was supported by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy, under contract W-31-109-Eng-38. The U.S. Gov-
ernment retains a nonexclusive, royalty-free license to publish or reproduce the published form of
this contribution, or allow others to do so, for U.S. Government purposes. Copyright is owned by
SIAM to the extent not limited by these rights.

http://www.siam.org/journals/siopt/9-4/30471.html
†Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass

Avenue, Argonne, IL 60439 (wright@mcs.anl.gov).

1159

1160 STEPHEN J. WRIGHT

element is set to zero, as are the off-diagonal elements in the corresponding column
of the Cholesky factor. The net effects of these approaches, and the approaches used
in other Cholesky-based codes, such as OB1 [9], HOPDM [6], and the APOS code
of XPRESS-MP [1], are all quite similar to those of the algorithm modchol that we
analyze in this paper: each small or negative pivot causes the Cholesky procedure
to skip one stage, and the solution component corresponding to this pivot is set to
zero (or to a very small number). To date, there has been little investigation of these
pivot-skipping strategies from a numerical analysis viewpoint.

In the context of Cholesky factorization of general symmetric positive semidef-
inite matrices, Lawson and Hanson [8, p. 125] advocated the use of pivot skipping
when negative pivots are encountered. They also suggested the alternative remedy
of diagonal pivoting, in which a “large” diagonal element is selected from the unre-
duced portion of the matrix at each stage and moved to the pivot position by a
symmetric row and column exchange. The procedure terminates when none of the
remaining diagonal elements is large enough to qualify as a pivot, and an approxi-
mate solution is computed with the partial factors. Higham [7, Chapter 10] presented
an error analysis of this approach, and M. H. Wright [15] considered its use in fac-
toring the Hessian matrices that arise in the Newton/logarithmic-barrier method for
nonlinear programming. This strategy is not practical in the context of interior-point
linear programming codes because the matrices in question are too large to allow row
and column exchanges to be performed efficiently. On the other hand, pivot-skipping
strategies have the advantage that they can be implemented by changing just a few
lines of a general sparse Cholesky code, so it is possible to take advantage of the
long-term development effort that has gone into designing such codes and their un-
derlying algorithms. (The recent codes LIPSOL [20] and PCx [3] make explicit use
of the sparse Cholesky code of Ng and Peyton [10].) Moreover, the good practical
performance of pivot-skipping strategies made the search for alternatives less urgent.

In this paper, we investigate the good performance of pivot-skipping strategies on
the majority of practical problems. In section 3, we specify our representative pivot-
skipping strategy, which we term modchol for convenience, and analyze the effects
of the skipped pivots on the computed triangular factor and computed solution. In
section 4, we incorporate the effects of finite-precision arithmetic into the analysis.
Both sections are general in that they apply to general symmetric positive semidefinite
matrices, not just the specific matrices that arise in the interior-point application. In
section 5, however, we apply the results of sections 3 and 4 to the equations for
calculating the interior-point step, showing how the errors in the computed steps
affect the progress of the interior-point algorithm, suggesting a suitable termination
criterion, and indicating possible shortcomings in the pivot-skipping approach. Our
analysis in this section applies to primal- and dual-degenerate linear programs. We
conclude with some computational results in section 6.

A number of other theoretical papers on linear algebra operations in barrier and
interior-point methods have appeared in recent years. We mentioned above the pa-
per of M. H. Wright [15], in which a Cholesky procedure with diagonal pivoting was
used as the basis of an algorithm to construct steps that are accurate both in the
subspace spanned by the active constraint Jacobian and its complement. Our focus
in the current paper is on (possibly degenerate) linear programs rather than nonde-
generate nonlinear programs. Moreover, we do not allow diagonal pivoting and, since
our problem is a linear program, the issue of resolving the component of the step in
the near-null space of the active constraint matrix is not as relevant.

In an earlier paper [18], S. J. Wright considered the stability of algorithms for the

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1161

symmetric indefinite formulation of the step equations at each iteration of an interior-
point method for linear programming. Ill conditioning of the coefficient matrix is the
key issue in this formulation as well, but we showed that, in general, the calculated
steps are good search directions for the interior-point method. Forsgren, Gill, and
Shinnerl [5] perform a similar analysis in the context of logarithmic barrier methods
for nonlinear problems, but they assume a certain ordering of the rows and columns
of the coefficient matrix.

Notation. We summarize here the notation used in the remainder of the paper.
The ith singular value of a matrix B is denoted by σi(B). We use σi alone to

denote the ith singular value of the exact Cholesky factor L in section 3.
For any matrix M and index sets I and K, MIK denotes the submatrix formed

by the elements Mij for i ∈ I and j ∈ K. The jth column of M is denoted by M·j , the
column submatrix consisting of columns j ∈ K is denoted by M·K, and the submatrix
of elements Mij for j ∈ K is noted by Mi,K. The submatrix consisting of rows and
columns i through j is denoted by Mi:j,i:j .

Unit roundoff error, which we denote by u, can be defined implicitly by the follow-
ing statement (see, for example, Higham [7]). When α and ζ are any two floating-point
numbers; op denotes +, −, ×, and /; and fl(·) denotes the floating-point representa-
tion of a real number, we have

fl(α op ζ) = (α op ζ)(1 + δ) for some δ satisfying |δ| ≤ u.

We use comp(·) to denote the calculated version of the quantity in question, taking
into account the effects of roundoff error.

In estimating the sizes of various quantities that arise in the analysis, we use δ1

to denote a constant whose magnitude depends at most cubically on the dimension
m of the linear system. We often use δu as a shorthand for δ1u. Order notation O(·)
and Θ(·) is used as follows: if v (vector or scalar) and ε (nonnegative scalar) are two
quantities that share a dependence on other variables, we write v = O(ε) if there is a
moderate constant β1 such that ‖v‖ ≤ β1ε for all values of ε that are either sufficiently
close to zero or sufficiently large, depending on the context. We write v = Θ(ε) if there
are constants β1 and β0 such that β0ε ≤ ‖v‖ ≤ β1ε for ε in the ranges specified above.

The notation ‖ · ‖ denotes the Euclidean vector norm ‖ · ‖2 and also its induced
matrix norm, unless otherwise noted. For any matrix A, the matrix consisting of the
absolute values of each element is denoted by |A|. We use 1 to denote the vector
(1, 1, . . . , 1)T .

Finally, we mention the parameter ε that defines the pivot threshold in the mod-
ified Cholesky algorithm. A scaled quantity ε̄ defined by

ε̄
def
= 2m2ε(1.1)

appears frequently in the analysis, because the incorporation of the scaling term 2m2

saves some clutter.

2. Primal-dual algorithms for linear programming. We consider the linear
programming problem in standard form:

min cTx subject to Ax = b, x ≥ 0,(2.1)

where x ∈ IRn, c ∈ IRn, A ∈ IRm×n, and b ∈ IRm. The dual of (2.1) is

max bTπ subject to ATπ + s = c, s ≥ 0,(2.2)

1162 STEPHEN J. WRIGHT

where s ∈ IRn and π ∈ IRm. We assume throughout the paper that A has full row
rank (which can be guaranteed by preprocessing the data), so that m ≤ n. The
Karush–Kuhn–Tucker (KKT) conditions, which identify a vector triple (x, π, s) as a
primal-dual solution for (2.1), (2.2), can be stated as follows:

ATπ + s = c,(2.3a)

Ax = b,(2.3b)

xisi = 0, i = 1, 2, . . . , n,(2.3c)

(x, s) ≥ 0.(2.3d)

We assume throughout the paper that a primal-dual solution exists, but we make
no assumptions about uniqueness or nondegeneracy. It is well known that the index
set {1, 2, . . . , n} can be partitioned into two sets B and N such that for all primal-dual
solutions (x∗, π∗, s∗) we have

x∗i = 0 for all i ∈ N , s∗i = 0 for all i ∈ B.(2.4)

Primal-dual interior-point algorithms generate a sequence of iterates (x, π, s) that
satisfy the strict inequality (x, s) > 0. They find search directions by applying a mod-
ification of Newton’s method to the system of nonlinear equations that is equivalent
to the first three KKT conditions (2.3a), (2.3b), (2.3c), namely,

Ax− b = 0, ATπ + s− c = 0, XS1 = 0,(2.5)

where X = diag(x1, x2, . . . , xn) and S = diag(s1, s2, . . . , sn). In general, the search
direction (∆x,∆π,∆s) satisfies the following linear system: 0 AT I

A 0 0
S 0 X

 ∆x
∆π
∆s

 =

 −rc−rb
−rxs

 ,(2.6)

where the coefficient matrix is the Jacobian of (2.5) and the right-hand-side compo-
nents rb and rc are defined by

rb = Ax− b, rc = ATπ + s− c.(2.7)

In a pure Newton (affine-scaling) method, the remaining right-hand-side component
rxs is defined by

rxs = XS1,(2.8)

and, in this case, we denote the solution of (2.6) by (∆xaff ,∆πaff ,∆saff). In a path-
following method, we have

rxs = XS1− ζµ1,(2.9)

where µ is the duality gap defined by

µ = xT s/n,(2.10)

and ζ ∈ [0, 1] is a centering parameter. In the “Mehrotra predictor-corrector” algo-
rithm, which is used as the basis of many practical codes, the search direction is
calculated by setting

rxs = XS1 + ∆Xaff∆Saff1− ζµ1,(2.11)

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1163

where ∆Xaff and ∆Saff are the diagonal matrices formed from the affine-scaling step
components ∆xaff and ∆saff , and the value of ζ is determined by a heuristic based
on the effectiveness of the affine-scaling direction. Mehrotra’s method requires the
solution of two linear systems at each iteration—the affine-scaling system (2.6), (2.7),
(2.8), and the search direction system (2.6), (2.7), (2.11)—though the coefficient ma-
trix is the same for both systems. Gondzio’s [6] higher-order corrector method refines
the step by solving additional linear systems, all with the same coefficient matrix as
in (2.6).

Once a search direction has been determined, the primal-dual algorithm takes a
step of the form

(x, π, s) + α(∆x,∆π,∆s),

where α is chosen to maintain strict positivity of the x and s components; that is,

(x, s) + α(∆x,∆s) > 0.(2.12)

In most codes, α is chosen to be some fraction of the step-to-boundary αmax defined
as

αmax = sup
α∈[0,1]

{α | (x, s) + α(∆x,∆s) ≥ 0}.(2.13)

A typical strategy is to set

α = ηαmax,

where η ∈ [.9, 1.0) approaches 1 as the iterates approach the solution set.
By applying block elimination to (2.6) and using the notation

D2 = S−1X,(2.14)

we obtain the following equivalent system:

AD2AT∆π = −rb −AD2(rc −X−1rxs),(2.15a)

∆s = −rc −AT∆π,(2.15b)

∆x = −S−1(rxs +X∆s).(2.15c)

In many codes, the solution is obtained from just this formulation. A sparse Cholesky
factorization, modified to handle small or negative pivots, is applied to the symmetric
positive definite coefficient matrix AD2AT in (2.15a) and the solution ∆π is obtained
by triangular substitution with the computed factor. The remaining direction compo-
nents are recovered from (2.15b) and (2.15c). Computational experience shows that
this technique yields steps that are useful search directions for the interior-point algo-
rithm, even when AD2AT is ill conditioned and when the computed version of ∆π has
few digits in common with the exact version. This observation is somewhat surprising,
since a naive application of error analysis results would suggest that the combination
of ill conditioning and roundoff would corrupt the direction hopelessly.

In section 5, we investigate this phenomenon by applying the error analysis de-
veloped in sections 3 and 4 to the solution of the system (2.15), assuming that our
algorithm modchol is used to solve (2.15a) and that all computations are performed
in finite-precision floating-point arithmetic. We examine the effects of the errors in

1164 STEPHEN J. WRIGHT

the computed step on properties such as the value of αmax (2.13) and on the updated
values of the residuals rb and rc—properties that indicate whether the step is a useful
one for the interior-point method.

We start by specifying modchol and analyzing its properties as they pertain to
a general linear system Mz = r, where M is symmetric positive definite.

3. A modified Cholesky algorithm. In this section, we describe and analyze
modchol, a modified Cholesky algorithm designed to handle ill-conditioned matrices
for which small or negative pivots may arise during the factorization.

Algorithm modchol accepts an m×m symmetric positive definite matrix M as
input, together with a small positive user-defined parameter ε, which defines a thresh-
old of acceptability for the pivot elements. If a candidate pivot element is smaller than
this threshold, the algorithm simply skips a step of factorization. The output of mod-
chol is an approximate lower triangular factor L̃ and an index set J ⊂ {1, 2, . . . ,m}
containing the indices of the skipped pivots. In the following specification, we use
M (i) to denote the unfactored part of M that remains after i steps of the algorithm.

Algorithm modchol.
Given ε with 0 < ε� 1;

Set M (0) ←M ; L̃← 0; J ← ∅; β = maxi=1,2,...,m Mii;
for i = 1, 2, . . . ,m

if M
(i−1)
ii ≤ βε

(* skip this elimination step *)
Set J ← J ∪ {i} and

E(i) =

0 0 · · · · · · 0

0 M
(i−1)
ii · · · · · · M

(i−1)
im

...
... 0 0

...
...

. . .
...

0 M
(i−1)
mi 0 · · · 0

, M (i) = M (i−1) − E(i);(3.1)

else
(* perform the usual Cholesky elimination step *)

L̃ii ←
√
M

(i−1)
ii ; M (i) ← 0

for j = i+ 1, i+ 2, . . . ,m,

L̃ji = M
(i−1)
ij /L̃ii ;

for j = i+ 1, i+ 2, . . . ,m
for k = i+ 1, i+ 2, . . . ,m,

M
(i)
jk ←M

(i−1)
jk − L̃jiL̃ki.

The ith column of L̃ is zero for each i ∈ J ; that is, L̃·J = 0. If we denote

E =
∑
i∈J

E(i)(3.2)

and denote the complement of J in {1, 2, . . . ,m} by J̄ , it follows from (3.1) that

EJ̄ J̄ = 0.(3.3)

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1165

That is, the row or column index of each nonzero element in E must lie in J . It follows
from the algorithm that L̃ is the exact Cholesky factor of the perturbed matrix M−E,
which we denote for convenience by M̃ . That is, we have

L̃L̃T = M̃ = M − E.(3.4)

By partitioning this equation into its J and J̄ components and using L̃·J = 0 and
(3.3), we obtain

MJ̄ J̄ = L̃J̄ ·L̃
T
J̄ · + EJ̄ J̄ = L̃J̄ J̄ L̃

T
J̄ J̄ ,(3.5a)

MJ̄ J = L̃J̄ ·L̃
T
J · + EJ̄ J = L̃J̄ J̄ L̃

T
J J̄ + EJ̄ J .(3.5b)

The exact Cholesky factor L (whose existence is guaranteed by the assumed positive
definiteness of M) satisfies

LLT = M.(3.6)

Given the linear system

Mz = r,(3.7)

where M is the matrix factored by modchol, the exact solution obviously satisfies

z = M−1r = L−TL−1r.(3.8)

The approximate solution z̃ is chosen so that the partial vector z̃J̄ solves the re-
duced system MJ̄ J̄ z̃J̄ = rJ̄ , while the complementary subvector z̃J is set to zero.
From (3.5a), we see that z̃J̄ can be calculated by performing a pair of triangular
substitutions; that is,

z̃J̄ = L̃−TJ̄ J̄ L̃
−1
J̄ J̄ rJ̄ , z̃J = 0.(3.9)

Note that z = z̃ when J = ∅. When J 6= 0, on the other hand, the difference between
z̃ and z can be large in a relative sense. We have

‖z − z̃‖ =

∥∥∥∥[zJ − 0
zJ̄ − z̃J̄

]∥∥∥∥ ≥ ‖zJ ‖,
and there is no reason to expect zJ to be small with respect to the full vector z.
However, in the main result of this section (Theorem 3.4), we show that the difference
between L̃T z and L̃T z̃ is small. As we see in section 5, this difference determines the
usefulness of the computed solution of (2.15) as a search direction for the interior-point
algorithm.

To simplify the analysis, we assume throughout the paper that

β = 1.(3.10)

A trivial scaling, which affects neither the algorithm nor its analysis, can always be
applied to the symmetric positive definite matrix M to yield (3.10).

We start with a simple result about the intermediate matrices M (i) that arise
during modchol.

Lemma 3.1. If (3.10) holds, then the submatrix formed by the last m− i rows and
columns of M (i) is symmetric positive definite for all i = 0, 1, . . . ,m − 1. Moreover,
the diagonal elements of all these submatrices are bounded by 1.

1166 STEPHEN J. WRIGHT

Proof. This observation follows by a simple inductive argument. By assumption,
the starting matrix M (0) = M is positive definite. Suppose that the desired property
holds for M (i−1). If i ∈ J , then the lower right (m− i)× (m− i) submatrix of M (i) is
identical to the same submatrix of M (i−1), which is positive definite by assumption.
Otherwise, if i /∈ J , then M (i) is obtained by applying one step of Cholesky reduction
to M (i−1), so its lower right (m − i) × (m − i) submatrix is positive definite in this
case too.

The second claim follows immediately from the fact that Mii ≤ β = 1, i =
1, 2, . . . ,m, and the fact that the diagonal elements cannot increase during the exe-
cution of modchol.

The next result bounds the remainder matrix E.
Lemma 3.2. Assume that (3.10) holds. We then have that

‖E‖2 ≤ ‖E‖F ≤ ε̄1/2,(3.11)

where ε̄ = 2m2ε.
Proof. From Lemma 3.1, we have (M

(i−1)
i,l)2 ≤ M

(i−1)
i,i M

(i−1)
l,l for each l = i +

1, . . . ,m. Suppose i ∈ J , so that M
(i−1)
i,i ≤ ε. Since the diagonals of each submatrix

M (i−1) are bounded by 1, we have M
(i−1)
l,l ≤ 1 and therefore∣∣∣M (i−1)

i,l

∣∣∣ ≤ (M (i−1)
i,i M

(i−1)
l,l

)1/2

≤ ε1/2, l = i+ 1, . . . ,m.

Hence, we have

‖E(i)‖22 ≤ ‖E(i)‖2F ≤ (M
(i−1)
i,i)2 + 2

m∑
l=i+1

(M
(i−1)
i,l)2 ≤ ε2 + 2(m− i)ε ≤ 2mε.

By using (3.2) and the fact that the nonzero elements of each E(i) occur in different
locations, we have

‖E‖2F =
∑
i∈J
‖E(i)‖2F ≤ |J |2mε ≤ 2m2ε,

thereby proving (3.11).
The bound (3.11) suggests that the matrix L̃−1

J̄ J̄EJ̄ J , which proves to be critical
in our analysis, can be estimated by

‖L̃−1
J̄ J̄EJ̄ J ‖ ≤ ‖L̃−1

J̄ J̄ ‖‖EJ̄ J ‖ ≤ ε̄1/2‖L̃−1
J̄ J̄ ‖.

The following theorem shows that in fact the factor ‖L̃−1
J̄ J̄ ‖ can be omitted from the

right-hand side. The resulting bound is much stronger, because the omitted factor is
potentially quite large.

Theorem 3.3. Assume that (3.10) holds. We then have

‖L̃−1
J̄ J̄EJ̄ J ‖ ≤ (mε)1/2.(3.12)

Proof. We start by choosing some arbitrary index i ∈ J and examining the struc-
ture of E·i. We note from (3.1) and (3.2) that

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1167

• Eji 6= 0 for j < i only if j ∈ J ;

• Eii = M
(i−1)
ii ;

• Eji = M
(i−1)
ji 6= 0 in general for all j > i.

Therefore, we observe that the subvector

EJ̄ ,i = [Eji]j∈J̄

has nonzeros only in locations indexed by j with j > i. If we define the index subsets
J̄i and Ji by

J̄i def
= J̄ ∩ {i+ 1, i+ 2, . . . ,m}, Ji def

= J ∩ {i+ 1, i+ 2, . . . ,m},(3.13)

it follows that

EJ̄ ,i =

[
0

EJ̄i,i

]
.(3.14)

It follows from this property and the lower triangularity of L̃J̄ J̄ that

L̃−1
J̄ J̄EJ̄ i =

[
0

L̃−1
J̄iJ̄iEJ̄ii

]
.(3.15)

From Lemma 3.1, we have that M
(i−1)
i:m,i:m is symmetric positive definite. We per-

form symmetric permutations on this matrix to group the components in Ji and J̄i,
and obtain

M
(i−1)
ii M

(i−1)

i,J̄i M
(i−1)
i,Ji

M
(i−1)

J̄i,i M
(i−1)

J̄i,J̄i M
(i−1)

J̄i,Ji
M

(i−1)
Ji,i M

(i−1)

Ji,J̄i M
(i−1)
Ji,Ji

 =

M

(i−1)
ii ETJ̄i,i ETJi,i
EJ̄i,i M

(i−1)

J̄i,J̄i M
(i−1)

J̄i,Ji
EJi,i M

(i−1)

Ji,J̄i M
(i−1)
Ji,Ji

 ,(3.16)

which is still symmetric positive definite. The principal submatrix[
M

(i−1)
ii ETJ̄i,i
EJ̄i,i M

(i−1)

J̄i,J̄i

]
(3.17)

is also symmetric positive definite. It is easy to see that steps i + 1, i + 2, . . . ,m of
modchol yield a modified Cholesky factorization of the form

M
(i−1)
i+1:m,i+1:m = L̃i+1:m,i+1:mL̃

T
i+1:m,i+1:m + Ei+1:m,i+1:m.

As in (3.5a), we have that EJ̄i,J̄i = 0, so that by reordering and partitioning as in

(3.16) and using L̃J̄i,Ji = 0, we obtain

M
(i−1)

J̄i,J̄i = L̃J̄i,J̄iL̃
T
J̄i,J̄i .(3.18)

By the positive definite property of the matrix in (3.17), the Schur complement of

M
(i−1)
ii in this matrix must be positive, so we have from (3.18) that

0 < M
(i−1)
ii − ETJ̄i,i(M

(i−1)

J̄i,J̄i)
−1EJ̄i,i = M

(i−1)
ii − ‖L̃−1

J̄i,J̄iEJ̄i,i‖
2.

1168 STEPHEN J. WRIGHT

Because i ∈ J , we have M
(i−1)
ii ≤ ε, and therefore, from (3.15), we have

‖L̃−1
J̄ J̄EJ̄ ,i‖ = ‖L̃−1

J̄i,J̄iEJ̄i,i‖ < ε1/2.

Since this bound holds for all i ∈ J , we have

‖L̃−1
J̄ J̄EJ̄ J ‖ ≤ |J |1/2ε1/2 ≤ (mε)1/2,

as required.
We are now able to derive an estimate of the difference between L̃T z and L̃T z̃.
Theorem 3.4. Suppose that (3.10) holds. For the exact solution z and approxi-

mate solution z̃ defined in (3.8) and (3.9), respectively, we have that

‖L̃T [z − z̃]‖ = ‖L̃−1
J̄ J̄EJ̄ J zJ ‖ ≤ (mε)1/2‖zJ ‖.(3.19)

Proof. From (3.8) together with (3.5), we have

rJ̄ = MJ̄ J̄ zJ̄ +MJ̄ J zJ

= L̃J̄ J̄ L̃
T
J̄ J̄ zJ̄ +

[
L̃J̄ J̄ L̃

T
J J̄ + EJ̄ J

]
zJ

= L̃J̄ J̄ L̃
T
·J̄ z + EJ̄ J zJ ,

while from (3.9), we have

rJ̄ = L̃J̄ J̄ L̃
T
J̄ J̄ z̃J̄ = L̃J̄ J̄

[
L̃TJ̄ J̄ z̃J̄ + L̃TJ J̄ z̃J

]
= L̃J̄ J̄ L̃

T
·J̄ z̃.

By combining these two relations, we obtain

L̃T·J̄ [z − z̃] = −L̃−1
J̄ J̄EJ̄ J zJ .(3.20)

Since L̃·J = 0, the result follows immediately.
The remaining analysis of this section requires some additional assumptions on

the distribution of the singular values of M and on the parameter ε. Accordingly,
we introduce a little more notation. The eigenvalues of M are denoted by σ2

i , i =
1, 2, . . . ,m, where

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
m > 0.(3.21)

We define the diagonal matrix Σ by

Σ = diag(σ1, σ2, . . . , σm).(3.22)

It follows that there exists an orthogonal matrix Q such that

M = QΣ2QT .(3.23)

Because the largest diagonal in M is 1 by assumption (3.10), we have by elementary
analysis that

1 ≤ σ2
1 ≤ m.(3.24)

In the subsequent analysis, we assume that there is an integer p with 1 ≤ p ≤ m
such that

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1169

• ε is somewhat smaller than σ2
p; and

• if p < m, there is a significant gap in the spectrum of M between σ2
p and

σ2
p+1.

(We will be more specific about these two assumptions presently. In particular, we
show in Lemma 3.5 that they imply that |J̄ | ≥ p.) By partitioning the spectrum at
the gap, we obtain

Σ1 = diag(σ1, σ2, . . . , σp), Σ2 = diag(σp+1, σp+2, . . . , σm).(3.25)

From (3.23), Q can be partitioned accordingly to obtain

Q = [Q1 |Q2], M = Q1Σ2
1Q

T
1 +Q2Σ2

2Q
T
2 .

Since M = LLT , it follows that σi, i = 1, 2, . . . ,m, are the singular values of L. In
fact, we must have

LT = UΣQT = U1Σ1Q
T
1 + U2Σ2Q

T
2(3.26)

for some m×m orthogonal matrix U = [U1 |U2], where Σ and Q are defined as above.
We use σ̃2

i , i = 1, 2, . . . ,m, to denote the eigenvalues of the perturbed matrix M̃ .
It follows immediately from (3.4) that the singular values of L̃ are σ̃i, i = 1, 2, . . . ,m.
The rank of L̃ is |J̄ |, because L̃J̄ J̄ is lower triangular with nonzero diagonals while

L̃·J = 0. Therefore, we have

σ̃|J̄ | > σ̃|J̄ |+1 = · · · = σ̃m = 0.(3.27)

As in (3.26), there are orthogonal m×m matrices Ũ and Q̃ such that

M̃ = Q̃Σ̃2Q̃T = Q̃1Σ̃2
1Q̃

T
1 + Q̃2Σ̃2

2Q̃
T
2 ,(3.28a)

L̃T = Ũ Σ̃Q̃T = Ũ1Σ̃1Q̃
T
1 + Ũ2Σ̃2Q̃

T
2 ,(3.28b)

where

Σ̃1 = diag(σ̃1, σ̃2, . . . , σ̃p), Σ̃2 = diag(σ̃p+1, . . . , σ̃m),(3.29)

with a corresponding partitioning for Ũ = [Ũ1 | Ũ2] and Q̃ = [Q̃1 | Q̃2]. It is an
immediate consequence of an eigenvalue perturbation result of Stewart and Sun [12,
Corollary IV.4.13] and of our Lemma 3.2 that

m∑
i=1

[σ2
i − σ̃2

i]2 ≤ ‖E‖2F = ε̄.(3.30)

The following result shows that if ε is sufficiently small relative to the pth eigen-
value of M, then at least p pivots are accepted during modchol.

Lemma 3.5. If ε̄1/2 < σ2
p, we have |J̄ | ≥ p.

Proof. If |J̄ | < p, we have from (3.27) and (3.30) that

σ2
p ≤ σ2

|J̄ |+1 =
∣∣∣σ2
|J̄ |+1 − σ̃2

|J̄ |+1

∣∣∣ ≤ ε̄1/2,
contradicting our assumption that ε̄1/2 < σ2

p.
Our next result concerns the differences between the subspaces spanned by Q1

and by Q̃1, the spaces of “large” eigenvalues of M and M̃, respectively.

1170 STEPHEN J. WRIGHT

Lemma 3.6. Suppose that |J̄ | < m and that the values σp and σp+1 from (3.21)
and ε from modchol satisfy the conditions

σ2
p − σ2

p+1 > 5ε̄1/2.(3.31)

Then there are matrices

Λ̃1 p× p symmetric positive definite,

Λ̃2 (m− p)× (m− p) symmetric positive semidefinite,

Q̄1 m× p orthonormal,

Q̄2 m× (m− p) orthonormal,

such that

M̃ = Q̄Λ̃Q̄T = Q̄1Λ̃1Q̄
T
1 + Q̄2Λ̃2Q̄

T
2 ,(3.32)

‖Q̄1 −Q1‖ ≤ 2ε̄1/2

σ2
p − σ2

p+1 − 2ε̄1/2
,(3.33)

‖Λ̃1 − Σ2
1‖ ≤ 2ε̄1/2,(3.34)

‖Λ̃2 − Σ2
2‖ ≤ 2ε̄1/2,(3.35)

where

Q̄ = [Q̄1 | Q̄2], Λ̃ =

[
Λ̃1 0

0 Λ̃2

]
.

Moreover, there are matrices

V1p× p orthogonal,

V2(m− p)× (m− p) orthogonal,

such that

Σ̃2
1 = V T1 Λ̃1V1,Q̃1 = Q̄1V1,(3.36a)

Σ̃2
2 = V T2 Λ̃2V2,Q̃2 = Q̄2V2,(3.36b)

where Σ̃ and Q̃ are defined as in (3.28).
Proof. Note first that p ≤ |J̄ | by (3.31) and Lemma 3.5. The result is a straight-

forward consequence of Theorem V.2.8 of Stewart and Sun [12, p. 238]. Since M̃ =
M − E, we use (3.23) and partition as in (3.25) to obtain

QT M̃Q = QTMQ−QTEQ =

[
Σ2

1 0
0 Σ2

2

]
−
[
F11 F12

FT12 F22

]
.

We now make the following identifications with the quantities in the cited result:

γ̃ = ‖FT12‖ ≤ ‖F‖ = ‖E‖ ≤ ε̄1/2, η̃ = ‖F12‖ ≤ ε̄1/2,
δ̃ = sep(Σ2

1,Σ
2
2)− ‖F11‖ − ‖F22‖ ≥ σ2

p − σ2
p+1 − 2ε̄1/2 > 2ε̄1/2,

where sep(·, ·) denotes the minimum distance between the spectra of the two argu-
ments. From the given result, there is a matrix P of dimension (m− p)× p such that
the matrix Q̄1 defined by

Q̄1 = Q1 +Q2P(3.37)

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1171

is an invariant subspace for M̃, where

‖P‖ ≤ γ̃

δ̃
≤ 2ε̄1/2

σ2
p − σ2

p+1 − 2ε̄1/2
< 1.(3.38)

Moreover, the representation of M̃ with respect to Q̄1 is

Q̄T1 M̃Q̄1 = Λ̃1 = Σ2
1 + F11 + F12P.(3.39)

The bound (3.33) follows from (3.37), (3.38), and ‖Q2‖ = 1. It follows immediately
from the first equality in (3.39) that Λ̃1 is symmetric, and we have

‖Λ̃1 − Σ2
1‖ ≤ ‖F11‖+ ‖F12‖‖P‖ ≤ 2ε̄1/2,(3.40)

verifying the inequality (3.34). This inequality implies that the smallest singular value
of Λ̃ is no smaller than σ2

p − 2ε̄1/2, which by (3.31) is positive, so Λ̃1 is symmetric
positive definite.

The cited result states further that the matrix Q̄2 = Q2−Q1P
T is orthogonal to

Q̄1 and also defines an invariant subspace for M̃, with

Q̄T2 M̃Q̄2 = Λ̃2.

Symmetric positive semidefiniteness of Λ̃2 follows immediately. By using the invariant
subspace property, we obtain

[Q̄1 | Q̄2]T M̃ [Q̄1 | Q̄2] =

[
Λ̃1 0

0 Λ̃2

]
,

from which (3.32) follows immediately.
Similarly to (3.40), we have that

‖Λ̃2 − Σ2
2‖ ≤ 2ε̄1/2,

so the largest eigenvalue of Λ̃2 is no larger than σ2
p+1+2ε̄1/2. Because of (3.31) and our

earlier observation that the smallest eigenvalue of Λ̃1 is no smaller than σ2
p−2ε̄1/2, we

conclude that the eigenvalues of Λ̃1 are the p largest eigenvalues σ̃2
1 , σ̃

2
2 , . . . , σ̃

2
p, while

those of Λ̃2 are the (m−p) smallest eigenvalues. By our definition (3.29), we conclude
that there are orthogonal matrices V1 and V2 such that

V1Σ̃2
1V

T
1 = Λ̃1 and V2Σ̃2

2V
T
2 = Λ̃2.

By substituting these expressions into (3.32) and setting Q̃1 = Q̄1V1 and Q̃2 = Q̄2V2,
we recover (3.28a).

Lemma 3.6 suggests a few other estimates and assumptions that will be useful in
subsequent sections. When (3.31) holds, we have from (3.30) that

σ̃2
1 ≤ σ2

1 + ε̄1/2 < σ2
1 + .2σ2

p < 1.2σ2
1 ≤ 1.2m(3.41)

(where the last inequality follows from (3.24)), and also that

σ̃2
p ≥ σ2

p − ε̄1/2 ≥ .8σ2
p ⇒ σ̃−1

p ≤ 1.2σ−1
p .(3.42)

1172 STEPHEN J. WRIGHT

When we make the additional assumption that

σ2
p+1

σ2
p

≤ 1

10
(3.43)

(indicating that the gap in the spectrum actually separates the small and large eigen-
values), we derive that

‖Q̄1 −Q1‖ ≤ 2ε̄1/2

σ2
p − σ2

p+1 − 2ε̄1/2

=
2ε̄1/2

σ2
p

[
1− σ2

p+1

σ2
p

− 2
ε̄1/2

σ2
p

]−1

≤ 2ε̄1/2

σ2
p

[1− .1− .4]−1 ≤ 4ε̄1/2

σ2
p

.(3.44)

Another useful quantity that enters into our error bounds is the norm of L̃−1
J̄ J̄ ,

which we denote by τ ; that is,

τ
def
= ‖L̃−1

J̄ J̄ ‖ = σ|J̄ |(L̃J̄ J̄)−1,(3.45)

where σ|J̄ |(L̃J̄ J̄) denotes the |J̄ |th singular value of L̃J̄ J̄ . Because of (3.5a) and the
fact that all diagonals of MJ̄ J̄ are bounded by 1 (by our assumption (3.10)), we have

that σ|J̄ |(L̃J̄ J̄) ≤ 1 and therefore that

τ ≥ 1.(3.46)

Using (3.5a) again, we have that

‖M−1
J̄ J̄ ‖ = ‖L̃−1

J̄ J̄ ‖2 = τ2.(3.47)

Since ‖MJ̄ J̄ ‖ ≤ ‖M‖ ≤ σ2
1 , we have from (3.24) and (3.47) that

κ(MJ̄ J̄) ≤ σ2
1τ

2 ≤ mτ2.(3.48)

4. The effect of finite-precision computations. In the analysis of the pre-
ceding section, we assumed for simplicity that all arithmetic was exact. In this section,
we take account of the roundoff errors that are introduced when the approximate so-
lution z̃ is calculated in a finite-precision environment.

Our analysis above focused on the approximate solution z̃ obtained from (3.9),
where the subvector z̃J̄ satisfies the system

MJ̄ J̄ z̃J̄ = L̃J̄ J̄ L̃
T
J̄ J̄ z̃J̄ = rJ̄ ,(4.1)

while the subvector z̃J is fixed at zero. In this section, we use ẑ to denote the finite-
precision analog of z̃. We examine errors in ẑ due to

• roundoff error in modchol,
• error arising during the triangular substitutions in (4.1), and
• error in the evaluation of the matrix M and the right-hand-side r.

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1173

Since modchol amounts to a standard Cholesky factorization/triangular-solve pro-
cedure on the matrix MJ̄ J̄ , roundoff error in modchol and errors arising during
the triangular substitutions can all be accounted for by adding a term Eu

J̄ J̄ to the
coefficient matrix MJ̄ J̄ in (4.1), where

‖Eu
J̄ J̄ ‖ ≤ δu‖MJ̄ J̄ ‖ ≤ δu;(4.2)

see, for example, Higham [7, Theorem 10.4]. (Recall from section 1 that δu denotes
a modest multiple of u and that ‖MJ̄ J̄ ‖ ≤

√
n because of (3.10).) We assume that

the error in evaluating M can also be incorporated into Eu
J̄ J̄ ; this is certainly true in

section 5, for instance. As we see in this section, the remaining source of error—the
error that arises in evaluation of the right-hand side—plays a significant role in the
interior-point application. Our results are strengthened if we account for some of this
error by placing it explicitly in the range space of L; that is, we write it as Lf + e,
for some vectors f and e. (We refer to e as the “unstructured error.”) The computed
solution ẑJ̄ of the system (4.1) therefore satisfies

(MJ̄ J̄ + Eu
J̄ J̄)ẑJ̄ = (r + Lf + e)J̄ .(4.3)

The following result shows that we can repartition the right-hand-side error ac-
cording to the approximate Cholesky factor L̃, a fact that is useful in the main error
results of this section.

Lemma 4.1. Suppose that (3.10), (3.31), and (3.43) hold. Given vectors e, f ∈ IRm,
we have

Lf + e = L̃f̃ + ẽ,(4.4)

where

‖f̃‖ ≤ δ1σ
−1
p ‖f‖, ‖ẽ‖ ≤ δ1

(
ε̄1/2σ−3

p + σp+1

)
‖f‖+ ‖e‖.(4.5)

Proof. From (3.26), we have

Lf + e = Q1Σ1U
T
1 f +Q2Σ2U

T
2 f + e = Q1Σ2

1f1 + e1,

where the vectors f1 and e1 defined by

f1 = Σ−1
1 UT1 f, e1 = Q2Σ2U

T
2 f + e

satisfy the bounds

‖f1‖ ≤ σ−1
p ‖f‖, ‖e1‖ ≤ σp+1‖f‖+ ‖e‖;(4.6)

see (3.25). Using the notation of (3.28), (3.29), and (3.32), we define the vector ẽ by

ẽ = (Q1 − Q̄1)Λ̃1f1 +Q1(Σ2
1 − Λ̃1)f1 + e1

and note that

Lf + e = Q1Σ2
1f1 + e1 = Q̄1Λ̃1f1 + ẽ.(4.7)

By using (3.34), (3.41), (3.44), and (4.6), we can bound the terms of ẽ to obtain

‖ẽ‖ ≤ ‖Q1 − Q̄1‖ ‖Λ̃1‖ ‖f1‖+ ‖Σ2
1 − Λ̃1‖‖f1‖+ ‖e1‖

≤ 4
ε̄1/2

σ2
p

(1.2σ2
1)σ−1

p ‖f‖+ 2ε̄1/2σ−1
p ‖f‖+ σp+1‖f‖+ ‖e‖,

1174 STEPHEN J. WRIGHT

from which the bound in (4.5) follows if we use the inequality (3.24). For the com-
panion term on the right-hand side of (4.7), we have from (3.36) that

Q̄1Λ̃1f1 = Q̄1V1(V T1 Λ̃1V1)(V T1 f1) = Q̃1Σ̃1(Σ̃1V
T
1 f1).

Using Ũ defined in (3.28b), we set

f̃ = [Ũ1 | Ũ2]

[
Σ̃1V

T
1 f1

0

]
,

so from (3.28b) and (3.36a), we obtain that

L̃f̃ = Q̃1Σ̃1Ũ
T
1 f̃ + Q̃2Σ̃2Ũ

T
2 f̃ = Q̃1Σ̃1(Σ̃1V

T
1 f1) = Q̄1Λ̃1f1.

Hence, by substituting in (4.7), we obtain Lf+e = L̃f̃+ẽ. To obtain the bound on ‖f̃‖,
we simply use its definition above together with (3.41), (4.6), and the orthonormality
of Ũ1 and V1.

Before stating our main result, we introduce two additional assumptions. The
first is that finite precision does not affect cutoff decisions in modchol. That is,
the presence of roundoff error in each submatrix M (i−1) does not affect whether the

threshold criterion M
(i−1)
ii ≤ βε passes or fails for each i. Provided that we have

ε ≥ 100u,(4.8)

say, the role of this assumption is to provide a convenient link between the results
of sections 3 and 4. It is not really essential to the analysis, for reasons that we
now explain. We can show by a standard error analysis argument that the matrix
L̃ obtained in finite-precision arithmetic is the same as the one we would obtain
by applying modchol in exact arithmetic to a perturbed matrix M + Êu, where
‖Êu‖ ≤ δu‖M‖ ≤ δu. Hence, finite-precision arithmetic causes changes of size δu in
the diagonal elements that are tested against the threshold βε in modchol. If u is
significantly less than βε (as in (4.8)), only a few skipping decisions would be affected
by this perturbation. Moreover, we could generalize the analysis of section 3 so that
it applies to the slightly perturbed matrix M + Êu rather than to the exact matrix
M, hence ensuring that the results of that section apply to the set J calculated in a
finite-precision environment. We prefer to avoid the additional complication, however,
and simply assume that the sets J that we discuss in sections 3 and 4 are one and
the same. In any case, we note that when ε̄ falls in the gap between large and small
eigenvalues, the makeup of J is not affected at all.

The second assumption is that

τ ε̄1/2 = δ1.(4.9)

We can expect this estimate to hold in all but pathological cases, since the elements
of L̃J̄ J̄ are bounded by 1, and its diagonal elements lie in the range [ε̄1/2, 1].

In the following result, we bound the difference LT (ẑ − z) in terms of ‖ẑ‖, ‖z‖,
and the norms ‖f‖ and ‖e‖ of the perturbation vectors. The explicit appearance of
the computed solution ‖ẑ‖ in the right-hand-side bound is not standard practice in
error analysis, but we were motivated to include it by our numerical experience on
practical linear programming problems. We can derive a rigorous bound on ‖ẑ‖ in
terms of ‖z‖, ‖f‖, and ‖e‖, but numerical experience shows that this bound appears

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1175

to be too pessimistic, so it turns out to be more illuminating to leave ‖ẑ‖ in place
and to work with a direct estimate of this quantity.

Theorem 4.2. Suppose that ẑJ̄ solves (4.3), where Eu
J̄ J̄ is bounded as in (4.2).

Suppose too that we set ẑJ = 0 (as in (3.9)), that (3.10), (3.31), (4.9), and (3.43)
hold, and that roundoff error does not affect the composition of J . We then have

‖LT (ẑ − z)‖ ≤ δ1
[
σ−2
p (τu + ε̄1/2) + σp+1

]
‖ẑ‖+ δ1

[
σ−2
p ε̄1/2 + σp+1

]
‖z‖(4.10)

+δ1
(
σ−4
p + τσp+1σ

−1
p

) ‖f‖+ δ1τσ
−1
p ‖e‖,

where z is the exact solution from (3.7). In the special case of J = ∅, we have

‖LT (ẑ − z)‖ ≤ τδuσ1‖ẑ‖+ ‖f‖+ τ‖e‖.(4.11)

Proof. From (3.26), we have

‖LT (ẑ − z)‖ =

∥∥∥∥[Σ1Q
T
1 (ẑ − z)

Σ2Q
T
2 (ẑ − z)

]∥∥∥∥
≤ ‖Σ1‖ ‖QT1 (ẑ − z)‖+ ‖Σ2‖ ‖ẑ − z‖
≤ ‖Σ1‖ ‖Q̄T1 (ẑ − z)‖+ ‖Σ1‖ ‖Q1 − Q̄1‖‖ẑ − z‖+ ‖Σ2‖ ‖ẑ − z‖.(4.12)

To bound the first term, we note from (3.28b) that

‖L̃T (ẑ − z)‖ =

∥∥∥∥[Σ̃1Q̃
T
1 (ẑ − z)

Σ̃2Q̃
T
2 (ẑ − z)

]∥∥∥∥ ,
and therefore, from (3.36a) and (3.29), we have

‖Q̄T1 (ẑ − z)‖ = ‖Q̃T1 (ẑ − z)‖ ≤ ‖Σ̃−1
1 ‖ ‖Σ̃1Q̃

T
1 (ẑ − z)‖ ≤ σ̃−1

p ‖L̃T (ẑ − z)‖.(4.13)

Since L̃·J = 0 and ẑJ = 0, we have too that

L̃T (ẑ − z) = L̃TJ̄ J̄ (ẑJ̄ − zJ̄)− L̃TJ J̄ zJ .(4.14)

By substituting (3.42) and (4.14) into (4.13), we obtain

‖Q̄T1 (ẑ − z)‖ ≤ 1.2σ−1
p ‖L̃TJ̄ J̄ (ẑJ̄ − zJ̄)− L̃TJ J̄ zJ ‖.(4.15)

From (4.3) and (4.4), and using (3.5a) and L̃·J = 0, we have that

(L̃J̄ J̄ L̃
T
J̄ J̄ + Eu

J̄ J̄)ẑJ̄ = rJ̄ + L̃J̄ J̄ f̃J̄ + ẽJ̄ .

Meanwhile, from (3.5) and (3.7), we have

L̃J̄ J̄ L̃
T
J̄ J̄ zJ̄ + L̃J̄ J̄ L̃

T
J J̄ zJ + EJ̄ J zJ = rJ̄ .

By combining these two equations and multiplying by L̃−1
J̄ J̄ , we obtain

L̃TJ̄ J̄ (ẑJ̄ − zJ̄)− L̃TJ J̄ zJ = −L̃−1
J̄ J̄E

u
J̄ J̄ ẑJ̄ + L̃−1

J̄ J̄EJ̄ J zJ + f̃J̄ + L̃−1
J̄ J̄ ẽJ̄ .

By substituting into (4.15), and using the bounds (3.45), (3.12), and (4.2), we obtain

‖Q̄T1 (ẑ − z)‖ ≤ τδuσ−1
p ‖ẑJ̄ ‖+ δ1ε̄

1/2‖zJ ‖+ ‖f̃J̄ ‖+ τ‖ẽJ̄ ‖.(4.16)

1176 STEPHEN J. WRIGHT

Turning now to the second and third terms in (4.12), we have from (3.25) that

‖Σ1‖ = σ1 = δ1, ‖Σ2‖ = σp+1.(4.17)

By substituting (4.15), (4.16), (4.17), and (3.44) into (4.12), and using

‖ẑ − z‖ ≤ ‖ẑ‖+ ‖z‖, ‖ẑJ̄ ‖ ≤ ‖ẑ‖, ‖zJ ‖ ≤ ‖z‖, 1 ≤ δ1σ−1
p ,

we obtain

‖LT (ẑ − z)‖
≤ δ1σ−1

p

[
τu‖ẑ‖+ ε̄1/2‖z‖+ ‖f̃‖+ τ‖ẽ‖

]
+ δ1

(
σ−2
p ε̄1/2 + σp+1

)
(‖ẑ‖+ ‖z‖)

≤ δ1
[
σ−2
p (τu + ε̄1/2) + σp+1

]
‖ẑ‖+ δ1

[
σ−2
p ε̄1/2 + σp+1

]
‖z‖

+ δ1σ
−1
p ‖f̃‖+ δ1τσ

−1
p ‖ẽ‖.(4.18)

By substituting from (4.5) and using (4.9), we have

δ1σ
−1
p ‖f̃‖+ δ1τσ

−1
p ‖ẽ‖ ≤ δ1

(
σ−4
p + τσp+1σ

−1
p

) ‖f‖+ δ1τσp
−1‖e‖.

By substituting into (4.18), we obtain (4.10).
For the case of J = ∅, we have

L̃J̄ J̄ = L̃ = L, ẑJ̄ = ẑ, zJ̄ = z, zJ vacuous,

while from (4.4), we have f̃ = f, ẽ = e. By using these equivalences in (4.16), we
obtain the result (4.11) directly.

Note that in the case of J = ∅, we have from (3.45) that

τ = ‖L−1‖ = σ−1
m ,

so it follows from (4.11) that

‖ẑ − z‖ ≤ σ−2
m δu‖ẑ‖+ σ−1

m ‖f‖+ σ−2
m ‖e‖.

If we put all the right-hand-side perturbations into the vector e, and set f = 0, we
can use the relation ‖M−1‖ = σ−2

m to obtain

‖ẑ − z‖ ≤ ‖M−1‖ (δu‖ẑ‖+ ‖e‖) ,

which is a perturbation bound for (4.3) of the type that is usually found in the
numerical analysis literature.

5. Application to the interior-point algorithm. We now return to the moti-
vating application: primal-dual interior-point algorithms for linear programming and,
in particular, the linear system (2.15) that is solved at each iteration. We apply the
main result, Theorem 4.2, and examine the effect of the parameter ε and unit round-
off u on the quality of the computed search direction (∆̂x, ∆̂π, ∆̂s). Our focus is on
the later iterations of the interior-point method, during which µ is small and the
ill conditioning of AD2AT can become acute. Our results show where errors arise
in (∆̂x, ∆̂π, ∆̂s), what effect these errors have on the steplength and the computed
residual vectors rb and rc, and the accuracy that can be attained by the interior-point

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1177

algorithm in finite precision. They also suggest a choice for the parameter ε and for
the termination criterion.

Throughout this section, we use an informal style of analysis that combines the
use of δ1 and order notation defined in section 1. Specifically, we often replace the
estimate v = O(ε) by v = δ1ε instead. This convention allows us to analyze the
dependence of certain quantities on the unit roundoff u and the duality measure µ
jointly.

5.1. Size estimate for a general step. We start by estimating the sizes of
the various constituents of the equations (2.15)—the residuals rb and rc of (2.7), the
B and N components of x, s, and the diagonal matrix D. Each iterate (x, π, s) of
a typical primal-dual interior-point iterate satisfies the following estimates (see, for
example, S. J. Wright [17]):

‖rb‖ = O(µ), ‖rc‖ = O(µ),

xi = Θ(1) (i ∈ B), xi = Θ(µ) (i ∈ N),(5.1)

si = Θ(µ) (i ∈ B), si = Θ(1) (i ∈ N).

In theoretical algorithms, these estimates follow from a requirement that all iter-
ates must belong to a certain neighborhood of the central trajectory. In practical
algorithms, the conditions for membership of the neighborhood are rarely checked
explicitly, but the estimates (5.1) are still observed to hold on the vast majority of
practical problems in which the primal-dual solution set is nonempty and bounded.
An immediate consequence of these estimates and the definition (2.14) is that

D2
ii = Θ(µ−1) (i ∈ B), D2

ii = Θ(µ) (i ∈ N).(5.2)

As mentioned in section 2, we assume that A has full rank.
We analyze a general step (∆x,∆π,∆s) that satisfies the system (2.6), where rb

and rc are given by (2.7) while rxs has the form

rxs = XS1 + w for some w satisfying w = O(µ2).(5.3)

It is not difficult to show that the resulting step satisfies the estimate

(∆x,∆π,∆s) = O(µ)(5.4)

by using an argument based on splitting the step into an affine-scaling component
(∆xaff ,∆πaff ,∆saff) of the step (obtained by setting w = 0; see (2.8)) and a “remain-
der” component (∆xw,∆πw,∆sw) that satisfies 0 AT I

A 0 0
S 0 X

 ∆xw

∆πw

∆sw

 =

 0
0
−w

 .(5.5)

We have from [17, Theorem 7.5] that

‖(∆xaff ,∆saff)‖ = O(µ),(5.6)

while from (2.15b) and (5.1), we have

(AAT)∆πaff = A(−rc −∆saff) = O(µ),

1178 STEPHEN J. WRIGHT

and since A has full rank, we have ∆πaff = O(µ) as well. By performing block elimi-
nation on (5.5), we have that

AD2AT∆πw = AD2(X−1w).

A well-known result (see Stewart [11], Todd [13], Dikin [4], and Vanderbei and La-
garias [14]) states that the norm ‖(AD2AT)−1AD2‖ is bounded over the set of all
positive definite diagonal matrices D. Therefore, we have that

‖∆πw‖ = O(‖X−1w‖).
From (5.1), we have ‖X−1‖ = O(µ−1), so from w = O(µ2) it follows that ∆πw = O(µ).
Similar arguments based on the Stewart–Todd result can be used to show that

‖∆xw‖ = O(µ), ‖∆sw‖ = O(µ).

The general choice (5.3) of w encompasses the affine-scaling method (2.8), for
which w = 0. It also includes as a special case the path-following choice (2.9) when
ζ = O(µ), which can be assumed to hold on the late iterations of a superlinearly
convergent method. Finally, it usually includes the Mehrotra method (2.11), since
by (5.6) we have that ‖∆Xaff∆Saff1‖ = O(µ2), while the heuristic choice of the
parameter ζ is usually chosen by a heuristic that ensures that ζ = O(µ).

5.2. Steplength along the exact step. We have noted already in (5.4) that
(∆x,∆π,∆s) = O(µ). We can be more specific about the sizes of the critical com-
ponents ∆xi, i ∈ N , and ∆si, i ∈ B. If we multiply the third block row in (2.6)
by (XS)−1, use the definition (5.3), and note from (5.1) that (xisi)

−1 = Θ(µ−1) for
i = 1, 2, . . . , n, we obtain

∆xi
xi

+
∆si
si

= −1 +O(µ), i = 1, 2, . . . , n.

Therefore, from (5.1) and (5.4), we have for i ∈ N that

∆xi
xi

= −1 +
O(µ)

Θ(1)
= −1 +O(µ),

and therefore, using (5.1) again, we have

∆xi = −xi +O(µ2), i ∈ N .(5.7)

In a similar way, we obtain

∆si = −si +O(µ2), i ∈ B.(5.8)

From the estimates (5.4), (5.7), and (5.8), we can show that a near-unit step can
be taken along the direction (∆x,∆π,∆s) without violating positivity of the x and s
components. By substituting in (2.13), we can show that

1− αmax = O(µ).(5.9)

To verify this estimate, suppose that si +α∆si = 0 for some index i ∈ B. From (5.8),
we have

si(1− α) +O(µ2) = 0,

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1179

so it follows from (5.1) that

1− α = O(µ2)/si = O(µ).

For the corresponding component xi, we have from (5.1) and (5.4) that xi = Θ(1) and
∆xi = O(µ). Hence, for all µ sufficiently small and all α ∈ [0, 1], we have xi+α∆xi > 0.
Similar logic can be applied to the remaining indices i ∈ N , thereby proving (5.9).

5.3. Scaling the system (2.15a). We can use (5.2) to analyze the eigenstruc-
ture of the coefficient matrix AD2AT . We have

AD2AT = A·BD2
BA

T
·B +A·ND2

NA
T
·N ,

where the first term on the right-hand side is a matrix whose rank is rankA·B in
which all the nonzero eigenvalues are of size Θ(µ−1). By combining this observation
with the full-rank assumption on A, we obtain that

σi(AD
2AT) = Θ(µ−1), i = 1, 2, . . . , rankA·B,(5.10a)

σi(AD
2AT) = Θ(µ), i = rankA·B + 1, . . . ,m.(5.10b)

To ensure (3.10), we work with a scaled version of the matrix AD2AT , in which the
scaling factor ρ is chosen as

ρ =

[
max

i=1,2,...,m
(AD2AT)ii

]−1

.(5.11)

Obviously, we have ρ = Θ(µ), and by choosing p (see section 3) as

p = rankA·B,(5.12)

we find that the eigenvalues σ2
1 , σ

2
2 , . . . , σ

2
m of ρAD2AT satisfy

σ2
i = Θ(1), i = 1, 2, . . . , p,(5.13a)

σ2
i = Θ(µ2), i = p+ 1, . . . ,m.(5.13b)

The exact Cholesky factor L satisfies

LLT = ρAD2AT .(5.14)

Suppose now that modchol is used to compute the solution of the scaled version
of the system (2.15a), namely,

ρAD2AT∆π = −ρrb − ρAD2(rc −X−1rxs),(5.15)

where rxs is defined as in (5.3). This process is carried out in finite-precision arith-

metic, resulting in a computed solution ∆̂π. The remaining step components ∆̂s and
∆̂x are obtained by substituting into (2.15b) and (2.15c), respectively, where once
again we assume that finite-precision arithmetic is used.

5.4. Checking assumptions and estimates for Theorem 4.2. We now pre-
pare to apply Theorem 4.2 by checking that its various assumptions are satisfied for
µ sufficiently small. We assume that ε is set to the following value:

ε = 100u.(5.16)

1180 STEPHEN J. WRIGHT

This choice is motivated by a desire to keep ε as small as possible, while trying to
ensure that the set J of skipped pivot indices is not greatly affected by the use of finite-
precision arithmetic (see the discussion surrounding (4.8)). The assumption (3.10)
that the largest diagonal in ρAD2AT is 1 is satisfied by construction. From (5.13) and
(5.12), the assumptions (3.31) and (3.43) hold trivially. As noted in the discussion
following (4.9), this assumption too can be expected to hold in nonpathological cases.
It follows immediately from (4.9) that

τ = δ1ε̄
−1/2,(5.17)

giving us a “worst-case” bound for τ . When modchol correctly identifies the nu-
merical rank of AD2AT—that is, when |J̄ | = p = rankA·B, as often happens in the
examples we present in the next section—we usually have that all the diagonals of
L̃J̄ J̄ are of size δ1, and hence that τ = δ1. Surprisingly, however, our favorable results

about the quality of the computed step (∆̂x, ∆̂π, ∆̂s) hold even when the algorithm
admits some small diagonal elements into L̃J̄ J̄ , yielding a computed factor L̃J̄ J̄ for
which |J̄ | > p.

Having verified that we can reasonably expect Theorem 4.2 to hold for the system
(5.15), we now estimate the quantities on the right-hand side of the bound (4.10). From
(5.13a), we have σ−1

p = Θ(1), while from (5.13b), we have σp+1 = Θ(µ).
We need to account, too, for the errors incurred in finite-precision evaluation of

the right-hand side of (5.15), and to apportion these errors between the error vectors
f and e in (4.3). For the purpose of this discussion, and in the remainder of the paper,
we assume that

µ ≥ u.(5.18)

(As we see later, the algorithm is usually terminated—and for good reason—when µ
is significantly larger than u, so this assumption is not restrictive.) We examine the
contributions of the terms rxs, rb, and rc to the right-hand side of (5.15) in turn.

In most codes, the contribution of rxs to (5.15) is calculated by forming the vector
rxs, multiplying by D2X−1 = S−1, and then multiplying by A. Floating-point error
in formation of rxs from (5.3) can be bounded by a term of size δuµ. This error is
magnified to δu when we multiply by S−1, and further roundoff errors introduced
in this operation result in an additional error of size δu. Multiplication by A yields
additional errors of size δu. Therefore, the total contribution of this term to the error
in the right-hand side of (5.15), after scaling by ρ, has magnitude δuµ. We denote this
error by exs; below, we include it in the unstructured error vector e in (4.3).

The vectors rb and rc both have size µ (see (5.1)), but they are calculated by
summing and differencing real-number quantities of size δ1, and hence incur cancella-
tion error of size δu. We denote the calculated versions by r̂b and r̂c, respectively, so
that

r̂b − rb = δu, r̂c − rc = δu.(5.19)

The contribution of the error in r̂b to the right-hand side of (5.15) is small. After scaling
by ρ, it contributes an error of size µδu, which we denote by eb and incorporate into
e.

The term involving rc requires more careful consideration. Note from (5.1) and
(5.19) that r̂c = O(µ) + δu. When we multiply r̂c by D2, some of whose diagonal ele-
ments have size Θ(µ−1), we incur additional error of δuµ

−1(µ+δu), which is equivalent

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1181

to δu because of (5.18). Therefore, we have

comp(D2r̂c) = D2(rc + δu) + δu = D2rc +D2(r̂c − rc) + δu,

which has size δ1. Finally, on multiplying by A, we incur additional roundoff error of
δu, so in summary we have

comp(AD2r̂c) = AD2rc +AD2(r̂c − rc) + δu.(5.20)

From (5.14), we have that

AD = ρ−1/2LQT(5.21)

for some orthogonal matrix Q, so by defining

f = ρ1/2QD(r̂c − rc) = O(µ1/2)O(µ−1/2)δu = δu,(5.22)

we have that

ρAD2(r̂c − rc) = ρ1/2LQTD(r̂c − rc) = LT f.

Hence, from (5.20), we see that the computed version of the term ρAD2rc on the
right-hand side of (5.15) differs from the exact quantity by Lf+ec, where f is defined
as in (5.22) and ec = µδu. By adding the unstructured error contributions from the
three right-hand-side terms in (5.15), we find that

e = exs + eb + ec = µδu.(5.23)

We have pointed out already (see (5.4)) that ∆π = O(µ). The one remaining

important quantity on the right-hand side of (4.10) is ‖∆̂π‖. By making further as-
sumptions on the relative sizes of τ, u, and ε, we can bound this term strictly in terms
of ‖∆π‖, but the resulting estimate is observed to be too pessimistic. We found the
following estimate to hold in all computational tests we performed:

∆̂π = O(µ);(5.24)

we use this estimate in the results below.

5.5. Errors in the computed step and their consequences. We now have
all the estimates needed to apply Theorem 4.2 to (5.15). By substituting z = ∆π

and ẑ = ∆̂π, together with the estimates (5.13), (5.4), (5.24), (5.22), and (5.23), into
(4.10), we obtain

‖LT (∆̂π −∆π)‖ ≤ δ1
[
(τu + ε̄1/2) + µ

]
µ+ δ1(ε̄1/2 + µ)µ+ (1 + τµ)δu + τµδu

= δ1µ
[
τu + ε̄1/2 + µ+ µ−1u

]
,(5.25)

and by substituting for τ from (5.17), we obtain

‖LT (∆̂π −∆π)‖ ≤ δ1µ
[
ε̄−1/2u + ε̄1/2 + µ+ µ−1u

]
.(5.26)

From (5.21), and using orthogonality of Q, we can define

v = DAT (∆̂π −∆π)(5.27)

1182 STEPHEN J. WRIGHT

and note from (5.26) that

‖v‖ = ρ−1/2‖LT (∆̂π −∆π)‖ ≤ δ1µ1/2
[
ε̄−1/2u + ε̄1/2 + µ+ µ−1u

]
.(5.28)

From (1.1) and (5.16), we see that the right-hand side of this expression is minimized,
with a value of δ1u

1/2, when µ ≈ ε̄1/2 = δ1u
1/2. This observation suggests that a

termination criterion of

µ ≤ u1/2(5.29)

may be appropriate for the interior-point method. We justify this choice further below,
after investigating the errors in the computed step and their effects on maximum
steplength and on the updating of the residuals rc and rb.

Next, we examine the effect of the error in ∆̂π and the evaluation error in the
right-hand side of (2.15b) on the calculated step ∆̂s. From (5.4) and (5.24), we have
that

‖∆π − ∆̂π‖ ≤ ‖∆π‖+ ‖∆̂π‖ = O(µ).(5.30)

The evaluation error of size δu in the rc term of (2.15b) (see (5.19)) is significant; the
additional roundoff errors of size µδu incurred in forming the matrix–vector product
and in performing the vector addition to evaluate the right-hand side of (2.15b) are

negligible. We conclude from (5.19) and (5.30) that the computed step ∆̂s and exact
step ∆s differ as follows:

∆s− ∆̂s = −rc + r̂c −AT (∆π − ∆̂π) + µδu = δ1(µ+ u).(5.31)

This estimate is potentially troubling: Since the exact step ∆s has size O(µ), it

indicates that the computed step ∆̂s may not be correct to any digits at all! This
inaccuracy is not so important for the “large” components of s—namely, components
in the subvector sN—since eventually µ is small in comparison to these components
and errors in ∆sN have little effect on the steplength α or on the updated value
of xT s. However, errors of the size indicated in (5.31) in the B components of ∆s
could be disastrous. The consequences could include that the maximum steplength
αmax to the boundary could be much smaller than 1 (an argument similar to the one
following (5.9) indicates only that 1− αmax = δ1) and in fact we cannot even be sure
of decrease in xT s along this direction. Fortunately, a refined estimate of the error in
∆̂sB is possible. By using (5.19) in (5.31), we have that

∆s− ∆̂s = −AT (∆π − ∆̂π) + δu = D−1v + δu,(5.32)

where v is defined as in (5.27). From (5.2), we have that D−1
ii = Θ(µ1/2) for i ∈ B,

and therefore, by using (5.28), we obtain

∆si − ∆̂si = δ1µ
[
ε̄−1/2u + ε̄1/2 + µ+ µ−1u

]
, i ∈ B.(5.33)

As in the discussion following (5.9), we find that si + α∆̂si = 0 is possible only if

1− α = δ1

[
ε̄−1/2u + ε̄1/2 + µ+ µ−1u

]
.(5.34)

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1183

Finally, we estimate the errors in the computed step ∆̂x obtained from (2.15c)
and estimate their effect on αmax and on the updated value of rb. Again, we consider
the components i ∈ B and i ∈ N separately.

For i ∈ B, the δuµ evaluation error in (rxs)i is magnified by the term s−1
i =

Θ(µ−1). Floating-point error in forming the product xi∆̂si and in performing the
addition yield additional errors of size at most δu, so we obtain

∆xi − ∆̂xi = −s−1
i xi(∆si − ∆̂si) + δu, i ∈ B.(5.35)

From (5.33) and (5.1), this formula implies that

∆̂xi −∆xi = δ1

[
ε̄−1/2u + ε̄1/2 + µ+ µ−1u

]
, i ∈ B.(5.36)

By the usual reasoning, we find that xi + α∆̂xi = 0 is possible for i ∈ B only for α
satisfying (5.34).

For i ∈ N , the δuµ evaluation error in (rxs)i is not magnified appreciably by the
term s−1

i (which has size Θ(1)), and we obtain

∆xi − ∆̂xi = −s−1
i xi(∆si − ∆̂si) + µδu, i ∈ N .(5.37)

By substituting from (5.31) and (5.1), we obtain

∆̂xi −∆xi = δ1[µ2 + µu], i ∈ N .(5.38)

We deduce that xi + α∆̂xi = 0 for i ∈ N only if

1− α = δ1[µ+ u].(5.39)

From (5.34) and (5.39), we conclude that the value of αmax defined by (2.13), with

the calculated direction (∆̂x, ∆̂π, ∆̂s) replacing the exact search direction, satisfies the
estimate

1− αmax = δ1

[
ε̄−1/2u + ε̄1/2 + µ+ µ−1u

]
.(5.40)

Note from (5.30), (5.31), and (5.38) that, in an absolute sense, the errors in ∆̂π,

∆̂s, and ∆̂xN are small. By contrast, the µ−1u term in (5.36) implies that the errors

in ∆̂xB increase as µ decreases below u1/2. These errors have consequences for the
updated values of the residuals rb and rc at the new point

(x, π, s) + α(∆̂x, ∆̂π, ∆̂s),

where α ∈ (0, αmax) is the steplength chosen by the algorithm. From (2.7), we see
that the computed value of rc at this new point is given by

comp(r̂+
c) = AT (π + α∆̂π) + (s+ α∆̂s)− c+ δu,

where the final term accounts for both cancellation and roundoff errors. From (5.32),
we see that this quantity differs from the exact value of r+

c by

αAT (∆̂π −∆π) + α(∆̂s−∆s) + δu = δu,

1184 STEPHEN J. WRIGHT

so we conclude that the effect of the errors in (∆̂x, ∆̂π, ∆̂s) on the rc term is minimal
(that is, it is of the same order as the cancellation error that arises in any case when
this term is evaluated).

The computed version of rb at the new point is

comp(r̂+
b) = A(x+ α∆̂x)− b+ δu,

which differs from the exact version r+
b as follows:

comp(r̂+
b)− r+

b = αA(∆̂x−∆x) + δu.

By substituting from (5.35) and (5.37) and using (2.14), we obtain

comp(r̂+
b)− r+

b = αAD2(∆s− ∆̂s) + δu,

which, from (5.19) and (5.31) and the estimate ‖D2‖ = O(µ−1), yields

comp(r̂+
b)− r+

b = αAD2AT (∆̂π −∆π) + µ−1δu.(5.41)

From (5.21), (3.4), and (3.6), we have that

AD2AT = ρ−1LLT = ρ−1(L̃L̃T + E),

so by some elementary manipulation, we deduce that comp(r̂+
b) − r+

b equals the ex-
pression

αρ−1L̃L̃T (∆̃π −∆π) + αρ−1E(∆̂π −∆π) + αρ−1L̃L̃T (∆̂π − ∆̃π) + µ−1δu.(5.42)

We bound this expression one term at a time, using results from earlier sections and
identifying ∆π with z, ∆̂π with ẑ, and ∆̃π with z̃. For the first term, we have from
(3.10) that ‖L̃‖ ≤ δ1, while from Theorem 3.4, (5.16), and (5.4), we have

‖L̃T (∆π − ∆̃π)‖ = δ1/2
u ‖∆πJ ‖ = µδ1/2

u .(5.43)

For the second term in (5.42), we have from Lemma 3.2, (5.16), (5.30), and ρ = Θ(µ)
that

ρ−1‖E(∆̂π −∆π)‖ ≤ δ1/2
u .(5.44)

For the third term, recall that ∆̃πJ = ∆̂πJ = 0 and L̃·J = 0, so that

‖L̃L̃T (∆̃π − ∆̂π)‖ ≤ ‖L̃‖‖L̃TJ̄ J̄ (∆̃πJ̄ − ∆̂πJ̄)‖ ≤ δ1‖L̃TJ̄ J̄ (∆̃πJ̄ − ∆̂πJ̄)‖.(5.45)

From (3.9), we have

L̃J̄ J̄ L̃
T
J̄ J̄ ∆̃πJ̄ = rJ̄ ,

and so from (3.5a), (4.3), and (4.4), we have

(L̃J̄ J̄ L̃
T
J̄ J̄ + Eu

J̄ J̄)∆̂πJ̄ = L̃J̄ J̄ L̃
T
J̄ J̄ ∆̃πJ̄ + (L̃f̃ + ẽ)J̄ .

By rearranging, we obtain

L̃TJ̄ J̄ (∆̂πJ̄ − ∆̃πJ̄) = −L̃−1
J̄ J̄
[
Eu
J̄ J̄ ∆̂πJ̄ − L̃J̄ J̄ f̃J̄ − ẽJ̄

]
.

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1185

We now use the estimates

‖L̃−1
J̄ J̄ ‖ = δ

−1/2
u from (3.45), (5.16), and (5.17),

‖Eu
J̄ J̄ ‖ = δu from (4.2),

‖f̃‖ = δu from (4.5), (5.13a), and (5.22),

‖ẽ‖ = δ
3/2
u + µδu from (4.5), (5.13), (5.22), and (5.23),

‖∆̂πJ̄ ‖ = O(µ) from (5.24)

to yield the following bound:

‖L̃TJ̄ J̄ (∆̂πJ̄ −∆πJ̄)‖ ≤ ‖L̃−1
J̄ J̄ ‖ ‖Eu

J̄ J̄ ‖ ‖∆̂πJ̄ ‖+ ‖f̃J̄ ‖+ ‖L̃−1
J̄ J̄ ‖ ‖ẽJ̄ ‖

≤ δ−1/2
u δuµ+ δu + δ−1/2

u [δ3/2
u + µδu]

≤ µδ1/2
u + δu.

Therefore, for the third term in (5.42), we have from (5.45) that

‖L̃L̃T (∆̃π − ∆̂π)‖ ≤ µδ1/2
u + δu.(5.46)

By substituting (5.43), (5.44), (5.46), ρ = Θ(µ), and |α| ≤ 1 into (5.42), we have

comp(r̂+
b)− r+

b = δ1/2
u + µ−1δu.(5.47)

This estimate suggests that the discrepancy between r̂+
b and its approximation comp(r̂+

b)

is no greater than δ
1/2
u until µ falls below approximately u1/2. This observation, to-

gether with (5.40), suggests strongly that the termination condition (5.29) is the
appropriate one. These observations too are illustrated in section 6.

The convergence tolerances used by most interior-point codes—arrived at by prac-
tical experience rather than theoretical or analytical considerations—are generally
consistent with (5.29). For instance, the code PCx declares optimality if the following
three conditions are satisfied:

‖rb‖
1 + ‖b‖ ≤ tol,

‖rc‖
1 + ‖c‖ ≤ tol,

∣∣cTx− bTπ∣∣
1 + |cTx| ≤ tol,

where the default value of tol is 10−8. Note that 10−8 ≈ u1/2 in double precision
arithmetic on most machines.

5.6. Comments and observations. We conclude this section with a few com-
ments about the results above.

Note first that our conclusions can always be defeated by poor scaling of the
problem. Poor scaling may show up as imbalance in the size of the components of xB
or sN (some may be much smaller than others) or as imbalance in the sizes of the
nonzero components of the problem data A, b, and c. Difficulties such as these may
cause the many factors δ1 that appear in the analysis to actually be much larger than 1,
thereby limiting the regime of applicability of our results and affecting our conclusions
about appropriate choices of ε̄ and the termination criterion. Most interior-point codes
try to avoid these potential difficulties by prescaling the matrix A by some heuristic
procedures, for example, the one proposed by Curtis and Reid [2].

A second point concerns the matrix A·B, the basic part of the constraint matrix
A. Our analysis is quite general in that it allows A·B to be rank deficient. However,
when the nonzero singular values of this matrix are widely separated, the assumed

1186 STEPHEN J. WRIGHT

separation (5.13) between the p = rankA·B largest and m − p smallest eigenvalues
of AD2AT will not appear until µ is very small. This may again limit the regime of
applicability of our analysis. Prescaling of the matrix A may help but, in some sense,
ill conditioning of this type is intrinsic to the problem. As in many other areas of
numerical linear algebra, it is not possible to design algorithms that produce accurate
results in finite-precision arithmetic regardless of the conditioning of the problem.

Third, we note that our analysis made no assumption to ensure that modchol
eventually determines the numerical rank of AD2AT . That is, none of our results
require that |J̄ | = p for all µ sufficiently small. Although we observed that |J̄ | = p
in many numerical tests, the assumptions needed to guarantee this equality are not
satisfying in certain respects. (Such assumptions did appear in an earlier version of
this paper, but they were discarded.) The advantage of |J̄ | = p in the analysis is that
the matrix L̃J̄ J̄ will have all its diagonal elements of size Θ(1), allowing us to use the
estimate τ = δ1 in place of the weaker estimate (5.17). This estimate in turn allows
us to bound the norm ‖ẑ‖ in (4.10) in terms of ‖z‖, leading to a more rigorous bound
on ‖LT (ẑ − z)‖.

A fourth, related point concerns our estimate (5.17) of the size of τ, which is based
on the assumption that the norm of L̃−1

J̄ J̄ can be estimated accurately by observing
the sizes of its diagonal elements. While the resulting estimate appears to hold for the
vast majority of practical problems of the type in question, there are cases in which
it underestimates the value of ‖L̃−1

J̄ J̄ ‖. See Lawson and Hanson [8, p. 31] for a classic
example.

Finally, we note that when all the skipped pivots occur in the lower right corner
of the matrix M (as happens on most of the smaller problems we tested), we can
replace the bound ‖E‖ ≤ ε̄1/2 by the tighter bound ‖E‖ ≤ ε̄. This tighter estimate
allows some of our results to be strengthened, but since we observed some large linear
programs in which the skipped pivots were not confined to the lower right corner, we
omit a detailed analysis of this case.

6. Implementation and computational results. The modchol approach
can be implemented by making minimal changes to a standard sparse Cholesky code.
We need to add a loop to calculate the largest diagonal element β, and a small
pivot check immediately before the point at which the computation Lii =

√
Mii is

performed. The pivot skipping itself can be performed explicitly (by inserting a column
of zeros in the Cholesky factor and maintaining a record of the set J), or it can be
“simulated,” as in LIPSOL [20] and PCx [3], by inserting a huge element in the pivot
position prior to the computation of the column of the Cholesky factor and updating
of the remainder of the matrix. In PCx [3], we needed to change fewer than 20 lines
of the sparse Cholesky code of Ng and Peyton [10].

To test that the analysis of this paper was reflected in computations, we coded
a simple primal-dual interior-point algorithm and applied it to test problems with
controlled degeneracy properties. At each iterate, we monitored various quantities,
compared them against the estimates of section 5, and confirmed that convergence to
a tolerance of approximately u1/2 could be attained even for difficult problems.

Our test problems have the form (2.1), with m = 6 and n = 12. The matrix A
is fully dense, with elements (ξ1− .5)106(ξ2−.5), where ξ1 and ξ2 are random variables
drawn from a uniform distribution on the interval [0, 1]. (Of course, the values of ξ1
and ξ2 are different for each element of the matrix.) After fixing the number of indices
to appear in B, we set

|N | = n− |B|, N = {1, 2, . . . , |N |}, B = {|N |+ 1, . . . , n}.

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1187

(Note that the problem is degenerate whenever |B| 6= 6.) A primal solution x∗ is
constructed with

x∗i = 0 (i = 1, 2, . . . , |N |), x∗i = 103ξ−1 (i = |N |+ 1, . . . , n),

where ξ is again randomly drawn from the uniform distribution on [0, 1]. We choose
the dual solution π∗ to be the vector (1, 1, . . . , 1)T , and fix an optimal dual slack
vector s∗ to be

s∗i = 104ξ−2 (i = 1, 2, . . . , |N |), s∗i = 0 (i = |N |+ 1, . . . , n),

where ξ is random as above. Finally, we set b = Ax∗ and c = ATπ∗ + s∗. Note that
by our choice of B, A·B consists of the last |B| columns of A. We modified A in some
of the problems to introduce various types of rank deficiency.

The code was an implementation of the infeasible interior-point algorithm de-
scribed by S. J. Wright [16]. The details of this algorithm are unimportant; we need
note only that its iterates satisfy the estimates (5.1) in exact arithmetic and that
the algorithm takes steps along the affine-scaling direction during its later iterations,
provided that these steps make reasonable progress. At each iteration of the algo-
rithm, we calculated the affine-scaling direction (whether or not it was actually used
as a search direction) and kept a log of information about this step and about var-
ious other properties of the iterates and the modchol procedure. The parameter ε
was set to 10−13, which is about 500u on the SPARCstation 5 that was used for the
experiments. The results were not particularly sensitive to this parameter.

Results for various problems are shown in Tables 1, 2, 3, 4, and 5. For each itera-

tion, we tabulate the norms ‖∆̂xaff‖∞, ‖∆̂π
aff‖∞, and ‖∆̂saff‖∞ of the affine-scaling

step calculated at that iterate, together with the duality measure µ and residual norm
‖(rb, rc)‖∞ for that iterate. We also tabulate the number of small pivots encountered
during the factorization, that is, the number of elements in J . The step-to-boundary
αmax along the calculated affine-scaling direction is also tabulated. (The algorithm
actually uses the affine-scaling direction if this parameter exceeds 0.8; otherwise, it
uses a direction with a centering component.) A horizontal line in each table indicates
the iterate at which termination would occur if we use the termination criterion of
section 5.5.

In Table 1 we chose |B| = m = 6, making the linear program nondegenerate and
the primal-dual solution unique. Note that the pivot-skipping mechanism in modchol
is not activated for this problem, since the matrix AD2AT is approaching a well-

conditioned limit. It is clear from the table that ∆̂π
aff

and ∆̂s
aff

satisfy the estimates
(5.24) and (5.31), respectively, even when the algorithm continues to iterate past the

point of normal termination. The component ∆̂x
aff
, on the other hand, clearly shows

the influence of the O(µ−1u) error term in (5.36) when µ falls below u. As discussed
in section 5.5, this error is transmitted to the computed residual rb, destroying the
quality of subsequent iterates. A similar deterioration is noted in the steplength αmax.
These observations show that it is important for the interior-point algorithm to save
the best iterate obtained so far, so that it can report this value if it happens to push
beyond the appropriate point of termination.

Table 2 shows results for the case of a problem in which |B| = 4 with A·B full
rank, which causes the coefficient matrix in (2.15a) to have four eigenvalues of size
Θ(µ−1) and the remaining two of size Θ(µ). The second column shows that modchol
detects small pivots when µ becomes sufficiently small, and confirms that the quality

1188 STEPHEN J. WRIGHT

Table 1
Affine-scaling step properties for a problem with m = 6, n = 12, |B| = 6, rankA·B = 6.

‖ · ‖ = ‖ · ‖∞, and the horizontal line represents the normal point of termination.

Small log log log log

Iteration pivots log µ ‖(rb, rc)‖ ‖∆̂xaff‖ ‖∆̂πaff‖ ‖∆̂saff‖ αmax

...
12 0 −0.6 −11.1 −0.1 −0.6 0.6 .26426
13 0 −1.4 −10.7 0.4 −1.1 0.1 .77520
14 0 −2.1 −10.7 1.2 −2.3 −1.1 .39373
15 0 −3.3 −10.4 −0.3 −1.3 −0.1 .62276
16 0 −4.8 −8.1 −1.1 −5.2 −3.9 .99697
17 0 −7.2 −10.5 −3.5 −8.3 −7.1 .99999
18 0 −12.0 −12.2 −8.2 −14.0 −12.5 >.99999
19 0 −21.0 −12.0 −3.6 −14.9 −13.9 .99975
20 0 −24.2 −4.6 −1.4 −15.0 −13.9 .93989
21 0 −26.2 −1.5 1.4 −15.3 −14.5 .06843
...

Table 2
Affine-scaling step properties for a problem with m = 6, n = 12, |B| = 4, rankA·B = 4.

‖ · ‖ = ‖ · ‖∞, and the horizontal line represents the normal point of termination.

Small log log log log

Iteration pivots log µ ‖(rb, rc)‖ ‖∆̂xaff‖ ‖∆̂πaff‖ ‖∆̂saff‖ αmax

...
12 0 −0.6 −12.0 0.1 −1.3 0.7 .95133
13 0 −1.9 −11.4 −1.5 −0.2 1.8 .51719
14 0 −2.4 −9.5 −1.8 −0.9 1.0 .90453
15 1 −3.4 −9.3 −2.7 −5.5 −3.5 .98770
16 2 −5.2 −9.1 −4.4 −7.2 −5.2 .99977
17 2 −8.5 −11.1 −7.7 −10.5 −8.5 >.99999
18 2 −14.4 −13.0 −12.5 −15.8 −14.2 >.99999
19 2 −25.1 −12.3 −1.5 −15.9 −13.7 >.99999
20 2 −29.7 1.2 6.7 −15.9 −13.3 .00016
...

of interior-point steps remains high after this point, at least until an accuracy of u1/2

is achieved. The behavior of the algorithm for very small values of µ—beyond the
point of normal termination—is the same as that of Table 1.

The locations of the small pivots detected by modchol for the problem reported
in Table 2 were at the bottom left of the matrix. We noted earlier that when this
is the case, we have that the estimate ‖E‖ ≤ ε̄1/2 of Lemma 3.2 can be replaced by
the stronger estimate ‖E‖ ≤ ε̄. To show that the algorithm’s performance does not
depend critically on this smaller value of the error, we modified A to obtain a number
of examples in which the small pivots appeared in locations other than the lower right
of the matrix. In the problem report in Table 3, we modified the matrix A by replacing
all elements in rows 1 and 2 with zeros, except for the element in the last column.
We chose |B| = 6, so that the matrix A·B formed by the last 6 columns of A has rank
5. Moreover, the fact that rows 1 and 2 of A are multiples of each other ensures that
the (2, 2) pivot will be flagged as a small pivot in modchol. It also implies that the

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1189

Table 3
Affine-scaling step characteristics for a problem with m = 6, n = 12, |B| = 6, rankA·B = 5

(rows 1 and 2 of A have a single nonzero each, in the same column location). ‖ · ‖ = ‖ · ‖∞, and the
horizontal line represents the normal point of termination.

Small log log log log

Iteration pivots log µ ‖(rb, rc)‖ ‖∆̂xaff‖ ‖∆̂πaff‖ ‖∆̂saff‖ αmax

...
11 1 −0.5 −12.6 0.3 1.6 0.8 .23771
12 1 −1.2 −10.3 0.6 1.0 0.2 .81949
13 1 −1.9 −10.3 0.9 0.1 −0.7 .67937
14 1 −2.4 −10.2 1.0 −0.9 −1.7 .50171
15 1 −3.4 −10.2 0.0 −2.3 −3.0 .95044
16 1 −4.7 −9.7 −1.0 −5.0 −5.0 .99199
17 1 −6.8 −11.3 −3.1 −7.1 −7.1 .99991
18 1 −10.9 −10.4 −0.3 −11.2 −11.1 .90487
19 1 −11.9 −10.3 0.3 −12.3 −12.2 .53423
...

Table 4
Affine-scaling step characteristics for a problem with m = 6, n = 12, |B| = 4, rankA·B = 3

(A·B has two dependent columns). ‖ · ‖ = ‖ · ‖∞, and the horizontal line represents the normal point
of termination.

Small log log log log

Iteration pivots log µ ‖(rb, rc)‖ ‖∆̂xaff‖ ‖∆̂πaff‖ ‖∆̂saff‖ αmax

...
11 0 −0.4 −12.5 0.2 −0.4 1.1 .86945
12 0 −1.3 −11.2 −0.9 0.6 2.5 .19214
13 0 −1.8 −9.3 −0.9 −3.4 −1.5 >.99999
14 0 −3.8 −11.9 −3.2 −2.3 −0.4 .99848
15 3 −6.7 −9.5 −5.0 −8.0 −6.1 .99999
16 3 −11.8 −12.5 −0.2 −13.1 −11.1 .98866
17 3 −13.8 −12.6 1.9 −13.8 −11.9 .85592
18 3 −14.7 −13.5 −5.3 −13.2 −11.3 .92960
19 3 −15.8 −6.5 −6.5 −13.7 −11.7 >.99999
...

assumption that A has full rank is violated. Table 3 confirms that the quality of the
interior-point steps remains high. The algorithm’s behavior is qualitatively the same
as in the earlier examples.

The results in Table 3 illustrate that, as predicted by the analysis, the use of
modchol does not cause the interior-point algorithm to break down even when A·B
is rank deficient. We confirm this observation in Tables 4 and 5 with two other experi-
ments involving rank-deficient matrices. Table 4 reports a problem identical to that of
Table 2 except that in the matrix A, the third-last column was replaced by a multiple
of the second-last column. The matrices A and A·B are thereby rank deficient. When
µ becomes sufficiently small, modchol detects a numerical rank of 3 in the matrix of
(2.15a), and the interior-point algorithm behaves similarly to that in the earlier ta-
bles. In Table 5, the modifications of A used in Tables 3 and 4 were both performed,
giving a matrix A·B of rank 3 such that the pivots are not all confined to the lower
right corner of the matrix in (2.15a). (The (2, 2) pivot is always small.) The behavior

1190 STEPHEN J. WRIGHT

Table 5
Affine-scaling step characteristics for a problem with m = 6, n = 12, |B| = 4, rankA·B = 3

(A·B has two dependent columns, and the first two rows of A contain a single nonzero each, in
the same column location). ‖ · ‖ = ‖ · ‖∞, and the horizontal line represents the normal point of
termination.

Small log log log log

Iteration pivots log µ ‖(rb, rc)‖ ‖∆̂xaff‖ ‖∆̂πaff‖ ‖∆̂saff‖ αmax

...
11 1 −0.7 −10.0 0.3 2.9 2.4 .82144
12 1 −1.4 −9.3 −0.1 2.2 1.7 .85477
13 1 −2.2 −8.6 −0.5 −1.1 0.6 .50951
14 1 −2.5 −9.0 −0.8 −2.9 −1.3 .70461
15 2 −4.5 −10.5 −3.3 −2.0 −1.2 .99889
16 3 −7.5 −6.8 −5.4 −6.2 −4.2 >.99999
17 3 −12.9 −12.1 0.4 −11.9 −9.9 .95922
18 3 −14.3 −12.6 2.0 −13.3 −11.3 .20762
...

is once again similar to that of the earlier tables. We note especially iteration 15, at
which two pivots are classified as “small” while a third pivot is slightly greater than
the threshold, giving rise to a large spread in the nonzero diagonal elements of L̃. The
resulting iterate contains some inaccuracy that manifests itself in a slight increase in
the residual rb, but this is quickly corrected at iteration 16, at which the large and
small pivots become clearly separated.

Finally, we note that we tried degenerate test problems in which |B| > m. These
are less interesting because modchol detects no small pivots in factoring the matrix
of (2.15a). Their behavior is once again similar to that of the other test problems, so
we omit the details.

Acknowledgments. I am most grateful to the editor and referees. Their con-
structive comments on the first version of the paper led to considerable improvements,
and their extremely close and patient reading of both versions led to the elimination
of many infelicities and typos.

REFERENCES

[1] E. D. Andersen and K. D. Andersen, The MOSEK interior point optimizer for interior
programming: An implementation of the homogeneous algorithm, in High Performance
Optimization Techniques, Kluwer Academic Publishers, Norwell, MA, to appear.

[2] A. R. Curtis and J. K. Reid, On the automatic scaling of matrices for Gaussian elimination,
J. Inst. Math. Appl., 10 (1972), pp. 118–124.

[3] J. Czyzyk, S. Mehrotra, and S. J. Wright, PCx User Guide, Technical Report OTC 96/01,
Optimization Technology Center, Argonne National Laboratory and Northwestern Univer-
sity, October 1996. Modified March 1997.

[4] I. I. Dikin, On the speed of an iterative process, Upravlyaemye Sistemy, (1974).
[5] A. Forsgren, P. Gill, and J. R. Shinnerl, Stability of symmetric ill-conditioned systems

arising in interior methods for constrained optimization, SIAM J. Matrix Anal. Appl., 17
(1996), pp. 187–211.

[6] J. Gondzio, HOPDM (version 2.12): A fast lp solver based on a primal-dual interior point
method, European J. Oper. Res., 85 (1995), pp. 221–225.

[7] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[8] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice–Hall, Englewood

Cliffs, NJ, 1974; reprinted as Classics in Appl. Math. 15, SIAM, Philadelphia, 1995.
[9] I. J. Lustig, R. E. Marsten, and D. F. Shanno, Computational experience with a primal-

MODIFIED CHOLESKY IN INTERIOR-POINT METHODS 1191

dual interior point method for linear programming, Linear Algebra Appl., 152 (1991),
pp. 191–222.

[10] E. Ng and B. W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor com-
puters, SIAM J. Sci. Comput., 14 (1993), pp. 1034–1056.

[11] G. W. Stewart, On scaled projections and pseudoinverses, Linear Algebra Appl., 112 (1989),
pp. 189–193.

[12] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Comput. Sci. Sci. Comput., Aca-
demic Press, New York, 1990.

[13] M. J. Todd, A Dantzig-Wolfe-like variant of Karmarkar’s interior-point linear programming
algorithm, Oper. Res., 38 (1990), pp. 1006–1018.

[14] R. J. Vanderbei and J. C. Lagarias, Dikin’s convergence result for the affine-scaling algo-
rithm, Contemp. Math., (1990).

[15] M. H. Wright, Some properties of the Hessian of the logarithmic barrier function, Math.
Programming, 67 (1994), pp. 265–295.

[16] S. J. Wright, A path-following interior-point algorithm for linear and quadratic optimization
problems, Ann. Oper. Res., 62 (1996), pp. 103–130.

[17] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.
[18] S. J. Wright, Stability of augmented system factorizations in interior-point methods, SIAM

J. Matrix Anal. Appl., 18 (1997), pp. 191–222.
[19] X. Xu, P. Hung, and Y. Ye, A simplified homogeneous and self-dual linear programming

algorithm and its implementation, Ann. Oper. Res., 62 (1996), pp. 151–172.
[20] Y. Zhang, Solving Large-Scale Linear Programs by Interior-Point Methods under the MAT-

LAB Enviroment, Technical Report TR96-01, Department of Mathematics and Statistics,
University of Maryland Baltimore County, Baltimore, MD, 1996.

THE QUASI-CAUCHY RELATION AND DIAGONAL UPDATING∗

M. ZHU† , J. L. NAZARETH‡ , AND H. WOLKOWICZ§

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 4, pp. 1192–1204

Dedicated to Professor John E. Dennis on the occasion of his 60th birthday

Abstract. The quasi-Cauchy (QC) relation is the weak quasi-Newton relation of Dennis and
Wolkowicz [SIAM J. Numer. Anal., 30 (1993), pp. 1291–1314] with the added restriction that full
matrices are replaced by diagonal matrices. This relation is justified and explored and, in particular,
two basic variational techniques for updating diagonal matrices that satisfy it are formulated.

For purposes of illustration, a numerical experiment is described where a diagonal updated matrix
with hereditary positive definiteness is used to precondition Cauchy’s steepest-descent direction. The
resulting QC algorithm is shown to be significantly accelerated.

In the concluding section, the following topics are briefly discussed: additional variational princi-
ples, use of diagonal updates within other optimization algorithms together with some further numer-
ical experience (summarized in an appendix), and an interesting connection between QC-diagonal
updating and trust-region techniques.

Key words. weak-quasi-Newton, quasi-Cauchy, diagonal updating, Cauchy algorithm, steepest-
descent

AMS subject classifications. 49, 90, 65

PII. S1052623498331793

1. Introduction. We consider the problem of finding a local minimum of a
smooth, unconstrained nonlinear function, namely,

minimizex∈Rn f(x).(1)

For purposes of discussion, it is useful to identify a hierarchy of relations that can
be employed within Newton and Cauchy algorithms for solving (1) (see, for example,
Dennis and Schnabel [4], Bertsekas [2], and Nazareth [14] for background):

• Quasi-Newton (QN). M+s = y, where the n-dimensional vector s = x+ − x
denotes the step corresponding to two different points x and x+, and y =
g+ − g denotes the gradient change corresponding to the gradients g and
g+ at the two points. Assume sT y > 0. M+ is a full n × n matrix that
approximates the Hessian of f . Both s and y are used explicitly and O(n2)
storage is required for the matrix M+.

If M is chosen to be a positive definite diagonal matrix, say D, then one
can recur only the diagonal elements of M+ in a QN update formula, for
example, the BFGS, yielding an updated diagonal matrix D+. The matrix
M+ is positive definite, and hence D+ is also positive definite, but obviously
D+ does not satisfy the QN relation. Only O(n) storage is required to store
D+. This diagonal-updating approach is used in Gill and Murray [9] and
Gilbert and Lemaréchal [8].

∗Received by the editors December 15, 1998; accepted for publication (in revised form) March 5,
1999; published electronically September 24, 1999.

http://www.siam.org/journals/siopt/9-4/33179.html
†Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052 (minzhu@microsoft.com).
‡Department of Pure and Applied Mathematics, Washington State University, Pullman, WA

(nazareth@amath.washington.edu).
§Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,

Canada (hwolkowi@orion.math.uwaterloo.ca).

1192

QC-DIAGONAL UPDATING 1193

• Weak-quasi-Newton. sTM+s = sT y. This relation was introduced and stud-
ied by Dennis and Wolkowicz [5]. For example, one of the updates proposed
in [5] is as follows:

M+ = M +
(sT y − sTMs)

(sTMs)2
MssTM,(2)

where M is positive definite. The condition sT y > 0 implies that M+ is
also positive definite. Again s and y are used explicitly and O(n2) storage is
required.

As in the QN case, if M is taken to be a positive definite diagonal matrix
D, the foregoing formula (2) can be restricted to updating only the diagonal
elements of M+, yielding a positive definite updated matrix, say D+. In
general, D+ does not satisfy the weak-QN relation.

It is interesting to note that the quantity sT y in expression (2), which
equals gT+s− gT s, can be obtained directly from directional derivative differ-
ences along s that require only function values. Thus, knowledge of gradient
vectors is not essential in this formula.
• Quasi-Cauchy (QC). sTD+s = sT y, where D+ is required to be a diagonal

matrix, i.e., the QC relation is the weak QN with matrices further restricted
to be diagonal. The vectors s and y are assumed to be available. Only O(n)
storage is required to store the diagonal update. Additionally, we would like
the matrix D+ to be positive definite and thus able to define a metric. An
obvious usage would be to precondition or rescale Cauchy’s steepest-descent
direction, which accounts for our choice of terminology.

Consider the well-known Oren–Luenberger scaling matrix, namely,

D+ = (sT y/sT s)I,

where I is the identity matrix. It is interesting to note that this is precisely the
unique matrix that would be obtained from the QC relation with the further
restriction that the diagonal matrix is a scalar multiple of the identity matrix,
i.e., the diagonal elements of the Hessian approximation D+ are equal and the
model function associated with it has contours that are hyperspheres. Thus,
scaling matrices derived from the QC relation are a natural generalization of
Oren–Luenberger scaling.

As in the foregoing discussion on the weak-QN relation, the quantity
sT y in the right-hand side of the QC relation can be obtained by directional
derivative differences along s. Thus, explicit use of gradient vectors can be
circumvented, and the resulting diagonal update can find potential use in an
algorithm that requires only approximations to gradients (quasi-gradients).
The QC relation and variational-based diagonal updating were originally pro-
posed in this setting in [15], [16].

The purpose of this article is to formulate two basic techniques for diagonal updat-
ing subject to the QC relation (section 2). These are based on variational principles
that are analogous to ones employed in quasi-Newton updating. The first is the ana-
logue of the principle from which the Powell symmetric Broyden (PSB) quasi-Newton
update is derived—see, for example, Dennis and Schnabel [4]. Like PSB, the diagonal
update does not have the hereditary positive definiteness property. The second is
based on a principle analogous to that from which the BFGS update is commonly

1194 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

derived—again, see [4]. Like BFGS, the diagonal update has hereditary positive defi-
niteness and can therefore be used to define a metric. So can its complementary form,
which corresponds to DFP.

For purposes of illustration, the latter diagonal update is used to iteratively pre-
condition (or rescale) Cauchy’s steepest-descent algorithm, and the results of its nu-
merical performance on a set of standard MINPACK-1 test problems are reported
(section 3). The algorithm is shown to be significantly accelerated.

In the concluding section, we briefly discuss further variational principles; the use
of diagonal updates within other optimization algorithms, in particular, the L-BFGS
algorithm (some additional numerical results are summarized in an appendix); and
an interesting connection with trust-region techniques.

More detail can be found in Zhu [19], [20], where a comprehensive theory of
diagonal updating subject to the QC relation is developed and applied.

2. QC-diagonal updating. Suppose D > 0 is a positive definite diagonal ma-
trix and D+, which is also diagonal, is the updated version of D. We require that
the updated D+ satisfy the QC relation and that the deviation between D and D+

is minimized under some variational principle. (Here we will use only the Frobenius
matrix norm to measure the deviation.) We would like the derived update to pre-
serve positive definiteness in a natural way, i.e., we seek well-posed metric problems
such that the solution D+, through the diagonal updating procedure, incorporates
available curvature information from the step and gradient changes, as well as that
contained in D. As noted earlier, a diagonal matrix uses the same computer storage
as a vector so only O(n) storage is required. Thus, the resulting update will have
potential use in algorithms where storage is at a premium.

We now focus on two basic forms of QC-diagonal updating.

2.1. Updating D. Consider the variational problem

(P) : minimize ||D+ −D||F

subject to (s.t.) sTD+s = sT y,

where s 6= 0, sT y > 0, and D > 0. Let

D+ = D + Λ, a = sTDs, b = sT y.(3)

Then the variational problem can be stated alternatively as

(P) : minimize
1

2
||Λ||2F

s.t. sTΛs = b− a.
In (P), the objective is strictly convex and the feasible set is convex. Therefore, there
exists a unique solution to (P). Its Lagrangian function is

L(Λ, µ) =
1

2
tr(Λ2) + µ(sTΛs+ a− b),

where µ is the Lagrange multiplier associated with the constraint and tr denotes the
trace operator. Differentiating with respect to the diagonal elements, setting the
result to zero, and invoking the constraint sTΛs = b− a, we have

Λ =
b− a

tr(E2)
E, E = diag [s2

1, s
2
2, . . . , s

2
n],(4)

QC-DIAGONAL UPDATING 1195

where si is the ith element of s. When b < a, note that the resulting D+ = D + Λ is
not necessarily positive definite.

The foregoing update is the counterpart of the PSB update in the quasi-Newton
setting and, like the latter, it does not preserve positive definiteness. Thus it is
inappropriate for use within a metric-based algorithm.

2.2. Updating D1/2. An alternative approach to preserving positive definite-
ness through diagonal updating, which is the analogue of the principle used to de-
rive the BFGS update in the quasi-Newton setting, is to update the square root or

Cholesky factor D1/2 to give the corresponding D
1/2
+ with

D
1/2
+ = D1/2 + Ω,

where Ω is chosen to

(FP) : minimize ||Ω||F(5)

s.t. sT (D1/2 + Ω)2s = sT y > 0.

The foregoing variational problem is well posed, being defined over the closed set of
matrices for which the corresponding D+ is positive semidefinite. Further, analogous
to the full matrix case in standard QN updating, it always has a viable solution for
which D+ is positive definite, as we now show in the following theorem.

Theorem 2.2.1. Let D > 0, s 6= 0, and a, b, E be defined as in (3) and (4).
There is a unique global solution Ω of (FP) which is given by

Ω =

{
0 if b = a,
−µ∗E(I + µ∗E)−1D1/2 if b 6= a,

(6)

where µ∗ is the largest solution of the nonlinear equation F (µ) = b and

F (µ)
def
= sT (D(I + µE)−2)s =

∑
{i:si 6=0}

dis
2
i

(1 + µs2
i)

2
.(7)

Proof. In the process of the proof we will see that every expression above is well
defined. Let Ω = diag(ω1, . . . , ωn) and let ω denote the vector of diagonal elements
(ω1, . . . , ωn)T . First, by a simple transformation, problem (FP) is equivalent to

(FP) : minimize ||ω||22 = wTw

s.t. ωTEω + 2wTEr = b− a,
where

r = [d
1/2
1 , d

1/2
2 , . . . , d1/2

n]T .

When b = a, the global optimal solution is obviously ω = 0, and hence Ω = 0, which
implies that D+ = D is positive definite. In the following discussion we assume that
b 6= a. Problem (FP) has a strictly convex objective with the Hessian E of the
constraint being positive semidefinite. By a theorem concerning a quadratic objective
with also a quadratic constraint in [12], (FP) has a global solution. Differentiating
its Lagrangian

L(ω, µ) = ωTω + µ(ωTEω + 2wTEr + a− b)

1196 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

with respect to ω, where µ is the Lagrange multiplier, and setting the result to zero,
we have

ωi = − µs2
i d

1/2
i

(1 + µs2
i)
, i = 1, . . . , n.

Substituting these quantities into the constraint equation, we obtain

F (µ)
def
= sT (D(I + µE)−2)s

=
n∑
i=1

dis
2
i

(1 + µs2
i)

2

=
∑
{i:si 6=0}

di
s2
i (µ+ (1/s2

i))
2

= b.

Note that F (µ) has poles at (−1/s2
i), i = 1, . . . , n. Let

j = arg max{i,si 6=0}

(
− 1

s2
i

)
.

The derivative of F (µ) is

dF (µ)

µ
= −2

∑
{i:si 6=0}

r2
i

s2
i (µ+ (1/s2

i))
3
,

which is less than zero on the interval(
− 1

s2
j

,+∞
)
,

so F (µ) is strictly decreasing in the above interval from +∞ to 0. Noting that b > 0,
we see that there is a unique solution µ∗ within this interval such that F (µ∗) = b.
Although the behavior of F (µ) is complicated in the entire domain, solutions for
F (µ) = b except µ∗ are of no interest. (Note that µ∗ is the largest solution.) This is
because a necessary condition [12] of the solution of (FP) requires the Hessian of the
Lagrangian (with respect to ω), namely, 2(I + µE), to be positive semidefinite. This
is equivalent to

1 + µs2
i ≥ 0, i = 1, . . . , n,

and clearly µ∗ is the unique solution of F (µ) = b satisfying the above inequalities. A
key observation is that I + µ∗E is positive definite, and thus µ∗ is the unique global
minimizer for (FP). Returning to the relationship of ω and µ, we see that

Ω∗ = −µ∗E(I + µ∗E)−1D−1/2

is the unique solution of (FP). Note also that ∀i = 1, . . . , n,

d
1/2
i − µ∗s2

i d
1/2
i

(1 + µ∗s2
i)

=
1

1 + µ∗s2
i

d
1/2
i 6= 0,

QC-DIAGONAL UPDATING 1197

so D+ is positive definite. This completes the proof.
The following is a direct result of the theorem.
Corollary 2.2.1. The solution D+ through the diagonal updating problem (FP)

is positive definite and unique and is given by

D+ =

{
D if b = a,
(I + µ∗E)−2D if b 6= a.

(8)

Make the following definitions:

U = D−1, c = yTUy, G = [y2
1 , . . . , y

2
n].

One can obtain the update that is complementary to the update in the foregoing
theorem by making the following transpositions:

µ↔ ν, s↔ y, a↔ c, D ↔ U, D+ ↔ U+.

This is summarized in the following result, which is based on the analogue of the
variational principle from which the DFP quasi-Newton update is derived.

Corollary 2.2.2. The solution U+ through the diagonal updating problem com-
plementary to (FP) is positive definite and uniquely given by

U+ =

{
U if b = c,
(I + ν∗G)−2U if b 6= c,

(9)

where ν∗ is the largest solution of H(ν) = b and

H(ν)
def
= yT (U(I + νG)−2)y =

∑
{i:yi 6=0}

uiy
2
i

(1 + νy2
i)2

.

3. Numerical illustration. An immediate application for the diagonal update
of the previous section, which we use for purposes of illustration, is to dynamically
scale the steepest-descent direction at each iteration of Cauchy’s algorithm.

The Cauchy direction is ideal when the contours of the objective f to be min-
imized are hyperspheres. For a general function that is not quadratic, a precondi-
tioning can be used to make the transformed contours closer to hyperspheres such
that the efficiency of the Cauchy direction in the transformed space is enhanced. The
diagonal updating is a variable preconditioning which includes the updated curvature
information, and its hereditary positive definiteness is naturally maintained when the
Cholesky factor is updated as shown in the previous section. An expectation that the
Cauchy method will be significantly accelerated using diagonal updating is supported
by our numerical results.

Our source code is written in Fortran-90, with double precision algorithmic, run-
ning on an ULTRIX DEC workstation. Purely for convenience, we implemented the
complementary updates which are defined in terms of the inverse matrix U+. The
numerical experiment is done within the MINPACK-1 testing environment. Test func-
tions are the standard unconstrained problems collected in [11], which we identify by
the numbering in Table 1.

We employ a line search routine of Moré and Thuente [13] along direction, say, d,
which is based on cubic interpolation and satisfies the (strong) Wolfe conditions:

f(x+) ≤ f(x) + αλgT d,(10)

|gT+d| ≤ β|gT d|,(11)

1198 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

Table 1
MINPACK-1 test problems.

Number Problem name

1 Helical valley function
2 Biggs exp6 function
3 Gaussian function
4 Powell badly scaled function
5 Box 3-dimensional function
6 Variably dimensioned function
7 Watson function
8 Penalty function I
9 Penalty function II
10 Brown badly scaled function
11 Brown and Dennis function
12 Gulf research and development function
13 Trigonometric function
14 Extended Rosenbrock function
15 Extended Powell function
16 Beale function
17 Wood function
18 Chebyquad function

where x+ = x + λd and the line search parameters are chosen as in [6], namely,
α = 10−4, β = 0.9. The stopping criterion is also as in [6]:

||g(x)|| ≤ 10−5max{1.0, ||x||}.(12)

At any iterate, say, x+, the corresponding search direction d+ in the methods tested
is as follows:

1. Standard Cauchy. The search direction is of the form d+ = −g+.
2. Cauchy with Oren–Luenberger scaling. This scales the search direction with

Oren–Luenberger scaling [7] in its complementary form,

d+ = − y
T s

yT y
g+,

for all iterations except the first, where the initial steepest-descent search
direction is employed.

3. DU-Cholesky. This implements the complementary diagonal update of Corol-
lary 2.2.2 with d+ = −U+g+. In our numerical implementation, ν∗ is obtained
by a simple bisectional search within the interval from the largest pole of the
function H(ν) to some large number on the axis such that the initial bisection
condition of the endpoints is satisfied. Note that H(0) = c, and thus if b > c,
then the solution ν∗ < 0; if b < c, then ν∗ > 0. Hence, the interval for the
bisection is actually reduced with one endpoint being 0 in each case. (The
cost of computing ν∗ by bisection is a relatively minor portion of the algo-
rithm. Note that more efficient reformulations and techniques, for example,
Newton’s method, for solving the subproblem for ν∗ are possible, as discussed
in the concluding section.)

The numerical comparative results are given in Table 2; it gives nitr/nfg, namely,
the number of iterations and the number of calls for function and gradient evaluation.
The symbol ∗ in the table indicates that the method takes too many iterations and is
regarded as having failed to converge. The first and second columns in the table are

QC-DIAGONAL UPDATING 1199

Table 2
Numerical results for diagonal updating.

Prob. Dim. Cauchy Cauchy-OL DU-Cholesky

1 3 2552/5229 431/756 370/688
2 6 24041/45488 2221/4353 1165/2120
3 3 2/4 2/6 2/6
4 2 * * 238/1649
5 3 32535/65075 225/428 165/300
6 6 446/1001 574/877 157/274
6 8 981/2318 269/415 229/427
7 2 14/35 15/20 15/20
8 4 46282/46295 491/1386 491/1386
9 4 63/128 40/61 49/66
10 2 * 147/998 147/998
11 4 * 126/892 198/387
12 3 * 988/2506 *
13 4 76/93 35/46 67/85
13 8 134/169 109/156 80/120
14 2 1109/2248 242/558 289/701
15 4 70638/159377 2853/5081 428/827
16 2 188/377 315/471 104/167
17 4 2879/5795 1755/2347 525/1003
18 4 11/25 16/21 16/20
18 8 118/253 82/128 67/98

the numbers standing for the test problems and the problem dimensions, respectively.
The remaining columns are the results for the three corresponding methods.

From the above results, we see that the Cauchy algorithms using diagonal updat-
ing are much faster than the standard Cauchy. The simple Oren–Luenberger scaling
dramatically improves performance, and the DU-Cholesky diagonal update usually
results in a very significant further acceleration.

One can expect similar and quite likely better performance from the diagonal
update of Corollary 2.2.1 (whose quasi-Newton counterpart is the BFGS rather than
the DFP update).

4. Conclusion. As noted in section 1, any QN or weak-QN update formula can
be converted immediately into a diagonal-updating formula. If the original update
has hereditary positive definiteness, then the associated diagonal update will retain
this property. The diagonal update does not satisfy any curvature condition a priori,
and the approach is therefore heuristic—in particular because a QN update does
not maintain a Hessian approximation in an element-to-element sense. Nevertheless,
the usefulness of this approach within optimization algorithms, when storage is at a
premium, has been nicely demonstrated in the works cited earlier, namely, [8] and
[9]. Let us identify it by the name QN-diagonal updating (and, correspondingly, weak-
QN-diagonal updating when derived from a weak-QN formula).

In this article we have developed an alternative, variational-based approach with
more solid foundations. QC-diagonal updating is an attractive theory whose appeal
arises from its simplicity, its elegant solutions, and the similarity of the variational
techniques employed to those of QN methods.

We conclude by briefly itemizing some broader issues involving QC-diagonal up-
dating:

1200 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

• Additional variational principles. We have used only the Frobenius norm in
the variational principles of section 2. Other updates can be derived using
weighted Frobenius norms, again with variational counterparts in QN up-
dating. Furthermore, a principle based on the deviation from violation of a
previous QC relation can be formulated (analogous to the derivation of the
LPD QN update; see Mifflin and Nazareth [10]). For more details, see Zhu
[20].

It is also possible to extend both weak-QN-diagonal updating and QC-
diagonal updating along lines that parallel work in Yuan and Byrd [18] by
substituting a higher-order estimate of curvature for the quantity b in the
right-hand side of the weak-QN and QC relations.
• Other applications. When proposing a new algorithmic technique, it is essen-

tial to provide a basic (level 1) numerical illustration of viability. We have
done this in section 3 for an obvious application—a diagonally preconditioned
Cauchy algorithm applied to a standard set of (low-dimensional) MINPACK-1
problems. A much more detailed study of QC-diagonal updating within the
limited-memory BFGS algorithm is given in Zhu [20] using more practical
MINPACK-2 problems of high dimension. (Some numerical results from this
study are briefly summarized in the appendix.) This study has reaffirmed the
usefulness of QC-diagonal updating in this setting, thus paralleling the pos-
itive experience with QN-diagonal updating mentioned above. One can also
envision using a QC-diagonal update within a conjugate gradient iteration
(preliminary results along these lines are also reported in [20]) and within a
truncated-Newton method.
• Connections to other techniques. Suppose n is not large and evaluating a

function/gradient is relatively expensive (a common assumption in nonlinear
optimization). Then the cost of solving the nonlinear equation F (µ) = b in
Theorem 2.2.1, which we call the QC subproblem, is essentially trivial even
when it is performed by a crude unidimensional algorithm, for example, using
bisection. If greater efficiency is needed, it is useful to exploit a connection
between problem (FP) of section 2.2 and a scaled trust-region subproblem
as follows. This connection is particularly ironic because the QC method
developed in this article is quintessentially metric-based, whereas trust-region
techniques are the fundamental building blocks of model-based approaches
(for terminology see Nazareth [14]).

Write problem (FP) as

minimize ||D1/2
+ −D1/2||F

s.t. sTD+s = b > 0.

Then using the earlier definitions

E = diag [s2
1, s

2
2, . . . , s

2
n],

r = [d
1/2
1 , d

1/2
2 , . . . , d1/2

n]T

and defining the vector z to be the diagonal elements ofD
1/2
+ , we can reexpress

the variational problem as follows:

QC-DIAGONAL UPDATING 1201

Table 3
MINPACK-2 test problems.

Number Problem name Par.

1 Elastic-Plastic Torsion 0.5D+01
2 Pressure Distribution in a Journal Bearing 0.1D+00
3 (Enneper’s) Minimal Surface 0.0D+00
4 Optimal Design with Composite Materials 0.8D-02
5 Steady-State Combustion 0.1D+01
6 Homog. Superconductors: 2-D Ginzburg–Landau 0.2D+01

minimize − rT z +
1

2
zT z(13)

s.t. zTEz = b,

where b > 0. When E is nonsingular and the equality in the constraint is
replaced by a ≤ inequality, one obtains a standard trust-region subproblem
in the metric defined by E > 0. It is likely that many of the techniques used
to solve trust-region subproblems—see, in particular, Rendl and Wolkowicz
[17]—can be suitably adapted to the task of solving the QC subproblem
more efficiently if desired, based on the above interpretation of (FP) as a
nonstandard trust-region problem (13).

• Convergence analysis. Interesting issues remain to be addressed, in particular,
the convergence of algorithms that use diagonal updating, the convergence
(or not) of diagonal updates to Hessian matrices of functions when these
Hessians are themselves diagonal, and the impact of diagonal updating on
finite termination of associated algorithms when applied to strongly convex
quadratic functions.

Appendix. Some additional numerical experience with QC-diagonal updating
within a limited-memory BFGS algorithm is described briefly in this appendix. We
employ the MINPACK-2 testbed—a suite of test problems, each of which comes from
a real application and is representative of other commonly encountered problems.

MINPACK-2 contains problems from such diverse fields as fluid dynamics, medi-
cine, elasticity, combustion, molecular conformation, nondestructive testing, chemical
kinetics, lubrication, and superconductivity; see Averick et al. [1]. In our experi-
ment, we consider a subset of six MINPACK-2 problems (also employed in the study
of Burke and Wiegmann [3]), which are suitable for testing the behavior of uncon-
strained nonlinear optimization algorithms. They are summarized in Table 3. (The
first two are unconstrained versions of constrained problems, and the other four are
unconstrained problems.) The last column of the table denotes the default parameters
for the corresponding problems as used in our testing. For a complete description of
these MINPACK-2 problems, see [1].

We give a numerical comparison of the following two limited-memory BFGS al-
gorithms, which differ only in the choice of diagonal scaling matrix used to initiate
the L-BFGS upate at each iteration:

• L-BFGS-OL. The diagonal matrix is obtained in the standard way by Oren–
Luenberger scaling yT s/yT y (for notation, see section 3).
• L-BFGS-DU(C). The diagonal matrix is obtained by QC-diagonal updating

of Cholesky factors.

1202 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

Table 4
MINPACK-2, n = 400.

Prob. L-BFGS-OL L-BFGS-DU(C) Perf.

1 35/39 33/35 +
2 83/89 68/76 +
3 21/23 28/30 −−
4 58/61 49/56 +
5 45/49 45/50 =
6 204/215 175/193 +

Table 5
MINPACK-2, n = 2,500.

Prob. L-BFGS-OL L-BFGS-DU(C) Perf.

1 89/95 81/84 +
2 185/191 125/162 ++
3 77/78 70/71 +
4 230/236 174/201 +
5 120/126 106/108 +
6 480/495 381/423 +

The retention parameter in the two L-BFGS algorithms, i.e., the number m of
preserved step/gradient-change pairs over which updating is performed at each iter-
ation, is the standard choice m = 5; see Gilbert and Lemaréchal [8]. The line search
routine employed is that of Moré and Thuente [13], which was also used in the exper-
iments described in section 3, with its parameters in the strong Wolfe exit conditions
(10)–(11) set as follows:

α = 10−3 and β = 0.9.(14)

For other implementation details, see Zhu [20].
The algorithms used the starting points and stopping criterion of [1] for all tests.

Details are again given in [20].
The two limited-memory BFGS algorithms were tested on the MINPACK-2 prob-

lems in Table 3 for problems of dimensions 400, 2,500, 10,000, and 40,000; see Tables
4, 5, 6, and 7.

The test results are given in these four tables—each analogous to Table 2—
corresponding to the four different choices of problem dimension. Each table reports
the results for the two limited-memory BFGS algorithms. The first column records
the problem names. Each entry in the second and third columns contains a pair
of numbers, namely, the number of iterations and the number of function/gradient
calls—the number of times the evaluation routine that returns the function value and
gradient vector at a specified point is called—for the corresponding algorithm. The
entries in the last column assess relative performance as follows:

= indicates that the function/gradient counts for the two algorithm
are within 5 percent of each other;

+ indicates that the function/gradient count for L-BFGS-DU(C) is
better by between 5 and 15 percent;

++ indicates that the foregoing count for L-BFGS-DU(C) is better by
more than 15 percent;

− indicates that L-BFGS-OL is better by between 5 and 15 percent;
−− indicates that L-BFGS-OL is better by more than 15 percent.

QC-DIAGONAL UPDATING 1203

Table 6
MINPACK-2, n = 10,000.

Prob. L-BFGS-OL L-BFGS-DU(C) Perf.

1 177/188 113/143 ++
2 368/387 237/245 ++
3 176/182 94/105 ++
4 377/385 244/256 ++
5 223/230 143/155 ++
6 773/802 769/793 =

Table 7
MINPACK-2, n = 40,000.

Prob. L-BFGS-OL L-BFGS-DU(C) Perf.

1 312/321 319/321 =
2 758/784 710/767 =
3 403/414 449/453 −
4 866/874 1091/1165 −−
5 415/432 312/364 ++
6 1444/1502 1360/1405 +

Acknowledgments. We gratefully acknowledge some very useful feedback from
the reviewers of this article, which improved it significantly.

REFERENCES

[1] B.M. Averick, R.G. Carter, J.J. Moré, and G. Xue, The MINPACK-2 Test Problem Col-
lection, Preprint MCS-P153-0692, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL, 1992.

[2] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1995.
[3] J.V. Burke and A. Wiegmann, Notes on Limited Memory BFGS Updating in a Trust-Region

Framework, Preprint, Department of Mathematics, University of Washington, Seattle, WA,
1996.

[4] J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice–Hall, Englewood Cliffs, NJ, 1983.

[5] J.E. Dennis, Jr. and H. Wolkowicz, Sizing and least-change secant methods, SIAM J. Numer.
Anal., 30 (1993), pp. 1291–1314.

[6] D.C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Programming Ser. B, 45 (1989), pp. 503–528.

[7] D.G. Luenberger, Linear and Nonlinear Programming, 2nd. ed., Addison–Wesley, Reading,
MA, 1994.

[8] J.C. Gilbert and C. Lemaréchal, Some numerical experiments with variable-storage quasi-
Newton algorithms, Math. Programming Ser. B, 45 (1989), pp. 407–435.

[9] P.E. Gill and W. Murray, Conjugate Gradient Methods for Large-Scale Nonlinear Optimiza-
tion, Technical Report SOL 79-15, Department of Operations Research, Stanford Univer-
sity, Stanford, CA, 1979.

[10] R.B. Mifflin and J.L. Nazareth, The least prior deviation quasi-Newton update, Math.
Programming, 65 (1994), pp. 247–261.

[11] J.J. Moré, B.S. Garbow, and K.E. Hillstrom, Testing unconstrained optimization software,
ACM Trans. Math. Software, 7 (1981), pp. 17–41.

[12] J.J. Moré, Generalizations of the trust region problem, Optim. Methods Softw., 2 (1993), pp.
189–209.

[13] J.J. Moré and D.J. Thuente, Line search algorithms with guaranteed sufficient decrease,
ACM Trans. Math. Software, 20 (1994), pp. 286–307.

[14] J.L. Nazareth, The Newton-Cauchy Framework: A Unified Approach to Unconstrained Non-
linear Minimization, Lecture Notes in Comput. Sci. 769, Springer, New York, 1994.

1204 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

[15] J.L. Nazareth, If quasi-Newton then why not quasi-Cauchy?, SIAG/OPT Views-and-News, 6
(1995), pp. 11–14.

[16] J.L. Nazareth, The Quasi-Cauchy Method: A Stepping Stone to Derivative-Free Algorithms,
Technical Report 95-3, Department of Pure and Applied Mathematics, Washington State
University, Pullman, WA, 1995.

[17] F. Rendl and H. Wolkowicz, A semidefinite framework for trust region subproblems with
applications to large scale minimization, Math. Programming, 77 (1994), pp. 273–300.

[18] Y. Yuan and R.H. Byrd, Non-quasi-Newton updates for unconstrained optimization, J. Com-
put. Math., 13 (1995), pp. 95–107.

[19] M. Zhu, Limited Memory BFGS Algorithms with Diagonal Updating, M.Sc. Project Report,
School of Electrical Engineering and Computer Science, Washington State University, Pull-
man, WA, 1997.

[20] M. Zhu, Techniques for Nonlinear Optimization: Principles and Practice, Ph.D. dissertation,
Department of Pure and Applied Mathematics, Washington State University, Pullman,
WA, 1997.

	SJOPE_V09_i1_p0001
	SJOPE_V09_i1_p0014
	SJOPE_V09_i1_p0033
	SJOPE_V09_i1_p0053
	SJOPE_V09_i1_p0062
	SJOPE_V09_i1_p0084
	SJOPE_V09_i1_p0112
	SJOPE_V09_i1_p0148
	SJOPE_V09_i1_p0159
	SJOPE_V09_i1_p0179
	SJOPE_V09_i1_p0190
	SJOPE_V09_i1_p0207
	SJOPE_V09_i1_p0217
	SJOPE_V09_i1_p0236
	SJOPE_V09_i1_p0270
	SJOPE_V09_i2_p0291
	SJOPE_V09_i2_p0316
	SJOPE_V09_i2_p0327
	SJOPE_V09_i2_p0342
	SJOPE_V09_i2_p0374
	SJOPE_V09_i2_p0388
	SJOPE_V09_i2_p0414
	SJOPE_V09_i2_p0444
	SJOPE_V09_i2_p0466
	SJOPE_V09_i2_p0493
	SJOPE_V09_i2_p0504
	SJOPE_V09_i2_p0526
	SJOPE_V09_i3_p0551
	SJOPE_V09_i3_p0578
	SJOPE_V09_i3_p0605
	SJOPE_V09_i3_p0624
	SJOPE_V09_i3_p0646
	SJOPE_V09_i3_p0668
	SJOPE_V09_i3_p0690
	SJOPE_V09_i3_p0707
	SJOPE_V09_i3_p0729
	SJOPE_V09_i3_p0755
	SJOPE_V09_i3_p0779
	SJOPE_V09_i4_p0vii
	SJOPE_V09_i4_p0803
	SJOPE_V09_i4_p0813
	SJOPE_V09_i4_p0833
	SJOPE_V09_i4_p0863
	SJOPE_V09_i4_p0877
	SJOPE_V09_i4_p0901
	SJOPE_V09_i4_p0924
	SJOPE_V09_i4_p0948
	SJOPE_V09_i4_p0965
	SJOPE_V09_i4_p0991
	SJOPE_V09_i4_p1010
	SJOPE_V09_i4_p1041
	SJOPE_V09_i4_p1064
	SJOPE_V09_i4_p1082
	SJOPE_V09_i4_p1100
	SJOPE_V09_i4_p1128
	SJOPE_V09_i4_p1135
	SJOPE_V09_i4_p1149
	SJOPE_V09_i4_p1159
	SJOPE_V09_i4_p1192

